{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.utlmc6FA/b1/giac_1.6.0.41+dfsg1-1_i386.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.utlmc6FA/b2/giac_1.6.0.41+dfsg1-1_i386.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,7 +1,7 @@\n \n- a8f5ae56feebb4f96da7630227f89ca8 10613112 doc optional giac-doc_1.6.0.41+dfsg1-1_all.deb\n+ b584f5a70c5a495186a50b2e65ca95c0 10612348 doc optional giac-doc_1.6.0.41+dfsg1-1_all.deb\n 13595342f55967a367bdb7243498a297 7250708 libdevel optional libgiac-dev_1.6.0.41+dfsg1-1_i386.deb\n 2fe52ab2ec1635157a223496eabb96d8 45618256 debug optional libgiac0-dbgsym_1.6.0.41+dfsg1-1_i386.deb\n 91f2a4b7be051f9ee0ea1bc804667a80 6574112 libs optional libgiac0_1.6.0.41+dfsg1-1_i386.deb\n- df01c92181bb38e44ea850155f280a23 9972456 debug optional xcas-dbgsym_1.6.0.41+dfsg1-1_i386.deb\n- 0acf8047eec89c43bf152c263f9cafc8 1451096 science optional xcas_1.6.0.41+dfsg1-1_i386.deb\n+ ebcb939d782b7492f7f33c63757713c7 9973968 debug optional xcas-dbgsym_1.6.0.41+dfsg1-1_i386.deb\n+ fe1fccd6018be167a2be7b24edc1beb6 1450840 science optional xcas_1.6.0.41+dfsg1-1_i386.deb\n"}, {"source1": "giac-doc_1.6.0.41+dfsg1-1_all.deb", "source2": "giac-doc_1.6.0.41+dfsg1-1_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2020-12-19 14:42:07.000000 debian-binary\n--rw-r--r-- 0 0 0 43804 2020-12-19 14:42:07.000000 control.tar.xz\n--rw-r--r-- 0 0 0 10569116 2020-12-19 14:42:07.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 43816 2020-12-19 14:42:07.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 10568340 2020-12-19 14:42:07.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1915,15 +1915,15 @@\n -rw-r--r-- 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/es/html_mtt\n -rw-r--r-- 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/es/html_vall\n -rw-r--r-- 0 root (0) root (0) 5223 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/es/keywords\n -rw-r--r-- 0 root (0) root (0) 2267 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/es/xcasex\n -rw-r--r-- 0 root (0) root (0) 33039 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/es/xcasmenu\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/fr/\n -rw-r--r-- 0 root (0) root (0) 1314973 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/fr/algo.html\n--rw-r--r-- 0 root (0) root (0) 1625766 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/fr/algo.pdf\n+-rw-r--r-- 0 root (0) root (0) 1626016 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/fr/algo.pdf\n -rw-r--r-- 0 root (0) root (0) 5341 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/fr/keywords\n -rw-r--r-- 0 root (0) root (0) 929 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/giac.js\n -rw-r--r-- 0 root (0) root (0) 42616 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/giac.tex\n -rw-r--r-- 0 root (0) root (0) 42678 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/giacfr.tex\n -rw-r--r-- 0 root (0) root (0) 1072 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/giacworker.js\n -rw-r--r-- 0 root (0) root (0) 2113587 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/graphtheory-user_manual.pdf\n -rw-r--r-- 0 root (0) root (0) 3058 2020-12-19 14:42:07.000000 ./usr/share/giac/doc/hevea.sty\n@@ -2090,15 +2090,15 @@\n -rw-r--r-- 0 root (0) root (0) 12949 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/prog/conformal.xws\n -rw-r--r-- 0 root (0) root (0) 4279 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/prog/exemple.xws\n -rw-r--r-- 0 root (0) root (0) 6007 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/prog/gauss_jordan.xws\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/spects/\n -rw-r--r-- 0 root (0) root (0) 8807 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/spects/pagerank.xws\n -rw-r--r-- 0 root (0) root (0) 76242 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/spects/spec_proie.xws\n -rw-r--r-- 0 root (0) root (0) 11863 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Exemples/spects/tpi.xws\n--rw-r--r-- 0 root (0) root (0) 24481 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Makefile\n+-rw-r--r-- 0 root (0) root (0) 24479 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Makefile\n -rw-r--r-- 0 root (0) root (0) 6621 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Makefile.am\n -rw-r--r-- 0 root (0) root (0) 24109 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/Makefile.in\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/arit/\n -rw-r--r-- 0 root (0) root (0) 738 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/arit/codage.cas\n -rw-r--r-- 0 root (0) root (0) 631 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/arit/estpremier\n -rw-r--r-- 0 root (0) root (0) 385 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/arit/horner\n -rw-r--r-- 0 root (0) root (0) 1352 2020-12-19 14:42:07.000000 ./usr/share/giac/examples/arit/inpg.cas\n"}, {"source1": "./usr/share/giac/doc/en/cas.ps", "source2": "./usr/share/giac/doc/en/cas.ps", "unified_diff": "@@ -11,15 +11,15 @@\n %%EndComments\n %%BeginDefaults\n %%ViewingOrientation: 1 0 0 1\n %%EndDefaults\n %DVIPSWebPage: (www.radicaleye.com)\n %DVIPSCommandLine: /usr/bin/dvips -o cas.ps cas.dvi\n %DVIPSParameters: dpi=600\n-%DVIPSSource: TeX output 2025.02.18:1146\n+%DVIPSSource: TeX output 2024.01.18:0757\n %%BeginProcSet: tex.pro 0 0\n %!\n /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S\n N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72\n mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0\n 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{\n landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize\n"}, {"source1": "./usr/share/giac/doc/en/cascmd_en.ps", "source2": "./usr/share/giac/doc/en/cascmd_en.ps", "has_internal_linenos": true, "unified_diff": "@@ -35,16 +35,16 @@\n 00000220: 5649 5053 436f 6d6d 616e 644c 696e 653a VIPSCommandLine:\n 00000230: 202f 7573 722f 6269 6e2f 6476 6970 7320 /usr/bin/dvips \n 00000240: 2d6f 2063 6173 636d 645f 656e 2e70 7320 -o cascmd_en.ps \n 00000250: 6361 7363 6d64 5f65 6e2e 6476 690a 2544 cascmd_en.dvi.%D\n 00000260: 5649 5053 5061 7261 6d65 7465 7273 3a20 VIPSParameters: \n 00000270: 6470 693d 3630 300a 2544 5649 5053 536f dpi=600.%DVIPSSo\n 00000280: 7572 6365 3a20 2054 6558 206f 7574 7075 urce: TeX outpu\n-00000290: 7420 3230 3235 2e30 322e 3138 3a31 3134 t 2025.02.18:114\n-000002a0: 370a 2525 4265 6769 6e50 726f 6353 6574 7.%%BeginProcSet\n+00000290: 7420 3230 3234 2e30 312e 3138 3a30 3735 t 2024.01.18:075\n+000002a0: 380a 2525 4265 6769 6e50 726f 6353 6574 8.%%BeginProcSet\n 000002b0: 3a20 7465 782e 7072 6f20 3020 300a 2521 : tex.pro 0 0.%!\n 000002c0: 0a2f 5465 5844 6963 7420 3330 3020 6469 ./TeXDict 300 di\n 000002d0: 6374 2064 6566 2054 6558 4469 6374 2062 ct def TeXDict b\n 000002e0: 6567 696e 2f4e 7b64 6566 7d64 6566 2f42 egin/N{def}def/B\n 000002f0: 7b62 696e 6420 6465 667d 4e2f 537b 6578 {bind def}N/S{ex\n 00000300: 6368 7d4e 2f58 7b53 0a4e 7d42 2f41 7b64 ch}N/X{S.N}B/A{d\n 00000310: 7570 7d42 2f54 527b 7472 616e 736c 6174 up}B/TR{translat\n"}, {"source1": "./usr/share/giac/doc/en/casinter.ps", "source2": "./usr/share/giac/doc/en/casinter.ps", "unified_diff": "@@ -8,15 +8,15 @@\n %%DocumentFonts: NimbusRomNo9L-Regu NimbusMonL-Regu NimbusRomNo9L-Medi\n %%+ CMEX10 CMMI10 CMR10 CMSY10 CMR7 CMSY7 CMMI7 CMMI5\n %%DocumentPaperSizes: Letter\n %%EndComments\n %DVIPSWebPage: (www.radicaleye.com)\n %DVIPSCommandLine: /usr/bin/dvips -o casinter.ps casinter.dvi\n %DVIPSParameters: dpi=600\n-%DVIPSSource: TeX output 2025.02.18:1146\n+%DVIPSSource: TeX output 2024.01.18:0757\n %%BeginProcSet: tex.pro 0 0\n %!\n /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S\n N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72\n mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0\n 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{\n landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize\n"}, {"source1": "./usr/share/giac/doc/fr/algo.pdf", "source2": "./usr/share/giac/doc/fr/algo.pdf", "unified_diff": null, "details": [{"source1": "pdftotext {} -", "source2": "pdftotext {} -", "comments": ["error from `pdftotext {} -`:", "Syntax Error (161): Unknown operator 'pagesize'", "Syntax Error (163): Unknown operator 'width'", "Syntax Error (173): Unknown operator 'pt'", "Syntax Error (175): Unknown operator 'height'", "Syntax Error (179): Unknown operator 'pt'"], "unified_diff": "@@ -2994,29 +2994,29 @@\n 55\n \n Comment g\u00e9n\u00e9rer des clefs\n On choisit p et q en utilisant le test de Miller-Rabin. Par exemple\n p:=nextprime(randint(10^150));q:=nextprime\n (randint(10^200));n:=p*q;\n \n-23798540417458464814700906746563109210846708899829017123335984276445552433157847315573460866\n+62449830190918876923075333825431409316424355656747095000073996661184943432787119241947415955\n On choisit un couple de clefs priv\u00e9e-publique en utilisant l\u2019identit\u00e9 de B\u00e9zout\n (ou inverse modulaire). Par exemple\n E:=65537; gcd(E,(p-1)*(q-1));d:=iegcd(E,\n (p-1)*(q-1))[0];\n \n-65537, 1, \u221216072984367595767506134760121406895589896324824807121674983621346104459528454344415\n+65537, 1, 1245269568617086306357409153539462989077462475908680557440451490797752026941138955897\n Ici, on a pris E de sorte que l\u2019exponentiation modulaire rapide \u00e0 la puissance E\n n\u00e9cessite peu d\u2019op\u00e9rations arithm\u00e9tiques (17), compar\u00e9 au calcul de la puissance\n d, ceci permet de faire l\u2019op\u00e9ration \u201cpublique\u201d plus rapidement (encodage ou v\u00e9rification d\u2019une signature) si le microprocesseur a peu de ressources (par exemple\n puce d\u2019une carte bancaire).\n a:=randint(123456789);b:=powmod(a,E,n);c:=powmod\n (b,d,n);\n \n-96513239, 104245630120927923638127783126318087284132798781803525909632404863218083479702539186\n+108940579, 15157651941963305079531814290725270939229869721605995739099336766637836155703888884\n Sur quoi repose la s\u00e9curit\u00e9 de RSA.\n \u2014 Difficult\u00e9 de factoriser n.\n Si on arrive \u00e0 factoriser n, tous les autres calculs se font en temps polynomial en ln(n) donc la clef est compromise. Il faut bien choisir p et q pour\n que certains algorithmes de factorisation ne puissent pas s\u2019appliquer. Par\n exemple choisir\n \n p:=nextprime(10^100):;q:=nextprime(10^101\n@@ -3260,23 +3260,23 @@\n 1. \u00c0 quelle vitesse votre logiciel multiplie-t-il des grands entiers (en fonction\n du nombre de chiffres) ? On pourra tester le temps de calcul du produit de\n a(a + 1) o\u00f9 a = 10000!, a = 15000!, etc. . M\u00eame question pour des polyn\u00f4mes en une variable (\u00e0 g\u00e9n\u00e9rer par exemple avec symb2poly(randpoly(n))\n ou avec poly1[op(ranm(.))]).\n n:=100; p:=symb2poly(randpoly(n)):; time(p*p);\n \u0002\n \u0003\n-100, \"Done\", 6.0 \u00d7 10\u22125 , 6.060351 \u00d7 10\u22125\n+100, \"Done\", 7.0 \u00d7 10\u22125 , 0.0001634517765\n 2. Comparer le temps de calcul de an (mod m) par la fonction powmod et\n la m\u00e9thode prendre le reste modulo m apr\u00e8s avoir calcul\u00e9 an .\n a:=123; n:=456; m:=789; time(powmod(a,n,m\n )); time(irem(a^n,m));\n \u0002\n \u0003 \u0002\n \u0003\n-123, 456, 789, 1.4 \u00d7 10\u22126 , 1.43419936 \u00d7 10\u22126 , 7.0 \u00d7 10\u22126 , 7.6419546 \u00d7 10\u22126\n+123, 456, 789, 1.9 \u00d7 10\u22126 , 4.3847116 \u00d7 10\u22126 , 1.2 \u00d7 10\u22125 , 2.57244535 \u00d7 10\u22125\n Programmez la m\u00e9thode rapide et la m\u00e9thode lente. Refaites la comparaison. Pour la m\u00e9thode rapide, programmer aussi la version it\u00e9rative utilisant\n la d\u00e9composition en base 2 de l\u2019exposant : on stocke dans une variable\n 0\n 1\n k\n locale b les puissances successives a2 (mod m), a2 (mod m), ..., a2\n (mod m), ..., on forme an (mod n) en prenant le produit modulo m de\n@@ -3307,15 +3307,15 @@\n (c) l\u2019inverse modulaire en ne calculant que ce qui est n\u00e9cessaire dans l\u2019algorithme de B\u00e9zout\n (d) les restes chinois\n 6. Construire un corps fini de cardinal 128 (GF), puis factoriser le polyn\u00f4me\n x2 \u2212 y o\u00f9 y est un \u00e9l\u00e9ment quelconque du corps fini. Comparer avec la\n \u221a\n valeur de y.\n GF(2,7);\n-GF (2, k 7 + k 5 + k 3 + k + 1, [k, K, g] , undef)\n+GF (2, k 7 + k 6 + k 5 + k 2 + 1, [k, K, g] , undef)\n 7. Utiliser la commande type ou whattype ou \u00e9quivalent pour d\u00e9terminer\n la repr\u00e9sentation utilis\u00e9e par le logiciel pour repr\u00e9senter une fraction, un\n nombre complexe, un flottant en pr\u00e9cision machine, un flottant avec 100\n d\u00e9cimales, la variable x, l\u2019expression sin(x) + 2, la fonction x->sin(x),\n une liste, une s\u00e9quence, un vecteur, une matrice. Essayez d\u2019acc\u00e9der aux\n parties de l\u2019objet pour les objets composites (en utilisant op par exemple).\n a:=sin(x)+2; type(a); a[0]; a[1]\n@@ -3386,15 +3386,15 @@\n \f3.14. EXERCICES SUR TYPES, CALCUL EXACT ET APPROCH\u00c9, ALGORITHMES DE BASES63\n 14. Que se passe-t-il si on essaie d\u2019appliquer l\u2019algorithme de la puissance rapide pour calculer (x + y + z + 1)k par exemple pour k = 64 ? Calculer le\n nombre de termes dans le d\u00e9veloppement de (x + y + z + 1)n et expliquez.\n \n time(normal((x+y+z+1)^30)); a:=normal((x+y+z+1\n )^15):; time(normal(a*a));\n \n-[0.008, 0.00823990665] , \"Done\", [0.026, 0.0317263358]\n+[0.011, 0.0233243299] , \"Done\", [0.032, 0.0335350614]\n \n 15. Programmation de la m\u00e9thode de Horner\n Il s\u2019agit d\u2019\u00e9valuer efficacement un polyn\u00f4me\n \n P (X) = an X n + ... + a0\n \n en un point. On pose b0 = P (\u03b1) et on \u00e9crit :\n@@ -5670,15 +5670,15 @@\n une localisation certifi\u00e9e des racines complexes.\n Q:=randpoly(5); M:=companion(Q); P,S:=schur(M):; S\n \uf8ee\n \n 0\n \uf8ef 1\n \uf8ef\n-x5 +96x4 +89x3 \u221232x2 +86x\u221212, \uf8ef\n+x5 \u221269x4 +60x3 +8x2 +77x\u221235, \uf8ef\n \uf8ef 0\n \uf8f0 0\n 0\n \n 0\n 0\n 1\n@@ -5689,63 +5689,70 @@\n 0\n 0\n 1\n 0\n \n \uf8ee\n \uf8f9\n-0.061850812812925\n-0 12\n-\uf8ef\n-0.88059002220498\n-0 \u221286 \uf8fa\n+\u22120.31492554767565\n+\u22121.0007\n+0 35\n+\uf8ef 0.72801529191142\n+\u22120.58706\n+0 \u221277 \uf8fa\n \uf8fa\n \uf8ef\n \uf8ef\n+0.0\n+4.113801133\n+0 \u22128 \uf8fa\n+,\n+\"Done\",\n+\uf8ef\n \uf8fa\n+\uf8fb\n+\uf8f0\n 0.0\n-\u22125.\n-0 32 \uf8fa , \"Done\", \uf8ef\n-\uf8f0 \u22123.6926700058381 \u00d7 10\u221225 \u22121.\n-0 \u221289 \uf8fb\n-1 \u221296\n-\u22123.0082010773353 \u00d7 10\u221216 \u22123.\n+0 \u221260\n+1 69\n+0.0\n+\u22121.63387923\n \n P*S*trn(P); P*trn(P);\n 1. cela se fait par une m\u00e9thode it\u00e9rative appel\u00e9e algorithme de Francis. On pose A0 , la forme de\n Hessenberg de M , puis on factorise An = QR par des sym\u00e9tries de Householder ou des rotations\n de Givens et on d\u00e9finit An+1 = RQ, le calcul de An+1 en fonction de An se fait sans expliciter la\n factorisation QR\n \n \f102\n \n CHAPITRE 7. LOCALISATION DES RACINES\n \n-\u22121.2653536895828 \u00d7 10\u221215 4.4452356321689 \u00d7 10\u221216 \u22128.5786766331999 \u00d7 10\u221216\n+1.4246513940773 \u00d7 10\u221215\n+\u22122.247599080038 \u00d7 10\u221216\n+1.5054693501212 \u00d7 10\u221215\n+\u221215\n \uf8ec\n 0.99999999999999\n-1.5705985339988 \u00d7 10\u221216 \u22123.0356076877983 \u00d7 10\u221215\n+1.5929214785187 \u00d7 10\n+\u22121.8168890599923 \u00d7 10\u221215\n \uf8ec\n-\uf8ec \u22125.0963733315242 \u00d7 10\u221216\n+\uf8ec 2.8542845412446 \u00d7 10\u221216\n 0.99999999999999\n-3.5773574671262 \u00d7 10\u221215\n+\u22124.1373279839407 \u00d7 10\u221215\n \uf8ec\n-\uf8ed 4.1976257611634 \u00d7 10\u221216 \u22127.3145520895722 \u00d7 10\u221216\n+\uf8ed \u22121.2727160653997 \u00d7 10\u221215 \u22121.4494181359767 \u00d7 10\u221215\n 0.99999999999999\n-\u221216\n-\u221216\n-7.0657737732187 \u00d7 10\n-1.5336751105134 \u00d7 10\n-2.9684015526643 \u00d7 10\u221216\n+1.2552450802844 \u00d7 10\u221216 \u22122.6679354081693 \u00d7 10\u221216 \u22123.5277228187247 \u00d7 10\u221217\n \uf8eb\n \n l:=proot(Q); z:=exact(l[0]); evalf(degree\n (Q)*Q(x=z)/Q\u2019(x=z),20)\n \n-[\u221295.060108795876, \u22121.5643645694058, 0.14367002546456, 0.24040166990867 \u2212 0.7098407\n+[\u22120.45099627376224 \u2212 0.84262507578938i, \u22120.45099627376224 + 0.84262507578938i, 0.40\n \n On peut aussi utiliser l\u2019arithm\u00e9tique d\u2019intervalles pour essayer de trouver\n un petit rectangle autour d\u2019une racine approch\u00e9e qui est conserv\u00e9 par la\n m\u00e9thode de Newton g(x) = x \u2212 f (x)/f 0 (x), le th\u00e9or\u00e8me du point fixe de\n Brouwer assure alors qu\u2019il admet un point fixe qui n\u2019est autre qu\u2019une racine\n de g.\n \n@@ -16045,15 +16052,15 @@\n f(t):=exp(-t^2); n:=1000; a:=0; b:=2.0;l:=ranv\n (n,uniformd,a,b):;\n 2\n \n t 7\u2192 e\u2212t , 1000, 0, 2.0, \"Done\"\n \n (b-a)*sum(apply(f,l))/n; int(f(t),t,a,b);\n-0.857712818101, 0.882081390762\n+0.870503280308, 0.882081390762\n La convergence en fonction de n est assez lente, on peut l\u2019observer en faisant plusieurs estimations :\n \n I:=seq(2*sum(apply(f,ranv(n,uniformd,a,b\n )))/n,500);\n \n \f20.11. M\u00c9THODES PROBABILISTES.\n \n@@ -16083,15 +16090,15 @@\n \n \u00132\n \n par exemple ici\n \n 2*sqrt(int(f(t)^2,t,0,2.)/2-(1/2*int(f(t\n ),t,0,2.))^2)/sqrt(n); stddevp(I);\n-0.0217983295084, 0.0218040620729\n+0.0217983295084, 0.0211606501919\n mais on ne fait pas ce calcul en pratique (puisqu\u2019il faudrait calculer une int\u00e9grale),\n \u221a\n on estime l\u2019\u00e9cart-type \u03c3/ n de la loi normale par l\u2019\u00e9cart-type de l\u2019\u00e9chantillon des\n estimations stddevp(I).\n \n histogram(I,0,0.01); plot(normald(mean(I\n ),stddevp(I),x),x=0.8..1)\n@@ -16105,15 +16112,15 @@\n \n 2\n \n t 7\u2192 e\u2212t , 1000, 0, 2.0, \"Done\"\n \n fl:=apply(f,l):;m:=(b-a)*mean(fl);s:=(b-a\n )*stddevp(fl)/sqrt(n);[m-2s,m+2s]\n-\"Done\", 0.86947253395, 0.0220016034907, [0.825469326969, 0.913475740932]\n+\"Done\", 0.907565487708, 0.0221948152248, [0.863175857258, 0.951955118158]\n Cette m\u00e9thode converge donc beaucoup moins vite que les quadratures, en dimension 1. Mais elle se g\u00e9n\u00e9ralise tr\u00e8s facilement en dimension plus grande en\n conservant la m\u00eame vitesse de convergence alors que le travail n\u00e9cessaire pour une\n m\u00e9thode de quadrature croit comme une puissance de la dimension, et ne n\u00e9cessite pas de param\u00e9trer des domaines d\u2019int\u00e9gration compliqu\u00e9s (il suffit par exemple\n d\u2019utiliser la m\u00e9thode du rejet pour avoir un g\u00e9n\u00e9rateur uniforme dans un domaine\n inclus dans un cube).\n \n \f264\n@@ -20042,25 +20049,25 @@\n On retrouve ce cas pour une petite perturbation d\u2019une matrice diagonale, par exemple\n \n n:=500;A:=2*idn(n)+1e-4*ranm(n,n,uniformd,-1,1\n ):;b:=seq(1,n):;\n 500, \"Done\", \"Done\"\n \n time(c:=linsolve(A,b));\n-[0.26, 0.244923434]\n+[0.29, 0.289887319]\n \n time(d:=jacobi(A,b,1e-12,50));\n-[0.26, 0.266802808]\n+[0.14, 0.148536663]\n \n \f318\n \n CHAPITRE 22. ALG\u00c8BRE LIN\u00c9AIRE\n \n maxnorm(d-c)\n-8.10018718767 \u00d7 10\u221213\n+8.31335000839 \u00d7 10\u221213\n Pour n assez grand, la m\u00e9thode de Jacobi devient plus rapide. Cela se v\u00e9rifie encore\n plus vite si A est une matrice creuse.\n Pour Gauss-Seidel, le calcul de M \u22121 n\u2019est pas effectu\u00e9, on r\u00e9soud directement\n le syst\u00e8me triangulaire M xn+1 = b + N xn soit\n (D + L)xn+1 = b \u2212 U xn\n Gauss-Seidel est moins adapt\u00e9 \u00e0 la parall\u00e9lisation que Jacobi. On adapte le programme pr\u00e9c\u00e9dent\n seidel(A,b,N,eps):={\n@@ -23038,26 +23045,26 @@\n \n exp(a);\n 1 + h + h8 order_size (h)\n Pour travailler avec un autre corps de base, il suffit de donner des coefficients dans\n ce corps. Si la caract\u00e9ristique du corps est assez grande, les fonctions usuelles sont\n aussi applicables.\n GF(11,3);\n-GF (11, k 3 + k 2 + 2k \u2212 2, [k, K, g] , undef)\n+GF (11, k 3 \u2212 5k 2 \u2212 4k + 4, [k, K, g] , undef)\n \n \f24.8. S\u00c9RIES FORMELLES.\n \n 363\n \n a:=ln(1+g*h+O(h^6));\n \u0001\n \u0001\n \u0001\n \u0001\n-(g) h+ 5 \u00b7 g 2 h2 + (\u22124 \u00b7 g 2 + 3 \u00b7 g \u2212 3) h3 + (3 \u00b7 g 2 \u2212 g \u2212 5) h4 + (g 2 + 4) h5 +h6 order_size (h)\n+(g) h+ 5 \u00b7 g 2 h2 + (\u22122 \u00b7 g 2 + 5 \u00b7 g \u2212 5) h3 + (g 2 \u2212 4 \u00b7 g + 5) h4 + (\u22123 \u00b7 g 2 \u2212 5 \u00b7 g + 1) h5 +h6 order_size (h\n exp(a);\n 1 + (g) h + h6 order_size (h)\n Les op\u00e9rations sur les s\u00e9ries sont impl\u00e9ment\u00e9es sans optimisation particuli\u00e8re,\n leur utilisation principale dans Xcas \u00e9tant le calcul de d\u00e9veloppement de Taylor ou\n asymptotique sur Q.\n \n \f364CHAPITRE 24. D\u00c9VELOPPEMENT DE TAYLOR, ASYMPTOTIQUES, S\u00c9RIES ENTI\u00c8RES, FON\n@@ -23491,31 +23498,32 @@\n g;r:=powmod(g,7,p);\n 3, 2187\n puis en prenant la puissance 2n\u2212k -i\u00e8me de r on obtient une racine 2k -i\u00e8me de 1 qui\n permettra de multiplier deux polyn\u00f4mes dont la somme des degr\u00e9s est strictement\n inf\u00e9rieure \u00e0 2k , par exemple pour a et b de degr\u00e9s 5 et 7, on prendra k = 4\n a:=randpoly(5,[]); b:=randpoly(7,[]);w:=powmod\n (r,2^16,p);\n-[1, 18, \u221280, \u22126, 70, \u22125] , [1, 59, \u221226, \u221263, 1, \u221281, \u221216, \u221210] , 5712452\n+[1, \u221243, \u221243, \u221221, 9, 26] , [1, 87, 23, \u221247, \u221269, \u221279, 55, \u221265] , 5712452\n on allonge a et b avec des 0 pour les amener \u00e0 la taille 16 = 2k\n ar:=[op(a),op(seq(0,(16-size(a))))];br:=\n [op(b),op(seq(0,(16-size(b))))]\n-[1, 18, \u221280, \u22126, 70, \u22125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 59, \u221226, \u221263, 1, \u221281, \u221216, \u221210, 0, 0, 0, 0, 0, 0, 0, 0]\n+[1, \u221243, \u221243, \u221221, 9, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 87, 23, \u221247, \u221269, \u221279, 55, \u221265, 0, 0, 0, 0, 0, 0, 0, 0]\n on calcule les transform\u00e9es de Fourier rapide de a et b\n A:=fft(ar,w,p); B:=fft(br,w,p);\n-[7340031, 556474, 3442846, 1112468, 221067, 1696092, 5874983, 880860, 7340017, 3866935, 5899879, 3481343,\n+\n+[7339962, 4541139, 1097266, 6301992, 5455007, 4964041, 3974902, 50833, 5, 5365550, 6401768, 1850136, 18851\n puis on fait le produit terme \u00e0 terme et on applique la transform\u00e9e de Fourier inverse\n C:=irem(A.*B,p); c:=ifft(C,w,p);\n \n-[270, 2594974, 1238169, 3755571, 4618928, 6553813, 734572, 2142395, 7339153, 7006649, 4257711, 7175703, 27\n+[6674, 3564545, 6260027, 3135884, 1089949, 2193846, 6548182, 1501712, 570, 4720205, 508267, 5702178, 62336\n On peut comparer avec le produit calcul\u00e9 par Xcas\n a*b;\n-[1, 77, 956, \u22125257, 663, 9258, \u22123291, 1896, 1971, \u22124779, \u2212655, \u2212620, 50]\n+[1, 44, \u22123761, \u22124798, \u2212855, 5235, 9875, 2591, 246, \u2212865, \u2212194, 845, \u22121690]\n smod(c,p);\n-[1, 77, 956, \u22125257, 663, 9258, \u22123291, 1896, 1971, \u22124779, \u2212655, \u2212620, 50, 0, 0, 0]\n+[1, 44, \u22123761, \u22124798, \u2212855, 5235, 9875, 2591, 246, \u2212865, \u2212194, 845, \u22121690, 0, 0, 0]\n Bien entendu les tailles de a et b prises ici en exemple sont trop petites pour que\n l\u2019algorithme soit efficace.\n \n \f370\n \n CHAPITRE 25. LA TRANSFORM\u00c9E DE FOURIER DISCR\u00c8TE.\n \n"}]}, {"source1": "./usr/share/giac/examples/Makefile", "source2": "./usr/share/giac/examples/Makefile", "unified_diff": "@@ -288,15 +288,15 @@\n PATH_SEPARATOR = :\n PDFLATEX = /usr/bin/pdflatex\n POSUB = po\n RANLIB = ranlib\n SAMPLERATE_LIBS = \n SED = /bin/sed\n SET_MAKE = \n-SHELL = /bin/bash\n+SHELL = /bin/sh\n STRIP = strip\n USE_INCLUDED_LIBINTL = no\n USE_NLS = yes\n VERSION = 1.6.0\n XGETTEXT = /usr/bin/xgettext\n XMKMF = \n X_CFLAGS = \n"}]}]}]}, {"source1": "xcas_1.6.0.41+dfsg1-1_i386.deb", "source2": "xcas_1.6.0.41+dfsg1-1_i386.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2020-12-19 14:42:07.000000 debian-binary\n -rw-r--r-- 0 0 0 1672 2020-12-19 14:42:07.000000 control.tar.xz\n--rw-r--r-- 0 0 0 1449232 2020-12-19 14:42:07.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 1448976 2020-12-19 14:42:07.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "./usr/bin/icas", "source2": "./usr/bin/icas", "comments": ["File has been modified after NT_GNU_BUILD_ID has been applied."], "unified_diff": null, "details": [{"source1": "readelf --wide --notes {}", "source2": "readelf --wide --notes {}", "unified_diff": "@@ -1,8 +1,8 @@\n \n Displaying notes found in: .note.gnu.build-id\n Owner Data size \tDescription\n- GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: abae84a97b2cde63a9c7276ca974be6c1194e796\n+ GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: 23710cf7582cc0046bca14525efc94a33f2ccae2\n \n Displaying notes found in: .note.ABI-tag\n Owner Data size \tDescription\n GNU 0x00000010\tNT_GNU_ABI_TAG (ABI version tag)\t OS: Linux, ABI: 3.2.0\n"}, {"source1": "strings --all --bytes=8 {}", "source2": "strings --all --bytes=8 {}", "unified_diff": "@@ -2696,15 +2696,15 @@\n vector([%.14g,%.14g],[%.14g,%.14g],color=%i):;\n vector: Bad argument type\n scatterplot(%s,%s,color=%i):;\n linear_regression_plot(%s,%s,color=%i):;\n scatterplot: Bad argument type\n ?Keyboard interrupt\n numpy.py\n-MicroPython v1.12 on 2025-02-18\n+MicroPython v1.12 on 2024-01-18\n FATAL: uncaught NLR %p\n zD../py/gc.c\n VERIFY_PTR(ptr)\n ATB_GET_KIND(bl) == AT_FREE\n GC memory layout; from %p:\n (%u lines all free)\n MP_STATE_MEM(gc_pool_start) >= MP_STATE_MEM(gc_finaliser_table_start) + gc_finaliser_table_byte_len\n"}, {"source1": "readelf --wide --decompress --hex-dump=.rodata {}", "source2": "readelf --wide --decompress --hex-dump=.rodata {}", "unified_diff": "@@ -3186,15 +3186,15 @@\n 0x001db6f0 6c6f743a 20426164 20617267 756d656e lot: Bad argumen\n 0x001db700 74207479 70650000 00000000 00007040 t type........p@\n 0x001db710 182d4454 fb210940 00000000 00806640 .-DT.!.@......f@\n 0x001db720 00000000 0000e041 9a999999 9999e93f .......A.......?\n 0x001db730 4b657962 6f617264 20696e74 65727275 Keyboard interru\n 0x001db740 7074006e 756d7079 2e707900 4d696372 pt.numpy.py.Micr\n 0x001db750 6f507974 686f6e20 76312e31 32206f6e oPython v1.12 on\n- 0x001db760 20323032 352d3032 2d31380a 003e3e3e 2025-02-18..>>>\n+ 0x001db760 20323032 342d3031 2d31380a 003e3e3e 2024-01-18..>>>\n 0x001db770 20002e2e 2e200046 4154414c 3a20756e .... .FATAL: un\n 0x001db780 63617567 6874204e 4c522025 700a0000 caught NLR %p...\n 0x001db790 00000000 80842e41 00007a44 2e2e2f70 .......A..zD../p\n 0x001db7a0 792f6763 2e630056 45524946 595f5054 y/gc.c.VERIFY_PT\n 0x001db7b0 52287074 72290041 54425f47 45545f4b R(ptr).ATB_GET_K\n 0x001db7c0 494e4428 626c2920 3d3d2041 545f4652 IND(bl) == AT_FR\n 0x001db7d0 45450047 43206d65 6d6f7279 206c6179 EE.GC memory lay\n"}, {"source1": "readelf --wide --decompress --hex-dump=.gnu_debuglink {}", "source2": "readelf --wide --decompress --hex-dump=.gnu_debuglink {}", "comments": ["error from `readelf --wide --decompress --hex-dump=.gnu_debuglink {}`:", "readelf: Error: Unable to find program interpreter name", "readelf: Error: no .dynamic section in the dynamic segment"], "unified_diff": "@@ -1,7 +1,7 @@\n \n Hex dump of section '.gnu_debuglink':\n- 0x00000000 61653834 61393762 32636465 36336139 ae84a97b2cde63a9\n- 0x00000010 63373237 36636139 37346265 36633131 c7276ca974be6c11\n- 0x00000020 39346537 39362e64 65627567 00000000 94e796.debug....\n- 0x00000030 ab531b81 .S..\n+ 0x00000000 37313063 66373538 32636330 30343662 710cf7582cc0046b\n+ 0x00000010 63613134 35323565 66633934 61333366 ca14525efc94a33f\n+ 0x00000020 32636361 65322e64 65627567 00000000 2ccae2.debug....\n+ 0x00000030 648ded37 d..7\n \n"}]}, {"source1": "./usr/bin/xcas", "source2": "./usr/bin/xcas", "unified_diff": null, "details": [{"source1": "readelf --wide --notes {}", "source2": "readelf --wide --notes {}", "unified_diff": "@@ -1,8 +1,8 @@\n \n Displaying notes found in: .note.gnu.build-id\n Owner Data size \tDescription\n- GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: 153f59300ac3181bcebfd4fb3788dae6cec336db\n+ GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: f5db2a568725c97418e4a2a689ed87a72897af0c\n \n Displaying notes found in: .note.ABI-tag\n Owner Data size \tDescription\n GNU 0x00000010\tNT_GNU_ABI_TAG (ABI version tag)\t OS: Linux, ABI: 3.2.0\n"}, {"source1": "strings --all --bytes=8 {}", "source2": "strings --all --bytes=8 {}", "unified_diff": "@@ -2997,15 +2997,15 @@\n vector([%.14g,%.14g],[%.14g,%.14g],color=%i):;\n vector: Bad argument type\n scatterplot(%s,%s,color=%i):;\n linear_regression_plot(%s,%s,color=%i):;\n scatterplot: Bad argument type\n ?Keyboard interrupt\n numpy.py\n-MicroPython v1.12 on 2025-02-18\n+MicroPython v1.12 on 2024-01-18\n FATAL: uncaught NLR %p\n zD../py/gc.c\n VERIFY_PTR(ptr)\n ATB_GET_KIND(bl) == AT_FREE\n GC memory layout; from %p:\n (%u lines all free)\n MP_STATE_MEM(gc_pool_start) >= MP_STATE_MEM(gc_finaliser_table_start) + gc_finaliser_table_byte_len\n"}, {"source1": "readelf --wide --decompress --hex-dump=.rodata {}", "source2": "readelf --wide --decompress --hex-dump=.rodata {}", "unified_diff": "@@ -3766,15 +3766,15 @@\n 0x001efb30 6c6f743a 20426164 20617267 756d656e lot: Bad argumen\n 0x001efb40 74207479 70650000 00000000 00007040 t type........p@\n 0x001efb50 182d4454 fb210940 00000000 00806640 .-DT.!.@......f@\n 0x001efb60 00000000 0000e041 9a999999 9999e93f .......A.......?\n 0x001efb70 4b657962 6f617264 20696e74 65727275 Keyboard interru\n 0x001efb80 7074006e 756d7079 2e707900 4d696372 pt.numpy.py.Micr\n 0x001efb90 6f507974 686f6e20 76312e31 32206f6e oPython v1.12 on\n- 0x001efba0 20323032 352d3032 2d31380a 003e3e3e 2025-02-18..>>>\n+ 0x001efba0 20323032 342d3031 2d31380a 003e3e3e 2024-01-18..>>>\n 0x001efbb0 20002e2e 2e200046 4154414c 3a20756e .... .FATAL: un\n 0x001efbc0 63617567 6874204e 4c522025 700a0000 caught NLR %p...\n 0x001efbd0 00000000 80842e41 00007a44 2e2e2f70 .......A..zD../p\n 0x001efbe0 792f6763 2e630056 45524946 595f5054 y/gc.c.VERIFY_PT\n 0x001efbf0 52287074 72290041 54425f47 45545f4b R(ptr).ATB_GET_K\n 0x001efc00 494e4428 626c2920 3d3d2041 545f4652 IND(bl) == AT_FR\n 0x001efc10 45450047 43206d65 6d6f7279 206c6179 EE.GC memory lay\n"}, {"source1": "readelf --wide --decompress --hex-dump=.gnu_debuglink {}", "source2": "readelf --wide --decompress --hex-dump=.gnu_debuglink {}", "comments": ["error from `readelf --wide --decompress --hex-dump=.gnu_debuglink {}`:", "readelf: Error: Unable to find program interpreter name", "readelf: Error: no .dynamic section in the dynamic segment"], "unified_diff": "@@ -1,7 +1,7 @@\n \n Hex dump of section '.gnu_debuglink':\n- 0x00000000 33663539 33303061 63333138 31626365 3f59300ac3181bce\n- 0x00000010 62666434 66623337 38386461 65366365 bfd4fb3788dae6ce\n- 0x00000020 63333336 64622e64 65627567 00000000 c336db.debug....\n- 0x00000030 de896652 ..fR\n+ 0x00000000 64623261 35363837 32356339 37343138 db2a568725c97418\n+ 0x00000010 65346132 61363839 65643837 61373238 e4a2a689ed87a728\n+ 0x00000020 39376166 30632e64 65627567 00000000 97af0c.debug....\n+ 0x00000030 c7b48184 ....\n \n"}]}]}]}]}, {"source1": "xcas-dbgsym_1.6.0.41+dfsg1-1_i386.deb", "source2": "xcas-dbgsym_1.6.0.41+dfsg1-1_i386.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2020-12-19 14:42:07.000000 debian-binary\n -rw-r--r-- 0 0 0 696 2020-12-19 14:42:07.000000 control.tar.xz\n--rw-r--r-- 0 0 0 9971568 2020-12-19 14:42:07.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 9973080 2020-12-19 14:42:07.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./control", "source2": "./control", "unified_diff": "@@ -5,8 +5,8 @@\n Architecture: i386\n Maintainer: Debian Science Maintainers \n Installed-Size: 10493\n Depends: xcas (= 1.6.0.41+dfsg1-1)\n Section: debug\n Priority: optional\n Description: debug symbols for xcas\n-Build-Ids: 153f59300ac3181bcebfd4fb3788dae6cec336db abae84a97b2cde63a9c7276ca974be6c1194e796 e26fe0a1dcb285d75e0efe02c8a7a2ff3164bc1d\n+Build-Ids: 23710cf7582cc0046bca14525efc94a33f2ccae2 e26fe0a1dcb285d75e0efe02c8a7a2ff3164bc1d f5db2a568725c97418e4a2a689ed87a72897af0c\n"}, {"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}, {"source1": "line order", "source2": "line order", "unified_diff": "@@ -1,4 +1,4 @@\n-usr/lib/debug/.build-id/15/3f59300ac3181bcebfd4fb3788dae6cec336db.debug\n-usr/lib/debug/.build-id/ab/ae84a97b2cde63a9c7276ca974be6c1194e796.debug\n+usr/lib/debug/.build-id/23/710cf7582cc0046bca14525efc94a33f2ccae2.debug\n usr/lib/debug/.build-id/e2/6fe0a1dcb285d75e0efe02c8a7a2ff3164bc1d.debug\n+usr/lib/debug/.build-id/f5/db2a568725c97418e4a2a689ed87a72897af0c.debug\n usr/lib/debug/.dwz/i386-linux-gnu/xcas.debug\n"}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,17 +1,17 @@\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/\n-drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/15/\n--rw-r--r-- 0 root (0) root (0) 5023012 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/15/3f59300ac3181bcebfd4fb3788dae6cec336db.debug\n-drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/ab/\n--rw-r--r-- 0 root (0) root (0) 4767988 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/ab/ae84a97b2cde63a9c7276ca974be6c1194e796.debug\n+drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/23/\n+-rw-r--r-- 0 root (0) root (0) 4767988 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/23/710cf7582cc0046bca14525efc94a33f2ccae2.debug\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/e2/\n -rw-r--r-- 0 root (0) root (0) 49896 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/e2/6fe0a1dcb285d75e0efe02c8a7a2ff3164bc1d.debug\n+drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/f5/\n+-rw-r--r-- 0 root (0) root (0) 5023012 2020-12-19 14:42:07.000000 ./usr/lib/debug/.build-id/f5/db2a568725c97418e4a2a689ed87a72897af0c.debug\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.dwz/\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/lib/debug/.dwz/i386-linux-gnu/\n -rw-r--r-- 0 root (0) root (0) 887356 2020-12-19 14:42:07.000000 ./usr/lib/debug/.dwz/i386-linux-gnu/xcas.debug\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/\n drwxr-xr-x 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/doc/\n lrwxrwxrwx 0 root (0) root (0) 0 2020-12-19 14:42:07.000000 ./usr/share/doc/xcas-dbgsym -> xcas\n"}, {"source1": "./usr/lib/debug/.build-id/15/3f59300ac3181bcebfd4fb3788dae6cec336db.debug", "source2": "./usr/lib/debug/.build-id/f5/db2a568725c97418e4a2a689ed87a72897af0c.debug", "comments": ["Files 0% similar despite different names"], "unified_diff": null, "details": [{"source1": "readelf --wide --notes {}", "source2": "readelf --wide --notes {}", "comments": ["error from `readelf --wide --notes {}`:", "readelf: Error: Unable to find program interpreter name"], "unified_diff": "@@ -1,8 +1,8 @@\n \n Displaying notes found in: .note.gnu.build-id\n Owner Data size \tDescription\n- GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: 153f59300ac3181bcebfd4fb3788dae6cec336db\n+ GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: f5db2a568725c97418e4a2a689ed87a72897af0c\n \n Displaying notes found in: .note.ABI-tag\n Owner Data size \tDescription\n GNU 0x00000010\tNT_GNU_ABI_TAG (ABI version tag)\t OS: Linux, ABI: 3.2.0\n"}]}, {"source1": "./usr/lib/debug/.build-id/ab/ae84a97b2cde63a9c7276ca974be6c1194e796.debug", "source2": "./usr/lib/debug/.build-id/23/710cf7582cc0046bca14525efc94a33f2ccae2.debug", "comments": ["File has been modified after NT_GNU_BUILD_ID has been applied.", "Files 0% similar despite different names"], "unified_diff": null, "details": [{"source1": "readelf --wide --notes {}", "source2": "readelf --wide --notes {}", "comments": ["error from `readelf --wide --notes {}`:", "readelf: Error: Unable to find program interpreter name"], "unified_diff": "@@ -1,8 +1,8 @@\n \n Displaying notes found in: .note.gnu.build-id\n Owner Data size \tDescription\n- GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: abae84a97b2cde63a9c7276ca974be6c1194e796\n+ GNU 0x00000014\tNT_GNU_BUILD_ID (unique build ID bitstring)\t Build ID: 23710cf7582cc0046bca14525efc94a33f2ccae2\n \n Displaying notes found in: .note.ABI-tag\n Owner Data size \tDescription\n GNU 0x00000010\tNT_GNU_ABI_TAG (ABI version tag)\t OS: Linux, ABI: 3.2.0\n"}]}]}]}]}]}