{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.JUrBIH7z/b1/vlfeat_0.9.21+full-2.1~exp1_amd64.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.JUrBIH7z/b2/vlfeat_0.9.21+full-2.1~exp1_amd64.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,6 +1,6 @@\n \n b0b915e331b1dacbb816521e852aeef8 39944 libdevel optional libvlfeat-dev_0.9.21+full-2.1~exp1_amd64.deb\n- 4044cb17b43e8d17718e0da64762228c 1732084 doc optional libvlfeat-doc_0.9.21+full-2.1~exp1_all.deb\n+ f51d9a760b4fd37c8d41ea0c94b6d6f3 1732092 doc optional libvlfeat-doc_0.9.21+full-2.1~exp1_all.deb\n 36702a8c99fc1b948617ad000e19c2e7 412396 debug optional libvlfeat1t64-dbgsym_0.9.21+full-2.1~exp1_amd64.deb\n fe1935317d965774f73cdc991191e401 157040 libs optional libvlfeat1t64_0.9.21+full-2.1~exp1_amd64.deb\n 5698383b5f4652308c48d4846c2f54ac 1604676 libs optional octave-vlfeat_0.9.21+full-2.1~exp1_amd64.deb\n"}, {"source1": "libvlfeat-doc_0.9.21+full-2.1~exp1_all.deb", "source2": "libvlfeat-doc_0.9.21+full-2.1~exp1_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2024-02-04 18:27:01.000000 debian-binary\n--rw-r--r-- 0 0 0 15224 2024-02-04 18:27:01.000000 control.tar.xz\n--rw-r--r-- 0 0 0 1716668 2024-02-04 18:27:01.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 15220 2024-02-04 18:27:01.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 1716680 2024-02-04 18:27:01.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -447,55 +447,55 @@\n -rw-r--r-- 0 root (0) root (0) 10585 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/demo/vl_demo_sift_edge.html\n -rw-r--r-- 0 root (0) root (0) 13424 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/demo/vl_demo_sift_match.html\n -rw-r--r-- 0 root (0) root (0) 8563 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/demo/vl_demo_sift_or.html\n -rw-r--r-- 0 root (0) root (0) 11081 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/demo/vl_demo_sift_peak.html\n -rw-r--r-- 0 root (0) root (0) 20884 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/demo/vl_demo_sift_vs_ubc.html\n -rw-r--r-- 0 root (0) root (0) 13230 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/demo/vl_demo_slic.html\n -rw-r--r-- 0 root (0) root (0) 10940 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/demo/vl_demo_svm.html\n--rw-r--r-- 0 root (0) root (0) 1197 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/helptoc.xml.gz\n+-rw-r--r-- 0 root (0) root (0) 1194 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/helptoc.xml.gz\n -rw-r--r-- 0 root (0) root (0) 13825 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/matlab.html\n--rw-r--r-- 0 root (0) root (0) 5752 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_aib.html\n+-rw-r--r-- 0 root (0) root (0) 5753 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_aib.html\n -rw-r--r-- 0 root (0) root (0) 4244 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_aibcut.html\n -rw-r--r-- 0 root (0) root (0) 3592 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_aibcuthist.html\n -rw-r--r-- 0 root (0) root (0) 2959 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_aibcutpush.html\n--rw-r--r-- 0 root (0) root (0) 3403 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_aibhist.html\n--rw-r--r-- 0 root (0) root (0) 4852 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_alldist2.html\n+-rw-r--r-- 0 root (0) root (0) 3361 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_aibhist.html\n+-rw-r--r-- 0 root (0) root (0) 4850 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_alldist2.html\n -rw-r--r-- 0 root (0) root (0) 3457 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_alphanum.html\n -rw-r--r-- 0 root (0) root (0) 5302 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_argparse.html\n -rw-r--r-- 0 root (0) root (0) 3351 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_binsearch.html\n -rw-r--r-- 0 root (0) root (0) 4365 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_binsum.html\n--rw-r--r-- 0 root (0) root (0) 2972 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_cf.html\n+-rw-r--r-- 0 root (0) root (0) 2976 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_cf.html\n -rw-r--r-- 0 root (0) root (0) 3546 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_click.html\n -rw-r--r-- 0 root (0) root (0) 3690 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_clickpoint.html\n -rw-r--r-- 0 root (0) root (0) 3134 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_clicksegment.html\n -rw-r--r-- 0 root (0) root (0) 3772 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_colsubset.html\n -rw-r--r-- 0 root (0) root (0) 3635 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_compile.html\n--rw-r--r-- 0 root (0) root (0) 11737 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_covdet.html\n+-rw-r--r-- 0 root (0) root (0) 11733 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_covdet.html\n -rw-r--r-- 0 root (0) root (0) 3456 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_cummax.html\n -rw-r--r-- 0 root (0) root (0) 3107 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_ddgaussian.html\n -rw-r--r-- 0 root (0) root (0) 2837 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_demo.html\n -rw-r--r-- 0 root (0) root (0) 3564 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_det.html\n -rw-r--r-- 0 root (0) root (0) 3077 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_dgaussian.html\n -rw-r--r-- 0 root (0) root (0) 8296 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_dsift.html\n -rw-r--r-- 0 root (0) root (0) 3042 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_dsigmoid.html\n--rw-r--r-- 0 root (0) root (0) 2973 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_dwaffine.html\n--rw-r--r-- 0 root (0) root (0) 3119 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_erfill.html\n+-rw-r--r-- 0 root (0) root (0) 2976 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_dwaffine.html\n+-rw-r--r-- 0 root (0) root (0) 3117 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_erfill.html\n -rw-r--r-- 0 root (0) root (0) 3077 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_ertr.html\n -rw-r--r-- 0 root (0) root (0) 2997 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_figaspect.html\n--rw-r--r-- 0 root (0) root (0) 4315 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_fisher.html\n--rw-r--r-- 0 root (0) root (0) 2995 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_flatmap.html\n+-rw-r--r-- 0 root (0) root (0) 4312 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_fisher.html\n+-rw-r--r-- 0 root (0) root (0) 2998 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_flatmap.html\n -rw-r--r-- 0 root (0) root (0) 3962 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_frame2oell.html\n -rw-r--r-- 0 root (0) root (0) 3071 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_gaussian.html\n -rw-r--r-- 0 root (0) root (0) 3010 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_getpid.html\n--rw-r--r-- 0 root (0) root (0) 5260 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_gmm.html\n+-rw-r--r-- 0 root (0) root (0) 5258 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_gmm.html\n -rw-r--r-- 0 root (0) root (0) 3613 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_grad.html\n -rw-r--r-- 0 root (0) root (0) 5491 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_harris.html\n--rw-r--r-- 0 root (0) root (0) 2899 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_hat.html\n+-rw-r--r-- 0 root (0) root (0) 2896 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_hat.html\n -rw-r--r-- 0 root (0) root (0) 3438 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_help.html\n--rw-r--r-- 0 root (0) root (0) 4137 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_hikmeans.html\n+-rw-r--r-- 0 root (0) root (0) 4136 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_hikmeans.html\n -rw-r--r-- 0 root (0) root (0) 3760 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_hikmeanshist.html\n -rw-r--r-- 0 root (0) root (0) 3335 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_hikmeanspush.html\n -rw-r--r-- 0 root (0) root (0) 3151 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_histmarg.html\n -rw-r--r-- 0 root (0) root (0) 4464 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_hog.html\n -rw-r--r-- 0 root (0) root (0) 5249 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_homkermap.html\n -rw-r--r-- 0 root (0) root (0) 3040 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_ihashfind.html\n -rw-r--r-- 0 root (0) root (0) 4833 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_ihashsum.html\n@@ -526,15 +526,15 @@\n -rw-r--r-- 0 root (0) root (0) 5314 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_kmeans.html\n -rw-r--r-- 0 root (0) root (0) 3207 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_lbp.html\n -rw-r--r-- 0 root (0) root (0) 3123 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_lbpfliplr.html\n -rw-r--r-- 0 root (0) root (0) 3104 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_linespec2prop.html\n -rw-r--r-- 0 root (0) root (0) 4250 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_liop.html\n -rw-r--r-- 0 root (0) root (0) 4465 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_localmax.html\n -rw-r--r-- 0 root (0) root (0) 3108 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_matlabversion.html\n--rw-r--r-- 0 root (0) root (0) 5681 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_mser.html\n+-rw-r--r-- 0 root (0) root (0) 5687 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_mser.html\n -rw-r--r-- 0 root (0) root (0) 3066 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_noprefix.html\n -rw-r--r-- 0 root (0) root (0) 3115 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_numder.html\n -rw-r--r-- 0 root (0) root (0) 3045 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_numder2.html\n -rw-r--r-- 0 root (0) root (0) 4352 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_override.html\n -rw-r--r-- 0 root (0) root (0) 2785 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_pegasos.html\n -rw-r--r-- 0 root (0) root (0) 5355 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_phow.html\n -rw-r--r-- 0 root (0) root (0) 3679 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_plotbox.html\n@@ -544,48 +544,48 @@\n -rw-r--r-- 0 root (0) root (0) 4079 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_plotsiftdescriptor.html\n -rw-r--r-- 0 root (0) root (0) 5262 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_plotss.html\n -rw-r--r-- 0 root (0) root (0) 3812 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_plotstyle.html\n -rw-r--r-- 0 root (0) root (0) 8213 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_pr.html\n -rw-r--r-- 0 root (0) root (0) 5514 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_printsize.html\n -rw-r--r-- 0 root (0) root (0) 2805 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_quickseg.html\n -rw-r--r-- 0 root (0) root (0) 4388 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_quickshift.html\n--rw-r--r-- 0 root (0) root (0) 3987 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_quickvis.html\n+-rw-r--r-- 0 root (0) root (0) 3983 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_quickvis.html\n -rw-r--r-- 0 root (0) root (0) 2829 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_rcos.html\n -rw-r--r-- 0 root (0) root (0) 3233 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_rgb2xyz.html\n -rw-r--r-- 0 root (0) root (0) 8220 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_roc.html\n--rw-r--r-- 0 root (0) root (0) 3426 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_rodr.html\n+-rw-r--r-- 0 root (0) root (0) 3429 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_rodr.html\n -rw-r--r-- 0 root (0) root (0) 2848 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_root.html\n -rw-r--r-- 0 root (0) root (0) 3477 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_sampleinthist.html\n--rw-r--r-- 0 root (0) root (0) 3370 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_setup.html\n+-rw-r--r-- 0 root (0) root (0) 3371 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_setup.html\n -rw-r--r-- 0 root (0) root (0) 5407 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_sift.html\n -rw-r--r-- 0 root (0) root (0) 4796 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_siftdescriptor.html\n -rw-r--r-- 0 root (0) root (0) 3291 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_sigmoid.html\n -rw-r--r-- 0 root (0) root (0) 3032 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_simdctrl.html\n--rw-r--r-- 0 root (0) root (0) 3885 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_slic.html\n+-rw-r--r-- 0 root (0) root (0) 3881 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_slic.html\n -rw-r--r-- 0 root (0) root (0) 3610 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_svmdataset.html\n -rw-r--r-- 0 root (0) root (0) 2794 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_svmpegasos.html\n -rw-r--r-- 0 root (0) root (0) 8592 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_svmtrain.html\n -rw-r--r-- 0 root (0) root (0) 3146 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_threads.html\n -rw-r--r-- 0 root (0) root (0) 4310 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_tightsubplot.html\n--rw-r--r-- 0 root (0) root (0) 2990 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_tpfp.html\n+-rw-r--r-- 0 root (0) root (0) 2989 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_tpfp.html\n -rw-r--r-- 0 root (0) root (0) 3423 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_tps.html\n -rw-r--r-- 0 root (0) root (0) 3341 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_tpsu.html\n -rw-r--r-- 0 root (0) root (0) 3898 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_twister.html\n -rw-r--r-- 0 root (0) root (0) 3790 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_ubcmatch.html\n--rw-r--r-- 0 root (0) root (0) 3143 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_ubcread.html\n+-rw-r--r-- 0 root (0) root (0) 3146 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_ubcread.html\n -rw-r--r-- 0 root (0) root (0) 3014 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_version.html\n--rw-r--r-- 0 root (0) root (0) 4357 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_vlad.html\n+-rw-r--r-- 0 root (0) root (0) 4401 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_vlad.html\n -rw-r--r-- 0 root (0) root (0) 3088 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_waffine.html\n -rw-r--r-- 0 root (0) root (0) 2913 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_whistc.html\n -rw-r--r-- 0 root (0) root (0) 3197 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_witps.html\n -rw-r--r-- 0 root (0) root (0) 3633 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_wtps.html\n--rw-r--r-- 0 root (0) root (0) 3397 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_xmkdir.html\n+-rw-r--r-- 0 root (0) root (0) 3399 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_xmkdir.html\n -rw-r--r-- 0 root (0) root (0) 3031 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_xyz2lab.html\n -rw-r--r-- 0 root (0) root (0) 3102 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_xyz2luv.html\n--rw-r--r-- 0 root (0) root (0) 3120 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_xyz2rgb.html\n+-rw-r--r-- 0 root (0) root (0) 3115 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/matlab/vl_xyz2rgb.html\n -rw-r--r-- 0 root (0) root (0) 2470 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/notfound.html\n drwxr-xr-x 0 root (0) root (0) 0 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/overview/\n -rw-r--r-- 0 root (0) root (0) 7331 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/overview/aib.html\n -rw-r--r-- 0 root (0) root (0) 25915 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/overview/covdet.html\n -rw-r--r-- 0 root (0) root (0) 10504 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/overview/dsift.html\n -rw-r--r-- 0 root (0) root (0) 10293 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/overview/encodings.html\n -rw-r--r-- 0 root (0) root (0) 14963 2024-02-04 18:27:01.000000 ./usr/share/doc/libvlfeat-dev/doc/overview/frame.html\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/helptoc.xml.gz", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/helptoc.xml.gz", "unified_diff": null, "details": [{"source1": "helptoc.xml", "source2": "helptoc.xml", "unified_diff": null, "details": [{"source1": "helptoc.xml", "source2": "helptoc.xml", "comments": ["Ordering differences only"], "unified_diff": "@@ -7,56 +7,58 @@\n vl_compile\n vl_demo\n vl_harris\n vl_help\n vl_noprefix\n vl_root\n vl_setup\n- vl_aib\n- vl_aibcut\n- vl_aibcuthist\n- vl_aibcutpush\n- vl_aibhist\n- vl_fisher\n- vl_hat\n- vl_ihat\n- vl_irodr\n- vl_rodr\n- vl_gmm\n- vl_dwaffine\n- vl_imarray\n- vl_imarraysc\n- vl_imdisttf\n- vl_imdown\n- vl_imgrad\n- vl_imintegral\n- vl_impattern\n- vl_imreadbw\n- vl_imreadgray\n- vl_imsc\n- vl_imsmooth\n- vl_imup\n- vl_imwbackward\n- vl_imwhiten\n- vl_rgb2xyz\n- vl_tps\n- vl_tpsu\n- vl_waffine\n- vl_witps\n- vl_wtps\n- vl_xyz2lab\n- vl_xyz2luv\n- vl_xyz2rgb\n- vl_hikmeans\n- vl_hikmeanshist\n- vl_hikmeanspush\n- vl_ikmeans\n- vl_ikmeanshist\n- vl_ikmeanspush\n- vl_kmeans\n+ vl_vlad\n+ vl_ddgaussian\n+ vl_dgaussian\n+ vl_dsigmoid\n+ vl_gaussian\n+ vl_rcos\n+ vl_sigmoid\n+ vl_slic\n+ vl_covdet\n+ vl_dsift\n+ vl_frame2oell\n+ vl_liop\n+ vl_phow\n+ vl_plotsiftdescriptor\n+ vl_plotss\n+ vl_sift\n+ vl_siftdescriptor\n+ vl_ubcmatch\n+ vl_ubcread\n+ vl_flatmap\n+ vl_imseg\n+ vl_quickseg\n+ vl_quickshift\n+ vl_quickvis\n+ vl_cf\n+ vl_click\n+ vl_clickpoint\n+ vl_clicksegment\n+ vl_det\n+ vl_figaspect\n+ vl_linespec2prop\n+ vl_plotbox\n+ vl_plotframe\n+ vl_plotgrid\n+ vl_plotpoint\n+ vl_plotstyle\n+ vl_pr\n+ vl_printsize\n+ vl_roc\n+ vl_tightsubplot\n+ vl_tpfp\n+ vl_erfill\n+ vl_ertr\n+ vl_mser\n vl_alldist2\n vl_alphanum\n vl_argparse\n vl_binsearch\n vl_binsum\n vl_colsubset\n vl_cummax\n@@ -85,54 +87,52 @@\n vl_svmpegasos\n vl_svmtrain\n vl_threads\n vl_twister\n vl_version\n vl_whistc\n vl_xmkdir\n- vl_erfill\n- vl_ertr\n- vl_mser\n- vl_cf\n- vl_click\n- vl_clickpoint\n- vl_clicksegment\n- vl_det\n- vl_figaspect\n- vl_linespec2prop\n- vl_plotbox\n- vl_plotframe\n- vl_plotgrid\n- vl_plotpoint\n- vl_plotstyle\n- vl_pr\n- vl_printsize\n- vl_roc\n- vl_tightsubplot\n- vl_tpfp\n- vl_flatmap\n- vl_imseg\n- vl_quickseg\n- vl_quickshift\n- vl_quickvis\n- vl_covdet\n- vl_dsift\n- vl_frame2oell\n- vl_liop\n- vl_phow\n- vl_plotsiftdescriptor\n- vl_plotss\n- vl_sift\n- vl_siftdescriptor\n- vl_ubcmatch\n- vl_ubcread\n- vl_slic\n- vl_ddgaussian\n- vl_dgaussian\n- vl_dsigmoid\n- vl_gaussian\n- vl_rcos\n- vl_sigmoid\n- vl_vlad\n+ vl_hikmeans\n+ vl_hikmeanshist\n+ vl_hikmeanspush\n+ vl_ikmeans\n+ vl_ikmeanshist\n+ vl_ikmeanspush\n+ vl_kmeans\n+ vl_dwaffine\n+ vl_imarray\n+ vl_imarraysc\n+ vl_imdisttf\n+ vl_imdown\n+ vl_imgrad\n+ vl_imintegral\n+ vl_impattern\n+ vl_imreadbw\n+ vl_imreadgray\n+ vl_imsc\n+ vl_imsmooth\n+ vl_imup\n+ vl_imwbackward\n+ vl_imwhiten\n+ vl_rgb2xyz\n+ vl_tps\n+ vl_tpsu\n+ vl_waffine\n+ vl_witps\n+ vl_wtps\n+ vl_xyz2lab\n+ vl_xyz2luv\n+ vl_xyz2rgb\n+ vl_gmm\n+ vl_hat\n+ vl_ihat\n+ vl_irodr\n+ vl_rodr\n+ vl_fisher\n+ vl_aib\n+ vl_aibcut\n+ vl_aibcuthist\n+ vl_aibcutpush\n+ vl_aibhist\n \n \n \n"}]}]}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/matlab.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/matlab.html", "comments": ["Ordering differences only"], "unified_diff": "@@ -65,42 +65,42 @@\n
\n
\n
\n \n \n \n-AIB\n-FISHER\n-GEOMETRY\n-GMM
    \n-
  • vl_gmm Learn a Gaussian Mixture Model using EM
\n-IMOP\n-KMEANS\n-MISC\n-MSER\n-PLOTOP\n-QUICKSHIFT
    \n-
  • vl_flatmap Flatten a tree, assigning the label of the root to each node
  • vl_imseg Color an image based on the segmentation
  • vl_quickseg Produce a quickshift segmentation of a grayscale or color image
  • vl_quickshift Quick shift image segmentation
  • vl_quickvis Create an edge image from a Quickshift segmentation.
\n-SIFT\n-SLIC\n-SPECIAL\n VLAD\n+SPECIAL\n+SLIC\n+SIFT\n+QUICKSHIFT
    \n+
  • vl_flatmap Flatten a tree, assigning the label of the root to each node
  • vl_imseg Color an image based on the segmentation
  • vl_quickseg Produce a quickshift segmentation of a grayscale or color image
  • vl_quickshift Quick shift image segmentation
  • vl_quickvis Create an edge image from a Quickshift segmentation.
\n+PLOTOP\n+MSER\n+MISC\n+KMEANS\n+IMOP\n+GMM
    \n+
  • vl_gmm Learn a Gaussian Mixture Model using EM
\n+GEOMETRY\n+FISHER\n+AIB\n \n \n \n \n \n \n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -2,62 +2,66 @@\n * _\bv\bv_\bl\bl_\b_\b__\bc\bc_\bo\bo_\bm\bm_\bp\bp_\bi\bi_\bl\bl_\be\be Compile VLFeat MEX files\n * _\bv\bv_\bl\bl_\b_\b__\bd\bd_\be\be_\bm\bm_\bo\bo Run VLFeat demos\n * _\bv\bv_\bl\bl_\b_\b__\bh\bh_\ba\ba_\br\br_\br\br_\bi\bi_\bs\bs Harris corner strength\n * _\bv\bv_\bl\bl_\b_\b__\bh\bh_\be\be_\bl\bl_\bp\bp VLFeat toolbox builtin help\n * _\bv\bv_\bl\bl_\b_\b__\bn\bn_\bo\bo_\bp\bp_\br\br_\be\be_\bf\bf_\bi\bi_\bx\bx Create a prefix-less version of VLFeat commands\n * _\bv\bv_\bl\bl_\b_\b__\br\br_\bo\bo_\bo\bo_\bt\bt Obtain VLFeat root path\n * _\bv\bv_\bl\bl_\b_\b__\bs\bs_\be\be_\bt\bt_\bu\bu_\bp\bp Add VLFeat Toolbox to the path\n-A\bAI\bIB\bB\n- * _\bv\bv_\bl\bl_\b_\b__\ba\ba_\bi\bi_\bb\bb Agglomerative Information Bottleneck\n- * _\bv\bv_\bl\bl_\b_\b__\ba\ba_\bi\bi_\bb\bb_\bc\bc_\bu\bu_\bt\bt Cut VL_AIB tree\n- * _\bv\bv_\bl\bl_\b_\b__\ba\ba_\bi\bi_\bb\bb_\bc\bc_\bu\bu_\bt\bt_\bh\bh_\bi\bi_\bs\bs_\bt\bt Compute a histogram by using an AIB compressed alphabet\n- * _\bv\bv_\bl\bl_\b_\b__\ba\ba_\bi\bi_\bb\bb_\bc\bc_\bu\bu_\bt\bt_\bp\bp_\bu\bu_\bs\bs_\bh\bh Quantize based on VL_AIB cut\n- * _\bv\bv_\bl\bl_\b_\b__\ba\ba_\bi\bi_\bb\bb_\bh\bh_\bi\bi_\bs\bs_\bt\bt Compute histogram over VL_AIB tree\n-F\bFI\bIS\bSH\bHE\bER\bR\n- * _\bv\bv_\bl\bl_\b_\b__\bf\bf_\bi\bi_\bs\bs_\bh\bh_\be\be_\br\br Fisher vector feature encoding\n-G\bGE\bEO\bOM\bME\bET\bTR\bRY\bY\n- * _\bv\bv_\bl\bl_\b_\b__\bh\bh_\ba\ba_\bt\bt Hat operator\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bh\bh_\ba\ba_\bt\bt Inverse vl_hat operator\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\br\br_\bo\bo_\bd\bd_\br\br Inverse Rodrigues' formula\n- * _\bv\bv_\bl\bl_\b_\b__\br\br_\bo\bo_\bd\bd_\br\br Rodrigues' formula\n-G\bGM\bMM\bM\n- * _\bv\bv_\bl\bl_\b_\b__\bg\bg_\bm\bm_\bm\bm Learn a Gaussian Mixture Model using EM\n-I\bIM\bMO\bOP\bP\n- * _\bv\bv_\bl\bl_\b_\b__\bd\bd_\bw\bw_\ba\ba_\bf\bf_\bf\bf_\bi\bi_\bn\bn_\be\be Derivative of an affine warp\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\ba\ba_\br\br_\br\br_\ba\ba_\by\by Flattens image array\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\ba\ba_\br\br_\br\br_\ba\ba_\by\by_\bs\bs_\bc\bc Scale and flattens image array\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bd\bd_\bi\bi_\bs\bs_\bt\bt_\bt\bt_\bf\bf Image distance transform\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bd\bd_\bo\bo_\bw\bw_\bn\bn Downsample an image by two\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bg\bg_\br\br_\ba\ba_\bd\bd Image gradient\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bi\bi_\bn\bn_\bt\bt_\be\be_\bg\bg_\br\br_\ba\ba_\bl\bl Compute integral image\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bp\bp_\ba\ba_\bt\bt_\bt\bt_\be\be_\br\br_\bn\bn Generate an image from a stock pattern\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\br\br_\be\be_\ba\ba_\bd\bd_\bb\bb_\bw\bw Reads an image as gray-scale\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\br\br_\be\be_\ba\ba_\bd\bd_\bg\bg_\br\br_\ba\ba_\by\by Reads an image as gray-scale\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bs\bs_\bc\bc Scale image\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bs\bs_\bm\bm_\bo\bo_\bo\bo_\bt\bt_\bh\bh Smooth image\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bu\bu_\bp\bp Upsample an image by two\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bw\bw_\bb\bb_\ba\ba_\bc\bc_\bk\bk_\bw\bw_\ba\ba_\br\br_\bd\bd Image backward warping\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bw\bw_\bh\bh_\bi\bi_\bt\bt_\be\be_\bn\bn Whiten an image\n- * _\bv\bv_\bl\bl_\b_\b__\br\br_\bg\bg_\bb\bb_\b2\b2_\bx\bx_\by\by_\bz\bz Convert RGB color space to XYZ\n- * _\bv\bv_\bl\bl_\b_\b__\bt\bt_\bp\bp_\bs\bs Compute the thin-plate spline basis\n- * _\bv\bv_\bl\bl_\b_\b__\bt\bt_\bp\bp_\bs\bs_\bu\bu Compute the U matrix of a thin-plate spline transformation\n- * _\bv\bv_\bl\bl_\b_\b__\bw\bw_\ba\ba_\bf\bf_\bf\bf_\bi\bi_\bn\bn_\be\be Apply affine transformation to points\n- * _\bv\bv_\bl\bl_\b_\b__\bw\bw_\bi\bi_\bt\bt_\bp\bp_\bs\bs Inverse thin-plate spline warping\n- * _\bv\bv_\bl\bl_\b_\b__\bw\bw_\bt\bt_\bp\bp_\bs\bs Thin-plate spline warping\n- * _\bv\bv_\bl\bl_\b_\b__\bx\bx_\by\by_\bz\bz_\b2\b2_\bl\bl_\ba\ba_\bb\bb Convert XYZ color space to LAB\n- * _\bv\bv_\bl\bl_\b_\b__\bx\bx_\by\by_\bz\bz_\b2\b2_\bl\bl_\bu\bu_\bv\bv Convert XYZ color space to LUV\n- * _\bv\bv_\bl\bl_\b_\b__\bx\bx_\by\by_\bz\bz_\b2\b2_\br\br_\bg\bg_\bb\bb Convert XYZ to RGB\n-K\bKM\bME\bEA\bAN\bNS\bS\n- * _\bv\bv_\bl\bl_\b_\b__\bh\bh_\bi\bi_\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs Hierachical integer K-means\n- * _\bv\bv_\bl\bl_\b_\b__\bh\bh_\bi\bi_\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs_\bh\bh_\bi\bi_\bs\bs_\bt\bt Compute histogram of quantized data\n- * _\bv\bv_\bl\bl_\b_\b__\bh\bh_\bi\bi_\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs_\bp\bp_\bu\bu_\bs\bs_\bh\bh Push data down an integer K-means tree\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs Integer K-means\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs_\bh\bh_\bi\bi_\bs\bs_\bt\bt Compute histogram of quantized data\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs_\bp\bp_\bu\bu_\bs\bs_\bh\bh Project data on integer K-means paritions\n- * _\bv\bv_\bl\bl_\b_\b__\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs Cluster data using k-means\n+V\bVL\bLA\bAD\bD\n+ * _\bv\bv_\bl\bl_\b_\b__\bv\bv_\bl\bl_\ba\ba_\bd\bd VLAD feature encoding\n+S\bSP\bPE\bEC\bCI\bIA\bAL\bL\n+ * _\bv\bv_\bl\bl_\b_\b__\bd\bd_\bd\bd_\bg\bg_\ba\ba_\bu\bu_\bs\bs_\bs\bs_\bi\bi_\ba\ba_\bn\bn Second derivative of the Gaussian density function\n+ * _\bv\bv_\bl\bl_\b_\b__\bd\bd_\bg\bg_\ba\ba_\bu\bu_\bs\bs_\bs\bs_\bi\bi_\ba\ba_\bn\bn Derivative of the Gaussian density function\n+ * _\bv\bv_\bl\bl_\b_\b__\bd\bd_\bs\bs_\bi\bi_\bg\bg_\bm\bm_\bo\bo_\bi\bi_\bd\bd Derivative of the sigmoid function\n+ * _\bv\bv_\bl\bl_\b_\b__\bg\bg_\ba\ba_\bu\bu_\bs\bs_\bs\bs_\bi\bi_\ba\ba_\bn\bn Standard Gaussian density function\n+ * _\bv\bv_\bl\bl_\b_\b__\br\br_\bc\bc_\bo\bo_\bs\bs RCOS function\n+ * _\bv\bv_\bl\bl_\b_\b__\bs\bs_\bi\bi_\bg\bg_\bm\bm_\bo\bo_\bi\bi_\bd\bd Sigmoid function\n+S\bSL\bLI\bIC\bC\n+ * _\bv\bv_\bl\bl_\b_\b__\bs\bs_\bl\bl_\bi\bi_\bc\bc SLIC superpixels\n+S\bSI\bIF\bFT\bT\n+ * _\bv\bv_\bl\bl_\b_\b__\bc\bc_\bo\bo_\bv\bv_\bd\bd_\be\be_\bt\bt Covariant feature detectors and descriptors\n+ * _\bv\bv_\bl\bl_\b_\b__\bd\bd_\bs\bs_\bi\bi_\bf\bf_\bt\bt Dense SIFT\n+ * _\bv\bv_\bl\bl_\b_\b__\bf\bf_\br\br_\ba\ba_\bm\bm_\be\be_\b2\b2_\bo\bo_\be\be_\bl\bl_\bl\bl Convert a geometric frame to an oriented ellipse\n+ * _\bv\bv_\bl\bl_\b_\b__\bl\bl_\bi\bi_\bo\bo_\bp\bp Local Intensity Order Pattern descriptor\n+ * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bh\bh_\bo\bo_\bw\bw Extract PHOW features\n+ * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bs\bs_\bi\bi_\bf\bf_\bt\bt_\bd\bd_\be\be_\bs\bs_\bc\bc_\br\br_\bi\bi_\bp\bp_\bt\bt_\bo\bo_\br\br Plot SIFT descriptor\n+ * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bs\bs_\bs\bs Plot scale space\n+ * _\bv\bv_\bl\bl_\b_\b__\bs\bs_\bi\bi_\bf\bf_\bt\bt Scale-Invariant Feature Transform\n+ * _\bv\bv_\bl\bl_\b_\b__\bs\bs_\bi\bi_\bf\bf_\bt\bt_\bd\bd_\be\be_\bs\bs_\bc\bc_\br\br_\bi\bi_\bp\bp_\bt\bt_\bo\bo_\br\br Raw SIFT descriptor\n+ * _\bv\bv_\bl\bl_\b_\b__\bu\bu_\bb\bb_\bc\bc_\bm\bm_\ba\ba_\bt\bt_\bc\bc_\bh\bh Match SIFT features\n+ * _\bv\bv_\bl\bl_\b_\b__\bu\bu_\bb\bb_\bc\bc_\br\br_\be\be_\ba\ba_\bd\bd Read Lowe's SIFT implementation data files\n+Q\bQU\bUI\bIC\bCK\bKS\bSH\bHI\bIF\bFT\bT\n+ * _\bv\bv_\bl\bl_\b_\b__\bf\bf_\bl\bl_\ba\ba_\bt\bt_\bm\bm_\ba\ba_\bp\bp Flatten a tree, assigning the label of the root to each node\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bs\bs_\be\be_\bg\bg Color an image based on the segmentation\n+ * _\bv\bv_\bl\bl_\b_\b__\bq\bq_\bu\bu_\bi\bi_\bc\bc_\bk\bk_\bs\bs_\be\be_\bg\bg Produce a quickshift segmentation of a grayscale or color\n+ image\n+ * _\bv\bv_\bl\bl_\b_\b__\bq\bq_\bu\bu_\bi\bi_\bc\bc_\bk\bk_\bs\bs_\bh\bh_\bi\bi_\bf\bf_\bt\bt Quick shift image segmentation\n+ * _\bv\bv_\bl\bl_\b_\b__\bq\bq_\bu\bu_\bi\bi_\bc\bc_\bk\bk_\bv\bv_\bi\bi_\bs\bs Create an edge image from a Quickshift segmentation.\n+P\bPL\bLO\bOT\bTO\bOP\bP\n+ * _\bv\bv_\bl\bl_\b_\b__\bc\bc_\bf\bf Creates a copy of a figure\n+ * _\bv\bv_\bl\bl_\b_\b__\bc\bc_\bl\bl_\bi\bi_\bc\bc_\bk\bk Click a point\n+ * _\bv\bv_\bl\bl_\b_\b__\bc\bc_\bl\bl_\bi\bi_\bc\bc_\bk\bk_\bp\bp_\bo\bo_\bi\bi_\bn\bn_\bt\bt Select a point by clicking\n+ * _\bv\bv_\bl\bl_\b_\b__\bc\bc_\bl\bl_\bi\bi_\bc\bc_\bk\bk_\bs\bs_\be\be_\bg\bg_\bm\bm_\be\be_\bn\bn_\bt\bt Select a segment by clicking\n+ * _\bv\bv_\bl\bl_\b_\b__\bd\bd_\be\be_\bt\bt Compute DET curve\n+ * _\bv\bv_\bl\bl_\b_\b__\bf\bf_\bi\bi_\bg\bg_\ba\ba_\bs\bs_\bp\bp_\be\be_\bc\bc_\bt\bt Set figure aspect ratio\n+ * _\bv\bv_\bl\bl_\b_\b__\bl\bl_\bi\bi_\bn\bn_\be\be_\bs\bs_\bp\bp_\be\be_\bc\bc_\b2\b2_\bp\bp_\br\br_\bo\bo_\bp\bp Convert PLOT style line specs to line properties\n+ * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bb\bb_\bo\bo_\bx\bx Plot boxes\n+ * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bf\bf_\br\br_\ba\ba_\bm\bm_\be\be Plot a geometric frame\n+ * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bg\bg_\br\br_\bi\bi_\bd\bd Plot a 2-D grid\n+ * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bp\bp_\bo\bo_\bi\bi_\bn\bn_\bt\bt Plot 2 or 3 dimensional points\n+ * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bs\bs_\bt\bt_\by\by_\bl\bl_\be\be Get a plot style\n+ * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\br\br Precision-recall curve.\n+ * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\br\br_\bi\bi_\bn\bn_\bt\bt_\bs\bs_\bi\bi_\bz\bz_\be\be Set the printing size of a figure\n+ * _\bv\bv_\bl\bl_\b_\b__\br\br_\bo\bo_\bc\bc ROC curve.\n+ * _\bv\bv_\bl\bl_\b_\b__\bt\bt_\bi\bi_\bg\bg_\bh\bh_\bt\bt_\bs\bs_\bu\bu_\bb\bb_\bp\bp_\bl\bl_\bo\bo_\bt\bt Tiles axes without wasting space\n+ * _\bv\bv_\bl\bl_\b_\b__\bt\bt_\bp\bp_\bf\bf_\bp\bp Compute true positives and false positives\n+M\bMS\bSE\bER\bR\n+ * _\bv\bv_\bl\bl_\b_\b__\be\be_\br\br_\bf\bf_\bi\bi_\bl\bl_\bl\bl Fill extremal region\n+ * _\bv\bv_\bl\bl_\b_\b__\be\be_\br\br_\bt\bt_\br\br Transpose exremal regions frames\n+ * _\bv\bv_\bl\bl_\b_\b__\bm\bm_\bs\bs_\be\be_\br\br Maximally Stable Extremal Regions\n M\bMI\bIS\bSC\bC\n * _\bv\bv_\bl\bl_\b_\b__\ba\ba_\bl\bl_\bl\bl_\bd\bd_\bi\bi_\bs\bs_\bt\bt_\b2\b2 Pairwise distances\n * _\bv\bv_\bl\bl_\b_\b__\ba\ba_\bl\bl_\bp\bp_\bh\bh_\ba\ba_\bn\bn_\bu\bu_\bm\bm Sort strings using the Alphanum algorithm\n * _\bv\bv_\bl\bl_\b_\b__\ba\ba_\br\br_\bg\bg_\bp\bp_\ba\ba_\br\br_\bs\bs_\be\be Parse list of parameter-value pairs.\n * _\bv\bv_\bl\bl_\b_\b__\bb\bb_\bi\bi_\bn\bn_\bs\bs_\be\be_\ba\ba_\br\br_\bc\bc_\bh\bh Maps data to bins\n * _\bv\bv_\bl\bl_\b_\b__\bb\bb_\bi\bi_\bn\bn_\bs\bs_\bu\bu_\bm\bm Binned summation\n * _\bv\bv_\bl\bl_\b_\b__\bc\bc_\bo\bo_\bl\bl_\bs\bs_\bu\bu_\bb\bb_\bs\bs_\be\be_\bt\bt Select a given number of columns\n@@ -87,60 +91,56 @@\n * _\bv\bv_\bl\bl_\b_\b__\bs\bs_\bv\bv_\bm\bm_\bp\bp_\be\be_\bg\bg_\ba\ba_\bs\bs_\bo\bo_\bs\bs [deprecated]\n * _\bv\bv_\bl\bl_\b_\b__\bs\bs_\bv\bv_\bm\bm_\bt\bt_\br\br_\ba\ba_\bi\bi_\bn\bn Train a Support Vector Machine\n * _\bv\bv_\bl\bl_\b_\b__\bt\bt_\bh\bh_\br\br_\be\be_\ba\ba_\bd\bd_\bs\bs Control VLFeat computational threads\n * _\bv\bv_\bl\bl_\b_\b__\bt\bt_\bw\bw_\bi\bi_\bs\bs_\bt\bt_\be\be_\br\br Random number generator\n * _\bv\bv_\bl\bl_\b_\b__\bv\bv_\be\be_\br\br_\bs\bs_\bi\bi_\bo\bo_\bn\bn Obtain VLFeat version information\n * _\bv\bv_\bl\bl_\b_\b__\bw\bw_\bh\bh_\bi\bi_\bs\bs_\bt\bt_\bc\bc Weighted histogram\n * _\bv\bv_\bl\bl_\b_\b__\bx\bx_\bm\bm_\bk\bk_\bd\bd_\bi\bi_\br\br Create a directory recursively.\n-M\bMS\bSE\bER\bR\n- * _\bv\bv_\bl\bl_\b_\b__\be\be_\br\br_\bf\bf_\bi\bi_\bl\bl_\bl\bl Fill extremal region\n- * _\bv\bv_\bl\bl_\b_\b__\be\be_\br\br_\bt\bt_\br\br Transpose exremal regions frames\n- * _\bv\bv_\bl\bl_\b_\b__\bm\bm_\bs\bs_\be\be_\br\br Maximally Stable Extremal Regions\n-P\bPL\bLO\bOT\bTO\bOP\bP\n- * _\bv\bv_\bl\bl_\b_\b__\bc\bc_\bf\bf Creates a copy of a figure\n- * _\bv\bv_\bl\bl_\b_\b__\bc\bc_\bl\bl_\bi\bi_\bc\bc_\bk\bk Click a point\n- * _\bv\bv_\bl\bl_\b_\b__\bc\bc_\bl\bl_\bi\bi_\bc\bc_\bk\bk_\bp\bp_\bo\bo_\bi\bi_\bn\bn_\bt\bt Select a point by clicking\n- * _\bv\bv_\bl\bl_\b_\b__\bc\bc_\bl\bl_\bi\bi_\bc\bc_\bk\bk_\bs\bs_\be\be_\bg\bg_\bm\bm_\be\be_\bn\bn_\bt\bt Select a segment by clicking\n- * _\bv\bv_\bl\bl_\b_\b__\bd\bd_\be\be_\bt\bt Compute DET curve\n- * _\bv\bv_\bl\bl_\b_\b__\bf\bf_\bi\bi_\bg\bg_\ba\ba_\bs\bs_\bp\bp_\be\be_\bc\bc_\bt\bt Set figure aspect ratio\n- * _\bv\bv_\bl\bl_\b_\b__\bl\bl_\bi\bi_\bn\bn_\be\be_\bs\bs_\bp\bp_\be\be_\bc\bc_\b2\b2_\bp\bp_\br\br_\bo\bo_\bp\bp Convert PLOT style line specs to line properties\n- * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bb\bb_\bo\bo_\bx\bx Plot boxes\n- * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bf\bf_\br\br_\ba\ba_\bm\bm_\be\be Plot a geometric frame\n- * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bg\bg_\br\br_\bi\bi_\bd\bd Plot a 2-D grid\n- * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bp\bp_\bo\bo_\bi\bi_\bn\bn_\bt\bt Plot 2 or 3 dimensional points\n- * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bs\bs_\bt\bt_\by\by_\bl\bl_\be\be Get a plot style\n- * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\br\br Precision-recall curve.\n- * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\br\br_\bi\bi_\bn\bn_\bt\bt_\bs\bs_\bi\bi_\bz\bz_\be\be Set the printing size of a figure\n- * _\bv\bv_\bl\bl_\b_\b__\br\br_\bo\bo_\bc\bc ROC curve.\n- * _\bv\bv_\bl\bl_\b_\b__\bt\bt_\bi\bi_\bg\bg_\bh\bh_\bt\bt_\bs\bs_\bu\bu_\bb\bb_\bp\bp_\bl\bl_\bo\bo_\bt\bt Tiles axes without wasting space\n- * _\bv\bv_\bl\bl_\b_\b__\bt\bt_\bp\bp_\bf\bf_\bp\bp Compute true positives and false positives\n-Q\bQU\bUI\bIC\bCK\bKS\bSH\bHI\bIF\bFT\bT\n- * _\bv\bv_\bl\bl_\b_\b__\bf\bf_\bl\bl_\ba\ba_\bt\bt_\bm\bm_\ba\ba_\bp\bp Flatten a tree, assigning the label of the root to each node\n- * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bs\bs_\be\be_\bg\bg Color an image based on the segmentation\n- * _\bv\bv_\bl\bl_\b_\b__\bq\bq_\bu\bu_\bi\bi_\bc\bc_\bk\bk_\bs\bs_\be\be_\bg\bg Produce a quickshift segmentation of a grayscale or color\n- image\n- * _\bv\bv_\bl\bl_\b_\b__\bq\bq_\bu\bu_\bi\bi_\bc\bc_\bk\bk_\bs\bs_\bh\bh_\bi\bi_\bf\bf_\bt\bt Quick shift image segmentation\n- * _\bv\bv_\bl\bl_\b_\b__\bq\bq_\bu\bu_\bi\bi_\bc\bc_\bk\bk_\bv\bv_\bi\bi_\bs\bs Create an edge image from a Quickshift segmentation.\n-S\bSI\bIF\bFT\bT\n- * _\bv\bv_\bl\bl_\b_\b__\bc\bc_\bo\bo_\bv\bv_\bd\bd_\be\be_\bt\bt Covariant feature detectors and descriptors\n- * _\bv\bv_\bl\bl_\b_\b__\bd\bd_\bs\bs_\bi\bi_\bf\bf_\bt\bt Dense SIFT\n- * _\bv\bv_\bl\bl_\b_\b__\bf\bf_\br\br_\ba\ba_\bm\bm_\be\be_\b2\b2_\bo\bo_\be\be_\bl\bl_\bl\bl Convert a geometric frame to an oriented ellipse\n- * _\bv\bv_\bl\bl_\b_\b__\bl\bl_\bi\bi_\bo\bo_\bp\bp Local Intensity Order Pattern descriptor\n- * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bh\bh_\bo\bo_\bw\bw Extract PHOW features\n- * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bs\bs_\bi\bi_\bf\bf_\bt\bt_\bd\bd_\be\be_\bs\bs_\bc\bc_\br\br_\bi\bi_\bp\bp_\bt\bt_\bo\bo_\br\br Plot SIFT descriptor\n- * _\bv\bv_\bl\bl_\b_\b__\bp\bp_\bl\bl_\bo\bo_\bt\bt_\bs\bs_\bs\bs Plot scale space\n- * _\bv\bv_\bl\bl_\b_\b__\bs\bs_\bi\bi_\bf\bf_\bt\bt Scale-Invariant Feature Transform\n- * _\bv\bv_\bl\bl_\b_\b__\bs\bs_\bi\bi_\bf\bf_\bt\bt_\bd\bd_\be\be_\bs\bs_\bc\bc_\br\br_\bi\bi_\bp\bp_\bt\bt_\bo\bo_\br\br Raw SIFT descriptor\n- * _\bv\bv_\bl\bl_\b_\b__\bu\bu_\bb\bb_\bc\bc_\bm\bm_\ba\ba_\bt\bt_\bc\bc_\bh\bh Match SIFT features\n- * _\bv\bv_\bl\bl_\b_\b__\bu\bu_\bb\bb_\bc\bc_\br\br_\be\be_\ba\ba_\bd\bd Read Lowe's SIFT implementation data files\n-S\bSL\bLI\bIC\bC\n- * _\bv\bv_\bl\bl_\b_\b__\bs\bs_\bl\bl_\bi\bi_\bc\bc SLIC superpixels\n-S\bSP\bPE\bEC\bCI\bIA\bAL\bL\n- * _\bv\bv_\bl\bl_\b_\b__\bd\bd_\bd\bd_\bg\bg_\ba\ba_\bu\bu_\bs\bs_\bs\bs_\bi\bi_\ba\ba_\bn\bn Second derivative of the Gaussian density function\n- * _\bv\bv_\bl\bl_\b_\b__\bd\bd_\bg\bg_\ba\ba_\bu\bu_\bs\bs_\bs\bs_\bi\bi_\ba\ba_\bn\bn Derivative of the Gaussian density function\n- * _\bv\bv_\bl\bl_\b_\b__\bd\bd_\bs\bs_\bi\bi_\bg\bg_\bm\bm_\bo\bo_\bi\bi_\bd\bd Derivative of the sigmoid function\n- * _\bv\bv_\bl\bl_\b_\b__\bg\bg_\ba\ba_\bu\bu_\bs\bs_\bs\bs_\bi\bi_\ba\ba_\bn\bn Standard Gaussian density function\n- * _\bv\bv_\bl\bl_\b_\b__\br\br_\bc\bc_\bo\bo_\bs\bs RCOS function\n- * _\bv\bv_\bl\bl_\b_\b__\bs\bs_\bi\bi_\bg\bg_\bm\bm_\bo\bo_\bi\bi_\bd\bd Sigmoid function\n-V\bVL\bLA\bAD\bD\n- * _\bv\bv_\bl\bl_\b_\b__\bv\bv_\bl\bl_\ba\ba_\bd\bd VLAD feature encoding\n+K\bKM\bME\bEA\bAN\bNS\bS\n+ * _\bv\bv_\bl\bl_\b_\b__\bh\bh_\bi\bi_\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs Hierachical integer K-means\n+ * _\bv\bv_\bl\bl_\b_\b__\bh\bh_\bi\bi_\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs_\bh\bh_\bi\bi_\bs\bs_\bt\bt Compute histogram of quantized data\n+ * _\bv\bv_\bl\bl_\b_\b__\bh\bh_\bi\bi_\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs_\bp\bp_\bu\bu_\bs\bs_\bh\bh Push data down an integer K-means tree\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs Integer K-means\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs_\bh\bh_\bi\bi_\bs\bs_\bt\bt Compute histogram of quantized data\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs_\bp\bp_\bu\bu_\bs\bs_\bh\bh Project data on integer K-means paritions\n+ * _\bv\bv_\bl\bl_\b_\b__\bk\bk_\bm\bm_\be\be_\ba\ba_\bn\bn_\bs\bs Cluster data using k-means\n+I\bIM\bMO\bOP\bP\n+ * _\bv\bv_\bl\bl_\b_\b__\bd\bd_\bw\bw_\ba\ba_\bf\bf_\bf\bf_\bi\bi_\bn\bn_\be\be Derivative of an affine warp\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\ba\ba_\br\br_\br\br_\ba\ba_\by\by Flattens image array\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\ba\ba_\br\br_\br\br_\ba\ba_\by\by_\bs\bs_\bc\bc Scale and flattens image array\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bd\bd_\bi\bi_\bs\bs_\bt\bt_\bt\bt_\bf\bf Image distance transform\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bd\bd_\bo\bo_\bw\bw_\bn\bn Downsample an image by two\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bg\bg_\br\br_\ba\ba_\bd\bd Image gradient\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bi\bi_\bn\bn_\bt\bt_\be\be_\bg\bg_\br\br_\ba\ba_\bl\bl Compute integral image\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bp\bp_\ba\ba_\bt\bt_\bt\bt_\be\be_\br\br_\bn\bn Generate an image from a stock pattern\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\br\br_\be\be_\ba\ba_\bd\bd_\bb\bb_\bw\bw Reads an image as gray-scale\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\br\br_\be\be_\ba\ba_\bd\bd_\bg\bg_\br\br_\ba\ba_\by\by Reads an image as gray-scale\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bs\bs_\bc\bc Scale image\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bs\bs_\bm\bm_\bo\bo_\bo\bo_\bt\bt_\bh\bh Smooth image\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bu\bu_\bp\bp Upsample an image by two\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bw\bw_\bb\bb_\ba\ba_\bc\bc_\bk\bk_\bw\bw_\ba\ba_\br\br_\bd\bd Image backward warping\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bm\bm_\bw\bw_\bh\bh_\bi\bi_\bt\bt_\be\be_\bn\bn Whiten an image\n+ * _\bv\bv_\bl\bl_\b_\b__\br\br_\bg\bg_\bb\bb_\b2\b2_\bx\bx_\by\by_\bz\bz Convert RGB color space to XYZ\n+ * _\bv\bv_\bl\bl_\b_\b__\bt\bt_\bp\bp_\bs\bs Compute the thin-plate spline basis\n+ * _\bv\bv_\bl\bl_\b_\b__\bt\bt_\bp\bp_\bs\bs_\bu\bu Compute the U matrix of a thin-plate spline transformation\n+ * _\bv\bv_\bl\bl_\b_\b__\bw\bw_\ba\ba_\bf\bf_\bf\bf_\bi\bi_\bn\bn_\be\be Apply affine transformation to points\n+ * _\bv\bv_\bl\bl_\b_\b__\bw\bw_\bi\bi_\bt\bt_\bp\bp_\bs\bs Inverse thin-plate spline warping\n+ * _\bv\bv_\bl\bl_\b_\b__\bw\bw_\bt\bt_\bp\bp_\bs\bs Thin-plate spline warping\n+ * _\bv\bv_\bl\bl_\b_\b__\bx\bx_\by\by_\bz\bz_\b2\b2_\bl\bl_\ba\ba_\bb\bb Convert XYZ color space to LAB\n+ * _\bv\bv_\bl\bl_\b_\b__\bx\bx_\by\by_\bz\bz_\b2\b2_\bl\bl_\bu\bu_\bv\bv Convert XYZ color space to LUV\n+ * _\bv\bv_\bl\bl_\b_\b__\bx\bx_\by\by_\bz\bz_\b2\b2_\br\br_\bg\bg_\bb\bb Convert XYZ to RGB\n+G\bGM\bMM\bM\n+ * _\bv\bv_\bl\bl_\b_\b__\bg\bg_\bm\bm_\bm\bm Learn a Gaussian Mixture Model using EM\n+G\bGE\bEO\bOM\bME\bET\bTR\bRY\bY\n+ * _\bv\bv_\bl\bl_\b_\b__\bh\bh_\ba\ba_\bt\bt Hat operator\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\bh\bh_\ba\ba_\bt\bt Inverse vl_hat operator\n+ * _\bv\bv_\bl\bl_\b_\b__\bi\bi_\br\br_\bo\bo_\bd\bd_\br\br Inverse Rodrigues' formula\n+ * _\bv\bv_\bl\bl_\b_\b__\br\br_\bo\bo_\bd\bd_\br\br Rodrigues' formula\n+F\bFI\bIS\bSH\bHE\bER\bR\n+ * _\bv\bv_\bl\bl_\b_\b__\bf\bf_\bi\bi_\bs\bs_\bh\bh_\be\be_\br\br Fisher vector feature encoding\n+A\bAI\bIB\bB\n+ * _\bv\bv_\bl\bl_\b_\b__\ba\ba_\bi\bi_\bb\bb Agglomerative Information Bottleneck\n+ * _\bv\bv_\bl\bl_\b_\b__\ba\ba_\bi\bi_\bb\bb_\bc\bc_\bu\bu_\bt\bt Cut VL_AIB tree\n+ * _\bv\bv_\bl\bl_\b_\b__\ba\ba_\bi\bi_\bb\bb_\bc\bc_\bu\bu_\bt\bt_\bh\bh_\bi\bi_\bs\bs_\bt\bt Compute a histogram by using an AIB compressed alphabet\n+ * _\bv\bv_\bl\bl_\b_\b__\ba\ba_\bi\bi_\bb\bb_\bc\bc_\bu\bu_\bt\bt_\bp\bp_\bu\bu_\bs\bs_\bh\bh Quantize based on VL_AIB cut\n+ * _\bv\bv_\bl\bl_\b_\b__\ba\ba_\bi\bi_\bb\bb_\bh\bh_\bi\bi_\bs\bs_\bt\bt Compute histogram over VL_AIB tree\n 2007-14,18 The VLFeat Authors\n"}]}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_aib.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_aib.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>AIB - vl_aib\n
\n
\n
\n
\n
\n
\n-

\n+

\n PARENTS = VL_AIB(PCX) runs Agglomerative Information Bottleneck\n (AIB) on the class-feature co-occurrence matrix PCX and returns a\n vector PARENTS representing the sequence of compressed AIB\n alphabets.\n

\n PCX is the joint probability of the occurrence of the class label\n C and the feature value X. PCX has one row for each class label\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_aibhist.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_aibhist.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>AIB - vl_aibhist\n

\n
\n
\n
\n
\n
\n-

\n+

\n H = VL_AIBHIST(PARENTS, DATA) computes the histogram of the data\n points DATA on the VL_AIB tree defined by PARENTS. Each element of\n DATA indexes one of the leaves of the VL_AIB tree.\n

\n H = VL_AIBHIST(PARENTS, DATA, 'HIST') treats DATA as an histograms.\n In this case each compoment of DATA is the number of occurences of\n the VL_AIB leaves corresponding to that component.\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -1,11 +1,10 @@\n _\bD_\bo_\bc_\bu_\bm_\be_\bn_\bt_\ba_\bt_\bi_\bo_\bn>_\bM_\bA_\bT_\bL_\bA_\bB_\b _\bA_\bP_\bI>_\bA_\bI_\bB_\b _\b-_\b _\bv_\bl_\b__\ba_\bi_\bb_\bh_\bi_\bs_\bt\n * _\bI_\bn_\bd_\be_\bx\n * _\bP_\br_\be_\bv\n- * _\bN_\be_\bx_\bt\n H = _\bV_\bL_\b__\bA_\bI_\bB_\bH_\bI_\bS_\bT(PARENTS, DATA) computes the histogram of the data points DATA on\n the VL_AIB tree defined by PARENTS. Each element of DATA indexes one of the\n leaves of the VL_AIB tree.\n H = _\bV_\bL_\b__\bA_\bI_\bB_\bH_\bI_\bS_\bT(PARENTS, DATA, 'HIST') treats DATA as an histograms. In this\n case each compoment of DATA is the number of occurences of the VL_AIB leaves\n corresponding to that component.\n H has the same dimension of parents and counts how many data points are\n"}]}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_alldist2.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_alldist2.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>MISC - vl_alldist2\n

\n
\n
\n
\n
\n
\n-

\n+

\n D = VL_ALLDIST2(X,Y) returns the pairwise distance matrix D of the\n columns of S1 and S2, yielding\n

\n   D(i,j) = sum (X(:,i) - Y(:,j)).^2\n 

\n VL_ALLDIST2(X) returns the pairwise distance matrix fo the columns of\n S, yielding\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_cf.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_cf.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>PLOTOP - vl_cf\n

\n
\n
\n
\n
\n
\n-

\n+

\n VL_CF() creates a copy of the current figure and returns VL_CF(H0)\n creates a copy of the figure(s) whose handle is H0. H =\n VL_CF(...) returns the handles of the copies.\n

\n See also: VL_HELP().\n

\n
\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_covdet.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_covdet.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>SIFT - vl_covdet\n
\n
\n
\n
\n
\n
\n-

\n+

\n VL_COVDET() implements a number of co-variant feature detectors\n (e.g., DoG, Harris-Affine, Harris-Laplace) and corresponding\n feature descriptors (SIFT, raw patches).\n

\n F = VL_COVDET(I) detects upright scale and translation covariant\n features based on the Difference of Gaussian (Dog) cornerness\n measure from image I (a grayscale image of class SINGLE). Each\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_ddgaussian.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_ddgaussian.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>SPECIAL - vl_ddgaussian\n

\n
\n
\n
\n
\n
\n-

\n+

\n Y=VL_DDGAUSSIAN(X) computes the second derivative of the standard\n Gaussian density.\n

\n To obtain the second derivative of the Gaussian density of\n standard deviation S, do\n

\n   Y = 1/S^3 * VL_DDGAUSSIAN(X/S) .\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_dwaffine.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_dwaffine.html", "unified_diff": "@@ -62,15 +62,15 @@\n       Documentation>MATLAB API>IMOP - vl_dwaffine\n     
\n
\n
\n
\n
\n
\n-

\n+

\n [DWX,DWY]=VL_DWAFFINE(X,Y) returns the derivative of the 2-D affine\n warp [WX; WY] = [A T] [X; Y] with respect to the parameters A,T\n computed at points X,Y.\n

\n See also: VL_WAFFINE(), VL_HELP().\n

\n
\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_erfill.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_erfill.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>MSER - vl_erfill\n
\n
\n
\n
\n
\n
\n-

\n+

\n MEMBERS=VL_ERFILL(I,ER) returns the list MEMBERS of the pixels which\n belongs to the extremal region represented by the pixel ER.\n

\n The selected region is the one that contains pixel ER and of\n intensity I(ER).\n

\n I must be of class UINT8 and ER must be a (scalar) index of the\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_fisher.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_fisher.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>FISHER - vl_fisher\n

\n
\n
\n
\n
\n
\n-

\n+

\n ENC = VL_FISHER(X, MEANS, COVARIANCES, PRIORS) computes the Fisher\n vector encoding of the vectors X relative to the Gaussian mixture\n model with means MEANS, covariances COVARIANCES, and prior mode\n probabilities PRIORS.\n

\n X has one column per data vector (e.g. a SIFT descriptor), and\n MEANS and COVARIANCES one column per GMM component (covariance\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_flatmap.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_flatmap.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>QUICKSHIFT - vl_flatmap\n

\n
\n
\n
\n
\n
\n-

\n+

\n [LABELS CLUSTERS] = VL_FLATMAP(MAP) labels each tree of the forest contained\n in MAP. LABELS contains the linear index of the root node in MAP, CLUSTERS\n instead contains a label between 1 and the number of clusters.\n

\n See also: VL_HELP().\n

\n
\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_gmm.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_gmm.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>GMM - vl_gmm\n
\n
\n
\n
\n
\n
\n-

\n+

\n [MEANS, COVARIANCES, PRIORS] = VL_GMM(X, NUMCLUSTERS) fits a GMM with\n NUMCLUSTERS components to the data X. Each column of X represent a\n sample point. X may be either SINGLE or DOUBLE. MEANS, COVARIANCES, and\n PRIORS are respectively the means, the diagonal covariances, and\n the prior probabilities of the Guassian modes. MEANS and COVARIANCES\n have the same number of rows as X and NUMCLUSTERS columns with one\n column per mode. PRIORS is a row vector with NUMCLUSTER entries\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_hat.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_hat.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>GEOMETRY - vl_hat\n

\n
\n
\n
\n
\n
\n-

\n+

\n H = VL_HAT(OM) returns the skew symmetric matrix by taking the "hat"\n of the 3D vector OM.\n

\n See also: VL_IHAT(), VL_HELP().\n

\n
\n
\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_hikmeans.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_hikmeans.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>KMEANS - vl_hikmeans\n
\n
\n
\n
\n
\n
\n-

\n+

\n [TREE,ASGN] = VL_HIKMEANS(DATA,K,NLEAVES) applies integer K-menas\n recursively to cluster the data DATA, returing a structure TREE\n representing the clusters and a vector ASGN with the data to\n cluster assignments. The depth of the recursive partition is\n computed so that at least NLEAVES are generated.\n

\n VL_HIKMEANS() is built on top of VL_IKMEANS() and requires the\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_kmeans.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_kmeans.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>KMEANS - vl_kmeans\n

\n
\n
\n
\n
\n
\n-

\n+

\n [C, A] = VL_KMEANS(X, NUMCENTERS) clusters the columns of the\n matrix X in NUMCENTERS centers C using k-means. X may be either\n SINGLE or DOUBLE. C has the same number of rows of X and NUMCENTER\n columns, with one column per center. A is a UINT32 row vector\n specifying the assignments of the data X to the NUMCENTER\n centers.\n

\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_mser.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_mser.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>MSER - vl_mser\n

\n
\n
\n
\n
\n
\n-

\n+

\n R=VL_MSER(I) computes the Maximally Stable Extremal Regions (MSER)\n [1] of image I with stability threshold DELTA. I is any array of\n class UINT8. R is a vector of region seeds.\n

\n A (maximally stable) extremal region is just a connected component\n of one of the level sets of the image I. An extremal region can\n be recovered from a seed X as the connected component of the level\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_quickvis.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_quickvis.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>QUICKSHIFT - vl_quickvis\n

\n
\n
\n
\n
\n
\n-

\n+

\n IEDGE = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) creates an edge\n stability image from a Quickshift segmentation. RATIO controls the tradeoff\n between color consistency and spatial consistency (See VL_QUICKSEG) and\n KERNELSIZE controls the bandwidth of the density estimator (See VL_QUICKSEG,\n VL_QUICKSHIFT). MAXDIST is the maximum distance between neighbors which\n increase the density.\n

\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_rodr.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_rodr.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>GEOMETRY - vl_rodr\n

\n
\n
\n
\n
\n
\n-

\n+

\n R = VL_RODR(OM) where OM a 3-dimensional column vector computes the\n Rodrigues' formula of OM, returning the rotation matrix R =\n expm(vl_hat(OM)).\n

\n [R,DR] = VL_RODR(OM) computes also the derivative of the Rodrigues\n formula. In matrix notation this is the expression\n

\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_setup.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_setup.html", "unified_diff": "@@ -62,15 +62,15 @@\n       Documentation>MATLAB API>vl_setup\n     
\n
\n
\n
\n
\n
\n-

\n+

\n PATH = VL_SETUP() adds the VLFeat Toolbox to MATLAB path and\n returns the path PATH to the VLFeat package.\n

\n VL_SETUP('NOPREFIX') adds aliases to each function that do not\n contain the VL_ prefix. For example, with this option it is\n possible to use SIFT() instead of VL_SIFT().\n

\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_sigmoid.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_sigmoid.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>SPECIAL - vl_sigmoid\n

\n
\n
\n
\n
\n
\n-

\n+

\n Y = VL_SIGMOID(X) returns\n

\n  Y = 1 ./ (1 + EXP(X)) ;\n 
\n Remark\n

\n Useful properties of the sigmoid function are:\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_slic.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_slic.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>SLIC - vl_slic\n

\n
\n
\n
\n
\n
\n-

\n+

\n SEGMENTS = VL_SLIC(IM, REGIONSIZE, REGULARIZER) extracts the SLIC\n superpixes [1] from image IM. REGIONSIZE is the starting size of\n the superpixels and REGULARIZER is the trades-off appearance for\n spatial regularity when clustering (a larger value results in more\n spatial regularization). SEGMENTS is a UINT32 array containing the\n superpixel identifier for each image pixel.\n

\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_tpfp.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_tpfp.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>PLOTOP - vl_tpfp\n

\n
\n
\n
\n
\n
\n-

\n+

\n This is an helper function used by VL_PR(), VL_ROC(), VL_DET().\n

\n See also: VL_PR(), VL_ROC(), VL_DET(), VL_HELP().\n

\n
\n
\n
\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_ubcread.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_ubcread.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>SIFT - vl_ubcread\n
\n
\n
\n
\n
\n
\n-

\n+

\n [F,D] = VL_UBCREAD(FILE) reads the frames F and the descriptors D\n from FILE in UBC (Lowe's original implementation of SIFT) format\n and returns F and D as defined by VL_SIFT().\n

\n VL_UBCREAD(FILE, 'FORMAT', 'OXFORD') assumes the format used by\n Oxford VGG implementations .\n

\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_vlad.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_vlad.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>VLAD - vl_vlad\n

\n
\n
\n
\n
\n
\n-

\n+

\n ENC = VL_VLAD(X, MEANS, ASSIGNMENTS) computes the VLAD\n encoding of the vectors X relative to cluster centers MEANS and\n vector-to-cluster soft assignments ASSIGNMENTS.\n

\n X has one column per data vector (e.g. a SIFT descriptor), and\n MEANS has one column per component. Usually one has one component\n per KMeans cluster and MEANS are the KMeans centers. X and MEANS\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -1,10 +1,11 @@\n _\bD_\bo_\bc_\bu_\bm_\be_\bn_\bt_\ba_\bt_\bi_\bo_\bn>_\bM_\bA_\bT_\bL_\bA_\bB_\b _\bA_\bP_\bI>_\bV_\bL_\bA_\bD_\b _\b-_\b _\bv_\bl_\b__\bv_\bl_\ba_\bd\n * _\bI_\bn_\bd_\be_\bx\n * _\bP_\br_\be_\bv\n+ * _\bN_\be_\bx_\bt\n ENC = _\bV_\bL_\b__\bV_\bL_\bA_\bD(X, MEANS, ASSIGNMENTS) computes the VLAD encoding of the vectors\n X relative to cluster centers MEANS and vector-to-cluster soft assignments\n ASSIGNMENTS.\n X has one column per data vector (e.g. a SIFT descriptor), and MEANS has one\n column per component. Usually one has one component per KMeans cluster and\n MEANS are the KMeans centers. X and MEANS have the same number of rows and the\n data class, which can be either SINGLE or DOUBLE.\n"}]}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_xmkdir.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_xmkdir.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>MISC - vl_xmkdir\n

\n
\n
\n
\n
\n
\n-

\n+

\n VL_XMKDIR(PATH) creates all directory specified by PATH if they\n do not exist (existing directories are skipped).\n

\n The function is meant as a silent replacement of MATLAB's builtin\n MKDIR() function. It can also be used to show more clearly what\n directories are or would be created by the command.\n

\n"}, {"source1": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_xyz2rgb.html", "source2": "./usr/share/doc/libvlfeat-dev/doc/matlab/vl_xyz2rgb.html", "unified_diff": "@@ -62,15 +62,15 @@\n Documentation>MATLAB API>IMOP - vl_xyz2rgb\n

\n
\n
\n
\n
\n
\n-

\n+

\n J = VL_XYZ2RGB(I) the XYZ image I in RGB format.\n

\n VL_XYZ2RGB(I,WS) uses the RGB workspace WS. WS is a string in\n

  • \n CIE: E illuminant and 2.2 gamma\n

  • \n Adobe: D65 illuminant and 2.2 gamma\n"}]}]}]}]}