{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.sbibq2A4/b1/giac_1.6.0.41+dfsg1-1_arm64.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.sbibq2A4/b2/giac_1.6.0.41+dfsg1-1_arm64.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,7 +1,7 @@\n \n- 39ef52dda649ea66551955e642a898c7 10613236 doc optional giac-doc_1.6.0.41+dfsg1-1_all.deb\n+ f2fdceb40dca4d00a26edbf84c817319 10613832 doc optional giac-doc_1.6.0.41+dfsg1-1_all.deb\n 12ef568186f81f1de98523885e3fbd08 5931996 libdevel optional libgiac-dev_1.6.0.41+dfsg1-1_arm64.deb\n 0f391942e0fb45e45a92ead0257b675e 46072756 debug optional libgiac0-dbgsym_1.6.0.41+dfsg1-1_arm64.deb\n 71b5a7a8fd500f2ea8c671eb7f7b73c8 5125100 libs optional libgiac0_1.6.0.41+dfsg1-1_arm64.deb\n- d9e8187f9c9c9332b1cfc6ef833b6299 9973960 debug optional xcas-dbgsym_1.6.0.41+dfsg1-1_arm64.deb\n- 703637d5ec5d5aa4066cea2882334bb3 1256040 science optional xcas_1.6.0.41+dfsg1-1_arm64.deb\n+ b35a0ab76a003bf021fa9b02f2eed130 9975108 debug optional xcas-dbgsym_1.6.0.41+dfsg1-1_arm64.deb\n+ 55fedcd70f9e07e9b6f392696e27ad02 1253784 science optional xcas_1.6.0.41+dfsg1-1_arm64.deb\n"}, {"source1": "giac-doc_1.6.0.41+dfsg1-1_all.deb", "source2": "giac-doc_1.6.0.41+dfsg1-1_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2020-12-19 14:42:07.000000 debian-binary\n--rw-r--r-- 0 0 0 43856 2020-12-19 14:42:07.000000 control.tar.xz\n--rw-r--r-- 0 0 0 10569188 2020-12-19 14:42:07.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 43804 2020-12-19 14:42:07.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 10569836 2020-12-19 14:42:07.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1915,15 +1915,15 @@\n -rw-r--r-- 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/es/html_mtt\n -rw-r--r-- 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/es/html_vall\n -rw-r--r-- 0 root (0) root (0) 5223 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/es/keywords\n -rw-r--r-- 0 root (0) root (0) 2267 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/es/xcasex\n -rw-r--r-- 0 root (0) root (0) 33039 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/es/xcasmenu\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/fr/\n -rw-r--r-- 0 root (0) root (0) 1314973 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/fr/algo.html\n--rw-r--r-- 0 root (0) root (0) 1625797 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/fr/algo.pdf\n+-rw-r--r-- 0 root (0) root (0) 1625761 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/fr/algo.pdf\n -rw-r--r-- 0 root (0) root (0) 5341 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/fr/keywords\n -rw-r--r-- 0 root (0) root (0) 929 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/giac.js\n -rw-r--r-- 0 root (0) root (0) 42616 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/giac.tex\n -rw-r--r-- 0 root (0) root (0) 42678 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/giacfr.tex\n -rw-r--r-- 0 root (0) root (0) 1072 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/giacworker.js\n -rw-r--r-- 0 root (0) root (0) 2113587 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/graphtheory-user_manual.pdf\n -rw-r--r-- 0 root (0) root (0) 3058 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/hevea.sty\n@@ -2090,15 +2090,15 @@\n -rw-r--r-- 0 root (0) root (0) 12949 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/prog/conformal.xws\n -rw-r--r-- 0 root (0) root (0) 4279 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/prog/exemple.xws\n -rw-r--r-- 0 root (0) root (0) 6007 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/prog/gauss_jordan.xws\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/spects/\n -rw-r--r-- 0 root (0) root (0) 8807 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/spects/pagerank.xws\n -rw-r--r-- 0 root (0) root (0) 76242 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/spects/spec_proie.xws\n -rw-r--r-- 0 root (0) root (0) 11863 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/spects/tpi.xws\n--rw-r--r-- 0 root (0) root (0) 24535 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Makefile\n+-rw-r--r-- 0 root (0) root (0) 24533 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Makefile\n -rw-r--r-- 0 root (0) root (0) 6621 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Makefile.am\n -rw-r--r-- 0 root (0) root (0) 24109 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Makefile.in\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/arit/\n -rw-r--r-- 0 root (0) root (0) 738 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/arit/codage.cas\n -rw-r--r-- 0 root (0) root (0) 631 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/arit/estpremier\n -rw-r--r-- 0 root (0) root (0) 385 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/arit/horner\n -rw-r--r-- 0 root (0) root (0) 1352 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/arit/inpg.cas\n"}, {"source1": "./usr/share/giac/doc/en/cas.ps", "source2": "./usr/share/giac/doc/en/cas.ps", "unified_diff": "@@ -11,15 +11,15 @@\n %%EndComments\n %%BeginDefaults\n %%ViewingOrientation: 1 0 0 1\n %%EndDefaults\n %DVIPSWebPage: (www.radicaleye.com)\n %DVIPSCommandLine: /usr/bin/dvips -o cas.ps cas.dvi\n %DVIPSParameters: dpi=600\n-%DVIPSSource: TeX output 2024.01.06:2005\n+%DVIPSSource: TeX output 2024.01.07:2217\n %%BeginProcSet: tex.pro 0 0\n %!\n /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S\n N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72\n mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0\n 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{\n landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize\n"}, {"source1": "./usr/share/giac/doc/en/cascmd_en.ps", "source2": "./usr/share/giac/doc/en/cascmd_en.ps", "has_internal_linenos": true, "unified_diff": "@@ -35,16 +35,16 @@\n 00000220: 5649 5053 436f 6d6d 616e 644c 696e 653a VIPSCommandLine:\n 00000230: 202f 7573 722f 6269 6e2f 6476 6970 7320 /usr/bin/dvips \n 00000240: 2d6f 2063 6173 636d 645f 656e 2e70 7320 -o cascmd_en.ps \n 00000250: 6361 7363 6d64 5f65 6e2e 6476 690a 2544 cascmd_en.dvi.%D\n 00000260: 5649 5053 5061 7261 6d65 7465 7273 3a20 VIPSParameters: \n 00000270: 6470 693d 3630 300a 2544 5649 5053 536f dpi=600.%DVIPSSo\n 00000280: 7572 6365 3a20 2054 6558 206f 7574 7075 urce: TeX outpu\n-00000290: 7420 3230 3234 2e30 312e 3036 3a32 3030 t 2024.01.06:200\n-000002a0: 350a 2525 4265 6769 6e50 726f 6353 6574 5.%%BeginProcSet\n+00000290: 7420 3230 3234 2e30 312e 3037 3a32 3231 t 2024.01.07:221\n+000002a0: 370a 2525 4265 6769 6e50 726f 6353 6574 7.%%BeginProcSet\n 000002b0: 3a20 7465 782e 7072 6f20 3020 300a 2521 : tex.pro 0 0.%!\n 000002c0: 0a2f 5465 5844 6963 7420 3330 3020 6469 ./TeXDict 300 di\n 000002d0: 6374 2064 6566 2054 6558 4469 6374 2062 ct def TeXDict b\n 000002e0: 6567 696e 2f4e 7b64 6566 7d64 6566 2f42 egin/N{def}def/B\n 000002f0: 7b62 696e 6420 6465 667d 4e2f 537b 6578 {bind def}N/S{ex\n 00000300: 6368 7d4e 2f58 7b53 0a4e 7d42 2f41 7b64 ch}N/X{S.N}B/A{d\n 00000310: 7570 7d42 2f54 527b 7472 616e 736c 6174 up}B/TR{translat\n"}, {"source1": "./usr/share/giac/doc/en/casinter.ps", "source2": "./usr/share/giac/doc/en/casinter.ps", "unified_diff": "@@ -8,15 +8,15 @@\n %%DocumentFonts: NimbusRomNo9L-Regu NimbusMonL-Regu NimbusRomNo9L-Medi\n %%+ CMEX10 CMMI10 CMR10 CMSY10 CMR7 CMSY7 CMMI7 CMMI5\n %%DocumentPaperSizes: Letter\n %%EndComments\n %DVIPSWebPage: (www.radicaleye.com)\n %DVIPSCommandLine: /usr/bin/dvips -o casinter.ps casinter.dvi\n %DVIPSParameters: dpi=600\n-%DVIPSSource: TeX output 2024.01.06:2005\n+%DVIPSSource: TeX output 2024.01.07:2217\n %%BeginProcSet: tex.pro 0 0\n %!\n /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S\n N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72\n mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0\n 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{\n landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize\n"}, {"source1": "./usr/share/giac/doc/fr/algo.pdf", "source2": "./usr/share/giac/doc/fr/algo.pdf", "unified_diff": null, "details": [{"source1": "pdftotext {} -", "source2": "pdftotext {} -", "comments": ["error from `pdftotext {} -`:", "Syntax Error (161): Unknown operator 'pagesize'", "Syntax Error (163): Unknown operator 'width'", "Syntax Error (173): Unknown operator 'pt'", "Syntax Error (175): Unknown operator 'height'", "Syntax Error (179): Unknown operator 'pt'"], "unified_diff": "@@ -2996,29 +2996,29 @@\n 55\n \n Comment g\u00e9n\u00e9rer des clefs\n On choisit p et q en utilisant le test de Miller-Rabin. Par exemple\n p:=nextprime(randint(10^150));q:=nextprime\n (randint(10^200));n:=p*q;\n \n-70879806254815478494234862381809516151156179882881559668467809365401400595888232016273013392\n+14927412351234593650795740691682815222695163993068168955890327092996445034508733172517120398\n On choisit un couple de clefs priv\u00e9e-publique en utilisant l\u2019identit\u00e9 de B\u00e9zout\n (ou inverse modulaire). Par exemple\n E:=65537; gcd(E,(p-1)*(q-1));d:=iegcd(E,\n (p-1)*(q-1))[0];\n \n-65537, 1, \u221242671061233277999903509963471038800083401155978026273029413140133486741766678635877\n+65537, 1, 1110393589991248427284244657069808258785348287232258585593058658567738181384613329580\n Ici, on a pris E de sorte que l\u2019exponentiation modulaire rapide \u00e0 la puissance E\n n\u00e9cessite peu d\u2019op\u00e9rations arithm\u00e9tiques (17), compar\u00e9 au calcul de la puissance\n d, ceci permet de faire l\u2019op\u00e9ration \u201cpublique\u201d plus rapidement (encodage ou v\u00e9rification d\u2019une signature) si le microprocesseur a peu de ressources (par exemple\n puce d\u2019une carte bancaire).\n a:=randint(123456789);b:=powmod(a,E,n);c:=powmod\n (b,d,n);\n \n-32672179, 117758714047686020165140851327987940556743556832174569060463828083725641202610082511\n+40603840, 822336418987080479783199776349019909031090021305402937360001192044591844767670648040\n Sur quoi repose la s\u00e9curit\u00e9 de RSA.\n \u2014 Difficult\u00e9 de factoriser n.\n Si on arrive \u00e0 factoriser n, tous les autres calculs se font en temps polynomial en ln(n) donc la clef est compromise. Il faut bien choisir p et q pour\n que certains algorithmes de factorisation ne puissent pas s\u2019appliquer. Par\n exemple choisir\n \n p:=nextprime(10^100):;q:=nextprime(10^101\n@@ -3262,23 +3262,23 @@\n 1. \u00c0 quelle vitesse votre logiciel multiplie-t-il des grands entiers (en fonction\n du nombre de chiffres) ? On pourra tester le temps de calcul du produit de\n a(a + 1) o\u00f9 a = 10000!, a = 15000!, etc. . M\u00eame question pour des polyn\u00f4mes en une variable (\u00e0 g\u00e9n\u00e9rer par exemple avec symb2poly(randpoly(n))\n ou avec poly1[op(ranm(.))]).\n n:=100; p:=symb2poly(randpoly(n)):; time(p*p);\n \u0002\n \u0003\n-100, \"Done\", 2.6 \u00d7 10\u22125 , 2.52517518 \u00d7 10\u22125\n+100, \"Done\", 2.0 \u00d7 10\u22125 , 1.98217098 \u00d7 10\u22125\n 2. Comparer le temps de calcul de an (mod m) par la fonction powmod et\n la m\u00e9thode prendre le reste modulo m apr\u00e8s avoir calcul\u00e9 an .\n a:=123; n:=456; m:=789; time(powmod(a,n,m\n )); time(irem(a^n,m));\n \u0002\n \u0003 \u0002\n \u0003\n-123, 456, 789, 1.1 \u00d7 10\u22126 , 1.08197781 \u00d7 10\u22126 , 3.4 \u00d7 10\u22126 , 3.28175524 \u00d7 10\u22126\n+123, 456, 789, 5.5 \u00d7 10\u22127 , 7.8482619 \u00d7 10\u22127 , 3.2 \u00d7 10\u22126 , 4.233285 \u00d7 10\u22126\n Programmez la m\u00e9thode rapide et la m\u00e9thode lente. Refaites la comparaison. Pour la m\u00e9thode rapide, programmer aussi la version it\u00e9rative utilisant\n la d\u00e9composition en base 2 de l\u2019exposant : on stocke dans une variable\n 0\n 1\n k\n locale b les puissances successives a2 (mod m), a2 (mod m), ..., a2\n (mod m), ..., on forme an (mod n) en prenant le produit modulo m de\n@@ -3309,15 +3309,15 @@\n (c) l\u2019inverse modulaire en ne calculant que ce qui est n\u00e9cessaire dans l\u2019algorithme de B\u00e9zout\n (d) les restes chinois\n 6. Construire un corps fini de cardinal 128 (GF), puis factoriser le polyn\u00f4me\n x2 \u2212 y o\u00f9 y est un \u00e9l\u00e9ment quelconque du corps fini. Comparer avec la\n \u221a\n valeur de y.\n GF(2,7);\n-GF (2, k 7 + k 5 + k 2 + k + 1, [k, K, g] , undef)\n+GF (2, k 7 + k 6 + k 3 + k + 1, [k, K, g] , undef)\n 7. Utiliser la commande type ou whattype ou \u00e9quivalent pour d\u00e9terminer\n la repr\u00e9sentation utilis\u00e9e par le logiciel pour repr\u00e9senter une fraction, un\n nombre complexe, un flottant en pr\u00e9cision machine, un flottant avec 100\n d\u00e9cimales, la variable x, l\u2019expression sin(x) + 2, la fonction x->sin(x),\n une liste, une s\u00e9quence, un vecteur, une matrice. Essayez d\u2019acc\u00e9der aux\n parties de l\u2019objet pour les objets composites (en utilisant op par exemple).\n a:=sin(x)+2; type(a); a[0]; a[1]\n@@ -3388,15 +3388,15 @@\n \f3.14. EXERCICES SUR TYPES, CALCUL EXACT ET APPROCH\u00c9, ALGORITHMES DE BASES63\n 14. Que se passe-t-il si on essaie d\u2019appliquer l\u2019algorithme de la puissance rapide pour calculer (x + y + z + 1)k par exemple pour k = 64 ? Calculer le\n nombre de termes dans le d\u00e9veloppement de (x + y + z + 1)n et expliquez.\n \n time(normal((x+y+z+1)^30)); a:=normal((x+y+z+1\n )^15):; time(normal(a*a));\n \n-[0.0055, 0.0052301901] , \"Done\", [0.011, 0.010594709]\n+[0.0032, 0.00699579736] , \"Done\", [0.011, 0.0206562983]\n \n 15. Programmation de la m\u00e9thode de Horner\n Il s\u2019agit d\u2019\u00e9valuer efficacement un polyn\u00f4me\n \n P (X) = an X n + ... + a0\n \n en un point. On pose b0 = P (\u03b1) et on \u00e9crit :\n@@ -5672,15 +5672,15 @@\n une localisation certifi\u00e9e des racines complexes.\n Q:=randpoly(5); M:=companion(Q); P,S:=schur(M):; S\n \uf8ee\n \n 0\n \uf8ef 1\n \uf8ef\n-x5 +55x4 +99x3 \u221239x2 +26x\u221297, \uf8ef\n+x5 \u221262x4 \u221265x3 +45x2 \u221289x+12, \uf8ef\n \uf8ef 0\n \uf8f0 0\n 0\n \n 0\n 0\n 1\n@@ -5691,67 +5691,71 @@\n 0\n 0\n 1\n 0\n \n \uf8ee\n \uf8f9\n-0.88969515467064\n-0 97\n-\uf8ef 1.5731032587762 \u00d7 10\u221220\n-0 \u221226 \uf8fa\n+0.20082443755689\n+\u22120.875763\n+0 \u221212\n+\uf8ef 0.71755272968286\n+0.4778745\n+0 89 \uf8fa\n \uf8fa\n \uf8ef\n \uf8ef\n-0.0\n-0 39 \uf8fa\n-,\n-\"Done\",\n-\uf8ef\n \uf8fa\n-\uf8fb\n-\uf8f0 \u22121.4950449111858 \u00d7 10\u221223 5.7\n-0 \u221299\n-1 \u221255\n-\u22122.2352018066199 \u00d7 10\u221225 \u22129.\n+0.0\n+1.8513327018\n+0 \u221245 \uf8fa , \"Done\", \uf8ef\n+\uf8f0\n+0.0\n+0.\n+0 65 \uf8fb\n+1 62\n+0.0\n+6.2761632871\n \n P*S*trn(P); P*trn(P);\n 1. cela se fait par une m\u00e9thode it\u00e9rative appel\u00e9e algorithme de Francis. On pose A0 , la forme de\n Hessenberg de M , puis on factorise An = QR par des sym\u00e9tries de Householder ou des rotations\n de Givens et on d\u00e9finit An+1 = RQ, le calcul de An+1 en fonction de An se fait sans expliciter la\n factorisation QR\n \n \f102\n \n CHAPITRE 7. LOCALISATION DES RACINES\n \n-1.5520517843436 \u00d7 10\u221216\n-1.2729211162493 \u00d7 10\u221215\n+6.2223904906463 \u00d7 10\u221216\n+\u22122.74014812478 \u00d7 10\u221216\n+7.9209851099606 \u00d7 10\u221216\n+\u221216\n \uf8ec\n 0.99999999999999\n-\u22122.2153363577393 \u00d7 10\u221215\n+\u22121.8413989239722 \u00d7 10\n+1.6045955415089 \u00d7 10\u221215\n \uf8ec\n-\uf8ec \u22124.0834877923948 \u00d7 10\u221215\n+\uf8ec 7.8797855284745 \u00d7 10\u221216\n 0.99999999999999\n+\u22127.4800562656476 \u00d7 10\u221216\n \uf8ec\n-\uf8ed \u22123.6656615710755 \u00d7 10\u221216 \u22121.493127372594 \u00d7 10\u221216\n-5.959884152205 \u00d7 10\u221218\n-\u22121.6749527936981 \u00d7 10\u221217\n-\uf8eb\n-\n-\u22121.3347022745485 \u00d7 10\u221215\n-\u22122.4556503772908 \u00d7 10\u221216\n-\u22121.3527174941902 \u00d7 10\u221215\n+\uf8ed \u22121.6358468106883 \u00d7 10\u221215 \u22126.0762903238389 \u00d7 10\u221216\n 0.99999999999999\n-\u22125.6955728825007 \u00d7 10\u221217\n+\u221215\n+\u221214\n+\u22123.4757426342744 \u00d7 10\n+2.2665049506356 \u00d7 10\n+\u22127.3870538261861 \u00d7 10\u221214\n+\uf8eb\n \n l:=proot(Q); z:=exact(l[0]); evalf(degree\n (Q)*Q(x=z)/Q\u2019(x=z),20)\n \n-[\u221253.122372755579, \u22122.4077907860421, \u22120.17976580652467 \u2212 0.90557512407653i, \u22120.179\n+[\u22121.8418535220983, 0.14271878113606, 0.33934948307972 \u2212 0.78052368212881i, 0.3393494\n \n On peut aussi utiliser l\u2019arithm\u00e9tique d\u2019intervalles pour essayer de trouver\n un petit rectangle autour d\u2019une racine approch\u00e9e qui est conserv\u00e9 par la\n m\u00e9thode de Newton g(x) = x \u2212 f (x)/f 0 (x), le th\u00e9or\u00e8me du point fixe de\n Brouwer assure alors qu\u2019il admet un point fixe qui n\u2019est autre qu\u2019une racine\n de g.\n \n@@ -16051,15 +16055,15 @@\n f(t):=exp(-t^2); n:=1000; a:=0; b:=2.0;l:=ranv\n (n,uniformd,a,b):;\n 2\n \n t 7\u2192 e\u2212t , 1000, 0, 2.0, \"Done\"\n \n (b-a)*sum(apply(f,l))/n; int(f(t),t,a,b);\n-0.881355551869, 0.882081390762\n+0.863961907378, 0.882081390762\n La convergence en fonction de n est assez lente, on peut l\u2019observer en faisant plusieurs estimations :\n \n I:=seq(2*sum(apply(f,ranv(n,uniformd,a,b\n )))/n,500);\n \n \f20.11. M\u00c9THODES PROBABILISTES.\n \n@@ -16089,15 +16093,15 @@\n \n \u00132\n \n par exemple ici\n \n 2*sqrt(int(f(t)^2,t,0,2.)/2-(1/2*int(f(t\n ),t,0,2.))^2)/sqrt(n); stddevp(I);\n-0.0217983295084, 0.0221434185657\n+0.0217983295084, 0.0224117976455\n mais on ne fait pas ce calcul en pratique (puisqu\u2019il faudrait calculer une int\u00e9grale),\n \u221a\n on estime l\u2019\u00e9cart-type \u03c3/ n de la loi normale par l\u2019\u00e9cart-type de l\u2019\u00e9chantillon des\n estimations stddevp(I).\n \n histogram(I,0,0.01); plot(normald(mean(I\n ),stddevp(I),x),x=0.8..1)\n@@ -16111,15 +16115,15 @@\n \n 2\n \n t 7\u2192 e\u2212t , 1000, 0, 2.0, \"Done\"\n \n fl:=apply(f,l):;m:=(b-a)*mean(fl);s:=(b-a\n )*stddevp(fl)/sqrt(n);[m-2s,m+2s]\n-\"Done\", 0.886512431803, 0.021714199071, [0.843084033661, 0.929940829945]\n+\"Done\", 0.858349299321, 0.0220134828323, [0.814322333657, 0.902376264986]\n Cette m\u00e9thode converge donc beaucoup moins vite que les quadratures, en dimension 1. Mais elle se g\u00e9n\u00e9ralise tr\u00e8s facilement en dimension plus grande en\n conservant la m\u00eame vitesse de convergence alors que le travail n\u00e9cessaire pour une\n m\u00e9thode de quadrature croit comme une puissance de la dimension, et ne n\u00e9cessite pas de param\u00e9trer des domaines d\u2019int\u00e9gration compliqu\u00e9s (il suffit par exemple\n d\u2019utiliser la m\u00e9thode du rejet pour avoir un g\u00e9n\u00e9rateur uniforme dans un domaine\n inclus dans un cube).\n \n \f264\n@@ -20051,25 +20055,25 @@\n On retrouve ce cas pour une petite perturbation d\u2019une matrice diagonale, par exemple\n \n n:=500;A:=2*idn(n)+1e-4*ranm(n,n,uniformd,-1,1\n ):;b:=seq(1,n):;\n 500, \"Done\", \"Done\"\n \n time(c:=linsolve(A,b));\n-[0.18, 0.183778148]\n+[0.105, 0.179065436]\n \n time(d:=jacobi(A,b,1e-12,50));\n-[0.14, 0.126419639]\n+[0.054, 0.067424848]\n \n \f318\n \n CHAPITRE 22. ALG\u00c8BRE LIN\u00c9AIRE\n \n maxnorm(d-c)\n-8.17124146124 \u00d7 10\u221213\n+7.81597009336 \u00d7 10\u221213\n Pour n assez grand, la m\u00e9thode de Jacobi devient plus rapide. Cela se v\u00e9rifie encore\n plus vite si A est une matrice creuse.\n Pour Gauss-Seidel, le calcul de M \u22121 n\u2019est pas effectu\u00e9, on r\u00e9soud directement\n le syst\u00e8me triangulaire M xn+1 = b + N xn soit\n (D + L)xn+1 = b \u2212 U xn\n Gauss-Seidel est moins adapt\u00e9 \u00e0 la parall\u00e9lisation que Jacobi. On adapte le programme pr\u00e9c\u00e9dent\n seidel(A,b,N,eps):={\n@@ -23047,26 +23051,26 @@\n \n exp(a);\n 1 + h + h8 order_size (h)\n Pour travailler avec un autre corps de base, il suffit de donner des coefficients dans\n ce corps. Si la caract\u00e9ristique du corps est assez grande, les fonctions usuelles sont\n aussi applicables.\n GF(11,3);\n-GF (11, k 3 + k 2 + 3k \u2212 2, [k, K, g] , undef)\n+GF (11, k 3 + 4k 2 + k + 3, [k, K, g] , undef)\n \n \f24.8. S\u00c9RIES FORMELLES.\n \n 363\n \n a:=ln(1+g*h+O(h^6));\n \u0001\n \u0001\n \u0001\n \u0001\n-(g) h+ 5 \u00b7 g 2 h2 + (\u22124 \u00b7 g 2 \u2212 g \u2212 3) h3 + (\u22125 \u00b7 g 2 \u2212 4 \u00b7 g \u2212 5) h4 + (\u22123 \u00b7 g 2 + 3 \u00b7 g \u2212 3) h5 +h6 order_size\n+(g) h+ 5 \u00b7 g 2 h2 + (\u22125 \u00b7 g 2 \u2212 4 \u00b7 g \u2212 1) h3 + (\u2212g 2 \u2212 3 \u00b7 g \u2212 3) h4 + (\u22123 \u00b7 g 2 \u2212 5 \u00b7 g + 2) h5 +h6 order_size\n exp(a);\n 1 + (g) h + h6 order_size (h)\n Les op\u00e9rations sur les s\u00e9ries sont impl\u00e9ment\u00e9es sans optimisation particuli\u00e8re,\n leur utilisation principale dans Xcas \u00e9tant le calcul de d\u00e9veloppement de Taylor ou\n asymptotique sur Q.\n \n \f364CHAPITRE 24. D\u00c9VELOPPEMENT DE TAYLOR, ASYMPTOTIQUES, S\u00c9RIES ENTI\u00c8RES, FON\n@@ -23500,32 +23504,32 @@\n g;r:=powmod(g,7,p);\n 3, 2187\n puis en prenant la puissance 2n\u2212k -i\u00e8me de r on obtient une racine 2k -i\u00e8me de 1 qui\n permettra de multiplier deux polyn\u00f4mes dont la somme des degr\u00e9s est strictement\n inf\u00e9rieure \u00e0 2k , par exemple pour a et b de degr\u00e9s 5 et 7, on prendra k = 4\n a:=randpoly(5,[]); b:=randpoly(7,[]);w:=powmod\n (r,2^16,p);\n-[1, \u221223, 88, \u221268, 88, 58] , [1, 35, 54, \u221213, \u221256, 35, \u221253, 39] , 5712452\n+[1, 69, \u221224, 93, 26, 11] , [1, 26, 45, 81, \u221296, 44, 38, 86] , 5712452\n on allonge a et b avec des 0 pour les amener \u00e0 la taille 16 = 2k\n ar:=[op(a),op(seq(0,(16-size(a))))];br:=\n [op(b),op(seq(0,(16-size(b))))]\n-[1, \u221223, 88, \u221268, 88, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 35, 54, \u221213, \u221256, 35, \u221253, 39, 0, 0, 0, 0, 0, 0, 0, 0]\n+[1, 69, \u221224, 93, 26, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 26, 45, 81, \u221296, 44, 38, 86, 0, 0, 0, 0, 0, 0, 0, 0]\n on calcule les transform\u00e9es de Fourier rapide de a et b\n A:=fft(ar,w,p); B:=fft(br,w,p);\n \n-[144, 5480324, 1661238, 6245988, 4674456, 3710481, 863844, 7210893, 210, 5891685, 3475508, 3291208, 266557\n+[176, 1175082, 1100857, 461850, 621533, 2993437, 6537168, 531608, 7339863, 1311271, 6839975, 2692979, 6718\n puis on fait le produit terme \u00e0 terme et on applique la transform\u00e9e de Fourier inverse\n C:=irem(A.*B,p); c:=ifft(C,w,p);\n \n-[6048, 789982, 4495721, 4732781, 3751350, 3141600, 4419305, 3648764, 7308533, 1337269, 1545702, 3018858, 3\n+[39600, 4069173, 3935333, 7206026, 2212344, 505183, 6408655, 2376888, 42330, 1881397, 1657785, 6844441, 51\n On peut comparer avec le produit calcul\u00e9 par Xcas\n a*b;\n-[1, 12, \u2212663, 1757, 2703, \u2212355, 1880, 10134, \u221213623, 6868, \u22125286, 358, 2262]\n+[1, 95, 1815, 2655, 6857, \u22123652, 14367, \u22124675, 7509, 1558, 9470, 2654, 946]\n smod(c,p);\n-[1, 12, \u2212663, 1757, 2703, \u2212355, 1880, 10134, \u221213623, 6868, \u22125286, 358, 2262, 0, 0, 0]\n+[1, 95, 1815, 2655, 6857, \u22123652, 14367, \u22124675, 7509, 1558, 9470, 2654, 946, 0, 0, 0]\n Bien entendu les tailles de a et b prises ici en exemple sont trop petites pour que\n l\u2019algorithme soit efficace.\n \n \f370\n \n CHAPITRE 25. LA TRANSFORM\u00c9E DE FOURIER DISCR\u00c8TE.\n \n"}]}, {"source1": "./usr/share/giac/examples/Makefile", "source2": "./usr/share/giac/examples/Makefile", "unified_diff": "@@ -288,15 +288,15 @@\n PATH_SEPARATOR = :\n PDFLATEX = /usr/bin/pdflatex\n POSUB = po\n RANLIB = ranlib\n SAMPLERATE_LIBS = \n SED = /bin/sed\n SET_MAKE = \n-SHELL = /bin/bash\n+SHELL = /bin/sh\n STRIP = strip\n USE_INCLUDED_LIBINTL = no\n USE_NLS = yes\n VERSION = 1.6.0\n XGETTEXT = /usr/bin/xgettext\n XMKMF = \n X_CFLAGS = \n"}]}]}]}, {"source1": "xcas_1.6.0.41+dfsg1-1_arm64.deb", "source2": "xcas_1.6.0.41+dfsg1-1_arm64.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2020-12-19 14:42:07.000000 debian-binary\n -rw-r--r-- 0 0 0 1672 2020-12-19 14:42:07.000000 control.tar.xz\n--rw-r--r-- 0 0 0 1254176 2020-12-19 14:42:07.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 1251920 2020-12-19 14:42:07.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "./usr/bin/icas", "source2": "./usr/bin/icas", "comments": ["File has been modified after NT_GNU_BUILD_ID has been applied."], "unified_diff": null, "details": [{"source1": "readelf --wide --notes {}", "source2": "readelf --wide --notes {}", "unified_diff": "@@ -1,8 +1,8 @@\n \n Displaying notes found in: .note.gnu.build-id\n Owner Data size \tDescription\n- GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: fed986042d802e60b4fe2b66a9027f97c0d2fee3\n+ GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: c2712e65890cd686dcca661916909aa96abe98dd\n \n Displaying notes found in: .note.ABI-tag\n Owner Data size \tDescription\n GNU 0x00000010\tNT_GNU_ABI_TAG (ABI version tag)\t OS: Linux, ABI: 3.7.0\n"}, {"source1": "strings --all --bytes=8 {}", "source2": "strings --all --bytes=8 {}", "unified_diff": "@@ -2745,15 +2745,15 @@\n vector([%.14g,%.14g],[%.14g,%.14g],color=%i):;\n vector: Bad argument type\n scatterplot(%s,%s,color=%i):;\n linear_regression_plot(%s,%s,color=%i):;\n scatterplot: Bad argument type\n ?Keyboard interrupt\n numpy.py\n-MicroPython v1.12 on 2024-01-06\n+MicroPython v1.12 on 2024-01-07\n FATAL: uncaught NLR %p\n ../py/gc.c\n MP_STATE_MEM(gc_pool_start) >= MP_STATE_MEM(gc_finaliser_table_start) + gc_finaliser_table_byte_len\n VERIFY_PTR(ptr)\n ATB_GET_KIND(block) == AT_HEAD\n ATB_GET_KIND(bl) == AT_FREE\n GC: total: %u, used: %u, free: %u\n"}, {"source1": "readelf --wide --decompress --hex-dump=.rodata {}", "source2": "readelf --wide --decompress --hex-dump=.rodata {}", "unified_diff": "@@ -3413,15 +3413,15 @@\n 0x001b6920 73636174 74657270 6c6f743a 20426164 scatterplot: Bad\n 0x001b6930 20617267 756d656e 74207479 70650000 argument type..\n 0x001b6940 182d4454 fb210940 9a999999 9999e93f .-DT.!.@.......?\n 0x001b6950 4b657962 6f617264 20696e74 65727275 Keyboard interru\n 0x001b6960 70740000 00000000 6e756d70 792e7079 pt......numpy.py\n 0x001b6970 00000000 00000000 4d696372 6f507974 ........MicroPyt\n 0x001b6980 686f6e20 76312e31 32206f6e 20323032 hon v1.12 on 202\n- 0x001b6990 342d3031 2d30360a 00000000 00000000 4-01-06.........\n+ 0x001b6990 342d3031 2d30370a 00000000 00000000 4-01-07.........\n 0x001b69a0 3e3e3e20 00000000 2e2e2e20 00000000 >>> ....... ....\n 0x001b69b0 46415441 4c3a2075 6e636175 67687420 FATAL: uncaught \n 0x001b69c0 4e4c5220 25700a00 2e2e2f70 792f6763 NLR %p..../py/gc\n 0x001b69d0 2e630000 00000000 4d505f53 54415445 .c......MP_STATE\n 0x001b69e0 5f4d454d 2867635f 706f6f6c 5f737461 _MEM(gc_pool_sta\n 0x001b69f0 72742920 3e3d204d 505f5354 4154455f rt) >= MP_STATE_\n 0x001b6a00 4d454d28 67635f66 696e616c 69736572 MEM(gc_finaliser\n"}, {"source1": "readelf --wide --decompress --hex-dump=.gnu_debuglink {}", "source2": "readelf --wide --decompress --hex-dump=.gnu_debuglink {}", "comments": ["error from `readelf --wide --decompress --hex-dump=.gnu_debuglink {}`:", "readelf: Error: Unable to find program interpreter name", "readelf: Error: no .dynamic section in the dynamic segment"], "unified_diff": "@@ -1,7 +1,7 @@\n \n Hex dump of section '.gnu_debuglink':\n- 0x00000000 64393836 30343264 38303265 36306234 d986042d802e60b4\n- 0x00000010 66653262 36366139 30323766 39376330 fe2b66a9027f97c0\n- 0x00000020 64326665 65332e64 65627567 00000000 d2fee3.debug....\n- 0x00000030 cbf1ca3d ...=\n+ 0x00000000 37313265 36353839 30636436 38366463 712e65890cd686dc\n+ 0x00000010 63613636 31393136 39303961 61393661 ca661916909aa96a\n+ 0x00000020 62653938 64642e64 65627567 00000000 be98dd.debug....\n+ 0x00000030 7eb02dc4 ~.-.\n \n"}]}, {"source1": "./usr/bin/xcas", "source2": "./usr/bin/xcas", "comments": ["File has been modified after NT_GNU_BUILD_ID has been applied."], "unified_diff": null, "details": [{"source1": "readelf --wide --notes {}", "source2": "readelf --wide --notes {}", "unified_diff": "@@ -1,8 +1,8 @@\n \n Displaying notes found in: .note.gnu.build-id\n Owner Data size \tDescription\n- GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: 700b55b0e0856ac36c0f2e5dbcb2767424378da6\n+ GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: a04d9b5efe37e3d7898399003340f127230fc477\n \n Displaying notes found in: .note.ABI-tag\n Owner Data size \tDescription\n GNU 0x00000010\tNT_GNU_ABI_TAG (ABI version tag)\t OS: Linux, ABI: 3.7.0\n"}, {"source1": "strings --all --bytes=8 {}", "source2": "strings --all --bytes=8 {}", "unified_diff": "@@ -3066,15 +3066,15 @@\n vector([%.14g,%.14g],[%.14g,%.14g],color=%i):;\n vector: Bad argument type\n scatterplot(%s,%s,color=%i):;\n linear_regression_plot(%s,%s,color=%i):;\n scatterplot: Bad argument type\n ?Keyboard interrupt\n numpy.py\n-MicroPython v1.12 on 2024-01-06\n+MicroPython v1.12 on 2024-01-07\n FATAL: uncaught NLR %p\n ../py/gc.c\n MP_STATE_MEM(gc_pool_start) >= MP_STATE_MEM(gc_finaliser_table_start) + gc_finaliser_table_byte_len\n VERIFY_PTR(ptr)\n ATB_GET_KIND(block) == AT_HEAD\n ATB_GET_KIND(bl) == AT_FREE\n GC: total: %u, used: %u, free: %u\n"}, {"source1": "readelf --wide --decompress --hex-dump=.rodata {}", "source2": "readelf --wide --decompress --hex-dump=.rodata {}", "unified_diff": "@@ -4115,15 +4115,15 @@\n 0x001cddf0 73636174 74657270 6c6f743a 20426164 scatterplot: Bad\n 0x001cde00 20617267 756d656e 74207479 70650000 argument type..\n 0x001cde10 182d4454 fb210940 9a999999 9999e93f .-DT.!.@.......?\n 0x001cde20 4b657962 6f617264 20696e74 65727275 Keyboard interru\n 0x001cde30 70740000 00000000 6e756d70 792e7079 pt......numpy.py\n 0x001cde40 00000000 00000000 4d696372 6f507974 ........MicroPyt\n 0x001cde50 686f6e20 76312e31 32206f6e 20323032 hon v1.12 on 202\n- 0x001cde60 342d3031 2d30360a 00000000 00000000 4-01-06.........\n+ 0x001cde60 342d3031 2d30370a 00000000 00000000 4-01-07.........\n 0x001cde70 3e3e3e20 00000000 2e2e2e20 00000000 >>> ....... ....\n 0x001cde80 46415441 4c3a2075 6e636175 67687420 FATAL: uncaught \n 0x001cde90 4e4c5220 25700a00 2e2e2f70 792f6763 NLR %p..../py/gc\n 0x001cdea0 2e630000 00000000 4d505f53 54415445 .c......MP_STATE\n 0x001cdeb0 5f4d454d 2867635f 706f6f6c 5f737461 _MEM(gc_pool_sta\n 0x001cdec0 72742920 3e3d204d 505f5354 4154455f rt) >= MP_STATE_\n 0x001cded0 4d454d28 67635f66 696e616c 69736572 MEM(gc_finaliser\n"}, {"source1": "readelf --wide --decompress --hex-dump=.gnu_debuglink {}", "source2": "readelf --wide --decompress --hex-dump=.gnu_debuglink {}", "comments": ["error from `readelf --wide --decompress --hex-dump=.gnu_debuglink {}`:", "readelf: Error: Unable to find program interpreter name", "readelf: Error: no .dynamic section in the dynamic segment"], "unified_diff": "@@ -1,7 +1,7 @@\n \n Hex dump of section '.gnu_debuglink':\n- 0x00000000 30623535 62306530 38353661 63333663 0b55b0e0856ac36c\n- 0x00000010 30663265 35646263 62323736 37343234 0f2e5dbcb2767424\n- 0x00000020 33373864 61362e64 65627567 00000000 378da6.debug....\n- 0x00000030 23d8ee1d #...\n+ 0x00000000 34643962 35656665 33376533 64373839 4d9b5efe37e3d789\n+ 0x00000010 38333939 30303333 34306631 32373233 8399003340f12723\n+ 0x00000020 30666334 37372e64 65627567 00000000 0fc477.debug....\n+ 0x00000030 d44a732b .Js+\n \n"}]}]}]}]}, {"source1": "xcas-dbgsym_1.6.0.41+dfsg1-1_arm64.deb", "source2": "xcas-dbgsym_1.6.0.41+dfsg1-1_arm64.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2020-12-19 14:42:07.000000 debian-binary\n -rw-r--r-- 0 0 0 696 2020-12-19 14:42:07.000000 control.tar.xz\n--rw-r--r-- 0 0 0 9973072 2020-12-19 14:42:07.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 9974220 2020-12-19 14:42:07.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./control", "source2": "./control", "unified_diff": "@@ -5,8 +5,8 @@\n Architecture: arm64\n Maintainer: Debian Science Maintainers \n Installed-Size: 10576\n Depends: xcas (= 1.6.0.41+dfsg1-1)\n Section: debug\n Priority: optional\n Description: debug symbols for xcas\n-Build-Ids: 700b55b0e0856ac36c0f2e5dbcb2767424378da6 cdac7e3238121fae59880d2e38252a0dc0765ab8 fed986042d802e60b4fe2b66a9027f97c0d2fee3\n+Build-Ids: a04d9b5efe37e3d7898399003340f127230fc477 c2712e65890cd686dcca661916909aa96abe98dd cdac7e3238121fae59880d2e38252a0dc0765ab8\n"}, {"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}, {"source1": "line order", "source2": "line order", "unified_diff": "@@ -1,4 +1,4 @@\n-usr/lib/debug/.build-id/70/0b55b0e0856ac36c0f2e5dbcb2767424378da6.debug\n+usr/lib/debug/.build-id/a0/4d9b5efe37e3d7898399003340f127230fc477.debug\n+usr/lib/debug/.build-id/c2/712e65890cd686dcca661916909aa96abe98dd.debug\n usr/lib/debug/.build-id/cd/ac7e3238121fae59880d2e38252a0dc0765ab8.debug\n-usr/lib/debug/.build-id/fe/d986042d802e60b4fe2b66a9027f97c0d2fee3.debug\n usr/lib/debug/.dwz/aarch64-linux-gnu/xcas.debug\n"}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,17 +1,17 @@\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/\n-drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/70/\n--rw-r--r-- 0 root (0) root (0) 5054880 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/70/0b55b0e0856ac36c0f2e5dbcb2767424378da6.debug\n+drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/a0/\n+-rw-r--r-- 0 root (0) root (0) 5054880 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/a0/4d9b5efe37e3d7898399003340f127230fc477.debug\n+drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/c2/\n+-rw-r--r-- 0 root (0) root (0) 4819120 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/c2/712e65890cd686dcca661916909aa96abe98dd.debug\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/cd/\n -rw-r--r-- 0 root (0) root (0) 55312 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/cd/ac7e3238121fae59880d2e38252a0dc0765ab8.debug\n-drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/fe/\n--rw-r--r-- 0 root (0) root (0) 4819120 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/fe/d986042d802e60b4fe2b66a9027f97c0d2fee3.debug\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.dwz/\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.dwz/aarch64-linux-gnu/\n -rw-r--r-- 0 root (0) root (0) 883400 2020-12-19 14:42:07.000000 ./usr/lib/debug/.dwz/aarch64-linux-gnu/xcas.debug\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/doc/\n lrwxrwxrwx 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/doc/xcas-dbgsym -> xcas\n"}, {"source1": "./usr/lib/debug/.build-id/70/0b55b0e0856ac36c0f2e5dbcb2767424378da6.debug", "source2": "./usr/lib/debug/.build-id/a0/4d9b5efe37e3d7898399003340f127230fc477.debug", "comments": ["File has been modified after NT_GNU_BUILD_ID has been applied.", "Files 0% similar despite different names"], "unified_diff": null, "details": [{"source1": "readelf --wide --notes {}", "source2": "readelf --wide --notes {}", "comments": ["error from `readelf --wide --notes {}`:", "readelf: Error: Unable to find program interpreter name"], "unified_diff": "@@ -1,8 +1,8 @@\n \n Displaying notes found in: .note.gnu.build-id\n Owner Data size \tDescription\n- GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: 700b55b0e0856ac36c0f2e5dbcb2767424378da6\n+ GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: a04d9b5efe37e3d7898399003340f127230fc477\n \n Displaying notes found in: .note.ABI-tag\n Owner Data size \tDescription\n GNU 0x00000010\tNT_GNU_ABI_TAG (ABI version tag)\t OS: Linux, ABI: 3.7.0\n"}]}, {"source1": "./usr/lib/debug/.build-id/fe/d986042d802e60b4fe2b66a9027f97c0d2fee3.debug", "source2": "./usr/lib/debug/.build-id/c2/712e65890cd686dcca661916909aa96abe98dd.debug", "comments": ["File has been modified after NT_GNU_BUILD_ID has been applied.", "Files 0% similar despite different names"], "unified_diff": null, "details": [{"source1": "readelf --wide --notes {}", "source2": "readelf --wide --notes {}", "comments": ["error from `readelf --wide --notes {}`:", "readelf: Error: Unable to find program interpreter name"], "unified_diff": "@@ -1,8 +1,8 @@\n \n Displaying notes found in: .note.gnu.build-id\n Owner Data size \tDescription\n- GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: fed986042d802e60b4fe2b66a9027f97c0d2fee3\n+ GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: c2712e65890cd686dcca661916909aa96abe98dd\n \n Displaying notes found in: .note.ABI-tag\n Owner Data size \tDescription\n GNU 0x00000010\tNT_GNU_ABI_TAG (ABI version tag)\t OS: Linux, ABI: 3.7.0\n"}]}]}]}]}]}