4.49 MB
/srv/reproducible-results/rbuild-debian/r-b-build.VHZKB55P/b1/statsmodels_0.14.5+dfsg-1_amd64.changes vs.
/srv/reproducible-results/rbuild-debian/r-b-build.VHZKB55P/b2/statsmodels_0.14.5+dfsg-1_amd64.changes
554 B
Files
    
Offset 1, 5 lines modifiedOffset 1, 5 lines modified
  
1 ·d28aa0b51b2e541304bbdccdebb45e8b·51164992·doc·optional·python-statsmodels-doc_0.14.5+dfsg-1_all.deb1 ·55311935da2de2b1e18c167aa7de68dc·51303580·doc·optional·python-statsmodels-doc_0.14.5+dfsg-1_all.deb
2 ·c9d8f2ead2099d0d74b610763444452b·13774620·debug·optional·python3-statsmodels-lib-dbgsym_0.14.5+dfsg-1_amd64.deb2 ·c9d8f2ead2099d0d74b610763444452b·13774620·debug·optional·python3-statsmodels-lib-dbgsym_0.14.5+dfsg-1_amd64.deb
3 ·5f539d0de2190c17fdc4ca96be386143·1634248·python·optional·python3-statsmodels-lib_0.14.5+dfsg-1_amd64.deb3 ·5f539d0de2190c17fdc4ca96be386143·1634248·python·optional·python3-statsmodels-lib_0.14.5+dfsg-1_amd64.deb
4 ·32e6fd7950e5ab3ad89791f2bb7cdf3d·4826544·python·optional·python3-statsmodels_0.14.5+dfsg-1_all.deb4 ·32e6fd7950e5ab3ad89791f2bb7cdf3d·4826544·python·optional·python3-statsmodels_0.14.5+dfsg-1_all.deb
4.48 MB
python-statsmodels-doc_0.14.5+dfsg-1_all.deb
452 B
file list
    
Offset 1, 3 lines modifiedOffset 1, 3 lines modified
1 -rw-r--r--···0········0········0········4·2025-08-10·13:13:47.000000·debian-binary1 -rw-r--r--···0········0········0········4·2025-08-10·13:13:47.000000·debian-binary
2 -rw-r--r--···0········0········0···334700·2025-08-10·13:13:47.000000·control.tar.xz2 -rw-r--r--···0········0········0···334768·2025-08-10·13:13:47.000000·control.tar.xz
3 -rw-r--r--···0········0········0·50830100·2025-08-10·13:13:47.000000·data.tar.xz3 -rw-r--r--···0········0········0·50968620·2025-08-10·13:13:47.000000·data.tar.xz
11.1 KB
control.tar.xz
11.0 KB
control.tar
793 B
file list
    
Offset 1, 7 lines modifiedOffset 1, 7 lines modified
1 drwxr-xr-x···0·root·········(0)·root·········(0)········0·2025-08-10·13:13:47.000000·./1 drwxr-xr-x···0·root·········(0)·root·········(0)········0·2025-08-10·13:13:47.000000·./
2 -rw-r--r--···0·root·········(0)·root·········(0)·····1227·2025-08-10·13:13:47.000000·./control2 -rw-r--r--···0·root·········(0)·root·········(0)·····1227·2025-08-10·13:13:47.000000·./control
3 -rw-r--r--···0·root·········(0)·root·········(0)··2128135·2025-08-10·13:13:47.000000·./md5sums3 -rw-r--r--···0·root·········(0)·root·········(0)··2128428·2025-08-10·13:13:47.000000·./md5sums
4 -rwxr-xr-x···0·root·········(0)·root·········(0)······406·2025-08-10·13:13:47.000000·./postinst4 -rwxr-xr-x···0·root·········(0)·root·········(0)······406·2025-08-10·13:13:47.000000·./postinst
5 -rwxr-xr-x···0·root·········(0)·root·········(0)······406·2025-08-10·13:13:47.000000·./postrm5 -rwxr-xr-x···0·root·········(0)·root·········(0)······406·2025-08-10·13:13:47.000000·./postrm
6 -rwxr-xr-x···0·root·········(0)·root·········(0)······406·2025-08-10·13:13:47.000000·./preinst6 -rwxr-xr-x···0·root·········(0)·root·········(0)······406·2025-08-10·13:13:47.000000·./preinst
7 -rwxr-xr-x···0·root·········(0)·root·········(0)······406·2025-08-10·13:13:47.000000·./prerm7 -rwxr-xr-x···0·root·········(0)·root·········(0)······406·2025-08-10·13:13:47.000000·./prerm
745 B
./control
    
Offset 1, 13 lines modifiedOffset 1, 13 lines modified
1 Package:·python-statsmodels-doc1 Package:·python-statsmodels-doc
2 Source:·statsmodels2 Source:·statsmodels
3 Version:·0.14.5+dfsg-13 Version:·0.14.5+dfsg-1
4 Architecture:·all4 Architecture:·all
5 Maintainer:·Debian·Science·Maintainers·<debian-science-maintainers@lists.alioth.debian.org>5 Maintainer:·Debian·Science·Maintainers·<debian-science-maintainers@lists.alioth.debian.org>
6 Installed-Size:·1712416 Installed-Size:·171630
7 Depends:·libjs-sphinxdoc·(>=·8.2),·libjs-requirejs,·libjs-mathjax7 Depends:·libjs-sphinxdoc·(>=·8.2),·libjs-requirejs,·libjs-mathjax
8 Suggests:·python3-statsmodels,·python3-doc,·python-numpy-doc,·python-patsy-doc,·python-pandas-doc,·python-scipy-doc8 Suggests:·python3-statsmodels,·python3-doc,·python-numpy-doc,·python-patsy-doc,·python-pandas-doc,·python-scipy-doc
9 Breaks:·python-scikits-statsmodels-doc,·python-scikits.statsmodels-doc,·python-statsmodels·(<<·0.9.0-3~)9 Breaks:·python-scikits-statsmodels-doc,·python-scikits.statsmodels-doc,·python-statsmodels·(<<·0.9.0-3~)
10 Replaces:·python-scikits-statsmodels-doc,·python-scikits.statsmodels-doc,·python-statsmodels·(<<·0.9.0-3~)10 Replaces:·python-scikits-statsmodels-doc,·python-scikits.statsmodels-doc,·python-statsmodels·(<<·0.9.0-3~)
11 Section:·doc11 Section:·doc
12 Priority:·optional12 Priority:·optional
13 Homepage:·https://www.statsmodels.org13 Homepage:·https://www.statsmodels.org
9.52 KB
./md5sums
30.0 B
./md5sums
Files differ
9.48 KB
line order
    
Offset 335, 18 lines modifiedOffset 335, 14 lines modified
335 usr/share/doc/python-statsmodels-doc/html/_images/deterministics.png335 usr/share/doc/python-statsmodels-doc/html/_images/deterministics.png
336 usr/share/doc/python-statsmodels-doc/html/_images/discrete_overview.png336 usr/share/doc/python-statsmodels-doc/html/_images/discrete_overview.png
337 usr/share/doc/python-statsmodels-doc/html/_images/distributed_estimation.png337 usr/share/doc/python-statsmodels-doc/html/_images/distributed_estimation.png
338 usr/share/doc/python-statsmodels-doc/html/_images/duration_survival_95ci_plot.png338 usr/share/doc/python-statsmodels-doc/html/_images/duration_survival_95ci_plot.png
339 usr/share/doc/python-statsmodels-doc/html/_images/duration_survival_bysex_plot.png339 usr/share/doc/python-statsmodels-doc/html/_images/duration_survival_bysex_plot.png
340 usr/share/doc/python-statsmodels-doc/html/_images/ets.png340 usr/share/doc/python-statsmodels-doc/html/_images/ets.png
341 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_categorical_interaction_plot_4_0.png341 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_categorical_interaction_plot_4_0.png
342 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_copula_11_0.png 
343 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_copula_5_0.png 
344 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_copula_7_1.png 
345 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_copula_9_0.png 
346 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_count_hurdle_10_0.png342 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_count_hurdle_10_0.png
347 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_count_hurdle_7_0.png343 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_count_hurdle_7_0.png
348 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_deterministics_28_0.png344 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_deterministics_28_0.png
349 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_deterministics_32_0.png345 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_deterministics_32_0.png
350 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_discrete_choice_example_25_1.png346 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_discrete_choice_example_25_1.png
351 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_discrete_choice_example_26_1.png347 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_discrete_choice_example_26_1.png
352 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_discrete_choice_example_55_0.png348 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_discrete_choice_example_55_0.png
Offset 489, 14 lines modifiedOffset 485, 20 lines modified
489 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_11_0.png485 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_11_0.png
490 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_13_0.png486 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_13_0.png
491 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_15_0.png487 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_15_0.png
492 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_17_0.png488 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_17_0.png
493 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_19_0.png489 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_19_0.png
494 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_21_0.png490 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_21_0.png
495 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_6_0.png491 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_6_0.png
 492 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_0_18_0.png
 493 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_0_21_0.png
 494 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_0_22_0.png
 495 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_0_39_1.png
 496 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_0_42_0.png
 497 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_0_49_1.png
496 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_1_11_0.png498 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_1_11_0.png
497 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_dates_12_0.png499 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_dates_12_0.png
498 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_13_0.png500 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_13_0.png
499 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_19_1.png501 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_19_1.png
500 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_26_1.png502 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_26_1.png
501 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_8_0.png503 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_8_0.png
502 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_wls_15_1.png504 usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_wls_15_1.png
Offset 949, 15 lines modifiedOffset 951, 14 lines modified
949 usr/share/doc/python-statsmodels-doc/html/_sources/duration.rst.txt951 usr/share/doc/python-statsmodels-doc/html/_sources/duration.rst.txt
950 usr/share/doc/python-statsmodels-doc/html/_sources/emplike.rst.txt952 usr/share/doc/python-statsmodels-doc/html/_sources/emplike.rst.txt
951 usr/share/doc/python-statsmodels-doc/html/_sources/endog_exog.rst.txt953 usr/share/doc/python-statsmodels-doc/html/_sources/endog_exog.rst.txt
952 usr/share/doc/python-statsmodels-doc/html/_sources/example_formulas.rst.txt954 usr/share/doc/python-statsmodels-doc/html/_sources/example_formulas.rst.txt
953 usr/share/doc/python-statsmodels-doc/html/_sources/examples/index.rst.txt955 usr/share/doc/python-statsmodels-doc/html/_sources/examples/index.rst.txt
954 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/categorical_interaction_plot.ipynb.txt956 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/categorical_interaction_plot.ipynb.txt
955 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/chi2_fitting.ipynb.txt957 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/chi2_fitting.ipynb.txt
956 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/copula.ipynb.txt 
957 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/count_hurdle.ipynb.txt958 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/count_hurdle.ipynb.txt
958 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/deterministics.ipynb.txt959 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/deterministics.ipynb.txt
959 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/discrete_choice_example.ipynb.txt960 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/discrete_choice_example.ipynb.txt
960 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/discrete_choice_overview.ipynb.txt961 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/discrete_choice_overview.ipynb.txt
961 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/distributed_estimation.ipynb.txt962 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/distributed_estimation.ipynb.txt
962 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/ets.ipynb.txt963 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/ets.ipynb.txt
963 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/exponential_smoothing.ipynb.txt964 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/exponential_smoothing.ipynb.txt
Offset 993, 14 lines modifiedOffset 994, 15 lines modified
993 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/statespace_sarimax_faq.ipynb.txt994 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/statespace_sarimax_faq.ipynb.txt
994 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/statespace_seasonal.ipynb.txt995 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/statespace_seasonal.ipynb.txt
995 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stationarity_detrending_adf_kpss.ipynb.txt996 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stationarity_detrending_adf_kpss.ipynb.txt
996 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stats_poisson.ipynb.txt997 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stats_poisson.ipynb.txt
997 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stats_rankcompare.ipynb.txt998 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stats_rankcompare.ipynb.txt
998 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stl_decomposition.ipynb.txt999 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stl_decomposition.ipynb.txt
999 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/treatment_effect.ipynb.txt1000 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/treatment_effect.ipynb.txt
 1001 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_arma_0.ipynb.txt
1000 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_arma_1.ipynb.txt1002 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_arma_1.ipynb.txt
1001 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_dates.ipynb.txt1003 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_dates.ipynb.txt
1002 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_filters.ipynb.txt1004 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_filters.ipynb.txt
1003 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/variance_components.ipynb.txt1005 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/variance_components.ipynb.txt
1004 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/wls.ipynb.txt1006 usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/wls.ipynb.txt
1005 usr/share/doc/python-statsmodels-doc/html/_sources/faq.rst.txt1007 usr/share/doc/python-statsmodels-doc/html/_sources/faq.rst.txt
1006 usr/share/doc/python-statsmodels-doc/html/_sources/gam.rst.txt1008 usr/share/doc/python-statsmodels-doc/html/_sources/gam.rst.txt
Offset 7441, 15 lines modifiedOffset 7443, 14 lines modified
7441 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/autoregressive_distributed_lag.ipynb.gz7443 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/autoregressive_distributed_lag.ipynb.gz
7442 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/categorical_interaction_plot.html7444 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/categorical_interaction_plot.html
7443 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/categorical_interaction_plot.ipynb.gz7445 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/categorical_interaction_plot.ipynb.gz
7444 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/chi2_fitting.html7446 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/chi2_fitting.html
7445 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/chi2_fitting.ipynb.gz7447 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/chi2_fitting.ipynb.gz
7446 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/contrasts.html7448 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/contrasts.html
7447 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/copula.html7449 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/copula.html
7448 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/copula.ipynb.gz 
7449 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/count_hurdle.html7450 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/count_hurdle.html
7450 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/count_hurdle.ipynb.gz7451 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/count_hurdle.ipynb.gz
7451 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/deterministics.html7452 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/deterministics.html
7452 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/deterministics.ipynb.gz7453 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/deterministics.ipynb.gz
7453 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_example.html7454 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_example.html
7454 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_example.ipynb.gz7455 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_example.ipynb.gz
7455 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_overview.html7456 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_overview.html
Offset 7550, 14 lines modifiedOffset 7551, 15 lines modified
7550 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/stats_rankcompare.ipynb.gz7551 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/stats_rankcompare.ipynb.gz
7551 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/stl_decomposition.html7552 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/stl_decomposition.html
7552 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/stl_decomposition.ipynb.gz7553 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/stl_decomposition.ipynb.gz
7553 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/theta-model.html7554 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/theta-model.html
7554 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/treatment_effect.html7555 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/treatment_effect.html
7555 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/treatment_effect.ipynb.gz7556 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/treatment_effect.ipynb.gz
7556 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_arma_0.html7557 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_arma_0.html
 7558 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_arma_0.ipynb.gz
7557 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_arma_1.html7559 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_arma_1.html
7558 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_arma_1.ipynb.gz7560 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_arma_1.ipynb.gz
7559 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_dates.html7561 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_dates.html
7560 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_dates.ipynb.gz7562 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_dates.ipynb.gz
7561 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_filters.html7563 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_filters.html
7562 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_filters.ipynb.gz7564 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_filters.ipynb.gz
7563 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/variance_components.html7565 usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/variance_components.html
4.47 MB
data.tar.xz
4.47 MB
data.tar
45.0 KB
file list
    
Offset 506, 18 lines modifiedOffset 506, 14 lines modified
506 -rw-r--r--···0·root·········(0)·root·········(0)····57079·2025-07-07·10:23:58.000000·./usr/share/doc/python-statsmodels-doc/html/_images/deterministics.png506 -rw-r--r--···0·root·········(0)·root·········(0)····57079·2025-07-07·10:23:58.000000·./usr/share/doc/python-statsmodels-doc/html/_images/deterministics.png
507 -rw-r--r--···0·root·········(0)·root·········(0)····42187·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/discrete_overview.png507 -rw-r--r--···0·root·········(0)·root·········(0)····42187·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/discrete_overview.png
508 -rw-r--r--···0·root·········(0)·root·········(0)····69683·2025-07-07·10:23:58.000000·./usr/share/doc/python-statsmodels-doc/html/_images/distributed_estimation.png508 -rw-r--r--···0·root·········(0)·root·········(0)····69683·2025-07-07·10:23:58.000000·./usr/share/doc/python-statsmodels-doc/html/_images/distributed_estimation.png
509 -rw-r--r--···0·root·········(0)·root·········(0)·····2403·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/duration_survival_95ci_plot.png509 -rw-r--r--···0·root·········(0)·root·········(0)·····2403·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/duration_survival_95ci_plot.png
510 -rw-r--r--···0·root·········(0)·root·········(0)····16570·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/duration_survival_bysex_plot.png510 -rw-r--r--···0·root·········(0)·root·········(0)····16570·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/duration_survival_bysex_plot.png
511 -rw-r--r--···0·root·········(0)·root·········(0)····53202·2025-07-07·10:23:58.000000·./usr/share/doc/python-statsmodels-doc/html/_images/ets.png511 -rw-r--r--···0·root·········(0)·root·········(0)····53202·2025-07-07·10:23:58.000000·./usr/share/doc/python-statsmodels-doc/html/_images/ets.png
512 -rw-r--r--···0·root·········(0)·root·········(0)····21460·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_categorical_interaction_plot_4_0.png512 -rw-r--r--···0·root·········(0)·root·········(0)····21460·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_categorical_interaction_plot_4_0.png
513 -rw-r--r--···0·root·········(0)·root·········(0)····40170·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_copula_11_0.png 
514 -rw-r--r--···0·root·········(0)·root·········(0)····97484·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_copula_5_0.png 
515 -rw-r--r--···0·root·········(0)·root·········(0)····72005·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_copula_7_1.png 
516 -rw-r--r--···0·root·········(0)·root·········(0)····40282·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_copula_9_0.png 
517 -rw-r--r--···0·root·········(0)·root·········(0)····64291·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_count_hurdle_10_0.png513 -rw-r--r--···0·root·········(0)·root·········(0)····64291·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_count_hurdle_10_0.png
518 -rw-r--r--···0·root·········(0)·root·········(0)····70543·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_count_hurdle_7_0.png514 -rw-r--r--···0·root·········(0)·root·········(0)····70543·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_count_hurdle_7_0.png
519 -rw-r--r--···0·root·········(0)·root·········(0)····70072·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_deterministics_28_0.png515 -rw-r--r--···0·root·········(0)·root·········(0)····70072·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_deterministics_28_0.png
520 -rw-r--r--···0·root·········(0)·root·········(0)···109295·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_deterministics_32_0.png516 -rw-r--r--···0·root·········(0)·root·········(0)···109295·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_deterministics_32_0.png
521 -rw-r--r--···0·root·········(0)·root·········(0)····33732·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_discrete_choice_example_25_1.png517 -rw-r--r--···0·root·········(0)·root·········(0)····33732·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_discrete_choice_example_25_1.png
522 -rw-r--r--···0·root·········(0)·root·········(0)····44885·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_discrete_choice_example_26_1.png518 -rw-r--r--···0·root·········(0)·root·········(0)····44885·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_discrete_choice_example_26_1.png
523 -rw-r--r--···0·root·········(0)·root·········(0)····48815·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_discrete_choice_example_55_0.png519 -rw-r--r--···0·root·········(0)·root·········(0)····48815·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_discrete_choice_example_55_0.png
Offset 660, 14 lines modifiedOffset 656, 20 lines modified
660 -rw-r--r--···0·root·········(0)·root·········(0)····27879·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_11_0.png656 -rw-r--r--···0·root·········(0)·root·········(0)····27879·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_11_0.png
661 -rw-r--r--···0·root·········(0)·root·········(0)···309820·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_13_0.png657 -rw-r--r--···0·root·········(0)·root·········(0)···309820·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_13_0.png
662 -rw-r--r--···0·root·········(0)·root·········(0)···148859·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_15_0.png658 -rw-r--r--···0·root·········(0)·root·········(0)···148859·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_15_0.png
663 -rw-r--r--···0·root·········(0)·root·········(0)···193963·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_17_0.png659 -rw-r--r--···0·root·········(0)·root·········(0)···193963·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_17_0.png
664 -rw-r--r--···0·root·········(0)·root·········(0)···194091·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_19_0.png660 -rw-r--r--···0·root·········(0)·root·········(0)···194091·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_19_0.png
665 -rw-r--r--···0·root·········(0)·root·········(0)···165195·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_21_0.png661 -rw-r--r--···0·root·········(0)·root·········(0)···165195·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_21_0.png
666 -rw-r--r--···0·root·········(0)·root·········(0)···188855·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_6_0.png662 -rw-r--r--···0·root·········(0)·root·········(0)···188855·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_stl_decomposition_6_0.png
 663 -rw-r--r--···0·root·········(0)·root·········(0)···102025·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_0_18_0.png
 664 -rw-r--r--···0·root·········(0)·root·········(0)····33277·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_0_21_0.png
 665 -rw-r--r--···0·root·········(0)·root·········(0)····35404·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_0_22_0.png
 666 -rw-r--r--···0·root·········(0)·root·········(0)····31880·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_0_39_1.png
 667 -rw-r--r--···0·root·········(0)·root·········(0)····35937·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_0_42_0.png
 668 -rw-r--r--···0·root·········(0)·root·········(0)····30314·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_0_49_1.png
667 -rw-r--r--···0·root·········(0)·root·········(0)····59873·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_1_11_0.png669 -rw-r--r--···0·root·········(0)·root·········(0)····59873·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_arma_1_11_0.png
668 -rw-r--r--···0·root·········(0)·root·········(0)····68890·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_dates_12_0.png670 -rw-r--r--···0·root·········(0)·root·········(0)····68890·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_dates_12_0.png
669 -rw-r--r--···0·root·········(0)·root·········(0)····53743·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_13_0.png671 -rw-r--r--···0·root·········(0)·root·········(0)····53743·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_13_0.png
670 -rw-r--r--···0·root·········(0)·root·········(0)····90755·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_19_1.png672 -rw-r--r--···0·root·········(0)·root·········(0)····90755·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_19_1.png
671 -rw-r--r--···0·root·········(0)·root·········(0)····90669·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_26_1.png673 -rw-r--r--···0·root·········(0)·root·········(0)····90669·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_26_1.png
672 -rw-r--r--···0·root·········(0)·root·········(0)····32303·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_8_0.png674 -rw-r--r--···0·root·········(0)·root·········(0)····32303·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_tsa_filters_8_0.png
673 -rw-r--r--···0·root·········(0)·root·········(0)····60006·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_wls_15_1.png675 -rw-r--r--···0·root·········(0)·root·········(0)····60006·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_images/examples_notebooks_generated_wls_15_1.png
Offset 1171, 15 lines modifiedOffset 1173, 14 lines modified
1171 -rw-r--r--···0·root·········(0)·root·········(0)·····6113·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/example_formulas.rst.txt1173 -rw-r--r--···0·root·········(0)·root·········(0)·····6113·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/example_formulas.rst.txt
1172 drwxr-xr-x···0·root·········(0)·root·········(0)········0·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/1174 drwxr-xr-x···0·root·········(0)·root·········(0)········0·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/
1173 -rw-r--r--···0·root·········(0)·root·········(0)····23905·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/index.rst.txt1175 -rw-r--r--···0·root·········(0)·root·········(0)····23905·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/index.rst.txt
1174 drwxr-xr-x···0·root·········(0)·root·········(0)········0·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/1176 drwxr-xr-x···0·root·········(0)·root·········(0)········0·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/
1175 drwxr-xr-x···0·root·········(0)·root·········(0)········0·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/1177 drwxr-xr-x···0·root·········(0)·root·········(0)········0·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/
1176 -rw-r--r--···0·root·········(0)·root·········(0)····31085·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/categorical_interaction_plot.ipynb.txt1178 -rw-r--r--···0·root·········(0)·root·········(0)····31085·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/categorical_interaction_plot.ipynb.txt
1177 -rw-r--r--···0·root·········(0)·root·········(0)····12005·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/chi2_fitting.ipynb.txt1179 -rw-r--r--···0·root·········(0)·root·········(0)····12005·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/chi2_fitting.ipynb.txt
1178 -rw-r--r--···0·root·········(0)·root·········(0)···341654·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/copula.ipynb.txt 
1179 -rw-r--r--···0·root·········(0)·root·········(0)···216171·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/count_hurdle.ipynb.txt1180 -rw-r--r--···0·root·········(0)·root·········(0)···216171·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/count_hurdle.ipynb.txt
1180 -rw-r--r--···0·root·········(0)·root·········(0)···333113·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/deterministics.ipynb.txt1181 -rw-r--r--···0·root·········(0)·root·········(0)···333113·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/deterministics.ipynb.txt
1181 -rw-r--r--···0·root·········(0)·root·········(0)···354967·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/discrete_choice_example.ipynb.txt1182 -rw-r--r--···0·root·········(0)·root·········(0)···354967·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/discrete_choice_example.ipynb.txt
1182 -rw-r--r--···0·root·········(0)·root·········(0)····24850·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/discrete_choice_overview.ipynb.txt1183 -rw-r--r--···0·root·········(0)·root·········(0)····24850·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/discrete_choice_overview.ipynb.txt
1183 -rw-r--r--···0·root·········(0)·root·········(0)·····5359·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/distributed_estimation.ipynb.txt1184 -rw-r--r--···0·root·········(0)·root·········(0)·····5359·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/distributed_estimation.ipynb.txt
1184 -rw-r--r--···0·root·········(0)·root·········(0)···857192·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/ets.ipynb.txt1185 -rw-r--r--···0·root·········(0)·root·········(0)···857192·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/ets.ipynb.txt
1185 -rw-r--r--···0·root·········(0)·root·········(0)···866525·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/exponential_smoothing.ipynb.txt1186 -rw-r--r--···0·root·········(0)·root·········(0)···866525·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/exponential_smoothing.ipynb.txt
Offset 1192, 15 lines modifiedOffset 1193, 15 lines modified
1192 -rw-r--r--···0·root·········(0)·root·········(0)····81338·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/glm_weights.ipynb.txt1193 -rw-r--r--···0·root·········(0)·root·········(0)····81338·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/glm_weights.ipynb.txt
1193 -rw-r--r--···0·root·········(0)·root·········(0)····11126·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/gls.ipynb.txt1194 -rw-r--r--···0·root·········(0)·root·········(0)····11126·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/gls.ipynb.txt
1194 -rw-r--r--···0·root·········(0)·root·········(0)···303187·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/influence_glm_logit.ipynb.txt1195 -rw-r--r--···0·root·········(0)·root·········(0)···303187·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/influence_glm_logit.ipynb.txt
1195 -rw-r--r--···0·root·········(0)·root·········(0)···630185·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/kernel_density.ipynb.txt1196 -rw-r--r--···0·root·········(0)·root·········(0)···630185·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/kernel_density.ipynb.txt
1196 -rw-r--r--···0·root·········(0)·root·········(0)···241275·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/lowess.ipynb.txt1197 -rw-r--r--···0·root·········(0)·root·········(0)···241275·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/lowess.ipynb.txt
1197 -rw-r--r--···0·root·········(0)·root·········(0)···604023·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/markov_regression.ipynb.txt1198 -rw-r--r--···0·root·········(0)·root·········(0)···604023·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/markov_regression.ipynb.txt
1198 -rw-r--r--···0·root·········(0)·root·········(0)·····9488·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/mediation_survival.ipynb.txt1199 -rw-r--r--···0·root·········(0)·root·········(0)·····9488·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/mediation_survival.ipynb.txt
1199 -rw-r--r--···0·root·········(0)·root·········(0)···282515·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/metaanalysis1.ipynb.txt1200 -rw-r--r--···0·root·········(0)·root·········(0)···282418·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/metaanalysis1.ipynb.txt
1200 -rw-r--r--···0·root·········(0)·root·········(0)···144883·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/mixed_lm_example.ipynb.txt1201 -rw-r--r--···0·root·········(0)·root·········(0)···144883·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/mixed_lm_example.ipynb.txt
1201 -rw-r--r--···0·root·········(0)·root·········(0)···145669·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/ols.ipynb.txt1202 -rw-r--r--···0·root·········(0)·root·········(0)···145669·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/ols.ipynb.txt
1202 -rw-r--r--···0·root·········(0)·root·········(0)···503352·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/pca_fertility_factors.ipynb.txt1203 -rw-r--r--···0·root·········(0)·root·········(0)···503352·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/pca_fertility_factors.ipynb.txt
1203 -rw-r--r--···0·root·········(0)·root·········(0)··1729441·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/plots_boxplots.ipynb.txt1204 -rw-r--r--···0·root·········(0)·root·········(0)··1729441·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/plots_boxplots.ipynb.txt
1204 -rw-r--r--···0·root·········(0)·root·········(0)···742907·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/postestimation_poisson.ipynb.txt1205 -rw-r--r--···0·root·········(0)·root·········(0)···742907·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/postestimation_poisson.ipynb.txt
1205 -rw-r--r--···0·root·········(0)·root·········(0)····76281·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/predict.ipynb.txt1206 -rw-r--r--···0·root·········(0)·root·········(0)····76281·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/predict.ipynb.txt
1206 -rw-r--r--···0·root·········(0)·root·········(0)···200927·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/quantile_regression.ipynb.txt1207 -rw-r--r--···0·root·········(0)·root·········(0)···200927·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/quantile_regression.ipynb.txt
Offset 1215, 14 lines modifiedOffset 1216, 15 lines modified
1215 -rw-r--r--···0·root·········(0)·root·········(0)···115593·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/statespace_sarimax_faq.ipynb.txt1216 -rw-r--r--···0·root·········(0)·root·········(0)···115593·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/statespace_sarimax_faq.ipynb.txt
1216 -rw-r--r--···0·root·········(0)·root·········(0)··1795450·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/statespace_seasonal.ipynb.txt1217 -rw-r--r--···0·root·········(0)·root·········(0)··1795450·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/statespace_seasonal.ipynb.txt
1217 -rw-r--r--···0·root·········(0)·root·········(0)···267368·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stationarity_detrending_adf_kpss.ipynb.txt1218 -rw-r--r--···0·root·········(0)·root·········(0)···267368·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stationarity_detrending_adf_kpss.ipynb.txt
1218 -rw-r--r--···0·root·········(0)·root·········(0)····35626·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stats_poisson.ipynb.txt1219 -rw-r--r--···0·root·········(0)·root·········(0)····35626·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stats_poisson.ipynb.txt
1219 -rw-r--r--···0·root·········(0)·root·········(0)····34572·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stats_rankcompare.ipynb.txt1220 -rw-r--r--···0·root·········(0)·root·········(0)····34572·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stats_rankcompare.ipynb.txt
1220 -rw-r--r--···0·root·········(0)·root·········(0)··2083037·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stl_decomposition.ipynb.txt1221 -rw-r--r--···0·root·········(0)·root·········(0)··2083037·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/stl_decomposition.ipynb.txt
1221 -rw-r--r--···0·root·········(0)·root·········(0)····40239·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/treatment_effect.ipynb.txt1222 -rw-r--r--···0·root·········(0)·root·········(0)····40239·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/treatment_effect.ipynb.txt
 1223 -rw-r--r--···0·root·········(0)·root·········(0)···561513·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_arma_0.ipynb.txt
1222 -rw-r--r--···0·root·········(0)·root·········(0)····86105·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_arma_1.ipynb.txt1224 -rw-r--r--···0·root·········(0)·root·········(0)····86105·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_arma_1.ipynb.txt
1223 -rw-r--r--···0·root·········(0)·root·········(0)····97250·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_dates.ipynb.txt1225 -rw-r--r--···0·root·········(0)·root·········(0)····97250·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_dates.ipynb.txt
1224 -rw-r--r--···0·root·········(0)·root·········(0)···372187·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_filters.ipynb.txt1226 -rw-r--r--···0·root·········(0)·root·········(0)···372187·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_filters.ipynb.txt
1225 -rw-r--r--···0·root·········(0)·root·········(0)····16251·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/variance_components.ipynb.txt1227 -rw-r--r--···0·root·········(0)·root·········(0)····16251·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/variance_components.ipynb.txt
1226 -rw-r--r--···0·root·········(0)·root·········(0)····91852·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/wls.ipynb.txt1228 -rw-r--r--···0·root·········(0)·root·········(0)····91852·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/wls.ipynb.txt
1227 -rw-r--r--···0·root·········(0)·root·········(0)·····2874·2025-07-07·10:23:58.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/faq.rst.txt1229 -rw-r--r--···0·root·········(0)·root·········(0)·····2874·2025-07-07·10:23:58.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/faq.rst.txt
1228 -rw-r--r--···0·root·········(0)·root·········(0)·····3558·2025-07-07·10:23:58.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/gam.rst.txt1230 -rw-r--r--···0·root·········(0)·root·········(0)·····3558·2025-07-07·10:23:58.000000·./usr/share/doc/python-statsmodels-doc/html/_sources/gam.rst.txt
Offset 7675, 24 lines modifiedOffset 7677, 23 lines modified
7675 -rw-r--r--···0·root·········(0)·root·········(0)····59270·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/autoregressive_distributed_lag.html7677 -rw-r--r--···0·root·········(0)·root·········(0)····59270·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/autoregressive_distributed_lag.html
7676 -rw-r--r--···0·root·········(0)·root·········(0)·····7234·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/autoregressive_distributed_lag.ipynb.gz7678 -rw-r--r--···0·root·········(0)·root·········(0)·····7234·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/autoregressive_distributed_lag.ipynb.gz
7677 -rw-r--r--···0·root·········(0)·root·········(0)····12447·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/categorical_interaction_plot.html7679 -rw-r--r--···0·root·········(0)·root·········(0)····12447·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/categorical_interaction_plot.html
7678 -rw-r--r--···0·root·········(0)·root·········(0)····21969·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/categorical_interaction_plot.ipynb.gz7680 -rw-r--r--···0·root·········(0)·root·········(0)····21969·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/categorical_interaction_plot.ipynb.gz
7679 -rw-r--r--···0·root·········(0)·root·········(0)····28626·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/chi2_fitting.html7681 -rw-r--r--···0·root·········(0)·root·········(0)····28626·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/chi2_fitting.html
7680 -rw-r--r--···0·root·········(0)·root·········(0)·····3458·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/chi2_fitting.ipynb.gz7682 -rw-r--r--···0·root·········(0)·root·········(0)·····3458·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/chi2_fitting.ipynb.gz
7681 -rw-r--r--···0·root·········(0)·root·········(0)····43551·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/contrasts.html7683 -rw-r--r--···0·root·········(0)·root·········(0)····43551·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/contrasts.html
7682 -rw-r--r--···0·root·········(0)·root·········(0)····24226·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/copula.html7684 -rw-r--r--···0·root·········(0)·root·········(0)····21732·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/copula.html
7683 -rw-r--r--···0·root·········(0)·root·········(0)···250084·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/copula.ipynb.gz 
7684 -rw-r--r--···0·root·········(0)·root·········(0)····55663·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/count_hurdle.html7685 -rw-r--r--···0·root·········(0)·root·········(0)····55663·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/count_hurdle.html
7685 -rw-r--r--···0·root·········(0)·root·········(0)···139163·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/count_hurdle.ipynb.gz7686 -rw-r--r--···0·root·········(0)·root·········(0)···139163·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/count_hurdle.ipynb.gz
7686 -rw-r--r--···0·root·········(0)·root·········(0)····92750·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/deterministics.html7687 -rw-r--r--···0·root·········(0)·root·········(0)····92750·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/deterministics.html
7687 -rw-r--r--···0·root·········(0)·root·········(0)···187398·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/deterministics.ipynb.gz7688 -rw-r--r--···0·root·········(0)·root·········(0)···187398·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/deterministics.ipynb.gz
7688 -rw-r--r--···0·root·········(0)·root·········(0)····81040·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_example.html7689 -rw-r--r--···0·root·········(0)·root·········(0)····81040·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_example.html
7689 -rw-r--r--···0·root·········(0)·root·········(0)···235901·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_example.ipynb.gz7690 -rw-r--r--···0·root·········(0)·root·········(0)···235901·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_example.ipynb.gz
7690 -rw-r--r--···0·root·········(0)·root·········(0)····39453·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_overview.html7691 -rw-r--r--···0·root·········(0)·root·········(0)····39453·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_overview.html
7691 -rw-r--r--···0·root·········(0)·root·········(0)·····4393·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_overview.ipynb.gz7692 -rw-r--r--···0·root·········(0)·root·········(0)·····4387·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_overview.ipynb.gz
7692 -rw-r--r--···0·root·········(0)·root·········(0)····20786·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/distributed_estimation.html7693 -rw-r--r--···0·root·········(0)·root·········(0)····20786·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/distributed_estimation.html
7693 -rw-r--r--···0·root·········(0)·root·········(0)·····1363·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/distributed_estimation.ipynb.gz7694 -rw-r--r--···0·root·········(0)·root·········(0)·····1363·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/distributed_estimation.ipynb.gz
7694 -rw-r--r--···0·root·········(0)·root·········(0)····54614·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/ets.html7695 -rw-r--r--···0·root·········(0)·root·········(0)····54614·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/ets.html
7695 -rw-r--r--···0·root·········(0)·root·········(0)···625777·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/ets.ipynb.gz7696 -rw-r--r--···0·root·········(0)·root·········(0)···625777·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/ets.ipynb.gz
7696 -rw-r--r--···0·root·········(0)·root·········(0)···104333·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/exponential_smoothing.html7697 -rw-r--r--···0·root·········(0)·root·········(0)···104333·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/exponential_smoothing.html
7697 -rw-r--r--···0·root·········(0)·root·········(0)···623611·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/exponential_smoothing.ipynb.gz7698 -rw-r--r--···0·root·········(0)·root·········(0)···623611·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/exponential_smoothing.ipynb.gz
7698 -rw-r--r--···0·root·········(0)·root·········(0)····37764·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/formulas.html7699 -rw-r--r--···0·root·········(0)·root·········(0)····37764·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/formulas.html
Offset 7721, 15 lines modifiedOffset 7722, 15 lines modified
7721 -rw-r--r--···0·root·········(0)·root·········(0)···176338·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/lowess.ipynb.gz7722 -rw-r--r--···0·root·········(0)·root·········(0)···176338·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/lowess.ipynb.gz
7722 -rw-r--r--···0·root·········(0)·root·········(0)····47514·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/markov_autoregression.html7723 -rw-r--r--···0·root·········(0)·root·········(0)····47514·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/markov_autoregression.html
7723 -rw-r--r--···0·root·········(0)·root·········(0)····55096·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/markov_regression.html7724 -rw-r--r--···0·root·········(0)·root·········(0)····55096·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/markov_regression.html
7724 -rw-r--r--···0·root·········(0)·root·········(0)···413014·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/markov_regression.ipynb.gz7725 -rw-r--r--···0·root·········(0)·root·········(0)···413014·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/markov_regression.ipynb.gz
7725 -rw-r--r--···0·root·········(0)·root·········(0)····25030·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/mediation_survival.html7726 -rw-r--r--···0·root·········(0)·root·········(0)····25030·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/mediation_survival.html
7726 -rw-r--r--···0·root·········(0)·root·········(0)·····1803·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/mediation_survival.ipynb.gz7727 -rw-r--r--···0·root·········(0)·root·········(0)·····1803·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/mediation_survival.ipynb.gz
7727 -rw-r--r--···0·root·········(0)·root·········(0)····87397·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/metaanalysis1.html7728 -rw-r--r--···0·root·········(0)·root·········(0)····87397·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/metaanalysis1.html
7728 -rw-r--r--···0·root·········(0)·root·········(0)···171339·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/metaanalysis1.ipynb.gz7729 -rw-r--r--···0·root·········(0)·root·········(0)···171325·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/metaanalysis1.ipynb.gz
7729 -rw-r--r--···0·root·········(0)·root·········(0)····42981·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/mixed_lm_example.html7730 -rw-r--r--···0·root·········(0)·root·········(0)····42981·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/mixed_lm_example.html
7730 -rw-r--r--···0·root·········(0)·root·········(0)····92978·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/mixed_lm_example.ipynb.gz7731 -rw-r--r--···0·root·········(0)·root·········(0)····92978·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/mixed_lm_example.ipynb.gz
7731 -rw-r--r--···0·root·········(0)·root·········(0)····44594·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/mstl_decomposition.html7732 -rw-r--r--···0·root·········(0)·root·········(0)····44594·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/mstl_decomposition.html
7732 -rw-r--r--···0·root·········(0)·root·········(0)····60938·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/ols.html7733 -rw-r--r--···0·root·········(0)·root·········(0)····60938·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/ols.html
7733 -rw-r--r--···0·root·········(0)·root·········(0)····95566·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/ols.ipynb.gz7734 -rw-r--r--···0·root·········(0)·root·········(0)····95566·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/ols.ipynb.gz
7734 -rw-r--r--···0·root·········(0)·root·········(0)····50631·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/ordinal_regression.html7735 -rw-r--r--···0·root·········(0)·root·········(0)····50631·2025-08-10·13:13:47.000000·./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/ordinal_regression.html
Max diff block lines reached; 22466/46013 bytes (48.83%) of diff not shown.
1.41 MB
./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/copula.ipynb.txt
    
Offset 1, 21354 lines modifiedOffset 1, 4 lines modified
Diff chunk too large, falling back to line-by-line diff (4 lines added, 21354 lines removed)
00000000:·7b0a·2022·6365·6c6c·7322·3a20·5b0a·2020··{.·"cells":·[.··00000000:·6465·7374·696e·6174·696f·6e3a·202e·2e2f··destination:·../
00000010:·7b0a·2020·2022·6365·6c6c·5f74·7970·6522··{.···"cell_type"00000010:·2e2e·2f2e·2e2f·2e2e·2f2e·2e2f·6578·616d··../../../../exam
00000020:·3a20·226d·6172·6b64·6f77·6e22·2c0a·2020··:·"markdown",.··00000020:·706c·6573·2f6e·6f74·6562·6f6f·6b73·2f63··ples/notebooks/c
00000030:·2022·6d65·7461·6461·7461·223a·207b·7d2c···"metadata":·{},00000030:·6f70·756c·612e·6970·796e·620a············opula.ipynb.
00000040:·0a20·2020·2273·6f75·7263·6522·3a20·5b0a··.···"source":·[. 
00000050:·2020·2020·2223·2043·6f70·756c·6120·2d20······"#·Copula·-· 
00000060:·4d75·6c74·6976·6172·6961·7465·206a·6f69··Multivariate·joi 
00000070:·6e74·2064·6973·7472·6962·7574·696f·6e22··nt·distribution" 
00000080:·0a20·2020·5d0a·2020·7d2c·0a20·207b·0a20··.···].··},.··{.· 
00000090:·2020·2263·656c·6c5f·7479·7065·223a·2022····"cell_type":·" 
000000a0:·636f·6465·222c·0a20·2020·2265·7865·6375··code",.···"execu 
000000b0:·7469·6f6e·5f63·6f75·6e74·223a·2031·2c0a··tion_count":·1,. 
000000c0:·2020·2022·6d65·7461·6461·7461·223a·207b·····"metadata":·{ 
000000d0:·0a20·2020·2022·6578·6563·7574·696f·6e22··.····"execution" 
000000e0:·3a20·7b0a·200a·200a·200a·200a·2020·2020··:·{.·.·.·.·.···· 
000000f0:·7d0a·2020·207d·2c0a·2020·2022·6f75·7470··}.···},.···"outp 
00000100:·7574·7322·3a20·5b5d·2c0a·2020·2022·736f··uts":·[],.···"so 
00000110:·7572·6365·223a·205b·0a20·2020·2022·696d··urce":·[.····"im 
00000120:·706f·7274·206d·6174·706c·6f74·6c69·622e··port·matplotlib. 
00000130:·7079·706c·6f74·2061·7320·706c·745c·6e22··pyplot·as·plt\n" 
00000140:·2c0a·2020·2020·2269·6d70·6f72·7420·6e75··,.····"import·nu 
00000150:·6d70·7920·6173·206e·705c·6e22·2c0a·2020··mpy·as·np\n",.·· 
00000160:·2020·2269·6d70·6f72·7420·7365·6162·6f72····"import·seabor 
00000170:·6e20·6173·2073·6e73·5c6e·222c·0a20·2020··n·as·sns\n",.··· 
00000180:·2022·6672·6f6d·2073·6369·7079·2069·6d70···"from·scipy·imp 
00000190:·6f72·7420·7374·6174·735c·6e22·2c0a·2020··ort·stats\n",.·· 
000001a0:·2020·225c·6e22·2c0a·2020·2020·2273·6e73····"\n",.····"sns 
000001b0:·2e73·6574·5f73·7479·6c65·285c·2264·6172··.set_style(\"dar 
000001c0:·6b67·7269·645c·2229·5c6e·222c·0a20·2020··kgrid\")\n",.··· 
000001d0:·2022·736e·732e·6d70·6c2e·7263·285c·2266···"sns.mpl.rc(\"f 
000001e0:·6967·7572·655c·222c·2066·6967·7369·7a65··igure\",·figsize 
000001f0:·3d28·382c·2038·2929·5c6e·222c·0a20·2020··=(8,·8))\n",.··· 
00000200:·2022·6e70·2e72·616e·646f·6d2e·7365·6564···"np.random.seed 
00000210:·2831·3233·3429·2023·2066·6f72·2072·6570··(1234)·#·for·rep 
00000220:·726f·6475·6369·6269·6c69·7479·220a·2020··roducibility".·· 
00000230:·205d·0a20·207d·2c0a·2020·7b0a·2020·2022···].··},.··{.···" 
00000240:·6365·6c6c·5f74·7970·6522·3a20·2263·6f64··cell_type":·"cod 
00000250:·6522·2c0a·2020·2022·6578·6563·7574·696f··e",.···"executio 
00000260:·6e5f·636f·756e·7422·3a20·322c·0a20·2020··n_count":·2,.··· 
00000270:·226d·6574·6164·6174·6122·3a20·7b0a·2020··"metadata":·{.·· 
00000280:·2020·2265·7865·6375·7469·6f6e·223a·207b····"execution":·{ 
00000290:·0a20·0a20·0a20·0a20·0a20·2020·207d·0a20··.·.·.·.·.····}.· 
000002a0:·2020·7d2c·0a20·2020·226f·7574·7075·7473····},.···"outputs 
000002b0:·223a·205b·0a20·2020·207b·0a20·2020·2020··":·[.····{.····· 
000002c0:·2264·6174·6122·3a20·7b0a·2020·2020·2020··"data":·{.······ 
000002d0:·2261·7070·6c69·6361·7469·6f6e·2f6a·6176··"application/jav 
000002e0:·6173·6372·6970·7422·3a20·5b0a·2020·2020··ascript":·[.···· 
000002f0:·2020·2022·4950·7974·686f·6e2e·4f75·7470·····"IPython.Outp 
00000300:·7574·4172·6561·2e70·726f·746f·7479·7065··utArea.prototype 
00000310:·2e5f·7368·6f75·6c64·5f73·6372·6f6c·6c20··._should_scroll· 
00000320:·3d20·6675·6e63·7469·6f6e·286c·696e·6573··=·function(lines 
00000330:·2920·7b5c·6e22·2c0a·2020·2020·2020·2022··)·{\n",.·······" 
00000340:·2020·2020·7265·7475·726e·2066·616c·7365······return·false 
00000350:·3b5c·6e22·2c0a·2020·2020·2020·2022·7d5c··;\n",.·······"}\ 
00000360:·6e22·0a20·2020·2020·205d·2c0a·2020·2020··n".······],.···· 
00000370:·2020·2274·6578·742f·706c·6169·6e22·3a20····"text/plain":· 
00000380:·5b0a·2020·2020·2020·2022·3c49·5079·7468··[.·······"<IPyth 
00000390:·6f6e·2e63·6f72·652e·6469·7370·6c61·792e··on.core.display. 
000003a0:·4a61·7661·7363·7269·7074·206f·626a·6563··Javascript·objec 
000003b0:·743e·220a·2020·2020·2020·5d0a·2020·2020··t>".······].···· 
000003c0:·207d·2c0a·2020·2020·2022·6d65·7461·6461···},.·····"metada 
000003d0:·7461·223a·207b·7d2c·0a20·2020·2020·226f··ta":·{},.·····"o 
000003e0:·7574·7075·745f·7479·7065·223a·2022·6469··utput_type":·"di 
000003f0:·7370·6c61·795f·6461·7461·220a·2020·2020··splay_data".···· 
00000400:·7d0a·2020·205d·2c0a·2020·2022·736f·7572··}.···],.···"sour 
00000410:·6365·223a·205b·0a20·2020·2022·2525·6a61··ce":·[.····"%%ja 
00000420:·7661·7363·7269·7074·5c6e·222c·0a20·2020··vascript\n",.··· 
00000430:·2022·4950·7974·686f·6e2e·4f75·7470·7574···"IPython.Output 
00000440:·4172·6561·2e70·726f·746f·7479·7065·2e5f··Area.prototype._ 
00000450:·7368·6f75·6c64·5f73·6372·6f6c·6c20·3d20··should_scroll·=· 
00000460:·6675·6e63·7469·6f6e·286c·696e·6573·2920··function(lines)· 
00000470:·7b5c·6e22·2c0a·2020·2020·2220·2020·2072··{\n",.····"····r 
00000480:·6574·7572·6e20·6661·6c73·653b·5c6e·222c··eturn·false;\n", 
00000490:·0a20·2020·2022·7d22·0a20·2020·5d0a·2020··.····"}".···].·· 
000004a0:·7d2c·0a20·207b·0a20·2020·2263·656c·6c5f··},.··{.···"cell_ 
000004b0:·7479·7065·223a·2022·6d61·726b·646f·776e··type":·"markdown 
000004c0:·222c·0a20·2020·226d·6574·6164·6174·6122··",.···"metadata" 
000004d0:·3a20·7b7d·2c0a·2020·2022·736f·7572·6365··:·{},.···"source 
000004e0:·223a·205b·0a20·2020·2022·5768·656e·206d··":·[.····"When·m 
000004f0:·6f64·656c·696e·6720·6120·7379·7374·656d··odeling·a·system 
00000500:·2c20·7468·6572·6520·6172·6520·6f66·7465··,·there·are·ofte 
00000510:·6e20·6361·7365·7320·7768·6572·6520·6d75··n·cases·where·mu 
00000520:·6c74·6970·6c65·2070·6172·616d·6574·6572··ltiple·parameter 
00000530:·7320·6172·6520·696e·766f·6c76·6564·2e20··s·are·involved.· 
00000540:·4561·6368·206f·6620·7468·6573·6520·7061··Each·of·these·pa 
00000550:·7261·6d65·7465·7273·2063·6f75·6c64·2062··rameters·could·b 
00000560:·6520·6465·7363·7269·6265·6420·7769·7468··e·described·with 
00000570:·2061·2067·6976·656e·2050·726f·6261·6269···a·given·Probabi 
00000580:·6c69·7479·2044·656e·7369·7479·2046·756e··lity·Density·Fun 
00000590:·6374·696f·6e20·2850·4446·292e·2049·6620··ction·(PDF).·If· 
000005a0:·776f·756c·6420·6c69·6b65·2074·6f20·6265··would·like·to·be 
000005b0:·2061·626c·6520·746f·2067·656e·6572·6174···able·to·generat 
000005c0:·6520·6120·6e65·7720·7365·7420·6f66·2070··e·a·new·set·of·p 
000005d0:·6172·616d·6574·6572·2076·616c·7565·732c··arameter·values, 
000005e0:·2077·6520·6e65·6564·2074·6f20·6265·2061···we·need·to·be·a 
000005f0:·626c·6520·746f·2073·616d·706c·6520·6672··ble·to·sample·fr 
00000600:·6f6d·2074·6865·7365·2064·6973·7472·6962··om·these·distrib 
00000610:·7574·696f·6e73·2d61·6c73·6f20·6361·6c6c··utions-also·call 
00000620:·6564·206d·6172·6769·6e61·6c73·2e20·5468··ed·marginals.·Th 
00000630:·6572·6520·6172·6520·6d61·696e·6c79·2074··ere·are·mainly·t 
00000640:·776f·2063·6173·6573·3a20·2a28·6929·2a20··wo·cases:·*(i)*· 
00000650:·5044·4673·2061·7265·2069·6e64·6570·656e··PDFs·are·indepen 
00000660:·6465·6e74·3b20·2a28·6969·292a·2074·6865··dent;·*(ii)*·the 
00000670:·7265·2069·7320·6120·6465·7065·6e64·656e··re·is·a·dependen 
00000680:·6379·2e20·4f6e·6520·7761·7920·746f·206d··cy.·One·way·to·m 
00000690:·6f64·656c·2074·6865·2064·6570·656e·6465··odel·the·depende 
000006a0:·6e63·7920·6974·2074·6f20·7573·6520·6120··ncy·it·to·use·a· 
000006b0:·2a2a·636f·7075·6c61·2a2a·2e22·0a20·2020··**copula**.".··· 
000006c0:·5d0a·2020·7d2c·0a20·207b·0a20·2020·2263··].··},.··{.···"c 
000006d0:·656c·6c5f·7479·7065·223a·2022·6d61·726b··ell_type":·"mark 
000006e0:·646f·776e·222c·0a20·2020·226d·6574·6164··down",.···"metad 
000006f0:·6174·6122·3a20·7b7d·2c0a·2020·2022·736f··ata":·{},.···"so 
00000700:·7572·6365·223a·205b·0a20·2020·2022·2323··urce":·[.····"## 
00000710:·2053·616d·706c·696e·6720·6672·6f6d·2061···Sampling·from·a 
00000720:·2063·6f70·756c·615c·6e22·2c0a·2020·2020···copula\n",.···· 
00000730:·225c·6e22·2c0a·2020·2020·224c·6574·2773··"\n",.····"Let's 
00000740:·2075·7365·2061·2062·692d·7661·7269·6174···use·a·bi-variat 
00000750:·6520·6578·616d·706c·6520·616e·6420·6173··e·example·and·as 
00000760:·7375·6d65·2066·6972·7374·2074·6861·7420··sume·first·that· 
00000770:·7765·2068·6176·6520·6120·7072·696f·7220··we·have·a·prior· 
00000780:·616e·6420·6b6e·6f77·2068·6f77·2074·6f20··and·know·how·to· 
00000790:·6d6f·6465·6c20·7468·6520·6465·7065·6e64··model·the·depend 
000007a0:·656e·6365·2062·6574·7765·656e·206f·7572··ence·between·our 
000007b0:·2032·2076·6172·6961·626c·6573·2e5c·6e22···2·variables.\n" 
000007c0:·2c0a·2020·2020·225c·6e22·2c0a·2020·2020··,.····"\n",.···· 
000007d0:·2249·6e20·7468·6973·2063·6173·652c·2077··"In·this·case,·w 
Max diff block lines reached; -1/1473708 bytes (-0.00%) of diff not shown.
3.4 KB
./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/discrete_choice_overview.ipynb.txt
3.18 KB
Pretty-printed
Similarity: 0.9995828163771712% Differences: {"'cells'": "{22: {'outputs': {0: {'text': {insert: [(0, 'Optimization terminated " "successfully.\\n'), (1, ' Current function value: 1.548647\\n'), (2, " "' Iterations 7\\n')]}}, delete: [0]}}, 26: {'outputs': {1: {'text': {delete: " "[2, 1, 0]}}, insert: [(0, OrderedDict({'name': 'stdout', 'output_type': 'stream', " "'text': ['Optimization terminated successfully.\\n', ' Current function " "value: 3.091609\\n', ' […]
    
Offset 383, 21 lines modifiedOffset 383, 15 lines modified
383 ············"outputs":·[383 ············"outputs":·[
384 ················{384 ················{
385 ····················"name":·"stdout",385 ····················"name":·"stdout",
386 ····················"output_type":·"stream",386 ····················"output_type":·"stream",
387 ····················"text":·[387 ····················"text":·[
388 ························"Optimization·terminated·successfully.\n",388 ························"Optimization·terminated·successfully.\n",
389 ························"·········Current·function·value:·1.548647\n",389 ························"·········Current·function·value:·1.548647\n",
390 ························"·········Iterations·7\n"390 ························"·········Iterations·7\n",
391 ····················] 
392 ················}, 
393 ················{ 
394 ····················"name":·"stdout", 
395 ····················"output_type":·"stream", 
396 ····················"text":·[ 
397 ························"·················0·········1·········2·········3·········4··········5\n",391 ························"·················0·········1·········2·········3·········4··········5\n",
398 ························"const····-0.373402·-2.250913·-3.665584·-7.613843·-7.060478·-12.105751\n",392 ························"const····-0.373402·-2.250913·-3.665584·-7.613843·-7.060478·-12.105751\n",
399 ························"logpopul·-0.011536·-0.088751·-0.105967·-0.091557·-0.093285··-0.140881\n",393 ························"logpopul·-0.011536·-0.088751·-0.105967·-0.091557·-0.093285··-0.140881\n",
400 ························"selfLR····0.297714··0.391669··0.573451··1.278772··1.346962···2.070080\n",394 ························"selfLR····0.297714··0.391669··0.573451··1.278772··1.346962···2.070080\n",
401 ························"age······-0.024945·-0.022898·-0.014851·-0.008681·-0.017904··-0.009433\n",395 ························"age······-0.024945·-0.022898·-0.014851·-0.008681·-0.017904··-0.009433\n",
402 ························"educ······0.082491··0.181043·-0.007152··0.199828··0.216939···0.321926\n",396 ························"educ······0.082491··0.181043·-0.007152··0.199828··0.216939···0.321926\n",
403 ························"income····0.005197··0.047874··0.057575··0.084498··0.080958···0.108894\n"397 ························"income····0.005197··0.047874··0.057575··0.084498··0.080958···0.108894\n"
Offset 454, 15 lines modifiedOffset 448, 21 lines modified
454 ············"outputs":·[448 ············"outputs":·[
455 ················{449 ················{
456 ····················"name":·"stdout",450 ····················"name":·"stdout",
457 ····················"output_type":·"stream",451 ····················"output_type":·"stream",
458 ····················"text":·[452 ····················"text":·[
459 ························"Optimization·terminated·successfully.\n",453 ························"Optimization·terminated·successfully.\n",
460 ························"·········Current·function·value:·3.091609\n",454 ························"·········Current·function·value:·3.091609\n",
461 ························"·········Iterations·6\n",455 ························"·········Iterations·6\n"
 456 ····················]
 457 ················},
 458 ················{
 459 ····················"name":·"stdout",
 460 ····················"output_type":·"stream",
 461 ····················"text":·[
462 ························"··························Poisson·Regression·Results··························\n",462 ························"··························Poisson·Regression·Results··························\n",
463 ························"==============================================================================\n",463 ························"==============================================================================\n",
464 ························"Dep.·Variable:··················mdvis···No.·Observations:················20190\n",464 ························"Dep.·Variable:··················mdvis···No.·Observations:················20190\n",
465 ························"Model:························Poisson···Df·Residuals:····················20180\n",465 ························"Model:························Poisson···Df·Residuals:····················20180\n",
466 ························"Method:···························MLE···Df·Model:····························9\n",466 ························"Method:···························MLE···Df·Model:····························9\n",
467 ························"Date:················Sun,·10·Aug·2025···Pseudo·R-squ.:·················0.06343\n",467 ························"Date:················Sun,·10·Aug·2025···Pseudo·R-squ.:·················0.06343\n",
468 ························"Time:························13:13:47···Log-Likelihood:················-62420.\n",468 ························"Time:························13:13:47···Log-Likelihood:················-62420.\n",
1.5 KB
./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/metaanalysis1.ipynb.txt
1.29 KB
Pretty-printed
    
Offset 333, 22 lines modifiedOffset 333, 15 lines modified
333 ················"execution":·{}333 ················"execution":·{}
334 ············},334 ············},
335 ············"outputs":·[335 ············"outputs":·[
336 ················{336 ················{
337 ····················"name":·"stdout",337 ····················"name":·"stdout",
338 ····················"output_type":·"stream",338 ····················"output_type":·"stream",
339 ····················"text":·[339 ····················"text":·[
340 ························"method·RE:" 
341 ····················] 
342 ················}, 
343 ················{ 
344 ····················"name":·"stdout", 
345 ····················"output_type":·"stream", 
346 ····················"text":·[ 
347 ························"·iterated\n",340 ························"method·RE:·iterated\n",
348 ························"························eff····sd_eff····ci_low····ci_upp······w_fe······w_re\n",341 ························"························eff····sd_eff····ci_low····ci_upp······w_fe······w_re\n",
349 ························"Carroll············0.094524··0.182680·-0.263521··0.452570··0.123885··0.152619\n",342 ························"Carroll············0.094524··0.182680·-0.263521··0.452570··0.123885··0.152619\n",
350 ························"Grant··············0.277356··0.176279·-0.068144··0.622857··0.133045··0.159157\n",343 ························"Grant··············0.277356··0.176279·-0.068144··0.622857··0.133045··0.159157\n",
351 ························"Peck···············0.366546··0.225573·-0.075569··0.808662··0.081250··0.116228\n",344 ························"Peck···············0.366546··0.225573·-0.075569··0.808662··0.081250··0.116228\n",
352 ························"Donat··············0.664385··0.102748··0.463002··0.865768··0.391606··0.257767\n",345 ························"Donat··············0.664385··0.102748··0.463002··0.865768··0.391606··0.257767\n",
353 ························"Stewart············0.461808··0.208310··0.053527··0.870089··0.095275··0.129428\n",346 ························"Stewart············0.461808··0.208310··0.053527··0.870089··0.095275··0.129428\n",
354 ························"Young··············0.185165··0.153729·-0.116139··0.486468··0.174939··0.184799\n",347 ························"Young··············0.185165··0.153729·-0.116139··0.486468··0.174939··0.184799\n",
22.8 KB
./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/copula.html
    
Offset 57, 181 lines modifiedOffset 57, 115 lines modified
57 ······<div·class="documentwrapper">57 ······<div·class="documentwrapper">
58 ········<div·class="bodywrapper">58 ········<div·class="bodywrapper">
59 ··········<div·class="body"·role="main">59 ··········<div·class="body"·role="main">
60 ············60 ············
61 ··<section·id="Copula---Multivariate-joint-distribution">61 ··<section·id="Copula---Multivariate-joint-distribution">
62 <h1>Copula·-·Multivariate·joint·distribution<a·class="headerlink"·href="#Copula---Multivariate-joint-distribution"·title="Link·to·this·heading">¶</a></h1>62 <h1>Copula·-·Multivariate·joint·distribution<a·class="headerlink"·href="#Copula---Multivariate-joint-distribution"·title="Link·to·this·heading">¶</a></h1>
63 <div·class="nbinput·nblast·docutils·container">63 <div·class="nbinput·nblast·docutils·container">
64 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[1]:64 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:
65 </pre></div>65 </pre></div>
66 </div>66 </div>
67 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="kn">import</span>·<span·class="nn">matplotlib.pyplot</span>·<span·class="k">as</span>·<span·class="nn">plt</span>67 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="kn">import</span>·<span·class="nn">matplotlib.pyplot</span>·<span·class="k">as</span>·<span·class="nn">plt</span>
68 <span·class="kn">import</span>·<span·class="nn">numpy</span>·<span·class="k">as</span>·<span·class="nn">np</span>68 <span·class="kn">import</span>·<span·class="nn">numpy</span>·<span·class="k">as</span>·<span·class="nn">np</span>
69 <span·class="kn">import</span>·<span·class="nn">seaborn</span>·<span·class="k">as</span>·<span·class="nn">sns</span>69 <span·class="kn">import</span>·<span·class="nn">seaborn</span>·<span·class="k">as</span>·<span·class="nn">sns</span>
70 <span·class="kn">from</span>·<span·class="nn">scipy</span>·<span·class="kn">import</span>·<span·class="n">stats</span>70 <span·class="kn">from</span>·<span·class="nn">scipy</span>·<span·class="kn">import</span>·<span·class="n">stats</span>
  
71 <span·class="n">sns</span><span·class="o">.</span><span·class="n">set_style</span><span·class="p">(</span><span·class="s2">&quot;darkgrid&quot;</span><span·class="p">)</span>71 <span·class="n">sns</span><span·class="o">.</span><span·class="n">set_style</span><span·class="p">(</span><span·class="s2">&quot;darkgrid&quot;</span><span·class="p">)</span>
72 <span·class="n">sns</span><span·class="o">.</span><span·class="n">mpl</span><span·class="o">.</span><span·class="n">rc</span><span·class="p">(</span><span·class="s2">&quot;figure&quot;</span><span·class="p">,</span>·<span·class="n">figsize</span><span·class="o">=</span><span·class="p">(</span><span·class="mi">8</span><span·class="p">,</span>·<span·class="mi">8</span><span·class="p">))</span>72 <span·class="n">sns</span><span·class="o">.</span><span·class="n">mpl</span><span·class="o">.</span><span·class="n">rc</span><span·class="p">(</span><span·class="s2">&quot;figure&quot;</span><span·class="p">,</span>·<span·class="n">figsize</span><span·class="o">=</span><span·class="p">(</span><span·class="mi">8</span><span·class="p">,</span>·<span·class="mi">8</span><span·class="p">))</span>
73 <span·class="n">np</span><span·class="o">.</span><span·class="n">random</span><span·class="o">.</span><span·class="n">seed</span><span·class="p">(</span><span·class="mi">1234</span><span·class="p">)</span>·<span·class="c1">#·for·reproducibility</span>73 <span·class="n">np</span><span·class="o">.</span><span·class="n">random</span><span·class="o">.</span><span·class="n">seed</span><span·class="p">(</span><span·class="mi">1234</span><span·class="p">)</span>·<span·class="c1">#·for·reproducibility</span>
74 </pre></div>74 </pre></div>
75 </div>75 </div>
76 </div>76 </div>
77 <div·class="nbinput·docutils·container">77 <div·class="nbinput·nblast·docutils·container">
78 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[2]:78 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:
79 </pre></div>79 </pre></div>
80 </div>80 </div>
81 <div·class="input_area·highlight-javascript·notranslate"><div·class="highlight"><pre><span></span><span·class="o">%%</span><span·class="nx">javascript</span>81 <div·class="input_area·highlight-javascript·notranslate"><div·class="highlight"><pre><span></span><span·class="o">%%</span><span·class="nx">javascript</span>
82 <span·class="nx">IPython</span><span·class="p">.</span><span·class="nx">OutputArea</span><span·class="p">.</span><span·class="nx">prototype</span><span·class="p">.</span><span·class="nx">_should_scroll</span><span·class="w">·</span><span·class="o">=</span><span·class="w">·</span><span·class="kd">function</span><span·class="p">(</span><span·class="nx">lines</span><span·class="p">)</span><span·class="w">·</span><span·class="p">{</span>82 <span·class="nx">IPython</span><span·class="p">.</span><span·class="nx">OutputArea</span><span·class="p">.</span><span·class="nx">prototype</span><span·class="p">.</span><span·class="nx">_should_scroll</span><span·class="w">·</span><span·class="o">=</span><span·class="w">·</span><span·class="kd">function</span><span·class="p">(</span><span·class="nx">lines</span><span·class="p">)</span><span·class="w">·</span><span·class="p">{</span>
83 <span·class="w">····</span><span·class="k">return</span><span·class="w">·</span><span·class="kc">false</span><span·class="p">;</span>83 <span·class="w">····</span><span·class="k">return</span><span·class="w">·</span><span·class="kc">false</span><span·class="p">;</span>
84 <span·class="p">}</span>84 <span·class="p">}</span>
85 </pre></div>85 </pre></div>
86 </div>86 </div>
87 </div>87 </div>
88 <div·class="nboutput·nblast·docutils·container"> 
89 <div·class="prompt·empty·docutils·container"> 
90 </div> 
91 <div·class="output_area·docutils·container"> 
92 <div·class="output_javascript"></div> 
93 <script·type="text/javascript"> 
94 var·element·=·document.currentScript.previousSibling.previousSibling; 
95 IPython.OutputArea.prototype._should_scroll·=·function(lines)·{ 
96 ····return·false; 
97 } 
  
98 </script></div> 
99 </div> 
100 <p>When·modeling·a·system,·there·are·often·cases·where·multiple·parameters·are·involved.·Each·of·these·parameters·could·be·described·with·a·given·Probability·Density·Function·(PDF).·If·would·like·to·be·able·to·generate·a·new·set·of·parameter·values,·we·need·to·be·able·to·sample·from·these·distributions-also·called·marginals.·There·are·mainly·two·cases:·<em>(i)</em>·PDFs·are·independent;·<em>(ii)</em>·there·is·a·dependency.·One·way·to·model·the·dependency·it·to·use·a·<strong>copula</strong>.</p>88 <p>When·modeling·a·system,·there·are·often·cases·where·multiple·parameters·are·involved.·Each·of·these·parameters·could·be·described·with·a·given·Probability·Density·Function·(PDF).·If·would·like·to·be·able·to·generate·a·new·set·of·parameter·values,·we·need·to·be·able·to·sample·from·these·distributions-also·called·marginals.·There·are·mainly·two·cases:·<em>(i)</em>·PDFs·are·independent;·<em>(ii)</em>·there·is·a·dependency.·One·way·to·model·the·dependency·it·to·use·a·<strong>copula</strong>.</p>
101 <section·id="Sampling-from-a-copula">89 <section·id="Sampling-from-a-copula">
102 <h2>Sampling·from·a·copula<a·class="headerlink"·href="#Sampling-from-a-copula"·title="Link·to·this·heading">¶</a></h2>90 <h2>Sampling·from·a·copula<a·class="headerlink"·href="#Sampling-from-a-copula"·title="Link·to·this·heading">¶</a></h2>
103 <p>Let’s·use·a·bi-variate·example·and·assume·first·that·we·have·a·prior·and·know·how·to·model·the·dependence·between·our·2·variables.</p>91 <p>Let’s·use·a·bi-variate·example·and·assume·first·that·we·have·a·prior·and·know·how·to·model·the·dependence·between·our·2·variables.</p>
104 <p>In·this·case,·we·are·using·the·Gumbel·copula·and·fix·its·hyperparameter·<code·class="docutils·literal·notranslate"><span·class="pre">theta=2</span></code>.·We·can·visualize·it’s·2-dimensional·PDF.</p>92 <p>In·this·case,·we·are·using·the·Gumbel·copula·and·fix·its·hyperparameter·<code·class="docutils·literal·notranslate"><span·class="pre">theta=2</span></code>.·We·can·visualize·it’s·2-dimensional·PDF.</p>
105 <div·class="nbinput·docutils·container">93 <div·class="nbinput·nblast·docutils·container">
106 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[3]:94 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:
107 </pre></div>95 </pre></div>
108 </div>96 </div>
109 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="kn">from</span>·<span·class="nn">statsmodels.distributions.copula.api</span>·<span·class="kn">import</span>·<span·class="p">(</span>97 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="kn">from</span>·<span·class="nn">statsmodels.distributions.copula.api</span>·<span·class="kn">import</span>·<span·class="p">(</span>
110 ····<span·class="n">CopulaDistribution</span><span·class="p">,</span>·<span·class="n">GumbelCopula</span><span·class="p">,</span>·<span·class="n">IndependenceCopula</span><span·class="p">)</span>98 ····<span·class="n">CopulaDistribution</span><span·class="p">,</span>·<span·class="n">GumbelCopula</span><span·class="p">,</span>·<span·class="n">IndependenceCopula</span><span·class="p">)</span>
  
111 <span·class="n">copula</span>·<span·class="o">=</span>·<span·class="n">GumbelCopula</span><span·class="p">(</span><span·class="n">theta</span><span·class="o">=</span><span·class="mi">2</span><span·class="p">)</span>99 <span·class="n">copula</span>·<span·class="o">=</span>·<span·class="n">GumbelCopula</span><span·class="p">(</span><span·class="n">theta</span><span·class="o">=</span><span·class="mi">2</span><span·class="p">)</span>
112 <span·class="n">_</span>·<span·class="o">=</span>·<span·class="n">copula</span><span·class="o">.</span><span·class="n">plot_pdf</span><span·class="p">()</span>··<span·class="c1">#·returns·a·matplotlib·figure</span>100 <span·class="n">_</span>·<span·class="o">=</span>·<span·class="n">copula</span><span·class="o">.</span><span·class="n">plot_pdf</span><span·class="p">()</span>··<span·class="c1">#·returns·a·matplotlib·figure</span>
113 </pre></div>101 </pre></div>
114 </div>102 </div>
115 </div>103 </div>
116 <div·class="nboutput·nblast·docutils·container"> 
117 <div·class="prompt·empty·docutils·container"> 
118 </div> 
119 <div·class="output_area·docutils·container"> 
120 <img·alt="../../../_images/examples_notebooks_generated_copula_5_0.png"·src="../../../_images/examples_notebooks_generated_copula_5_0.png"·/> 
121 </div> 
122 </div> 
123 <p>And·we·can·sample·the·PDF.</p>104 <p>And·we·can·sample·the·PDF.</p>
124 <div·class="nbinput·docutils·container">105 <div·class="nbinput·nblast·docutils·container">
125 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[4]:106 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:
126 </pre></div>107 </pre></div>
127 </div>108 </div>
128 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="n">sample</span>·<span·class="o">=</span>·<span·class="n">copula</span><span·class="o">.</span><span·class="n">rvs</span><span·class="p">(</span><span·class="mi">10000</span><span·class="p">)</span>109 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="n">sample</span>·<span·class="o">=</span>·<span·class="n">copula</span><span·class="o">.</span><span·class="n">rvs</span><span·class="p">(</span><span·class="mi">10000</span><span·class="p">)</span>
129 <span·class="n">h</span>·<span·class="o">=</span>·<span·class="n">sns</span><span·class="o">.</span><span·class="n">jointplot</span><span·class="p">(</span><span·class="n">x</span><span·class="o">=</span><span·class="n">sample</span><span·class="p">[:,</span>·<span·class="mi">0</span><span·class="p">],</span>·<span·class="n">y</span><span·class="o">=</span><span·class="n">sample</span><span·class="p">[:,</span>·<span·class="mi">1</span><span·class="p">],</span>·<span·class="n">kind</span><span·class="o">=</span><span·class="s2">&quot;hex&quot;</span><span·class="p">)</span>110 <span·class="n">h</span>·<span·class="o">=</span>·<span·class="n">sns</span><span·class="o">.</span><span·class="n">jointplot</span><span·class="p">(</span><span·class="n">x</span><span·class="o">=</span><span·class="n">sample</span><span·class="p">[:,</span>·<span·class="mi">0</span><span·class="p">],</span>·<span·class="n">y</span><span·class="o">=</span><span·class="n">sample</span><span·class="p">[:,</span>·<span·class="mi">1</span><span·class="p">],</span>·<span·class="n">kind</span><span·class="o">=</span><span·class="s2">&quot;hex&quot;</span><span·class="p">)</span>
130 <span·class="n">_</span>·<span·class="o">=</span>·<span·class="n">h</span><span·class="o">.</span><span·class="n">set_axis_labels</span><span·class="p">(</span><span·class="s2">&quot;X1&quot;</span><span·class="p">,</span>·<span·class="s2">&quot;X2&quot;</span><span·class="p">,</span>·<span·class="n">fontsize</span><span·class="o">=</span><span·class="mi">16</span><span·class="p">)</span>111 <span·class="n">_</span>·<span·class="o">=</span>·<span·class="n">h</span><span·class="o">.</span><span·class="n">set_axis_labels</span><span·class="p">(</span><span·class="s2">&quot;X1&quot;</span><span·class="p">,</span>·<span·class="s2">&quot;X2&quot;</span><span·class="p">,</span>·<span·class="n">fontsize</span><span·class="o">=</span><span·class="mi">16</span><span·class="p">)</span>
131 </pre></div>112 </pre></div>
132 </div>113 </div>
133 </div>114 </div>
134 <div·class="nboutput·docutils·container"> 
135 <div·class="prompt·empty·docutils·container"> 
136 </div> 
137 <div·class="output_area·stderr·docutils·container"> 
138 <div·class="highlight"><pre> 
139 /usr/lib/python3/dist-packages/statsmodels/tools/rng_qrng.py:54:·FutureWarning:·Passing·`None`·as·the·seed·currently·return·the·NumPy·singleton·RandomState 
140 (np.random.mtrand._rand).·After·release·0.13·this·will·change·to·using·the 
141 default·generator·provided·by·NumPy·(np.random.default_rng()).·If·you·need 
142 reproducible·draws,·you·should·pass·a·seeded·np.random.Generator,·e.g., 
  
143 import·numpy·as·np 
144 seed·=·32839283923801 
145 rng·=·np.random.default_rng(seed)&#34; 
  
146 ··warnings.warn(_future_warn,·FutureWarning) 
147 </pre></div></div> 
148 </div> 
149 <div·class="nboutput·nblast·docutils·container"> 
150 <div·class="prompt·empty·docutils·container"> 
151 </div> 
152 <div·class="output_area·docutils·container"> 
153 <img·alt="../../../_images/examples_notebooks_generated_copula_7_1.png"·src="../../../_images/examples_notebooks_generated_copula_7_1.png"·/> 
154 </div> 
155 </div> 
156 <p>Let’s·come·back·to·our·2·variables·for·a·second.·In·this·case·we·consider·them·to·be·gamma·and·normally·distributed.·If·they·would·be·independent·from·each·other,·we·could·sample·from·each·PDF·individually.·Here·we·use·a·convenient·class·to·do·the·same·operation.</p>115 <p>Let’s·come·back·to·our·2·variables·for·a·second.·In·this·case·we·consider·them·to·be·gamma·and·normally·distributed.·If·they·would·be·independent·from·each·other,·we·could·sample·from·each·PDF·individually.·Here·we·use·a·convenient·class·to·do·the·same·operation.</p>
157 <section·id="Reproducibility">116 <section·id="Reproducibility">
158 <h3>Reproducibility<a·class="headerlink"·href="#Reproducibility"·title="Link·to·this·heading">¶</a></h3>117 <h3>Reproducibility<a·class="headerlink"·href="#Reproducibility"·title="Link·to·this·heading">¶</a></h3>
159 <p>Generating·reproducible·random·values·from·copulas·required·explicitly·setting·the·<code·class="docutils·literal·notranslate"><span·class="pre">seed</span></code>·argument.·<code·class="docutils·literal·notranslate"><span·class="pre">seed</span></code>·accepts·either·an·initialized·NumPy·<code·class="docutils·literal·notranslate"><span·class="pre">Generator</span></code>·or·<code·class="docutils·literal·notranslate"><span·class="pre">RandomState</span></code>,·or·any·argument·acceptable·to·<code·class="docutils·literal·notranslate"><span·class="pre">np.random.default_rng</span></code>,·e.g.,·an·integer·or·a·sequence·of·integers.·This·example·uses·an·integer.</p>118 <p>Generating·reproducible·random·values·from·copulas·required·explicitly·setting·the·<code·class="docutils·literal·notranslate"><span·class="pre">seed</span></code>·argument.·<code·class="docutils·literal·notranslate"><span·class="pre">seed</span></code>·accepts·either·an·initialized·NumPy·<code·class="docutils·literal·notranslate"><span·class="pre">Generator</span></code>·or·<code·class="docutils·literal·notranslate"><span·class="pre">RandomState</span></code>,·or·any·argument·acceptable·to·<code·class="docutils·literal·notranslate"><span·class="pre">np.random.default_rng</span></code>,·e.g.,·an·integer·or·a·sequence·of·integers.·This·example·uses·an·integer.</p>
160 <p>The·singleton·<code·class="docutils·literal·notranslate"><span·class="pre">RandomState</span></code>·that·is·directly·exposed·in·the·<code·class="docutils·literal·notranslate"><span·class="pre">np.random</span></code>·distributions·is·not·used,·and·setting·<code·class="docutils·literal·notranslate"><span·class="pre">np.random.seed</span></code>·has·no·effect·on·the·values·generated.</p>119 <p>The·singleton·<code·class="docutils·literal·notranslate"><span·class="pre">RandomState</span></code>·that·is·directly·exposed·in·the·<code·class="docutils·literal·notranslate"><span·class="pre">np.random</span></code>·distributions·is·not·used,·and·setting·<code·class="docutils·literal·notranslate"><span·class="pre">np.random.seed</span></code>·has·no·effect·on·the·values·generated.</p>
161 <div·class="nbinput·docutils·container">120 <div·class="nbinput·nblast·docutils·container">
162 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[5]:121 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:
163 </pre></div>122 </pre></div>
164 </div>123 </div>
165 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="n">marginals</span>·<span·class="o">=</span>·<span·class="p">[</span><span·class="n">stats</span><span·class="o">.</span><span·class="n">gamma</span><span·class="p">(</span><span·class="mi">2</span><span·class="p">),</span>·<span·class="n">stats</span><span·class="o">.</span><span·class="n">norm</span><span·class="p">]</span>124 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="n">marginals</span>·<span·class="o">=</span>·<span·class="p">[</span><span·class="n">stats</span><span·class="o">.</span><span·class="n">gamma</span><span·class="p">(</span><span·class="mi">2</span><span·class="p">),</span>·<span·class="n">stats</span><span·class="o">.</span><span·class="n">norm</span><span·class="p">]</span>
166 <span·class="n">joint_dist</span>·<span·class="o">=</span>·<span·class="n">CopulaDistribution</span><span·class="p">(</span><span·class="n">copula</span><span·class="o">=</span><span·class="n">IndependenceCopula</span><span·class="p">(),</span>·<span·class="n">marginals</span><span·class="o">=</span><span·class="n">marginals</span><span·class="p">)</span>125 <span·class="n">joint_dist</span>·<span·class="o">=</span>·<span·class="n">CopulaDistribution</span><span·class="p">(</span><span·class="n">copula</span><span·class="o">=</span><span·class="n">IndependenceCopula</span><span·class="p">(),</span>·<span·class="n">marginals</span><span·class="o">=</span><span·class="n">marginals</span><span·class="p">)</span>
167 <span·class="n">sample</span>·<span·class="o">=</span>·<span·class="n">joint_dist</span><span·class="o">.</span><span·class="n">rvs</span><span·class="p">(</span><span·class="mi">512</span><span·class="p">,</span>·<span·class="n">random_state</span><span·class="o">=</span><span·class="mi">20210801</span><span·class="p">)</span>126 <span·class="n">sample</span>·<span·class="o">=</span>·<span·class="n">joint_dist</span><span·class="o">.</span><span·class="n">rvs</span><span·class="p">(</span><span·class="mi">512</span><span·class="p">,</span>·<span·class="n">random_state</span><span·class="o">=</span><span·class="mi">20210801</span><span·class="p">)</span>
168 <span·class="n">h</span>·<span·class="o">=</span>·<span·class="n">sns</span><span·class="o">.</span><span·class="n">jointplot</span><span·class="p">(</span><span·class="n">x</span><span·class="o">=</span><span·class="n">sample</span><span·class="p">[:,</span>·<span·class="mi">0</span><span·class="p">],</span>·<span·class="n">y</span><span·class="o">=</span><span·class="n">sample</span><span·class="p">[:,</span>·<span·class="mi">1</span><span·class="p">],</span>·<span·class="n">kind</span><span·class="o">=</span><span·class="s2">&quot;scatter&quot;</span><span·class="p">)</span>127 <span·class="n">h</span>·<span·class="o">=</span>·<span·class="n">sns</span><span·class="o">.</span><span·class="n">jointplot</span><span·class="p">(</span><span·class="n">x</span><span·class="o">=</span><span·class="n">sample</span><span·class="p">[:,</span>·<span·class="mi">0</span><span·class="p">],</span>·<span·class="n">y</span><span·class="o">=</span><span·class="n">sample</span><span·class="p">[:,</span>·<span·class="mi">1</span><span·class="p">],</span>·<span·class="n">kind</span><span·class="o">=</span><span·class="s2">&quot;scatter&quot;</span><span·class="p">)</span>
169 <span·class="n">_</span>·<span·class="o">=</span>·<span·class="n">h</span><span·class="o">.</span><span·class="n">set_axis_labels</span><span·class="p">(</span><span·class="s2">&quot;X1&quot;</span><span·class="p">,</span>·<span·class="s2">&quot;X2&quot;</span><span·class="p">,</span>·<span·class="n">fontsize</span><span·class="o">=</span><span·class="mi">16</span><span·class="p">)</span>128 <span·class="n">_</span>·<span·class="o">=</span>·<span·class="n">h</span><span·class="o">.</span><span·class="n">set_axis_labels</span><span·class="p">(</span><span·class="s2">&quot;X1&quot;</span><span·class="p">,</span>·<span·class="s2">&quot;X2&quot;</span><span·class="p">,</span>·<span·class="n">fontsize</span><span·class="o">=</span><span·class="mi">16</span><span·class="p">)</span>
170 </pre></div>129 </pre></div>
171 </div>130 </div>
172 </div>131 </div>
173 <div·class="nboutput·nblast·docutils·container"> 
174 <div·class="prompt·empty·docutils·container"> 
175 </div> 
176 <div·class="output_area·docutils·container"> 
177 <img·alt="../../../_images/examples_notebooks_generated_copula_9_0.png"·src="../../../_images/examples_notebooks_generated_copula_9_0.png"·/> 
178 </div> 
Max diff block lines reached; 5118/18285 bytes (27.99%) of diff not shown.
4.83 KB
html2text {}
    
Offset 3, 24 lines modifiedOffset 3, 24 lines modified
3 ····*·modules·|3 ····*·modules·|
4 ····*·next·|4 ····*·next·|
5 ····*·previous·|5 ····*·previous·|
6 ····*·statsmodels_0.14.5+dfsg·»6 ····*·statsmodels_0.14.5+dfsg·»
7 ····*·Examples·»7 ····*·Examples·»
8 ····*·Copula·-·Multivariate·joint·distribution8 ····*·Copula·-·Multivariate·joint·distribution
9 ******·Copula·-·Multivariate·joint·distribution¶·******9 ******·Copula·-·Multivariate·joint·distribution¶·******
10 [1]:10 [·]:
11 import·matplotlib.pyplot·as·plt11 import·matplotlib.pyplot·as·plt
12 import·numpy·as·np12 import·numpy·as·np
13 import·seaborn·as·sns13 import·seaborn·as·sns
14 from·scipy·import·stats14 from·scipy·import·stats
  
15 sns.set_style("darkgrid")15 sns.set_style("darkgrid")
16 sns.mpl.rc("figure",·figsize=(8,·8))16 sns.mpl.rc("figure",·figsize=(8,·8))
17 np.random.seed(1234)·#·for·reproducibility17 np.random.seed(1234)·#·for·reproducibility
18 [2]:18 [·]:
19 %%javascript19 %%javascript
20 IPython.OutputArea.prototype._should_scroll·=·function(lines)·{20 IPython.OutputArea.prototype._should_scroll·=·function(lines)·{
21 ····return·false;21 ····return·false;
22 }22 }
23 When·modeling·a·system,·there·are·often·cases·where·multiple·parameters·are23 When·modeling·a·system,·there·are·often·cases·where·multiple·parameters·are
24 involved.·Each·of·these·parameters·could·be·described·with·a·given·Probability24 involved.·Each·of·these·parameters·could·be·described·with·a·given·Probability
25 Density·Function·(PDF).·If·would·like·to·be·able·to·generate·a·new·set·of25 Density·Function·(PDF).·If·would·like·to·be·able·to·generate·a·new·set·of
Offset 28, 84 lines modifiedOffset 28, 68 lines modified
28 called·marginals.·There·are·mainly·two·cases:·(i)·PDFs·are·independent;·(ii)28 called·marginals.·There·are·mainly·two·cases:·(i)·PDFs·are·independent;·(ii)
29 there·is·a·dependency.·One·way·to·model·the·dependency·it·to·use·a·copula.29 there·is·a·dependency.·One·way·to·model·the·dependency·it·to·use·a·copula.
30 *****·Sampling·from·a·copula¶·*****30 *****·Sampling·from·a·copula¶·*****
31 Let’s·use·a·bi-variate·example·and·assume·first·that·we·have·a·prior·and·know31 Let’s·use·a·bi-variate·example·and·assume·first·that·we·have·a·prior·and·know
32 how·to·model·the·dependence·between·our·2·variables.32 how·to·model·the·dependence·between·our·2·variables.
33 In·this·case,·we·are·using·the·Gumbel·copula·and·fix·its·hyperparameter33 In·this·case,·we·are·using·the·Gumbel·copula·and·fix·its·hyperparameter
34 theta=2.·We·can·visualize·it’s·2-dimensional·PDF.34 theta=2.·We·can·visualize·it’s·2-dimensional·PDF.
35 [3]:35 [·]:
36 from·statsmodels.distributions.copula.api·import·(36 from·statsmodels.distributions.copula.api·import·(
37 ····CopulaDistribution,·GumbelCopula,·IndependenceCopula)37 ····CopulaDistribution,·GumbelCopula,·IndependenceCopula)
  
38 copula·=·GumbelCopula(theta=2)38 copula·=·GumbelCopula(theta=2)
39 _·=·copula.plot_pdf()··#·returns·a·matplotlib·figure39 _·=·copula.plot_pdf()··#·returns·a·matplotlib·figure
40 [../../../_images/examples_notebooks_generated_copula_5_0.png] 
41 And·we·can·sample·the·PDF.40 And·we·can·sample·the·PDF.
42 [4]:41 [·]:
43 sample·=·copula.rvs(10000)42 sample·=·copula.rvs(10000)
44 h·=·sns.jointplot(x=sample[:,·0],·y=sample[:,·1],·kind="hex")43 h·=·sns.jointplot(x=sample[:,·0],·y=sample[:,·1],·kind="hex")
45 _·=·h.set_axis_labels("X1",·"X2",·fontsize=16)44 _·=·h.set_axis_labels("X1",·"X2",·fontsize=16)
46 /usr/lib/python3/dist-packages/statsmodels/tools/rng_qrng.py:54:·FutureWarning: 
47 Passing·`None`·as·the·seed·currently·return·the·NumPy·singleton·RandomState 
48 (np.random.mtrand._rand).·After·release·0.13·this·will·change·to·using·the 
49 default·generator·provided·by·NumPy·(np.random.default_rng()).·If·you·need 
50 reproducible·draws,·you·should·pass·a·seeded·np.random.Generator,·e.g., 
  
51 import·numpy·as·np 
52 seed·=·32839283923801 
53 rng·=·np.random.default_rng(seed)" 
  
54 ··warnings.warn(_future_warn,·FutureWarning) 
55 [../../../_images/examples_notebooks_generated_copula_7_1.png] 
56 Let’s·come·back·to·our·2·variables·for·a·second.·In·this·case·we·consider·them45 Let’s·come·back·to·our·2·variables·for·a·second.·In·this·case·we·consider·them
57 to·be·gamma·and·normally·distributed.·If·they·would·be·independent·from·each46 to·be·gamma·and·normally·distributed.·If·they·would·be·independent·from·each
58 other,·we·could·sample·from·each·PDF·individually.·Here·we·use·a·convenient47 other,·we·could·sample·from·each·PDF·individually.·Here·we·use·a·convenient
59 class·to·do·the·same·operation.48 class·to·do·the·same·operation.
60 ****·Reproducibility¶·****49 ****·Reproducibility¶·****
61 Generating·reproducible·random·values·from·copulas·required·explicitly·setting50 Generating·reproducible·random·values·from·copulas·required·explicitly·setting
62 the·seed·argument.·seed·accepts·either·an·initialized·NumPy·Generator·or51 the·seed·argument.·seed·accepts·either·an·initialized·NumPy·Generator·or
63 RandomState,·or·any·argument·acceptable·to·np.random.default_rng,·e.g.,·an52 RandomState,·or·any·argument·acceptable·to·np.random.default_rng,·e.g.,·an
64 integer·or·a·sequence·of·integers.·This·example·uses·an·integer.53 integer·or·a·sequence·of·integers.·This·example·uses·an·integer.
65 The·singleton·RandomState·that·is·directly·exposed·in·the·np.random54 The·singleton·RandomState·that·is·directly·exposed·in·the·np.random
66 distributions·is·not·used,·and·setting·np.random.seed·has·no·effect·on·the55 distributions·is·not·used,·and·setting·np.random.seed·has·no·effect·on·the
67 values·generated.56 values·generated.
68 [5]:57 [·]:
69 marginals·=·[stats.gamma(2),·stats.norm]58 marginals·=·[stats.gamma(2),·stats.norm]
70 joint_dist·=·CopulaDistribution(copula=IndependenceCopula(),59 joint_dist·=·CopulaDistribution(copula=IndependenceCopula(),
71 marginals=marginals)60 marginals=marginals)
72 sample·=·joint_dist.rvs(512,·random_state=20210801)61 sample·=·joint_dist.rvs(512,·random_state=20210801)
73 h·=·sns.jointplot(x=sample[:,·0],·y=sample[:,·1],·kind="scatter")62 h·=·sns.jointplot(x=sample[:,·0],·y=sample[:,·1],·kind="scatter")
74 _·=·h.set_axis_labels("X1",·"X2",·fontsize=16)63 _·=·h.set_axis_labels("X1",·"X2",·fontsize=16)
75 [../../../_images/examples_notebooks_generated_copula_9_0.png] 
76 Now,·above·we·have·expressed·the·dependency·between·our·variables·using·a64 Now,·above·we·have·expressed·the·dependency·between·our·variables·using·a
77 copula,·we·can·use·this·copula·to·sample·a·new·set·of·observation·with·the·same65 copula,·we·can·use·this·copula·to·sample·a·new·set·of·observation·with·the·same
78 convenient·class.66 convenient·class.
79 [6]:67 [·]:
80 joint_dist·=·CopulaDistribution(copula,·marginals)68 joint_dist·=·CopulaDistribution(copula,·marginals)
81 #·Use·an·initialized·Generator·object69 #·Use·an·initialized·Generator·object
82 rng·=·np.random.default_rng([2,·0,·2,·1,·0,·8,·0,·1])70 rng·=·np.random.default_rng([2,·0,·2,·1,·0,·8,·0,·1])
83 sample·=·joint_dist.rvs(512,·random_state=rng)71 sample·=·joint_dist.rvs(512,·random_state=rng)
84 h·=·sns.jointplot(x=sample[:,·0],·y=sample[:,·1],·kind="scatter")72 h·=·sns.jointplot(x=sample[:,·0],·y=sample[:,·1],·kind="scatter")
85 _·=·h.set_axis_labels("X1",·"X2",·fontsize=16)73 _·=·h.set_axis_labels("X1",·"X2",·fontsize=16)
86 [../../../_images/examples_notebooks_generated_copula_11_0.png] 
87 There·are·two·things·to·note·here.·(i)·as·in·the·independent·case,·the74 There·are·two·things·to·note·here.·(i)·as·in·the·independent·case,·the
88 marginals·are·correctly·showing·a·gamma·and·normal·distribution;·(ii)·the75 marginals·are·correctly·showing·a·gamma·and·normal·distribution;·(ii)·the
89 dependence·is·visible·between·the·two·variables.76 dependence·is·visible·between·the·two·variables.
90 *****·Estimating·copula·parameters¶·*****77 *****·Estimating·copula·parameters¶·*****
91 Now,·imagine·we·already·have·experimental·data·and·we·know·that·there·is·a78 Now,·imagine·we·already·have·experimental·data·and·we·know·that·there·is·a
92 dependency·that·can·be·expressed·using·a·Gumbel·copula.·But·we·don’t·know·what79 dependency·that·can·be·expressed·using·a·Gumbel·copula.·But·we·don’t·know·what
93 is·the·hyperparameter·value·for·our·copula.·In·this·case,·we·can·estimate·the80 is·the·hyperparameter·value·for·our·copula.·In·this·case,·we·can·estimate·the
94 value.81 value.
95 We·are·going·to·use·the·sample·we·just·generated·as·we·already·know·the·value82 We·are·going·to·use·the·sample·we·just·generated·as·we·already·know·the·value
96 of·the·hyperparameter·we·should·get:·theta=2.83 of·the·hyperparameter·we·should·get:·theta=2.
97 [7]:84 [·]:
98 copula·=·GumbelCopula()85 copula·=·GumbelCopula()
99 theta·=·copula.fit_corr_param(sample)86 theta·=·copula.fit_corr_param(sample)
100 print(theta)87 print(theta)
101 2.049379621506455 
102 We·can·see·that·the·estimated·hyperparameter·value·is·close·to·the·value·set88 We·can·see·that·the·estimated·hyperparameter·value·is·close·to·the·value·set
103 previously.89 previously.
104 [Logo_of_statsmodels_0.14.5+dfsg]90 [Logo_of_statsmodels_0.14.5+dfsg]
105 ****·Table_of_Contents·****91 ****·Table_of_Contents·****
106 ····*·Installing_statsmodels92 ····*·Installing_statsmodels
107 ····*·Getting_started93 ····*·Getting_started
108 ····*·User_Guide94 ····*·User_Guide
3.44 KB
./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/discrete_choice_overview.ipynb.gz
3.24 KB
discrete_choice_overview.ipynb
3.18 KB
Pretty-printed
Similarity: 0.9995828163771712% Differences: {"'cells'": "{22: {'outputs': {0: {'text': {insert: [(0, 'Optimization terminated " "successfully.\\n'), (1, ' Current function value: 1.548647\\n'), (2, " "' Iterations 7\\n')]}}, delete: [0]}}, 26: {'outputs': {1: {'text': {delete: " "[2, 1, 0]}}, insert: [(0, OrderedDict({'name': 'stdout', 'output_type': 'stream', " "'text': ['Optimization terminated successfully.\\n', ' Current function " "value: 3.091609\\n', ' […]
    
Offset 383, 21 lines modifiedOffset 383, 15 lines modified
383 ············"outputs":·[383 ············"outputs":·[
384 ················{384 ················{
385 ····················"name":·"stdout",385 ····················"name":·"stdout",
386 ····················"output_type":·"stream",386 ····················"output_type":·"stream",
387 ····················"text":·[387 ····················"text":·[
388 ························"Optimization·terminated·successfully.\n",388 ························"Optimization·terminated·successfully.\n",
389 ························"·········Current·function·value:·1.548647\n",389 ························"·········Current·function·value:·1.548647\n",
390 ························"·········Iterations·7\n"390 ························"·········Iterations·7\n",
391 ····················] 
392 ················}, 
393 ················{ 
394 ····················"name":·"stdout", 
395 ····················"output_type":·"stream", 
396 ····················"text":·[ 
397 ························"·················0·········1·········2·········3·········4··········5\n",391 ························"·················0·········1·········2·········3·········4··········5\n",
398 ························"const····-0.373402·-2.250913·-3.665584·-7.613843·-7.060478·-12.105751\n",392 ························"const····-0.373402·-2.250913·-3.665584·-7.613843·-7.060478·-12.105751\n",
399 ························"logpopul·-0.011536·-0.088751·-0.105967·-0.091557·-0.093285··-0.140881\n",393 ························"logpopul·-0.011536·-0.088751·-0.105967·-0.091557·-0.093285··-0.140881\n",
400 ························"selfLR····0.297714··0.391669··0.573451··1.278772··1.346962···2.070080\n",394 ························"selfLR····0.297714··0.391669··0.573451··1.278772··1.346962···2.070080\n",
401 ························"age······-0.024945·-0.022898·-0.014851·-0.008681·-0.017904··-0.009433\n",395 ························"age······-0.024945·-0.022898·-0.014851·-0.008681·-0.017904··-0.009433\n",
402 ························"educ······0.082491··0.181043·-0.007152··0.199828··0.216939···0.321926\n",396 ························"educ······0.082491··0.181043·-0.007152··0.199828··0.216939···0.321926\n",
403 ························"income····0.005197··0.047874··0.057575··0.084498··0.080958···0.108894\n"397 ························"income····0.005197··0.047874··0.057575··0.084498··0.080958···0.108894\n"
Offset 454, 15 lines modifiedOffset 448, 21 lines modified
454 ············"outputs":·[448 ············"outputs":·[
455 ················{449 ················{
456 ····················"name":·"stdout",450 ····················"name":·"stdout",
457 ····················"output_type":·"stream",451 ····················"output_type":·"stream",
458 ····················"text":·[452 ····················"text":·[
459 ························"Optimization·terminated·successfully.\n",453 ························"Optimization·terminated·successfully.\n",
460 ························"·········Current·function·value:·3.091609\n",454 ························"·········Current·function·value:·3.091609\n",
461 ························"·········Iterations·6\n",455 ························"·········Iterations·6\n"
 456 ····················]
 457 ················},
 458 ················{
 459 ····················"name":·"stdout",
 460 ····················"output_type":·"stream",
 461 ····················"text":·[
462 ························"··························Poisson·Regression·Results··························\n",462 ························"··························Poisson·Regression·Results··························\n",
463 ························"==============================================================================\n",463 ························"==============================================================================\n",
464 ························"Dep.·Variable:··················mdvis···No.·Observations:················20190\n",464 ························"Dep.·Variable:··················mdvis···No.·Observations:················20190\n",
465 ························"Model:························Poisson···Df·Residuals:····················20180\n",465 ························"Model:························Poisson···Df·Residuals:····················20180\n",
466 ························"Method:···························MLE···Df·Model:····························9\n",466 ························"Method:···························MLE···Df·Model:····························9\n",
467 ························"Date:················Sun,·10·Aug·2025···Pseudo·R-squ.:·················0.06343\n",467 ························"Date:················Sun,·10·Aug·2025···Pseudo·R-squ.:·················0.06343\n",
468 ························"Time:························13:13:47···Log-Likelihood:················-62420.\n",468 ························"Time:························13:13:47···Log-Likelihood:················-62420.\n",
1.51 KB
./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/metaanalysis1.ipynb.gz
1.33 KB
metaanalysis1.ipynb
1.29 KB
Pretty-printed
    
Offset 333, 22 lines modifiedOffset 333, 15 lines modified
333 ················"execution":·{}333 ················"execution":·{}
334 ············},334 ············},
335 ············"outputs":·[335 ············"outputs":·[
336 ················{336 ················{
337 ····················"name":·"stdout",337 ····················"name":·"stdout",
338 ····················"output_type":·"stream",338 ····················"output_type":·"stream",
339 ····················"text":·[339 ····················"text":·[
340 ························"method·RE:" 
341 ····················] 
342 ················}, 
343 ················{ 
344 ····················"name":·"stdout", 
345 ····················"output_type":·"stream", 
346 ····················"text":·[ 
347 ························"·iterated\n",340 ························"method·RE:·iterated\n",
348 ························"························eff····sd_eff····ci_low····ci_upp······w_fe······w_re\n",341 ························"························eff····sd_eff····ci_low····ci_upp······w_fe······w_re\n",
349 ························"Carroll············0.094524··0.182680·-0.263521··0.452570··0.123885··0.152619\n",342 ························"Carroll············0.094524··0.182680·-0.263521··0.452570··0.123885··0.152619\n",
350 ························"Grant··············0.277356··0.176279·-0.068144··0.622857··0.133045··0.159157\n",343 ························"Grant··············0.277356··0.176279·-0.068144··0.622857··0.133045··0.159157\n",
351 ························"Peck···············0.366546··0.225573·-0.075569··0.808662··0.081250··0.116228\n",344 ························"Peck···············0.366546··0.225573·-0.075569··0.808662··0.081250··0.116228\n",
352 ························"Donat··············0.664385··0.102748··0.463002··0.865768··0.391606··0.257767\n",345 ························"Donat··············0.664385··0.102748··0.463002··0.865768··0.391606··0.257767\n",
353 ························"Stewart············0.461808··0.208310··0.053527··0.870089··0.095275··0.129428\n",346 ························"Stewart············0.461808··0.208310··0.053527··0.870089··0.095275··0.129428\n",
354 ························"Young··············0.185165··0.153729·-0.116139··0.486468··0.174939··0.184799\n",347 ························"Young··············0.185165··0.153729·-0.116139··0.486468··0.174939··0.184799\n",
68.7 KB
./usr/share/doc/python-statsmodels-doc/html/examples/notebooks/generated/tsa_arma_0.html
    
Offset 57, 407 lines modifiedOffset 57, 755 lines modified
57 ······<div·class="documentwrapper">57 ······<div·class="documentwrapper">
58 ········<div·class="bodywrapper">58 ········<div·class="bodywrapper">
59 ··········<div·class="body"·role="main">59 ··········<div·class="body"·role="main">
60 ············60 ············
61 ··<section·id="Autoregressive-Moving-Average-(ARMA):-Sunspots-data">61 ··<section·id="Autoregressive-Moving-Average-(ARMA):-Sunspots-data">
62 <h1>Autoregressive·Moving·Average·(ARMA):·Sunspots·data<a·class="headerlink"·href="#Autoregressive-Moving-Average-(ARMA):-Sunspots-data"·title="Link·to·this·heading">¶</a></h1>62 <h1>Autoregressive·Moving·Average·(ARMA):·Sunspots·data<a·class="headerlink"·href="#Autoregressive-Moving-Average-(ARMA):-Sunspots-data"·title="Link·to·this·heading">¶</a></h1>
63 <div·class="nbinput·nblast·docutils·container">63 <div·class="nbinput·nblast·docutils·container">
64 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:64 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[1]:
65 </pre></div>65 </pre></div>
66 </div>66 </div>
67 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="o">%</span><span·class="k">matplotlib</span>·inline67 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="o">%</span><span·class="k">matplotlib</span>·inline
68 </pre></div>68 </pre></div>
69 </div>69 </div>
70 </div>70 </div>
71 <div·class="nbinput·nblast·docutils·container">71 <div·class="nbinput·nblast·docutils·container">
72 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:72 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[2]:
73 </pre></div>73 </pre></div>
74 </div>74 </div>
75 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="kn">import</span>·<span·class="nn">matplotlib.pyplot</span>·<span·class="k">as</span>·<span·class="nn">plt</span>75 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="kn">import</span>·<span·class="nn">matplotlib.pyplot</span>·<span·class="k">as</span>·<span·class="nn">plt</span>
76 <span·class="kn">import</span>·<span·class="nn">numpy</span>·<span·class="k">as</span>·<span·class="nn">np</span>76 <span·class="kn">import</span>·<span·class="nn">numpy</span>·<span·class="k">as</span>·<span·class="nn">np</span>
77 <span·class="kn">import</span>·<span·class="nn">pandas</span>·<span·class="k">as</span>·<span·class="nn">pd</span>77 <span·class="kn">import</span>·<span·class="nn">pandas</span>·<span·class="k">as</span>·<span·class="nn">pd</span>
78 <span·class="kn">import</span>·<span·class="nn">statsmodels.api</span>·<span·class="k">as</span>·<span·class="nn">sm</span>78 <span·class="kn">import</span>·<span·class="nn">statsmodels.api</span>·<span·class="k">as</span>·<span·class="nn">sm</span>
79 <span·class="kn">from</span>·<span·class="nn">scipy</span>·<span·class="kn">import</span>·<span·class="n">stats</span>79 <span·class="kn">from</span>·<span·class="nn">scipy</span>·<span·class="kn">import</span>·<span·class="n">stats</span>
80 <span·class="kn">from</span>·<span·class="nn">statsmodels.tsa.arima.model</span>·<span·class="kn">import</span>·<span·class="n">ARIMA</span>80 <span·class="kn">from</span>·<span·class="nn">statsmodels.tsa.arima.model</span>·<span·class="kn">import</span>·<span·class="n">ARIMA</span>
81 </pre></div>81 </pre></div>
82 </div>82 </div>
83 </div>83 </div>
84 <div·class="nbinput·nblast·docutils·container">84 <div·class="nbinput·nblast·docutils·container">
85 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:85 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[3]:
86 </pre></div>86 </pre></div>
87 </div>87 </div>
88 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="kn">from</span>·<span·class="nn">statsmodels.graphics.api</span>·<span·class="kn">import</span>·<span·class="n">qqplot</span>88 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="kn">from</span>·<span·class="nn">statsmodels.graphics.api</span>·<span·class="kn">import</span>·<span·class="n">qqplot</span>
89 </pre></div>89 </pre></div>
90 </div>90 </div>
91 </div>91 </div>
92 <section·id="Sunspots-Data">92 <section·id="Sunspots-Data">
93 <h2>Sunspots·Data<a·class="headerlink"·href="#Sunspots-Data"·title="Link·to·this·heading">¶</a></h2>93 <h2>Sunspots·Data<a·class="headerlink"·href="#Sunspots-Data"·title="Link·to·this·heading">¶</a></h2>
94 <div·class="nbinput·nblast·docutils·container">94 <div·class="nbinput·docutils·container">
95 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:95 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[4]:
96 </pre></div>96 </pre></div>
97 </div>97 </div>
98 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="nb">print</span><span·class="p">(</span><span·class="n">sm</span><span·class="o">.</span><span·class="n">datasets</span><span·class="o">.</span><span·class="n">sunspots</span><span·class="o">.</span><span·class="n">NOTE</span><span·class="p">)</span>98 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="nb">print</span><span·class="p">(</span><span·class="n">sm</span><span·class="o">.</span><span·class="n">datasets</span><span·class="o">.</span><span·class="n">sunspots</span><span·class="o">.</span><span·class="n">NOTE</span><span·class="p">)</span>
99 </pre></div>99 </pre></div>
100 </div>100 </div>
101 </div>101 </div>
 102 <div·class="nboutput·nblast·docutils·container">
 103 <div·class="prompt·empty·docutils·container">
 104 </div>
 105 <div·class="output_area·docutils·container">
 106 <div·class="highlight"><pre>
 107 ::
  
 108 ····Number·of·Observations·-·309·(Annual·1700·-·2008)
 109 ····Number·of·Variables·-·1
 110 ····Variable·name·definitions::
  
 111 ········SUNACTIVITY·-·Number·of·sunspots·for·each·year
  
 112 ····The·data·file·contains·a·&#39;YEAR&#39;·variable·that·is·not·returned·by·load.
  
 113 </pre></div></div>
 114 </div>
102 <div·class="nbinput·nblast·docutils·container">115 <div·class="nbinput·nblast·docutils·container">
103 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:116 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[5]:
104 </pre></div>117 </pre></div>
105 </div>118 </div>
106 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="n">dta</span>·<span·class="o">=</span>·<span·class="n">sm</span><span·class="o">.</span><span·class="n">datasets</span><span·class="o">.</span><span·class="n">sunspots</span><span·class="o">.</span><span·class="n">load_pandas</span><span·class="p">()</span><span·class="o">.</span><span·class="n">data</span>119 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="n">dta</span>·<span·class="o">=</span>·<span·class="n">sm</span><span·class="o">.</span><span·class="n">datasets</span><span·class="o">.</span><span·class="n">sunspots</span><span·class="o">.</span><span·class="n">load_pandas</span><span·class="p">()</span><span·class="o">.</span><span·class="n">data</span>
107 </pre></div>120 </pre></div>
108 </div>121 </div>
109 </div>122 </div>
110 <div·class="nbinput·nblast·docutils·container">123 <div·class="nbinput·nblast·docutils·container">
111 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:124 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[6]:
112 </pre></div>125 </pre></div>
113 </div>126 </div>
114 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="n">dta</span><span·class="o">.</span><span·class="n">index</span>·<span·class="o">=</span>·<span·class="n">pd</span><span·class="o">.</span><span·class="n">Index</span><span·class="p">(</span><span·class="n">sm</span><span·class="o">.</span><span·class="n">tsa</span><span·class="o">.</span><span·class="n">datetools</span><span·class="o">.</span><span·class="n">dates_from_range</span><span·class="p">(</span><span·class="s2">&quot;1700&quot;</span><span·class="p">,</span>·<span·class="s2">&quot;2008&quot;</span><span·class="p">))</span>127 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="n">dta</span><span·class="o">.</span><span·class="n">index</span>·<span·class="o">=</span>·<span·class="n">pd</span><span·class="o">.</span><span·class="n">Index</span><span·class="p">(</span><span·class="n">sm</span><span·class="o">.</span><span·class="n">tsa</span><span·class="o">.</span><span·class="n">datetools</span><span·class="o">.</span><span·class="n">dates_from_range</span><span·class="p">(</span><span·class="s2">&quot;1700&quot;</span><span·class="p">,</span>·<span·class="s2">&quot;2008&quot;</span><span·class="p">))</span>
115 <span·class="n">dta</span><span·class="o">.</span><span·class="n">index</span><span·class="o">.</span><span·class="n">freq</span>·<span·class="o">=</span>·<span·class="n">dta</span><span·class="o">.</span><span·class="n">index</span><span·class="o">.</span><span·class="n">inferred_freq</span>128 <span·class="n">dta</span><span·class="o">.</span><span·class="n">index</span><span·class="o">.</span><span·class="n">freq</span>·<span·class="o">=</span>·<span·class="n">dta</span><span·class="o">.</span><span·class="n">index</span><span·class="o">.</span><span·class="n">inferred_freq</span>
116 <span·class="k">del</span>·<span·class="n">dta</span><span·class="p">[</span><span·class="s2">&quot;YEAR&quot;</span><span·class="p">]</span>129 <span·class="k">del</span>·<span·class="n">dta</span><span·class="p">[</span><span·class="s2">&quot;YEAR&quot;</span><span·class="p">]</span>
117 </pre></div>130 </pre></div>
118 </div>131 </div>
119 </div>132 </div>
120 <div·class="nbinput·nblast·docutils·container">133 <div·class="nbinput·docutils·container">
121 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:134 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[7]:
122 </pre></div>135 </pre></div>
123 </div>136 </div>
124 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="n">dta</span><span·class="o">.</span><span·class="n">plot</span><span·class="p">(</span><span·class="n">figsize</span><span·class="o">=</span><span·class="p">(</span><span·class="mi">12</span><span·class="p">,</span>·<span·class="mi">8</span><span·class="p">))</span>137 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="n">dta</span><span·class="o">.</span><span·class="n">plot</span><span·class="p">(</span><span·class="n">figsize</span><span·class="o">=</span><span·class="p">(</span><span·class="mi">12</span><span·class="p">,</span>·<span·class="mi">8</span><span·class="p">))</span>
125 </pre></div>138 </pre></div>
126 </div>139 </div>
127 </div>140 </div>
128 <div·class="nbinput·nblast·docutils·container">141 <div·class="nboutput·docutils·container">
129 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:142 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[7]:
 143 </pre></div>
 144 </div>
 145 <div·class="output_area·docutils·container">
 146 <div·class="highlight"><pre>
 147 &lt;Axes:·&gt;
 148 </pre></div></div>
 149 </div>
 150 <div·class="nboutput·nblast·docutils·container">
 151 <div·class="prompt·empty·docutils·container">
 152 </div>
 153 <div·class="output_area·docutils·container">
 154 <img·alt="../../../_images/examples_notebooks_generated_tsa_arma_0_8_1.png"·src="../../../_images/examples_notebooks_generated_tsa_arma_0_8_1.png"·/>
 155 </div>
 156 </div>
 157 <div·class="nbinput·docutils·container">
 158 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[8]:
130 </pre></div>159 </pre></div>
131 </div>160 </div>
132 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="n">fig</span>·<span·class="o">=</span>·<span·class="n">plt</span><span·class="o">.</span><span·class="n">figure</span><span·class="p">(</span><span·class="n">figsize</span><span·class="o">=</span><span·class="p">(</span><span·class="mi">12</span><span·class="p">,</span>·<span·class="mi">8</span><span·class="p">))</span>161 <div·class="input_area·highlight-ipython3·notranslate"><div·class="highlight"><pre><span></span><span·class="n">fig</span>·<span·class="o">=</span>·<span·class="n">plt</span><span·class="o">.</span><span·class="n">figure</span><span·class="p">(</span><span·class="n">figsize</span><span·class="o">=</span><span·class="p">(</span><span·class="mi">12</span><span·class="p">,</span>·<span·class="mi">8</span><span·class="p">))</span>
133 <span·class="n">ax1</span>·<span·class="o">=</span>·<span·class="n">fig</span><span·class="o">.</span><span·class="n">add_subplot</span><span·class="p">(</span><span·class="mi">211</span><span·class="p">)</span>162 <span·class="n">ax1</span>·<span·class="o">=</span>·<span·class="n">fig</span><span·class="o">.</span><span·class="n">add_subplot</span><span·class="p">(</span><span·class="mi">211</span><span·class="p">)</span>
134 <span·class="n">fig</span>·<span·class="o">=</span>·<span·class="n">sm</span><span·class="o">.</span><span·class="n">graphics</span><span·class="o">.</span><span·class="n">tsa</span><span·class="o">.</span><span·class="n">plot_acf</span><span·class="p">(</span><span·class="n">dta</span><span·class="o">.</span><span·class="n">values</span><span·class="o">.</span><span·class="n">squeeze</span><span·class="p">(),</span>·<span·class="n">lags</span><span·class="o">=</span><span·class="mi">40</span><span·class="p">,</span>·<span·class="n">ax</span><span·class="o">=</span><span·class="n">ax1</span><span·class="p">)</span>163 <span·class="n">fig</span>·<span·class="o">=</span>·<span·class="n">sm</span><span·class="o">.</span><span·class="n">graphics</span><span·class="o">.</span><span·class="n">tsa</span><span·class="o">.</span><span·class="n">plot_acf</span><span·class="p">(</span><span·class="n">dta</span><span·class="o">.</span><span·class="n">values</span><span·class="o">.</span><span·class="n">squeeze</span><span·class="p">(),</span>·<span·class="n">lags</span><span·class="o">=</span><span·class="mi">40</span><span·class="p">,</span>·<span·class="n">ax</span><span·class="o">=</span><span·class="n">ax1</span><span·class="p">)</span>
135 <span·class="n">ax2</span>·<span·class="o">=</span>·<span·class="n">fig</span><span·class="o">.</span><span·class="n">add_subplot</span><span·class="p">(</span><span·class="mi">212</span><span·class="p">)</span>164 <span·class="n">ax2</span>·<span·class="o">=</span>·<span·class="n">fig</span><span·class="o">.</span><span·class="n">add_subplot</span><span·class="p">(</span><span·class="mi">212</span><span·class="p">)</span>
136 <span·class="n">fig</span>·<span·class="o">=</span>·<span·class="n">sm</span><span·class="o">.</span><span·class="n">graphics</span><span·class="o">.</span><span·class="n">tsa</span><span·class="o">.</span><span·class="n">plot_pacf</span><span·class="p">(</span><span·class="n">dta</span><span·class="p">,</span>·<span·class="n">lags</span><span·class="o">=</span><span·class="mi">40</span><span·class="p">,</span>·<span·class="n">ax</span><span·class="o">=</span><span·class="n">ax2</span><span·class="p">)</span>165 <span·class="n">fig</span>·<span·class="o">=</span>·<span·class="n">sm</span><span·class="o">.</span><span·class="n">graphics</span><span·class="o">.</span><span·class="n">tsa</span><span·class="o">.</span><span·class="n">plot_pacf</span><span·class="p">(</span><span·class="n">dta</span><span·class="p">,</span>·<span·class="n">lags</span><span·class="o">=</span><span·class="mi">40</span><span·class="p">,</span>·<span·class="n">ax</span><span·class="o">=</span><span·class="n">ax2</span><span·class="p">)</span>
137 </pre></div>166 </pre></div>
138 </div>167 </div>
139 </div>168 </div>
 169 <div·class="nboutput·nblast·docutils·container">
 170 <div·class="prompt·empty·docutils·container">
 171 </div>
 172 <div·class="output_area·docutils·container">
 173 <img·alt="../../../_images/examples_notebooks_generated_tsa_arma_0_9_0.png"·src="../../../_images/examples_notebooks_generated_tsa_arma_0_9_0.png"·/>
 174 </div>
 175 </div>
140 <div·class="nbinput·nblast·docutils·container">176 <div·class="nbinput·nblast·docutils·container">
141 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:177 <div·class="prompt·highlight-none·notranslate"><div·class="highlight"><pre><span></span>[·]:
142 </pre></div>178 </pre></div>
143 </div>179 </div>
Max diff block lines reached; 48887/58996 bytes (82.86%) of diff not shown.
11.0 KB
html2text {}
    
Offset 3, 161 lines modifiedOffset 3, 325 lines modified
3 ····*·modules·|3 ····*·modules·|
4 ····*·next·|4 ····*·next·|
5 ····*·previous·|5 ····*·previous·|
6 ····*·statsmodels_0.14.5+dfsg·»6 ····*·statsmodels_0.14.5+dfsg·»
7 ····*·Examples·»7 ····*·Examples·»
8 ····*·Autoregressive·Moving·Average·(ARMA):·Sunspots·data8 ····*·Autoregressive·Moving·Average·(ARMA):·Sunspots·data
9 ******·Autoregressive·Moving·Average·(ARMA):·Sunspots·data¶·******9 ******·Autoregressive·Moving·Average·(ARMA):·Sunspots·data¶·******
10 [·]:10 [1]:
11 %matplotlib·inline11 %matplotlib·inline
12 [·]:12 [2]:
13 import·matplotlib.pyplot·as·plt13 import·matplotlib.pyplot·as·plt
14 import·numpy·as·np14 import·numpy·as·np
15 import·pandas·as·pd15 import·pandas·as·pd
16 import·statsmodels.api·as·sm16 import·statsmodels.api·as·sm
17 from·scipy·import·stats17 from·scipy·import·stats
18 from·statsmodels.tsa.arima.model·import·ARIMA18 from·statsmodels.tsa.arima.model·import·ARIMA
19 [·]:19 [3]:
20 from·statsmodels.graphics.api·import·qqplot20 from·statsmodels.graphics.api·import·qqplot
21 *****·Sunspots·Data¶·*****21 *****·Sunspots·Data¶·*****
22 [·]:22 [4]:
23 print(sm.datasets.sunspots.NOTE)23 print(sm.datasets.sunspots.NOTE)
 24 ::
  
 25 ····Number·of·Observations·-·309·(Annual·1700·-·2008)
 26 ····Number·of·Variables·-·1
 27 ····Variable·name·definitions::
  
 28 ········SUNACTIVITY·-·Number·of·sunspots·for·each·year
  
 29 ····The·data·file·contains·a·'YEAR'·variable·that·is·not·returned·by·load.
24 [·]:30 [5]:
25 dta·=·sm.datasets.sunspots.load_pandas().data31 dta·=·sm.datasets.sunspots.load_pandas().data
26 [·]:32 [6]:
27 dta.index·=·pd.Index(sm.tsa.datetools.dates_from_range("1700",·"2008"))33 dta.index·=·pd.Index(sm.tsa.datetools.dates_from_range("1700",·"2008"))
28 dta.index.freq·=·dta.index.inferred_freq34 dta.index.freq·=·dta.index.inferred_freq
29 del·dta["YEAR"]35 del·dta["YEAR"]
30 [·]:36 [7]:
31 dta.plot(figsize=(12,·8))37 dta.plot(figsize=(12,·8))
32 [·]:38 [7]:
 39 <Axes:·>
 40 [../../../_images/examples_notebooks_generated_tsa_arma_0_8_1.png]
 41 [8]:
33 fig·=·plt.figure(figsize=(12,·8))42 fig·=·plt.figure(figsize=(12,·8))
34 ax1·=·fig.add_subplot(211)43 ax1·=·fig.add_subplot(211)
35 fig·=·sm.graphics.tsa.plot_acf(dta.values.squeeze(),·lags=40,·ax=ax1)44 fig·=·sm.graphics.tsa.plot_acf(dta.values.squeeze(),·lags=40,·ax=ax1)
36 ax2·=·fig.add_subplot(212)45 ax2·=·fig.add_subplot(212)
37 fig·=·sm.graphics.tsa.plot_pacf(dta,·lags=40,·ax=ax2)46 fig·=·sm.graphics.tsa.plot_pacf(dta,·lags=40,·ax=ax2)
 47 [../../../_images/examples_notebooks_generated_tsa_arma_0_9_0.png]
38 [·]:48 [·]:
39 [·]:49 [9]:
40 arma_mod20·=·ARIMA(dta,·order=(2,·0,·0)).fit()50 arma_mod20·=·ARIMA(dta,·order=(2,·0,·0)).fit()
41 print(arma_mod20.params)51 print(arma_mod20.params)
42 [·]:52 const······49.746198
 53 ar.L1·······1.390633
 54 ar.L2······-0.688573
 55 sigma2····274.727183
 56 dtype:·float64
 57 [10]:
43 arma_mod30·=·ARIMA(dta,·order=(3,·0,·0)).fit()58 arma_mod30·=·ARIMA(dta,·order=(3,·0,·0)).fit()
44 [·]:59 [11]:
45 print(arma_mod20.aic,·arma_mod20.bic,·arma_mod20.hqic)60 print(arma_mod20.aic,·arma_mod20.bic,·arma_mod20.hqic)
46 [·]:61 2622.637093301387·2637.5704584089776·2628.607481146633
 62 [12]:
47 print(arma_mod30.params)63 print(arma_mod30.params)
48 [·]:64 const······49.751911
 65 ar.L1·······1.300818
 66 ar.L2······-0.508102
 67 ar.L3······-0.129644
 68 sigma2····270.101139
 69 dtype:·float64
 70 [13]:
49 print(arma_mod30.aic,·arma_mod30.bic,·arma_mod30.hqic)71 print(arma_mod30.aic,·arma_mod30.bic,·arma_mod30.hqic)
 72 2619.4036292456676·2638.0703356301565·2626.866614052225
50 ····*·Does·our·model·obey·the·theory?73 ····*·Does·our·model·obey·the·theory?
51 [·]:74 [14]:
52 sm.stats.durbin_watson(arma_mod30.resid.values)75 sm.stats.durbin_watson(arma_mod30.resid.values)
53 [·]:76 [14]:
 77 np.float64(1.9564953616072376)
 78 [15]:
54 fig·=·plt.figure(figsize=(12,·8))79 fig·=·plt.figure(figsize=(12,·8))
55 ax·=·fig.add_subplot(111)80 ax·=·fig.add_subplot(111)
56 ax·=·arma_mod30.resid.plot(ax=ax)81 ax·=·arma_mod30.resid.plot(ax=ax)
57 [·]:82 [../../../_images/examples_notebooks_generated_tsa_arma_0_18_0.png]
 83 [16]:
58 resid·=·arma_mod30.resid84 resid·=·arma_mod30.resid
59 [·]:85 [17]:
60 stats.normaltest(resid)86 stats.normaltest(resid)
61 [·]:87 [17]:
 88 NormaltestResult(statistic=np.float64(49.84393220876942),·pvalue=np.float64
 89 (1.5015079731491487e-11))
 90 [18]:
62 fig·=·plt.figure(figsize=(12,·8))91 fig·=·plt.figure(figsize=(12,·8))
63 ax·=·fig.add_subplot(111)92 ax·=·fig.add_subplot(111)
64 fig·=·qqplot(resid,·line="q",·ax=ax,·fit=True)93 fig·=·qqplot(resid,·line="q",·ax=ax,·fit=True)
65 [·]:94 [../../../_images/examples_notebooks_generated_tsa_arma_0_21_0.png]
 95 [19]:
66 fig·=·plt.figure(figsize=(12,·8))96 fig·=·plt.figure(figsize=(12,·8))
67 ax1·=·fig.add_subplot(211)97 ax1·=·fig.add_subplot(211)
68 fig·=·sm.graphics.tsa.plot_acf(resid.values.squeeze(),·lags=40,·ax=ax1)98 fig·=·sm.graphics.tsa.plot_acf(resid.values.squeeze(),·lags=40,·ax=ax1)
69 ax2·=·fig.add_subplot(212)99 ax2·=·fig.add_subplot(212)
70 fig·=·sm.graphics.tsa.plot_pacf(resid,·lags=40,·ax=ax2)100 fig·=·sm.graphics.tsa.plot_pacf(resid,·lags=40,·ax=ax2)
71 [·]:101 [../../../_images/examples_notebooks_generated_tsa_arma_0_22_0.png]
 102 [20]:
72 r,·q,·p·=·sm.tsa.acf(resid.values.squeeze(),·fft=True,·qstat=True)103 r,·q,·p·=·sm.tsa.acf(resid.values.squeeze(),·fft=True,·qstat=True)
73 data·=·np.c_[np.arange(1,·25),·r[1:],·q,·p]104 data·=·np.c_[np.arange(1,·25),·r[1:],·q,·p]
74 [·]:105 [21]:
75 table·=·pd.DataFrame(data,·columns=["lag",·"AC",·"Q",·"Prob(>Q)"])106 table·=·pd.DataFrame(data,·columns=["lag",·"AC",·"Q",·"Prob(>Q)"])
76 print(table.set_index("lag"))107 print(table.set_index("lag"))
 108 ············AC··········Q······Prob(>Q)
 109 lag
 110 1.0···0.009170···0.026239··8.713184e-01
 111 2.0···0.041793···0.572982··7.508939e-01
 112 3.0··-0.001338···0.573544··9.024612e-01
 113 4.0···0.136086···6.408642··1.706385e-01
 114 5.0···0.092465···9.111351··1.047043e-01
 115 6.0···0.091947··11.792661··6.675737e-02
 116 7.0···0.068747··13.296552··6.520425e-02
 117 8.0··-0.015022··13.368601··9.978086e-02
 118 9.0···0.187590··24.641072··3.394963e-03
 119 10.0··0.213715··39.320758··2.230588e-05
 120 11.0··0.201079··52.359565··2.346490e-07
 121 12.0··0.117180··56.802478··8.580351e-08
 122 13.0·-0.014057··56.866630··1.895209e-07
 123 14.0··0.015398··56.943864··4.000370e-07
 124 15.0·-0.024969··57.147642··7.746546e-07
 125 16.0··0.080916··59.295052··6.876728e-07
 126 17.0··0.041138··59.852008··1.111674e-06
Max diff block lines reached; 6742/11202 bytes (60.19%) of diff not shown.
630 KB
./usr/share/doc/python-statsmodels-doc/html/searchindex.js
630 KB
js-beautify {}
    
Offset 51580, 15 lines modifiedOffset 51580, 15 lines modified
51580 ········"5":·"py:property",51580 ········"5":·"py:property",
51581 ········"6":·"py:data",51581 ········"6":·"py:data",
51582 ········"7":·"py:exception"51582 ········"7":·"py:exception"
51583 ····},51583 ····},
51584 ····"terms":·{51584 ····"terms":·{
51585 ········"":·[4,·5,·6,·7,·9,·10,·11,·12,·13,·14,·15,·17,·18,·19,·23,·24,·27,·28,·29,·30,·34,·37,·39,·40,·46,·59,·66,·88,·94,·104,·119,·174,·175,·177,·178,·179,·182,·183,·185,·188,·189,·190,·191,·193,·194,·195,·197,·199,·201,·203,·205,·206,·207,·209,·210,·211,·212,·214,·216,·217,·221,·223,·224,·226,·233,·235,·237,·239,·240,·241,·242,·243,·244,·245,·246,·247,·248,·249,·250,·251,·254,·256,·257,·259,·260,·263,·266,·268,·275,·290,·299,·300,·301,·302,·303,·304,·305,·306,·310,·324,·336,·347,·362,·370,·371,·387,·388,·404,·423,·437,·445,·446,·462,·481,·495,·503,·504,·520,·539,·553,·561,·563,·577,·596,·610,·618,·619,·626,·632,·651,·665,·673,·674,·687,·705,·718,·726,·727,·745,·766,·780,·789,·791,·810,·829,·844,·852,·854,·872,·874,·888,·908,·922,·930,·931,·948,·949,·967,·988,·1002,·1011,·1013,·1032,·1034,·1053,·1072,·1087,·1095,·1096,·1109,·1128,·1142,·1150,·1151,·1167,·1168,·1183,·1202,·1216,·1223,·1242,·1256,·1261,·1267,·1270,·1277,·1284,·1287,·1293,·1297,·1305,·1309,·1311,·1317,·1318,·1321,·1328,·1332,·1339,·1342,·1344,·1350,·1351,·1352,·1354,·1355,·1357,·1358,·1359,·1360,·1361,·1362,·1363,·1364,·1365,·1367,·1368,·1370,·1371,·1372,·1373,·1374,·1375,·1380,·1430,·1450,·1459,·1505,·1521,·1535,·1561,·1567,·1585,·1596,·1613,·1619,·1622,·1631,·1635,·1638,·1647,·1651,·1672,·1703,·1809,·1919,·1927,·1929,·1940,·1941,·1970,·1982,·1988,·2014,·2017,·2025,·2027,·2038,·2039,·2046,·2054,·2056,·2067,·2068,·2075,·2077,·2080,·2091,·2102,·2111,·2122,·2127,·2144,·2168,·2184,·2187,·2192,·2193,·2194,·2198,·2199,·2200,·2201,·2207,·2208,·2209,·2210,·2213,·2223,·2224,·2226,·2240,·2253,·2292,·2302,·2321,·2339,·2353,·2358,·2368,·2384,·2402,·2412,·2419,·2445,·2447,·2449,·2450,·2482,·2487,·2488,·2494,·2495,·2499,·2501,·2502,·2503,·2504,·2505,·2506,·2507,·2508,·2509,·2510,·2517,·2518,·2546,·2575,·2598,·2610,·2617,·2641,·2658,·2676,·2688,·2689,·2690,·2691,·2692,·2693,·2699,·2701,·2717,·2744,·2747,·2756,·2757,·2758,·2759,·2760,·2761,·2767,·2769,·2782,·2808,·2811,·2817,·2829,·2830,·2841,·2846,·2858,·2884,·2887,·2900,·2910,·2934,·2937,·2963,·2965,·2978,·3006,·3009,·3058,·3059,·3063,·3074,·3096,·3100,·3107,·3122,·3127,·3129,·3130,·3134,·3160,·3162,·3164,·3165,·3166,·3167,·3168,·3169,·3170,·3172,·3174,·3175,·3176,·3177,·3178,·3189,·3190,·3191,·3192,·3193,·3194,·3199,·3204,·3205,·3206,·3207,·3208,·3214,·3222,·3227,·3246,·3250,·3251,·3252,·3259,·3260,·3262,·3263,·3264,·3265,·3266,·3267,·3268,·3269,·3270,·3271,·3272,·3274,·3275,·3277,·3278,·3279,·3280,·3281,·3282,·3284,·3285,·3287,·3288,·3289,·3290,·3291,·3292,·3293,·3294,·3295,·3296,·3297,·3299,·3300,·3302,·3303,·3304,·3305,·3306,·3307,·3309,·3310,·3312,·3313,·3314,·3315,·3316,·3317,·3318,·3319,·3320,·3321,·3322,·3324,·3325,·3327,·3328,·3329,·3330,·3331,·3332,·3334,·3335,·3337,·3338,·3339,·3340,·3341,·3342,·3343,·3344,·3345,·3346,·3347,·3349,·3350,·3352,·3353,·3354,·3355,·3356,·3357,·3360,·3362,·3365,·3366,·3368,·3369,·3370,·3371,·3372,·3373,·3374,·3375,·3376,·3377,·3378,·3380,·3381,·3383,·3384,·3385,·3386,·3387,·3388,·3390,·3391,·3393,·3394,·3395,·3396,·3397,·3398,·3399,·3400,·3401,·3402,·3403,·3405,·3406,·3408,·3409,·3410,·3411,·3412,·3413,·3420,·3421,·3422,·3424,·3425,·3426,·3427,·3428,·3429,·3430,·3431,·3432,·3433,·3434,·3436,·3437,·3439,·3440,·3441,·3442,·3443,·3444,·3446,·3447,·3449,·3450,·3451,·3452,·3453,·3454,·3455,·3456,·3457,·3458,·3459,·3461,·3462,·3464,·3465,·3466,·3467,·3468,·3469,·3470,·3474,·3475,·3476,·3479,·3483,·3503,·3508,·3525,·3541,·3564,·3570,·3590,·3591,·3592,·3593,·3594,·3600,·3602,·3615,·3634,·3642,·3645,·3650,·3672,·3712,·3715,·3716,·3724,·3727,·3731,·3744,·3746,·3749,·3750,·3753,·3778,·3800,·3809,·3824,·3851,·3876,·3877,·3890,·3898,·3902,·3905,·3907,·3909,·3910,·3912,·3918,·3919,·3920,·3923,·3927,·3934,·3935,·3985,·3989,·3995,·3999,·4001,·4004,·4006,·4011,·4012,·4013,·4016,·4017,·4018,·4019,·4020,·4021,·4022,·4023,·4025,·4027,·4029,·4040,·4044,·4046,·4055,·4059,·4061,·4075,·4083,·4086,·4088,·4090,·4092,·4093,·4096,·4097,·4109,·4113,·4126,·4129,·4168,·4180,·4252,·4253,·4254,·4255,·4258,·4284,·4297,·4300,·4305,·4313,·4315,·4337,·4339,·4343,·4352,·4376,·4379,·4384,·4392,·4394,·4416,·4418,·4429,·4438,·4453,·4456,·4460,·4470,·4478,·4480,·4502,·4504,·4508,·4566,·4567,·4573,·4581,·4601,·4603,·4621,·4634,·4647,·4656,·4671,·4677,·4683,·4692,·4703,·4734,·4738,·4748,·4767,·4774,·4783,·4788,·4797,·4801,·4808,·4809,·4810,·4819,·4820,·4836,·4839,·4849,·4852,·4862,·4876,·4880,·4887,·4897,·4902,·4927,·4958,·4962,·4967,·4973,·5016,·5017,·5021,·5029,·5047,·5050,·5066,·5070,·5076,·5078,·5123,·5124,·5128,·5136,·5155,·5157,·5158,·5174,·5183,·5227,·5228,·5231,·5239,·5256,·5258,·5274,·5281,·5378,·5478,·5485,·5494,·5537,·5538,·5541,·5549,·5566,·5568,·5584,·5597,·5608,·5609,·5610,·5616,·5639,·5644,·5697,·5698,·5704,·5712,·5732,·5734,·5752,·5761,·5867,·5872,·5917,·5918,·5922,·5931,·5935,·5950,·5952,·5953,·5972,·5977,·5979,·5990,·6033,·6034,·6037,·6045,·6062,·6064,·6080,·6084,·6086,·6089,·6092,·6097,·6099,·6100,·6101,·6102,·6106,·6124,·6126,·6233,·6234,·6245,·6331,·6332,·6339,·6341,·6356,·6367,·6378,·6383,·6398,·6399,·6400,·6408,·6409,·6413,·6427,·6428,·6452,·6453,·6457,·6458,·6460,·6461,·6465,·6466],51585 ········"":·[4,·5,·6,·7,·9,·10,·11,·12,·13,·14,·15,·17,·18,·19,·23,·24,·27,·28,·29,·30,·34,·37,·39,·40,·46,·59,·66,·88,·94,·104,·119,·174,·175,·177,·178,·179,·182,·183,·185,·188,·189,·190,·191,·193,·194,·195,·197,·199,·201,·203,·205,·206,·207,·209,·210,·211,·212,·214,·216,·217,·221,·223,·224,·226,·233,·235,·237,·239,·240,·241,·242,·243,·244,·245,·246,·247,·248,·249,·250,·251,·254,·256,·257,·259,·260,·263,·266,·268,·275,·290,·299,·300,·301,·302,·303,·304,·305,·306,·310,·324,·336,·347,·362,·370,·371,·387,·388,·404,·423,·437,·445,·446,·462,·481,·495,·503,·504,·520,·539,·553,·561,·563,·577,·596,·610,·618,·619,·626,·632,·651,·665,·673,·674,·687,·705,·718,·726,·727,·745,·766,·780,·789,·791,·810,·829,·844,·852,·854,·872,·874,·888,·908,·922,·930,·931,·948,·949,·967,·988,·1002,·1011,·1013,·1032,·1034,·1053,·1072,·1087,·1095,·1096,·1109,·1128,·1142,·1150,·1151,·1167,·1168,·1183,·1202,·1216,·1223,·1242,·1256,·1261,·1267,·1270,·1277,·1284,·1287,·1293,·1297,·1305,·1309,·1311,·1317,·1318,·1321,·1328,·1332,·1339,·1342,·1344,·1350,·1351,·1352,·1354,·1355,·1357,·1358,·1359,·1360,·1361,·1362,·1363,·1364,·1365,·1367,·1368,·1370,·1371,·1372,·1373,·1374,·1375,·1380,·1430,·1450,·1459,·1505,·1521,·1535,·1561,·1567,·1585,·1596,·1613,·1619,·1622,·1631,·1635,·1638,·1647,·1651,·1672,·1703,·1809,·1919,·1927,·1929,·1940,·1941,·1970,·1982,·1988,·2014,·2017,·2025,·2027,·2038,·2039,·2046,·2054,·2056,·2067,·2068,·2075,·2077,·2080,·2091,·2102,·2111,·2122,·2127,·2144,·2168,·2184,·2187,·2192,·2193,·2194,·2198,·2199,·2200,·2201,·2207,·2208,·2209,·2210,·2213,·2223,·2224,·2226,·2240,·2253,·2292,·2302,·2321,·2339,·2353,·2358,·2368,·2384,·2402,·2412,·2419,·2445,·2447,·2449,·2450,·2482,·2487,·2488,·2494,·2495,·2499,·2501,·2502,·2503,·2504,·2505,·2506,·2507,·2508,·2509,·2510,·2517,·2518,·2546,·2575,·2598,·2610,·2617,·2641,·2658,·2676,·2688,·2689,·2690,·2691,·2692,·2693,·2699,·2701,·2717,·2744,·2747,·2756,·2757,·2758,·2759,·2760,·2761,·2767,·2769,·2782,·2808,·2811,·2817,·2829,·2830,·2841,·2846,·2858,·2884,·2887,·2900,·2910,·2934,·2937,·2963,·2965,·2978,·3006,·3009,·3058,·3059,·3063,·3074,·3096,·3100,·3107,·3122,·3127,·3129,·3130,·3134,·3160,·3162,·3164,·3165,·3166,·3167,·3168,·3169,·3170,·3172,·3174,·3175,·3176,·3177,·3178,·3189,·3190,·3191,·3192,·3193,·3194,·3199,·3204,·3205,·3206,·3207,·3208,·3214,·3222,·3227,·3246,·3250,·3251,·3252,·3259,·3260,·3262,·3263,·3264,·3265,·3266,·3267,·3268,·3269,·3270,·3271,·3272,·3274,·3275,·3277,·3278,·3279,·3280,·3281,·3282,·3284,·3285,·3287,·3288,·3289,·3290,·3291,·3292,·3293,·3294,·3295,·3296,·3297,·3299,·3300,·3302,·3303,·3304,·3305,·3306,·3307,·3309,·3310,·3312,·3313,·3314,·3315,·3316,·3317,·3318,·3319,·3320,·3321,·3322,·3324,·3325,·3327,·3328,·3329,·3330,·3331,·3332,·3334,·3335,·3337,·3338,·3339,·3340,·3341,·3342,·3343,·3344,·3345,·3346,·3347,·3349,·3350,·3352,·3353,·3354,·3355,·3356,·3357,·3360,·3362,·3365,·3366,·3368,·3369,·3370,·3371,·3372,·3373,·3374,·3375,·3376,·3377,·3378,·3380,·3381,·3383,·3384,·3385,·3386,·3387,·3388,·3390,·3391,·3393,·3394,·3395,·3396,·3397,·3398,·3399,·3400,·3401,·3402,·3403,·3405,·3406,·3408,·3409,·3410,·3411,·3412,·3413,·3420,·3421,·3422,·3424,·3425,·3426,·3427,·3428,·3429,·3430,·3431,·3432,·3433,·3434,·3436,·3437,·3439,·3440,·3441,·3442,·3443,·3444,·3446,·3447,·3449,·3450,·3451,·3452,·3453,·3454,·3455,·3456,·3457,·3458,·3459,·3461,·3462,·3464,·3465,·3466,·3467,·3468,·3469,·3470,·3474,·3475,·3476,·3479,·3483,·3503,·3508,·3525,·3541,·3564,·3570,·3590,·3591,·3592,·3593,·3594,·3600,·3602,·3615,·3634,·3642,·3645,·3650,·3672,·3712,·3715,·3716,·3724,·3727,·3731,·3744,·3746,·3749,·3750,·3753,·3778,·3800,·3809,·3824,·3851,·3876,·3877,·3890,·3898,·3902,·3905,·3907,·3909,·3910,·3912,·3918,·3919,·3920,·3923,·3927,·3934,·3935,·3985,·3989,·3995,·3999,·4001,·4004,·4006,·4011,·4012,·4013,·4016,·4017,·4018,·4019,·4020,·4021,·4022,·4023,·4025,·4027,·4029,·4040,·4044,·4046,·4055,·4059,·4061,·4075,·4083,·4086,·4088,·4090,·4092,·4093,·4096,·4097,·4109,·4113,·4126,·4129,·4168,·4180,·4252,·4253,·4254,·4255,·4258,·4284,·4297,·4300,·4305,·4313,·4315,·4337,·4339,·4343,·4352,·4376,·4379,·4384,·4392,·4394,·4416,·4418,·4429,·4438,·4453,·4456,·4460,·4470,·4478,·4480,·4502,·4504,·4508,·4566,·4567,·4573,·4581,·4601,·4603,·4621,·4634,·4647,·4656,·4671,·4677,·4683,·4692,·4703,·4734,·4738,·4748,·4767,·4774,·4783,·4788,·4797,·4801,·4808,·4809,·4810,·4819,·4820,·4836,·4839,·4849,·4852,·4862,·4876,·4880,·4887,·4897,·4902,·4927,·4958,·4962,·4967,·4973,·5016,·5017,·5021,·5029,·5047,·5050,·5066,·5070,·5076,·5078,·5123,·5124,·5128,·5136,·5155,·5157,·5158,·5174,·5183,·5227,·5228,·5231,·5239,·5256,·5258,·5274,·5281,·5378,·5478,·5485,·5494,·5537,·5538,·5541,·5549,·5566,·5568,·5584,·5597,·5608,·5609,·5610,·5616,·5639,·5644,·5697,·5698,·5704,·5712,·5732,·5734,·5752,·5761,·5867,·5872,·5917,·5918,·5922,·5931,·5935,·5950,·5952,·5953,·5972,·5977,·5979,·5990,·6033,·6034,·6037,·6045,·6062,·6064,·6080,·6084,·6086,·6089,·6092,·6097,·6099,·6100,·6101,·6102,·6106,·6124,·6126,·6233,·6234,·6245,·6331,·6332,·6339,·6341,·6356,·6367,·6378,·6383,·6398,·6399,·6400,·6408,·6409,·6413,·6427,·6428,·6452,·6453,·6457,·6458,·6460,·6461,·6465,·6466],
51586 ········"0":·[1,·4,·5,·6,·15,·24,·26,·34,·46,·47,·62,·66,·71,·73,·84,·85,·86,·89,·90,·95,·102,·104,·106,·116,·117,·120,·121,·122,·126,·131,·144,·145,·147,·148,·177,·178,·179,·183,·185,·186,·188,·190,·191,·193,·194,·195,·196,·197,·198,·199,·200,·201,·202,·203,·204,·205,·206,·207,·208,·209,·210,·211,·213,·214,·215,·216,·217,·218,·219,·220,·221,·222,·223,·224,·225,·226,·227,·228,·229,·230,·231,·232,·233,·234,·235,·236,·237,·238,·239,·240,·241,·242,·243,·244,·245,·246,·247,·248,·249,·250,·251,·252,·253,·254,·255,·256,·257,·258,·259,·260,·261,·262,·263,·264,·265,·267,·268,·275,·277,·287,·288,·291,·292,·307,·311,·312,·321,·325,·326,·337,·338,·347,·349,·358,·359,·360,·363,·364,·371,·372,·376,·379,·388,·389,·394,·397,·404,·406,·410,·412,·414,·432,·433,·434,·435,·438,·439,·446,·447,·452,·455,·462,·464,·468,·470,·472,·490,·491,·492,·493,·496,·497,·504,·505,·510,·513,·520,·522,·526,·528,·530,·548,·549,·550,·551,·554,·555,·563,·564,·577,·579,·583,·584,·586,·594,·605,·606,·607,·608,·611,·612,·619,·620,·626,·632,·634,·639,·640,·642,·660,·661,·662,·663,·666,·667,·674,·675,·687,·689,·693,·694,·696,·713,·714,·715,·716,·719,·720,·726,·727,·728,·737,·745,·747,·752,·753,·755,·775,·776,·777,·778,·781,·782,·791,·792,·810,·812,·816,·817,·819,·827,·839,·840,·841,·842,·845,·846,·848,·854,·855,·857,·860,·862,·864,·865,·866,·874,·875,·882,·888,·890,·894,·897,·911,·917,·918,·919,·920,·923,·924,·931,·932,·937,·939,·948,·949,·950,·959,·967,·969,·974,·975,·977,·997,·998,·999,·1000,·1003,·1004,·1006,·1013,·1014,·1023,·1034,·1035,·1053,·1055,·1059,·1060,·1062,·1070,·1082,·1083,·1084,·1085,·1088,·1089,·1090,·1096,·1097,·1103,·1109,·1111,·1116,·1117,·1119,·1137,·1138,·1139,·1140,·1143,·1144,·1145,·1151,·1152,·1159,·1162,·1168,·1169,·1176,·1183,·1185,·1190,·1191,·1193,·1211,·1212,·1213,·1214,·1217,·1218,·1223,·1225,·1230,·1231,·1233,·1251,·1252,·1253,·1254,·1257,·1258,·1265,·1266,·1268,·1274,·1275,·1283,·1285,·1288,·1289,·1291,·1292,·1294,·1301,·1303,·1315,·1316,·1325,·1326,·1336,·1337,·1348,·1349,·1354,·1355,·1356,·1358,·1359,·1360,·1361,·1362,·1363,·1364,·1365,·1366,·1367,·1368,·1370,·1371,·1372,·1373,·1374,·1375,·1380,·1381,·1398,·1399,·1400,·1402,·1414,·1415,·1416,·1426,·1430,·1432,·1446,·1447,·1448,·1451,·1452,·1459,·1460,·1462,·1463,·1467,·1468,·1470,·1472,·1473,·1474,·1475,·1476,·1482,·1483,·1484,·1485,·1486,·1487,·1488,·1489,·1490,·1491,·1492,·1493,·1494,·1495,·1496,·1497,·1498,·1499,·1500,·1501,·1502,·1503,·1506,·1510,·1511,·1512,·1519,·1528,·1531,·1535,·1540,·1543,·1546,·1550,·1563,·1579,·1580,·1581,·1582,·1586,·1587,·1596,·1597,·1622,·1628,·1638,·1644,·1687,·1693,·1694,·1696,·1700,·1701,·1703,·1704,·1706,·1711,·1715,·1716,·1718,·1719,·1724,·1726,·1729,·1730,·1732,·1733,·1740,·1742,·1745,·1746,·1748,·1749,·1756,·1758,·1761,·1762,·1764,·1765,·1771,·1772,·1774,·1777,·1778,·1780,·1781,·1788,·1790,·1793,·1794,·1796,·1797,·1800,·1803,·1804,·1808,·1809,·1811,·1812,·1862,·1868,·1880,·1886,·1892,·1905,·1907,·1909,·1925,·1927,·1929,·1930,·1931,·1937,·1948,·1951,·1952,·1956,·1961,·1964,·1966,·1969,·1970,·1971,·1984,·2009,·2010,·2011,·2012,·2015,·2016,·2017,·2023,·2025,·2027,·2028,·2029,·2035,·2046,·2052,·2054,·2056,·2057,·2058,·2064,·2075,·2078,·2080,·2082,·2083,·2084,·2090,·2098,·2102,·2105,·2107,·2110,·2111,·2112,·2124,·2139,·2140,·2141,·2142,·2145,·2146,·2148,·2152,·2153,·2160,·2168,·2170,·2180,·2181,·2182,·2185,·2186,·2187,·2188,·2189,·2194,·2195,·2196,·2197,·2198,·2199,·2207,·2208,·2209,·2210,·2211,·2212,·2213,·2216,·2217,·2218,·2223,·2224,·2225,·2226,·2228,·2233,·2235,·2253,·2259,·2266,·2274,·2287,·2302,·2303,·2321,·2322,·2339,·2340,·2353,·2358,·2359,·2368,·2380,·2384,·2389,·2391,·2408,·2409,·2410,·2413,·2414,·2419,·2420,·2438,·2444,·2452,·2461,·2463,·2467,·2468,·2477,·2482,·2486,·2493,·2499,·2504,·2505,·2509,·2546,·2547,·2552,·2575,·2580,·2587,·2606,·2607,·2608,·2611,·2612,·2621,·2627,·2633,·2634,·2636,·2642,·2643,·2653,·2659,·2660,·2666,·2671,·2677,·2678,·2688,·2698,·2701,·2702,·2709,·2712,·2718,·2727,·2738,·2739,·2740,·2741,·2745,·2746,·2749,·2754,·2756,·2766,·2769,·2778,·2783,·2802,·2803,·2804,·2805,·2809,·2810,·2812,·2818,·2819,·2829,·2830,·2831,·2834,·2835,·2836,·2852,·2858,·2863,·2872,·2880,·2882,·2885,·2886,·2895,·2906,·2910,·2917,·2919,·2930,·2931,·2932,·2935,·2936,·2937,·2942,·2943,·2952,·2962,·2965,·2974,·2979,·3000,·3001,·3002,·3003,·3007,·3008,·3016,·3017,·3021,·3045,·3058,·3059,·3063,·3074,·3075,·3080,·3082,·3096,·3098,·3099,·3100,·3101,·3110,·3114,·3115,·3116,·3117,·3123,·3124,·3128,·3134,·3142,·3151,·3163,·3165,·3168,·3169,·3170,·3173,·3184,·3189,·3199,·3200,·3203,·3205,·3207,·3208,·3209,·3210,·3215,·3227,·3229,·3241,·3242,·3243,·3244,·3247,·3248,·3250,·3251,·3252,·3253,·3254,·3255,·3256,·3257,·3259,·3260,·3261,·3262,·3265,·3266,·3267,·3268,·3269,·3270,·3271,·3272,·3273,·3274,·3275,·3277,·3278,·3279,·3280,·3281,·3282,·3284,·3285,·3286,·3287,·3290,·3291,·3292,·3293,·3294,·3295,·3296,·3297,·3298,·3299,·3300,·3302,·3303,·3304,·3305,·3306,·3307,·3309,·3310,·3311,·3312,·3315,·3316,·3317,·3318,·3319,·3320,·3321,·3322,·3323,·3324,·3325,·3327,·3328,·3329,·3330,·3331,·3332,·3334,·3335,·3336,·3337,·3340,·3341,·3342,·3343,·3344,·3345,·3346,·3347,·3348,·3349,·3350,·3352,·3353,·3354,·3355,·3356,·3357,·3359,·3365,·3366,·3367,·3368,·3371,·3372,·3373,·3374,·3375,·3376,·3377,·3378,·3379,·3380,·3381,·3383,·3384,·3385,·3386,·3387,·3388,·3390,·3391,·3392,·3393,·3396,·3397,·3398,·3399,·3400,·3401,·3402,·3403,·3404,·3405,·3406,·3408,·3409,·3410,·3411,·3412,·3413,·3421,·3422,·3423,·3424,·3427,·3428,·3429,·3430,·3431,·3432,·3433,·3434,·3435,·3436,·3437,·3439,·3440,·3441,·3442,·3443,·3444,·3446,·3447,·3448,·3449,·3452,·3453,·3454,·3455,·3456,·3457,·3458,·3459,·3460,·3461,·3462,·3464,·3465,·3466,·3467,·3468,·3469,·3478,·3479,·3483,·3487,·3490,·3503,·3505,·3518,·3519,·3520,·3523,·3524,·3529,·3541,·3546,·3550,·3564,·3566,·3582,·3583,·3584,·3587,·3588,·3589,·3599,·3602,·3611,·3616,·3636,·3637,·3638,·3639,·3643,·3644,·3646,·3650,·3655,·3668,·3672,·3677,·3681,·3692,·3693,·3695,·3705,·3712,·3715,·3724,·3727,·3731,·3732,·3733,·3734,·3735,·3739,·3740,·3741,·3743,·3744,·3745,·3746,·3748,·3752,·3753,·3774,·3778,·3779,·3781,·3803,·3808,·3816,·3823,·3826,·3828,·3831,·3836,·3845,·3850,·3856,·3857,·3860,·3861,·3865,·3869,·3872,·3883,·3884,·3885,·3886,·3887,·3888,·3890,·3898,·3899,·3901,·3902,·3903,·3904,·3905,·3907,·3909,·3910,·3911,·3913,·3914,·3915,·3916,·3919,·3920,·3921,·3922,·3924,·3925,·3926,·3927,·3928,·3929,·3931,·3932,·3933,·3934,·3936,·3948,·3950,·3951,·3952,·3953,·3954,·3956,·3957,·3959,·3973,·3979,·3980,·3981,·3982,·3983,·3984,·3990,·3993,·3994,·3995,·3996,·3997,·3998,·4000,·4001,·4002,·4007,·4011,·4013,·4014,·4015,·4017,·4018,·4019,·4020,·4023,·4024,·4025,·4026,·4040,·4055,·4075,·4087,·4088,·4089,·4090,·4091,·4092,·4093,·4095,·4096,·4097,·4098,·4099,·4100,·4101,·4103,·4104,·4105,·4107,·4108,·4109,·4110,·4111,·4112,·4113,·4114,·4115,·4116,·4117,·4119,·4120,·4121,·4122,·4123,·4124,·4125,·4126,·4130,·4131,·4132,·4133,·4134,·4135,·4136,·4137,·4138,·4139,·4140,·4142,·4143,·4144,·4145,·4146,·4147,·4148,·4149,·4153,·4154,·4162,·4164,·4165,·4166,·4169,·4174,·4175,·4178,·4179,·4180,·4181,·4182,·4183,·4184,·4187,·4190,·4191,·4192,·4194,·4195,·4197,·4198,·4205,·4207,·4212,·4213,·4214,·4216,·4217,·4218,·4219,·4220,·4221,·4222,·4223,·4224,·4225,·4226,·4227,·4228,·4229,·4230,·4233,·4235,·4240,·4241,·4242,·4243,·4244,·4245,·4246,·4247,·4248,·4249,·4250,·4261,·4262,·4263,·4266,·4270,·4271,·4272,·4274,·4276,·4277,·4278,·4285,·4296,·4298,·4300,·4305,·4310,·4322,·4323,·4328,·4332,·4333,·4334,·4337,·4340,·4341,·4342,·4343,·4354,·4375,·4377,·4379,·4384,·4389,·4401,·4402,·4407,·4411,·4412,·4413,·4416,·4419,·4420,·4425,·4428,·4429,·4440,·4441,·4452,·4454,·4456,·4460,·4463,·4468,·4470,·4475,·4487,·4488,·4493,·4497,·4498,·4499,·4502,·4505,·4506,·4507,·4508,·4513,·4514,·4515,·4519,·4553,·4566,·4567,·4573,·4581,·4582,·4587,·4589,·4601,·4603,·4611,·4614,·4615,·4616,·4617,·4622,·4623,·4625,·4634,·4635,·4647,·4648,·4650,·4654,·4655,·4658,·4662,·4663,·4671,·4677,·4683,·4692,·4721,·4728,·4734,·4738,·4739,·4740,·4767,·4771,·4788,·4790,·4791,·4792,·4793,·4798,·4799,·4801,·4802,·4803,·4807,·4808,·4809,·4810,·4820,·4823,·4828,·4832,·4833,·4836,·4839,·4840,·4841,·4844,·4849,·4852,·4853,·4854,·4857,·4880,·4884,·4888,·4889,·4892,·4898,·4902,·4903,·4923,·4927,·4928,·4956,·4958,·4960,·4962,·4967,·4968,·4974,·4975,·4979,·5003,·5012,·5016,·5017,·5021,·5029,·5030,·5036,·5038,·5047,·5050,·5056,·5059,·5060,·5061,·5062,·5067,·5068,·5070,·5076,·5077,·5078,·5079,·5083,·5092,·5109,·5128,·5137,·5144,·5146,·5155,·5158,·5164,·5167,·5168,·5169,·5170,·5175,·5176,·5178,·5184,·5185,·5189,·5214,·5227,·5228,·5231,·5239,·5240,·5245,·5247,·5256,·5258,·5264,·5267,·5268,·5269,·5270,·5275,·5276,·5278,·5281,·5284,·5285,·5287,·5293,·5304,·5308,·5343,·5344,·5347,·5378,·5382,·5384,·5390,·5401,·5405,·5440,·5441,·5444,·5445,·5446,·5452,·5475,·5476,·5478,·5483,·5485,·5495,·5496,·5500,·5524,·5534,·5537,·5538,·5541,·5549,·5550,·5555,·5557,·5566,·5568,·5574,·5577,·5578,·5579,·5580,·5585,·5586,·5589,·5593,·5594,·5614,·5616,·5617,·5639,·5645,·5646,·5650,·5684,·5697,·5698,·5704,·5712,·5713,·5718,·5720,·5732,·5734,·5742,·5745,·5746,·5747,·5748,·5753,·5754,·5757,·5760,·5761,·5770,·5772,·5778,·5789,·5794,·5829,·5830,·5833,·5834,·5835,·5844,·5867,·5873,·5874,·5878,·5904,·5917,·5918,·5922,·5931,·5932,·5938,·5940,·5950,·5952,·5953,·5961,·5964,·5965,·5966,·5967,·5973,·5974,·5976,·5980,·5985,·5991,·5992,·5996,·6020,·6033,·6034,·6037,·6045,·6046,·6051,·6053,·6062,·6064,·6070,·6073,·6074,·6075,·6076,·6081,·6082,·6084,·6086,·6089,·6090,·6091,·6092,·6094,·6095,·6096,·6097,·6098,·6099,·6100,·6101,·6104,·6105,·6108,·6109,·6110,·6111,·6122,·6134,·6135,·6136,·6137,·6138,·6142,·6143,·6151,·6163,·6164,·6167,·6168,·6171,·6185,·6193,·6200,·6201,·6202,·6204,·6207,·6210,·6211,·6219,·6220,·6222,·6227,·6233,·6234,·6235,·6236,·6264,·6265,·6268,·6269,·6272,·6285,·6293,·6300,·6301,·6302,·6304,·6307,·6310,·6311,·6319,·6320,·6322,·6331,·6332,·6333,·6334,·6339,·6356,·6360,·6367,·6368,·6369,·6370,·6371,·6372,·6382,·6383,·6397,·6398,·6399,·6400,·6401,·6408,·6409,·6410,·6411,·6412,·6413,·6414,·6418,·6419,·6423,·6425,·6428,·6430,·6431,·6432,·6457,·6460,·6461,·6466],51586 ········"0":·[1,·4,·5,·6,·15,·24,·26,·34,·46,·47,·62,·66,·71,·73,·84,·85,·86,·89,·90,·95,·102,·104,·106,·116,·117,·120,·121,·122,·126,·131,·144,·145,·147,·148,·177,·178,·179,·183,·185,·186,·188,·190,·191,·193,·194,·195,·196,·197,·198,·199,·200,·201,·202,·203,·204,·205,·206,·207,·208,·209,·210,·211,·213,·214,·215,·216,·217,·218,·219,·220,·221,·222,·223,·224,·225,·226,·227,·228,·229,·230,·231,·232,·233,·234,·235,·236,·237,·238,·239,·240,·241,·242,·243,·244,·245,·246,·247,·248,·249,·250,·251,·252,·253,·254,·255,·256,·257,·258,·259,·260,·261,·262,·263,·264,·265,·267,·268,·275,·277,·287,·288,·291,·292,·307,·311,·312,·321,·325,·326,·337,·338,·347,·349,·358,·359,·360,·363,·364,·371,·372,·376,·379,·388,·389,·394,·397,·404,·406,·410,·412,·414,·432,·433,·434,·435,·438,·439,·446,·447,·452,·455,·462,·464,·468,·470,·472,·490,·491,·492,·493,·496,·497,·504,·505,·510,·513,·520,·522,·526,·528,·530,·548,·549,·550,·551,·554,·555,·563,·564,·577,·579,·583,·584,·586,·594,·605,·606,·607,·608,·611,·612,·619,·620,·626,·632,·634,·639,·640,·642,·660,·661,·662,·663,·666,·667,·674,·675,·687,·689,·693,·694,·696,·713,·714,·715,·716,·719,·720,·726,·727,·728,·737,·745,·747,·752,·753,·755,·775,·776,·777,·778,·781,·782,·791,·792,·810,·812,·816,·817,·819,·827,·839,·840,·841,·842,·845,·846,·848,·854,·855,·857,·860,·862,·864,·865,·866,·874,·875,·882,·888,·890,·894,·897,·911,·917,·918,·919,·920,·923,·924,·931,·932,·937,·939,·948,·949,·950,·959,·967,·969,·974,·975,·977,·997,·998,·999,·1000,·1003,·1004,·1006,·1013,·1014,·1023,·1034,·1035,·1053,·1055,·1059,·1060,·1062,·1070,·1082,·1083,·1084,·1085,·1088,·1089,·1090,·1096,·1097,·1103,·1109,·1111,·1116,·1117,·1119,·1137,·1138,·1139,·1140,·1143,·1144,·1145,·1151,·1152,·1159,·1162,·1168,·1169,·1176,·1183,·1185,·1190,·1191,·1193,·1211,·1212,·1213,·1214,·1217,·1218,·1223,·1225,·1230,·1231,·1233,·1251,·1252,·1253,·1254,·1257,·1258,·1265,·1266,·1268,·1274,·1275,·1283,·1285,·1288,·1289,·1291,·1292,·1294,·1301,·1303,·1315,·1316,·1325,·1326,·1336,·1337,·1348,·1349,·1354,·1355,·1356,·1358,·1359,·1360,·1361,·1362,·1363,·1364,·1365,·1366,·1367,·1368,·1370,·1371,·1372,·1373,·1374,·1375,·1380,·1381,·1398,·1399,·1400,·1402,·1414,·1415,·1416,·1426,·1430,·1432,·1446,·1447,·1448,·1451,·1452,·1459,·1460,·1462,·1463,·1467,·1468,·1470,·1472,·1473,·1474,·1475,·1476,·1482,·1483,·1484,·1485,·1486,·1487,·1488,·1489,·1490,·1491,·1492,·1493,·1494,·1495,·1496,·1497,·1498,·1499,·1500,·1501,·1502,·1503,·1506,·1510,·1511,·1512,·1519,·1528,·1531,·1535,·1540,·1543,·1546,·1550,·1563,·1579,·1580,·1581,·1582,·1586,·1587,·1596,·1597,·1622,·1628,·1638,·1644,·1687,·1693,·1694,·1696,·1700,·1701,·1703,·1704,·1706,·1711,·1715,·1716,·1718,·1719,·1724,·1726,·1729,·1730,·1732,·1733,·1740,·1742,·1745,·1746,·1748,·1749,·1756,·1758,·1761,·1762,·1764,·1765,·1771,·1772,·1774,·1777,·1778,·1780,·1781,·1788,·1790,·1793,·1794,·1796,·1797,·1800,·1803,·1804,·1808,·1809,·1811,·1812,·1862,·1868,·1880,·1886,·1892,·1905,·1907,·1909,·1925,·1927,·1929,·1930,·1931,·1937,·1948,·1951,·1952,·1956,·1961,·1964,·1966,·1969,·1970,·1971,·1984,·2009,·2010,·2011,·2012,·2015,·2016,·2017,·2023,·2025,·2027,·2028,·2029,·2035,·2046,·2052,·2054,·2056,·2057,·2058,·2064,·2075,·2078,·2080,·2082,·2083,·2084,·2090,·2098,·2102,·2105,·2107,·2110,·2111,·2112,·2124,·2139,·2140,·2141,·2142,·2145,·2146,·2148,·2152,·2153,·2160,·2168,·2170,·2180,·2181,·2182,·2185,·2186,·2187,·2188,·2189,·2194,·2195,·2196,·2197,·2198,·2199,·2207,·2208,·2209,·2210,·2211,·2212,·2213,·2216,·2217,·2218,·2223,·2224,·2225,·2226,·2228,·2233,·2235,·2253,·2259,·2266,·2274,·2287,·2302,·2303,·2321,·2322,·2339,·2340,·2353,·2358,·2359,·2368,·2380,·2384,·2389,·2391,·2408,·2409,·2410,·2413,·2414,·2419,·2420,·2438,·2444,·2452,·2461,·2463,·2467,·2468,·2477,·2482,·2486,·2493,·2499,·2504,·2505,·2509,·2546,·2547,·2552,·2575,·2580,·2587,·2606,·2607,·2608,·2611,·2612,·2621,·2627,·2633,·2634,·2636,·2642,·2643,·2653,·2659,·2660,·2666,·2671,·2677,·2678,·2688,·2698,·2701,·2702,·2709,·2712,·2718,·2727,·2738,·2739,·2740,·2741,·2745,·2746,·2749,·2754,·2756,·2766,·2769,·2778,·2783,·2802,·2803,·2804,·2805,·2809,·2810,·2812,·2818,·2819,·2829,·2830,·2831,·2834,·2835,·2836,·2852,·2858,·2863,·2872,·2880,·2882,·2885,·2886,·2895,·2906,·2910,·2917,·2919,·2930,·2931,·2932,·2935,·2936,·2937,·2942,·2943,·2952,·2962,·2965,·2974,·2979,·3000,·3001,·3002,·3003,·3007,·3008,·3016,·3017,·3021,·3045,·3058,·3059,·3063,·3074,·3075,·3080,·3082,·3096,·3098,·3099,·3100,·3101,·3110,·3114,·3115,·3116,·3117,·3123,·3124,·3128,·3134,·3142,·3151,·3163,·3165,·3168,·3169,·3170,·3173,·3184,·3189,·3199,·3200,·3203,·3205,·3207,·3208,·3209,·3210,·3215,·3227,·3229,·3241,·3242,·3243,·3244,·3247,·3248,·3250,·3251,·3252,·3253,·3254,·3255,·3256,·3257,·3259,·3260,·3261,·3262,·3265,·3266,·3267,·3268,·3269,·3270,·3271,·3272,·3273,·3274,·3275,·3277,·3278,·3279,·3280,·3281,·3282,·3284,·3285,·3286,·3287,·3290,·3291,·3292,·3293,·3294,·3295,·3296,·3297,·3298,·3299,·3300,·3302,·3303,·3304,·3305,·3306,·3307,·3309,·3310,·3311,·3312,·3315,·3316,·3317,·3318,·3319,·3320,·3321,·3322,·3323,·3324,·3325,·3327,·3328,·3329,·3330,·3331,·3332,·3334,·3335,·3336,·3337,·3340,·3341,·3342,·3343,·3344,·3345,·3346,·3347,·3348,·3349,·3350,·3352,·3353,·3354,·3355,·3356,·3357,·3359,·3365,·3366,·3367,·3368,·3371,·3372,·3373,·3374,·3375,·3376,·3377,·3378,·3379,·3380,·3381,·3383,·3384,·3385,·3386,·3387,·3388,·3390,·3391,·3392,·3393,·3396,·3397,·3398,·3399,·3400,·3401,·3402,·3403,·3404,·3405,·3406,·3408,·3409,·3410,·3411,·3412,·3413,·3421,·3422,·3423,·3424,·3427,·3428,·3429,·3430,·3431,·3432,·3433,·3434,·3435,·3436,·3437,·3439,·3440,·3441,·3442,·3443,·3444,·3446,·3447,·3448,·3449,·3452,·3453,·3454,·3455,·3456,·3457,·3458,·3459,·3460,·3461,·3462,·3464,·3465,·3466,·3467,·3468,·3469,·3478,·3479,·3483,·3487,·3490,·3503,·3505,·3518,·3519,·3520,·3523,·3524,·3529,·3541,·3546,·3550,·3564,·3566,·3582,·3583,·3584,·3587,·3588,·3589,·3599,·3602,·3611,·3616,·3636,·3637,·3638,·3639,·3643,·3644,·3646,·3650,·3655,·3668,·3672,·3677,·3681,·3692,·3693,·3695,·3705,·3712,·3715,·3724,·3727,·3731,·3732,·3733,·3734,·3735,·3739,·3740,·3741,·3743,·3744,·3745,·3746,·3748,·3752,·3753,·3774,·3778,·3779,·3781,·3803,·3808,·3816,·3823,·3826,·3828,·3831,·3836,·3845,·3850,·3856,·3857,·3860,·3861,·3865,·3869,·3872,·3883,·3884,·3885,·3886,·3887,·3888,·3890,·3898,·3899,·3901,·3902,·3903,·3904,·3905,·3907,·3909,·3910,·3911,·3913,·3914,·3915,·3916,·3919,·3920,·3921,·3922,·3924,·3925,·3926,·3927,·3928,·3929,·3931,·3932,·3933,·3934,·3936,·3948,·3950,·3951,·3952,·3953,·3954,·3956,·3957,·3959,·3973,·3979,·3980,·3981,·3982,·3983,·3984,·3990,·3993,·3994,·3995,·3996,·3997,·3998,·4000,·4001,·4002,·4007,·4011,·4013,·4014,·4015,·4017,·4018,·4019,·4020,·4023,·4024,·4025,·4026,·4040,·4055,·4075,·4087,·4088,·4089,·4090,·4091,·4092,·4093,·4095,·4096,·4097,·4098,·4099,·4100,·4101,·4103,·4104,·4105,·4107,·4108,·4109,·4110,·4111,·4112,·4113,·4114,·4115,·4116,·4117,·4119,·4120,·4121,·4122,·4123,·4124,·4125,·4126,·4130,·4131,·4132,·4133,·4134,·4135,·4136,·4137,·4138,·4139,·4140,·4142,·4143,·4144,·4145,·4146,·4147,·4148,·4149,·4153,·4154,·4162,·4164,·4165,·4166,·4169,·4174,·4175,·4178,·4179,·4180,·4181,·4182,·4183,·4184,·4187,·4190,·4191,·4192,·4194,·4195,·4197,·4198,·4205,·4207,·4212,·4213,·4214,·4216,·4217,·4218,·4219,·4220,·4221,·4222,·4223,·4224,·4225,·4226,·4227,·4228,·4229,·4230,·4233,·4235,·4240,·4241,·4242,·4243,·4244,·4245,·4246,·4247,·4248,·4249,·4250,·4261,·4262,·4263,·4266,·4270,·4271,·4272,·4274,·4276,·4277,·4278,·4285,·4296,·4298,·4300,·4305,·4310,·4322,·4323,·4328,·4332,·4333,·4334,·4337,·4340,·4341,·4342,·4343,·4354,·4375,·4377,·4379,·4384,·4389,·4401,·4402,·4407,·4411,·4412,·4413,·4416,·4419,·4420,·4425,·4428,·4429,·4440,·4441,·4452,·4454,·4456,·4460,·4463,·4468,·4470,·4475,·4487,·4488,·4493,·4497,·4498,·4499,·4502,·4505,·4506,·4507,·4508,·4513,·4514,·4515,·4519,·4553,·4566,·4567,·4573,·4581,·4582,·4587,·4589,·4601,·4603,·4611,·4614,·4615,·4616,·4617,·4622,·4623,·4625,·4634,·4635,·4647,·4648,·4650,·4654,·4655,·4658,·4662,·4663,·4671,·4677,·4683,·4692,·4721,·4728,·4734,·4738,·4739,·4740,·4767,·4771,·4788,·4790,·4791,·4792,·4793,·4798,·4799,·4801,·4802,·4803,·4807,·4808,·4809,·4810,·4820,·4823,·4828,·4832,·4833,·4836,·4839,·4840,·4841,·4844,·4849,·4852,·4853,·4854,·4857,·4880,·4884,·4888,·4889,·4892,·4898,·4902,·4903,·4923,·4927,·4928,·4956,·4958,·4960,·4962,·4967,·4968,·4974,·4975,·4979,·5003,·5012,·5016,·5017,·5021,·5029,·5030,·5036,·5038,·5047,·5050,·5056,·5059,·5060,·5061,·5062,·5067,·5068,·5070,·5076,·5077,·5078,·5079,·5083,·5092,·5109,·5128,·5137,·5144,·5146,·5155,·5158,·5164,·5167,·5168,·5169,·5170,·5175,·5176,·5178,·5184,·5185,·5189,·5214,·5227,·5228,·5231,·5239,·5240,·5245,·5247,·5256,·5258,·5264,·5267,·5268,·5269,·5270,·5275,·5276,·5278,·5281,·5284,·5285,·5287,·5293,·5304,·5308,·5343,·5344,·5347,·5378,·5382,·5384,·5390,·5401,·5405,·5440,·5441,·5444,·5445,·5446,·5452,·5475,·5476,·5478,·5483,·5485,·5495,·5496,·5500,·5524,·5534,·5537,·5538,·5541,·5549,·5550,·5555,·5557,·5566,·5568,·5574,·5577,·5578,·5579,·5580,·5585,·5586,·5589,·5593,·5594,·5614,·5616,·5617,·5639,·5645,·5646,·5650,·5684,·5697,·5698,·5704,·5712,·5713,·5718,·5720,·5732,·5734,·5742,·5745,·5746,·5747,·5748,·5753,·5754,·5757,·5760,·5761,·5770,·5772,·5778,·5789,·5794,·5829,·5830,·5833,·5834,·5835,·5844,·5867,·5873,·5874,·5878,·5904,·5917,·5918,·5922,·5931,·5932,·5938,·5940,·5950,·5952,·5953,·5961,·5964,·5965,·5966,·5967,·5973,·5974,·5976,·5980,·5985,·5991,·5992,·5996,·6020,·6033,·6034,·6037,·6045,·6046,·6051,·6053,·6062,·6064,·6070,·6073,·6074,·6075,·6076,·6081,·6082,·6084,·6086,·6089,·6090,·6091,·6092,·6094,·6095,·6096,·6097,·6098,·6099,·6100,·6101,·6104,·6105,·6108,·6109,·6110,·6111,·6122,·6134,·6135,·6136,·6137,·6138,·6142,·6143,·6151,·6163,·6164,·6167,·6168,·6171,·6185,·6193,·6200,·6201,·6202,·6204,·6207,·6210,·6211,·6219,·6220,·6222,·6227,·6233,·6234,·6235,·6236,·6264,·6265,·6268,·6269,·6272,·6285,·6293,·6300,·6301,·6302,·6304,·6307,·6310,·6311,·6319,·6320,·6322,·6331,·6332,·6333,·6334,·6339,·6356,·6360,·6367,·6368,·6369,·6370,·6371,·6372,·6382,·6383,·6397,·6398,·6399,·6400,·6401,·6408,·6409,·6410,·6411,·6412,·6413,·6414,·6418,·6419,·6423,·6425,·6428,·6430,·6431,·6432,·6457,·6460,·6461,·6466],
51587 ········"00":·[13,·197,·199,·201,·202,·203,·206,·209,·210,·216,·217,·219,·229,·233,·238,·243,·246,·247,·250,·254,·257,·259,·261,·263,·2235,·3736,·4671,·6460],51587 ········"00":·[13,·188,·197,·199,·201,·202,·203,·206,·209,·210,·216,·217,·219,·229,·233,·238,·243,·246,·247,·250,·254,·257,·259,·261,·263,·2235,·3736,·4671,·6460],
51588 ········"000":·[4,·6,·13,·31,·34,·85,·116,·188,·193,·196,·197,·198,·199,·201,·203,·206,·207,·208,·209,·217,·219,·220,·222,·226,·227,·228,·229,·231,·232,·233,·234,·238,·243,·246,·250,·252,·257,·259,·261,·265,·267,·268,·287,·359,·434,·492,·550,·607,·662,·715,·777,·841,·919,·999,·1084,·1139,·1213,·1253,·1447,·1581,·2011,·2141,·2181,·2409,·2607,·2740,·2804,·2931,·3002,·3115,·3243,·3519,·3583,·3638,·3727,·3886,·3913,·3914,·3915,·3916,·4333,·4412,·4498,·4615,·4791,·5060,·5168,·5268,·5578,·5746,·5965,·6074,·6413,·6414,·6418,·6425,·6441,·6460,·6466],51588 ········"000":·[4,·6,·13,·31,·34,·85,·116,·188,·193,·196,·197,·198,·199,·201,·203,·206,·207,·208,·209,·217,·219,·220,·222,·226,·227,·228,·229,·231,·232,·233,·234,·238,·243,·246,·250,·252,·257,·259,·261,·265,·267,·268,·287,·359,·434,·492,·550,·607,·662,·715,·777,·841,·919,·999,·1084,·1139,·1213,·1253,·1447,·1581,·2011,·2141,·2181,·2409,·2607,·2740,·2804,·2931,·3002,·3115,·3243,·3519,·3583,·3638,·3727,·3886,·3913,·3914,·3915,·3916,·4333,·4412,·4498,·4615,·4791,·5060,·5168,·5268,·5578,·5746,·5965,·6074,·6413,·6414,·6418,·6425,·6441,·6460,·6466],
51589 ········"0000":·[197,·198,·207,·208,·209,·211,·219,·246,·252,·267,·2235,·3058,·3059,·3074,·4566,·4567,·4581,·5016,·5017,·5029,·5227,·5228,·5239,·5537,·5538,·5549,·5697,·5698,·5712,·5917,·5918,·5931,·6033,·6034,·6045],51589 ········"0000":·[197,·198,·207,·208,·209,·211,·219,·246,·252,·267,·2235,·3058,·3059,·3074,·4566,·4567,·4581,·5016,·5017,·5029,·5227,·5228,·5239,·5537,·5538,·5549,·5697,·5698,·5712,·5917,·5918,·5931,·6033,·6034,·6045],
51590 ········"00000":·6466,51590 ········"00000":·6466,
51591 ········"000000":·[197,·198,·202,·207,·209,·219,·234,·254,·257,·258,·4692,·6466],51591 ········"000000":·[197,·198,·202,·207,·209,·219,·234,·254,·257,·258,·4692,·6466],
51592 ········"0000000000000002":·[3261,·3286,·3311,·3336,·3367,·3392,·3423,·3448],51592 ········"0000000000000002":·[3261,·3286,·3311,·3336,·3367,·3392,·3423,·3448],
51593 ········"00000000e":·219,51593 ········"00000000e":·219,
51594 ········"00000015":·2075,51594 ········"00000015":·2075,
Offset 51619, 18 lines modifiedOffset 51619, 20 lines modified
51619 ········"0003":·207,51619 ········"0003":·207,
51620 ········"000313002317572736":·4137,51620 ········"000313002317572736":·4137,
51621 ········"00031305":·4001,51621 ········"00031305":·4001,
51622 ········"000313940174705":·[90,·121,·292,·364,·439,·497,·555,·612,·667,·720,·782,·846,·924,·1004,·1089,·1144,·1218,·1258,·1452,·1587,·2016,·2146,·2186,·2414,·2612,·2746,·2810,·2886,·2936,·3008,·3124,·3248,·3524,·3588,·3644,·4341,·4420,·4506,·4623,·4799,·5068,·5176,·5276,·5586,·5754,·5974,·6082],51622 ········"000313940174705":·[90,·121,·292,·364,·439,·497,·555,·612,·667,·720,·782,·846,·924,·1004,·1089,·1144,·1218,·1258,·1452,·1587,·2016,·2146,·2186,·2414,·2612,·2746,·2810,·2886,·2936,·3008,·3124,·3248,·3524,·3588,·3644,·4341,·4420,·4506,·4623,·4799,·5068,·5176,·5276,·5586,·5754,·5974,·6082],
51623 ········"000325":·226,51623 ········"000325":·226,
51624 ········"000327":·[196,·220],51624 ········"000327":·[196,·220],
51625 ········"000335":·6441,51625 ········"000335":·6441,
 51626 ········"000370e":·260,
51626 ········"00039214":·196,51627 ········"00039214":·196,
51627 ········"0003992519661848979":·255,51628 ········"0003992519661848979":·255,
51628 ········"000408":·226,51629 ········"000408":·226,
51629 ········"000440":·226,51630 ········"000440":·226,
 51631 ········"000488":·260,
51630 ········"0005":·[188,·203,·6414],51632 ········"0005":·[188,·203,·6414],
51631 ········"00051868":·2075,51633 ········"00051868":·2075,
51632 ········"000537":·196,51634 ········"000537":·196,
51633 ········"0005572624066190538":·255,51635 ········"0005572624066190538":·255,
51634 ········"000567261758162795":·255,51636 ········"000567261758162795":·255,
51635 ········"0005672617581628009":·255,51637 ········"0005672617581628009":·255,
51636 ········"0005700355621795108":·255,51638 ········"0005700355621795108":·255,
Offset 51642, 37 lines modifiedOffset 51644, 41 lines modified
51642 ········"0006751826586863219":·255,51644 ········"0006751826586863219":·255,
51643 ········"000711":·234,51645 ········"000711":·234,
51644 ········"0007120093285061094":·255,51646 ········"0007120093285061094":·255,
51645 ········"0007120093285061108":·255,51647 ········"0007120093285061108":·255,
51646 ········"000737":·226,51648 ········"000737":·226,
51647 ········"000738":·226,51649 ········"000738":·226,
51648 ········"0007610462660136599":·255,51650 ········"0007610462660136599":·255,
 51651 ········"000778":·260,
51649 ········"000787":·226,51652 ········"000787":·226,
51650 ········"0008":·[198,·208],51653 ········"0008":·[198,·208],
51651 ········"000827":·196,51654 ········"000827":·196,
51652 ········"0008399438093390379":·255,51655 ········"0008399438093390379":·255,
51653 ········"000863":·243,51656 ········"000863":·243,
51654 ········"00090255":·196,51657 ········"00090255":·196,
51655 ········"00091369":·226,51658 ········"00091369":·226,
51656 ········"000943":·226,51659 ········"000943":·226,
51657 ········"00095571e":·196,51660 ········"00095571e":·196,
51658 ········"000969":·6466,51661 ········"000969":·6466,
51659 ········"000e":·203,51662 ········"000e":·203,
51660 ········"001":·[198,·199,·201,·207,·208,·210,·214,·217,·220,·222,·227,·229,·232,·239,·259,·267,·268,·1468,·1476,·1929,·2027,·2056,·2633,·3913,·3914,·3915,·3916,·6414],51663 ········"001":·[198,·199,·201,·207,·208,·210,·214,·217,·220,·222,·227,·229,·232,·239,·259,·267,·268,·1468,·1476,·1929,·2027,·2056,·2633,·3913,·3914,·3915,·3916,·6414],
51661 ········"00100017":·219,51664 ········"00100017":·219,
 51665 ········"001028":·260,
51662 ········"001043":·196,51666 ········"001043":·196,
51663 ········"001059":·259,51667 ········"001059":·259,
51664 ········"0011":·198,51668 ········"0011":·198,
51665 ········"001105e":·236,51669 ········"001105e":·236,
51666 ········"001119":·6466,51670 ········"001119":·6466,
51667 ········"00118179":·231,51671 ········"00118179":·231,
51668 ········"001185":·196,51672 ········"001185":·196,
51669 ········"001239":·196,51673 ········"001239":·196,
 51674 ········"001244":·260,
51670 ········"00125448e":·196,51675 ········"00125448e":·196,
51671 ········"001327":·196,51676 ········"001327":·196,
 51677 ········"001338":·260,
51672 ········"001342":·236,51678 ········"001342":·236,
51673 ········"001375":·196,51679 ········"001375":·196,
51674 ········"0014148605045516088":·256,51680 ········"0014148605045516088":·256,
51675 ········"0014148605045516095":·256,51681 ········"0014148605045516095":·256,
51676 ········"001428":·222,51682 ········"001428":·222,
51677 ········"0014626434089526352":·4,51683 ········"0014626434089526352":·4,
51678 ········"0015":·6466,51684 ········"0015":·6466,
Offset 51697, 32 lines modifiedOffset 51703, 35 lines modified
51697 ········"001990":·226,51703 ········"001990":·226,
51698 ········"001991":·196,51704 ········"001991":·196,
51699 ········"001e":·217,51705 ········"001e":·217,
51700 ········"002":·[198,·199,·201,·207,·208,·209,·217,·220,·222,·229,·233,·246,·259,·267,·6414,·6441],51706 ········"002":·[198,·199,·201,·207,·208,·209,·217,·220,·222,·229,·233,·246,·259,·267,·6414,·6441],
51701 ········"0020":·[210,·6414],51707 ········"0020":·[210,·6414],
51702 ········"002012":·196,51708 ········"002012":·196,
51703 ········"00203442":·2075,51709 ········"00203442":·2075,
 51710 ········"002108":·260,
51704 ········"00211165":·219,51711 ········"00211165":·219,
51705 ········"002161":·211,51712 ········"002161":·211,
51706 ········"00219739":·219,51713 ········"00219739":·219,
51707 ········"0022":·[198,·207,·208],51714 ········"0022":·[198,·207,·208],
51708 ········"00220446":·196,51715 ········"00220446":·196,
51709 ········"00220970903224552":·4019,51716 ········"00220970903224552":·4019,
51710 ········"002227":·222,51717 ········"002227":·222,
51711 ········"00224065":·4149,51718 ········"00224065":·4149,
51712 ········"002249":·207,51719 ········"002249":·207,
51713 ········"0023":·198,51720 ········"0023":·198,
51714 ········"00230273":·196,51721 ········"00230273":·196,
51715 ········"00231847":·222,51722 ········"00231847":·222,
51716 ········"002356":·196,51723 ········"002356":·196,
 51724 ········"002398":·260,
51717 ········"0024":·[207,·6466],51725 ········"0024":·[207,·6466],
51718 ········"002439":·196,51726 ········"002439":·196,
51719 ········"00244174":·226,51727 ········"00244174":·226,
51720 ········"002472":·206,51728 ········"002472":·206,
51721 ········"002500":·257,51729 ········"002500":·257,
 51730 ········"002504":·260,
51722 ········"00251254695254":·234,51731 ········"00251254695254":·234,
51723 ········"002542":·226,51732 ········"002542":·226,
51724 ········"00255027":·226,51733 ········"00255027":·226,
51725 ········"002607":·226,51734 ········"002607":·226,
51726 ········"002625":·226,51735 ········"002625":·226,
51727 ········"00270524":·226,51736 ········"00270524":·226,
51728 ········"002742":·222,51737 ········"002742":·222,
Offset 51777, 14 lines modifiedOffset 51786, 15 lines modified
51777 ········"0040":·[198,·207],51786 ········"0040":·[198,·207],
51778 ········"004005":·207,51787 ········"004005":·207,
51779 ········"004019":·222,51788 ········"004019":·222,
51780 ········"00405155":·196,51789 ········"00405155":·196,
51781 ········"004065":·4,51790 ········"004065":·4,
51782 ········"004119":·226,51791 ········"004119":·226,
51783 ········"00411926":·226,51792 ········"00411926":·226,
 51793 ········"004128":·260,
51784 ········"00417683":·226,51794 ········"00417683":·226,
51785 ········"0042":·[198,·6466],51795 ········"0042":·[198,·6466],
51786 ········"004225":·226,51796 ········"004225":·226,
51787 ········"004294":·209,51797 ········"004294":·209,
Max diff block lines reached; 624430/644622 bytes (96.87%) of diff not shown.
2.31 MB
./usr/share/doc/python-statsmodels-doc/html/_sources/examples/notebooks/generated/tsa_arma_0.ipynb.txt
    
Offset 1, 4 lines modifiedOffset 1, 35095 lines modified
Diff chunk too large, falling back to line-by-line diff (35095 lines added, 4 lines removed)
00000000:·6465·7374·696e·6174·696f·6e3a·202e·2e2f··destination:·../00000000:·7b0a·2022·6365·6c6c·7322·3a20·5b0a·2020··{.·"cells":·[.··
00000010:·2e2e·2f2e·2e2f·2e2e·2f2e·2e2f·6578·616d··../../../../exam00000010:·7b0a·2020·2022·6365·6c6c·5f74·7970·6522··{.···"cell_type"
00000020:·706c·6573·2f6e·6f74·6562·6f6f·6b73·2f74··ples/notebooks/t00000020:·3a20·226d·6172·6b64·6f77·6e22·2c0a·2020··:·"markdown",.··
00000030:·7361·5f61·726d·615f·302e·6970·796e·620a··sa_arma_0.ipynb.00000030:·2022·6d65·7461·6461·7461·223a·207b·7d2c···"metadata":·{},
 00000040:·0a20·2020·2273·6f75·7263·6522·3a20·5b0a··.···"source":·[.
 00000050:·2020·2020·2223·2041·7574·6f72·6567·7265······"#·Autoregre
 00000060:·7373·6976·6520·4d6f·7669·6e67·2041·7665··ssive·Moving·Ave
 00000070:·7261·6765·2028·4152·4d41·293a·2053·756e··rage·(ARMA):·Sun
 00000080:·7370·6f74·7320·6461·7461·220a·2020·205d··spots·data".···]
 00000090:·0a20·207d·2c0a·2020·7b0a·2020·2022·6365··.··},.··{.···"ce
 000000a0:·6c6c·5f74·7970·6522·3a20·2263·6f64·6522··ll_type":·"code"
 000000b0:·2c0a·2020·2022·6578·6563·7574·696f·6e5f··,.···"execution_
 000000c0:·636f·756e·7422·3a20·312c·0a20·2020·226d··count":·1,.···"m
 000000d0:·6574·6164·6174·6122·3a20·7b0a·2020·2020··etadata":·{.····
 000000e0:·2265·7865·6375·7469·6f6e·223a·207b·0a20··"execution":·{.·
 000000f0:·0a20·0a20·0a20·0a20·2020·207d·0a20·2020··.·.·.·.····}.···
 00000100:·7d2c·0a20·2020·226f·7574·7075·7473·223a··},.···"outputs":
 00000110:·205b·5d2c·0a20·2020·2273·6f75·7263·6522···[],.···"source"
 00000120:·3a20·5b0a·2020·2020·2225·6d61·7470·6c6f··:·[.····"%matplo
 00000130:·746c·6962·2069·6e6c·696e·6522·0a20·2020··tlib·inline".···
 00000140:·5d0a·2020·7d2c·0a20·207b·0a20·2020·2263··].··},.··{.···"c
 00000150:·656c·6c5f·7479·7065·223a·2022·636f·6465··ell_type":·"code
 00000160:·222c·0a20·2020·2265·7865·6375·7469·6f6e··",.···"execution
 00000170:·5f63·6f75·6e74·223a·2032·2c0a·2020·2022··_count":·2,.···"
 00000180:·6d65·7461·6461·7461·223a·207b·0a20·2020··metadata":·{.···
 00000190:·2022·6578·6563·7574·696f·6e22·3a20·7b0a···"execution":·{.
 000001a0:·200a·200a·200a·200a·2020·2020·7d0a·2020···.·.·.·.····}.··
 000001b0:·207d·2c0a·2020·2022·6f75·7470·7574·7322···},.···"outputs"
 000001c0:·3a20·5b5d·2c0a·2020·2022·736f·7572·6365··:·[],.···"source
 000001d0:·223a·205b·0a20·2020·2022·696d·706f·7274··":·[.····"import
 000001e0:·206d·6174·706c·6f74·6c69·622e·7079·706c···matplotlib.pypl
 000001f0:·6f74·2061·7320·706c·745c·6e22·2c0a·2020··ot·as·plt\n",.··
 00000200:·2020·2269·6d70·6f72·7420·6e75·6d70·7920····"import·numpy·
 00000210:·6173·206e·705c·6e22·2c0a·2020·2020·2269··as·np\n",.····"i
 00000220:·6d70·6f72·7420·7061·6e64·6173·2061·7320··mport·pandas·as·
 00000230:·7064·5c6e·222c·0a20·2020·2022·696d·706f··pd\n",.····"impo
 00000240:·7274·2073·7461·7473·6d6f·6465·6c73·2e61··rt·statsmodels.a
 00000250:·7069·2061·7320·736d·5c6e·222c·0a20·2020··pi·as·sm\n",.···
 00000260:·2022·6672·6f6d·2073·6369·7079·2069·6d70···"from·scipy·imp
 00000270:·6f72·7420·7374·6174·735c·6e22·2c0a·2020··ort·stats\n",.··
 00000280:·2020·2266·726f·6d20·7374·6174·736d·6f64····"from·statsmod
 00000290:·656c·732e·7473·612e·6172·696d·612e·6d6f··els.tsa.arima.mo
 000002a0:·6465·6c20·696d·706f·7274·2041·5249·4d41··del·import·ARIMA
 000002b0:·220a·2020·205d·0a20·207d·2c0a·2020·7b0a··".···].··},.··{.
 000002c0:·2020·2022·6365·6c6c·5f74·7970·6522·3a20·····"cell_type":·
 000002d0:·2263·6f64·6522·2c0a·2020·2022·6578·6563··"code",.···"exec
 000002e0:·7574·696f·6e5f·636f·756e·7422·3a20·332c··ution_count":·3,
 000002f0:·0a20·2020·226d·6574·6164·6174·6122·3a20··.···"metadata":·
 00000300:·7b0a·2020·2020·2265·7865·6375·7469·6f6e··{.····"execution
 00000310:·223a·207b·0a20·0a20·0a20·0a20·0a20·2020··":·{.·.·.·.·.···
 00000320:·207d·0a20·2020·7d2c·0a20·2020·226f·7574···}.···},.···"out
 00000330:·7075·7473·223a·205b·5d2c·0a20·2020·2273··puts":·[],.···"s
 00000340:·6f75·7263·6522·3a20·5b0a·2020·2020·2266··ource":·[.····"f
 00000350:·726f·6d20·7374·6174·736d·6f64·656c·732e··rom·statsmodels.
 00000360:·6772·6170·6869·6373·2e61·7069·2069·6d70··graphics.api·imp
 00000370:·6f72·7420·7171·706c·6f74·220a·2020·205d··ort·qqplot".···]
 00000380:·0a20·207d·2c0a·2020·7b0a·2020·2022·6365··.··},.··{.···"ce
 00000390:·6c6c·5f74·7970·6522·3a20·226d·6172·6b64··ll_type":·"markd
 000003a0:·6f77·6e22·2c0a·2020·2022·6d65·7461·6461··own",.···"metada
 000003b0:·7461·223a·207b·7d2c·0a20·2020·2273·6f75··ta":·{},.···"sou
 000003c0:·7263·6522·3a20·5b0a·2020·2020·2223·2320··rce":·[.····"##·
 000003d0:·5375·6e73·706f·7473·2044·6174·6122·0a20··Sunspots·Data".·
 000003e0:·2020·5d0a·2020·7d2c·0a20·207b·0a20·2020····].··},.··{.···
 000003f0:·2263·656c·6c5f·7479·7065·223a·2022·636f··"cell_type":·"co
 00000400:·6465·222c·0a20·2020·2265·7865·6375·7469··de",.···"executi
 00000410:·6f6e·5f63·6f75·6e74·223a·2034·2c0a·2020··on_count":·4,.··
 00000420:·2022·6d65·7461·6461·7461·223a·207b·0a20···"metadata":·{.·
 00000430:·2020·2022·6578·6563·7574·696f·6e22·3a20·····"execution":·
 00000440:·7b0a·200a·200a·200a·200a·2020·2020·7d0a··{.·.·.·.·.····}.
 00000450:·2020·207d·2c0a·2020·2022·6f75·7470·7574·····},.···"output
 00000460:·7322·3a20·5b0a·2020·2020·7b0a·2020·2020··s":·[.····{.····
 00000470:·2022·6e61·6d65·223a·2022·7374·646f·7574···"name":·"stdout
 00000480:·222c·0a20·2020·2020·226f·7574·7075·745f··",.·····"output_
 00000490:·7479·7065·223a·2022·7374·7265·616d·222c··type":·"stream",
 000004a0:·0a20·2020·2020·2274·6578·7422·3a20·5b0a··.·····"text":·[.
 000004b0:·2020·2020·2020·223a·3a5c·6e22·2c0a·2020········"::\n",.··
 000004c0:·2020·2020·225c·6e22·2c0a·2020·2020·2020······"\n",.······
 000004d0:·2220·2020·204e·756d·6265·7220·6f66·204f··"····Number·of·O
 000004e0:·6273·6572·7661·7469·6f6e·7320·2d20·3330··bservations·-·30
 000004f0:·3920·2841·6e6e·7561·6c20·3137·3030·202d··9·(Annual·1700·-
 00000500:·2032·3030·3829·5c6e·222c·0a20·2020·2020···2008)\n",.·····
 00000510:·2022·2020·2020·4e75·6d62·6572·206f·6620···"····Number·of·
 00000520:·5661·7269·6162·6c65·7320·2d20·315c·6e22··Variables·-·1\n"
 00000530:·2c0a·2020·2020·2020·2220·2020·2056·6172··,.······"····Var
 00000540:·6961·626c·6520·6e61·6d65·2064·6566·696e··iable·name·defin
 00000550:·6974·696f·6e73·3a3a·5c6e·222c·0a20·2020··itions::\n",.···
 00000560:·2020·2022·5c6e·222c·0a20·2020·2020·2022·····"\n",.······"
 00000570:·2020·2020·2020·2020·5355·4e41·4354·4956··········SUNACTIV
 00000580:·4954·5920·2d20·4e75·6d62·6572·206f·6620··ITY·-·Number·of·
 00000590:·7375·6e73·706f·7473·2066·6f72·2065·6163··sunspots·for·eac
 000005a0:·6820·7965·6172·5c6e·222c·0a20·2020·2020··h·year\n",.·····
 000005b0:·2022·5c6e·222c·0a20·2020·2020·2022·2020···"\n",.······"··
 000005c0:·2020·5468·6520·6461·7461·2066·696c·6520····The·data·file·
 000005d0:·636f·6e74·6169·6e73·2061·2027·5945·4152··contains·a·'YEAR
 000005e0:·2720·7661·7269·6162·6c65·2074·6861·7420··'·variable·that·
 000005f0:·6973·206e·6f74·2072·6574·7572·6e65·6420··is·not·returned·
 00000600:·6279·206c·6f61·642e·5c6e·222c·0a20·2020··by·load.\n",.···
 00000610:·2020·2022·5c6e·220a·2020·2020·205d·0a20·····"\n".·····].·
 00000620:·2020·207d·0a20·2020·5d2c·0a20·2020·2273·····}.···],.···"s
 00000630:·6f75·7263·6522·3a20·5b0a·2020·2020·2270··ource":·[.····"p
 00000640:·7269·6e74·2873·6d2e·6461·7461·7365·7473··rint(sm.datasets
 00000650:·2e73·756e·7370·6f74·732e·4e4f·5445·2922··.sunspots.NOTE)"
 00000660:·0a20·2020·5d0a·2020·7d2c·0a20·207b·0a20··.···].··},.··{.·
 00000670:·2020·2263·656c·6c5f·7479·7065·223a·2022····"cell_type":·"
 00000680:·636f·6465·222c·0a20·2020·2265·7865·6375··code",.···"execu
 00000690:·7469·6f6e·5f63·6f75·6e74·223a·2035·2c0a··tion_count":·5,.
 000006a0:·2020·2022·6d65·7461·6461·7461·223a·207b·····"metadata":·{
 000006b0:·0a20·2020·2022·6578·6563·7574·696f·6e22··.····"execution"
 000006c0:·3a20·7b0a·200a·200a·200a·200a·2020·2020··:·{.·.·.·.·.····
 000006d0:·7d0a·2020·207d·2c0a·2020·2022·6f75·7470··}.···},.···"outp
 000006e0:·7574·7322·3a20·5b5d·2c0a·2020·2022·736f··uts":·[],.···"so
 000006f0:·7572·6365·223a·205b·0a20·2020·2022·6474··urce":·[.····"dt
 00000700:·6120·3d20·736d·2e64·6174·6173·6574·732e··a·=·sm.datasets.
 00000710:·7375·6e73·706f·7473·2e6c·6f61·645f·7061··sunspots.load_pa
 00000720:·6e64·6173·2829·2e64·6174·6122·0a20·2020··ndas().data".···
 00000730:·5d0a·2020·7d2c·0a20·207b·0a20·2020·2263··].··},.··{.···"c
 00000740:·656c·6c5f·7479·7065·223a·2022·636f·6465··ell_type":·"code
 00000750:·222c·0a20·2020·2265·7865·6375·7469·6f6e··",.···"execution
 00000760:·5f63·6f75·6e74·223a·2036·2c0a·2020·2022··_count":·6,.···"
 00000770:·6d65·7461·6461·7461·223a·207b·0a20·2020··metadata":·{.···
 00000780:·2022·6578·6563·7574·696f·6e22·3a20·7b0a···"execution":·{.
 00000790:·200a·200a·200a·200a·2020·2020·7d0a·2020···.·.·.·.····}.··
 000007a0:·207d·2c0a·2020·2022·6f75·7470·7574·7322···},.···"outputs"
 000007b0:·3a20·5b5d·2c0a·2020·2022·736f·7572·6365··:·[],.···"source
 000007c0:·223a·205b·0a20·2020·2022·6474·612e·696e··":·[.····"dta.in
 000007d0:·6465·7820·3d20·7064·2e49·6e64·6578·2873··dex·=·pd.Index(s
Max diff block lines reached; -1/2421844 bytes (-0.00%) of diff not shown.