{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.X8w4Ps9U/b1/flint_3.1.2-1~exp1_armhf.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.X8w4Ps9U/b2/flint_3.1.2-1~exp1_armhf.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,5 +1,5 @@\n \n cb6577f1b63fdeb2369411f528cb77f2 221796 libdevel optional libflint-dev_3.1.2-1~exp1_armhf.deb\n- af6ab644a548672a40f10665d8a99939 7490296 doc optional libflint-doc_3.1.2-1~exp1_all.deb\n+ 23652c1f3da507bfb89b7fb1d1dd33ef 7490320 doc optional libflint-doc_3.1.2-1~exp1_all.deb\n d10c50e929a231f87940e5df28ce4ddb 13451484 debug optional libflint19-dbgsym_3.1.2-1~exp1_armhf.deb\n bc979a11e8369fddf07970b3a3b0cd5a 3169032 libs optional libflint19_3.1.2-1~exp1_armhf.deb\n"}, {"source1": "libflint-doc_3.1.2-1~exp1_all.deb", "source2": "libflint-doc_3.1.2-1~exp1_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2024-03-26 17:30:18.000000 debian-binary\n -rw-r--r-- 0 0 0 8660 2024-03-26 17:30:18.000000 control.tar.xz\n--rw-r--r-- 0 0 0 7481444 2024-03-26 17:30:18.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 7481468 2024-03-26 17:30:18.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "./usr/share/doc/libflint-dev/html/searchindex.js", "source2": "./usr/share/doc/libflint-dev/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -86766,451 +86766,286 @@\n \"sphinx.domains.math\": 2,\n \"sphinx.domains.python\": 4,\n \"sphinx.domains.rst\": 2,\n \"sphinx.domains.std\": 2,\n \"sphinx\": 60\n },\n \"alltitles\": {\n- \"dlog.h \\u2013 discrete logarithms mod ulong primes\": [\n- [39, \"dlog-h-discrete-logarithms-mod-ulong-primes\"]\n+ \"ca_mat.h \\u2013 matrices over the real and complex numbers\": [\n+ [29, \"ca-mat-h-matrices-over-the-real-and-complex-numbers\"]\n ],\n \"Types, macros and constants\": [\n- [39, \"types-macros-and-constants\"],\n- [31, \"types-macros-and-constants\"],\n [29, \"types-macros-and-constants\"],\n [20, \"types-macros-and-constants\"],\n [23, \"types-macros-and-constants\"],\n [30, \"types-macros-and-constants\"],\n- [54, \"types-macros-and-constants\"],\n+ [31, \"types-macros-and-constants\"],\n+ [39, \"types-macros-and-constants\"],\n [51, \"types-macros-and-constants\"],\n- [58, \"types-macros-and-constants\"],\n- [52, \"types-macros-and-constants\"],\n- [56, \"types-macros-and-constants\"],\n+ [53, \"types-macros-and-constants\"],\n [50, \"types-macros-and-constants\"],\n+ [52, \"types-macros-and-constants\"],\n [41, \"types-macros-and-constants\"],\n- [53, \"types-macros-and-constants\"],\n- [61, \"types-macros-and-constants\"],\n- [66, \"types-macros-and-constants\"],\n+ [54, \"types-macros-and-constants\"],\n+ [56, \"types-macros-and-constants\"],\n+ [58, \"types-macros-and-constants\"],\n [65, \"types-macros-and-constants\"],\n+ [72, \"types-macros-and-constants\"],\n+ [76, \"types-macros-and-constants\"],\n+ [74, \"types-macros-and-constants\"],\n+ [69, \"types-macros-and-constants\"],\n [64, \"types-macros-and-constants\"],\n+ [63, \"types-macros-and-constants\"],\n [62, \"types-macros-and-constants\"],\n+ [66, \"types-macros-and-constants\"],\n+ [79, \"types-macros-and-constants\"],\n [73, \"types-macros-and-constants\"],\n- [74, \"types-macros-and-constants\"],\n- [69, \"types-macros-and-constants\"],\n- [72, \"types-macros-and-constants\"],\n- [68, \"types-macros-and-constants\"],\n+ [61, \"types-macros-and-constants\"],\n [60, \"types-macros-and-constants\"],\n- [63, \"types-macros-and-constants\"],\n- [76, \"types-macros-and-constants\"],\n [71, \"types-macros-and-constants\"],\n- [79, \"types-macros-and-constants\"],\n+ [68, \"types-macros-and-constants\"],\n [78, \"types-macros-and-constants\"],\n- [1, \"types-macros-and-constants\"],\n- [10, \"types-macros-and-constants\"],\n- [18, \"types-macros-and-constants\"],\n- [19, \"types-macros-and-constants\"],\n+ [0, \"types-macros-and-constants\"],\n [6, \"types-macros-and-constants\"],\n- [8, \"types-macros-and-constants\"],\n+ [18, \"types-macros-and-constants\"],\n [13, \"types-macros-and-constants\"],\n- [0, \"types-macros-and-constants\"],\n+ [19, \"types-macros-and-constants\"],\n+ [10, \"types-macros-and-constants\"],\n [14, \"types-macros-and-constants\"],\n- [142, \"types-macros-and-constants\"],\n+ [1, \"types-macros-and-constants\"],\n+ [8, \"types-macros-and-constants\"],\n [141, \"types-macros-and-constants\"],\n+ [142, \"types-macros-and-constants\"],\n [140, \"types-macros-and-constants\"],\n- [139, \"types-macros-and-constants\"],\n- [128, \"types-macros-and-constants\"],\n [138, \"types-macros-and-constants\"],\n [137, \"types-macros-and-constants\"],\n- [108, \"types-macros-and-constants\"],\n- [109, \"types-macros-and-constants\"],\n+ [139, \"types-macros-and-constants\"],\n+ [128, \"types-macros-and-constants\"],\n [100, \"types-macros-and-constants\"],\n- [115, \"types-macros-and-constants\"],\n+ [109, \"types-macros-and-constants\"],\n [107, \"types-macros-and-constants\"],\n- [82, \"types-macros-and-constants\"],\n+ [115, \"types-macros-and-constants\"],\n+ [108, \"types-macros-and-constants\"],\n+ [80, \"types-macros-and-constants\"],\n+ [99, \"types-macros-and-constants\"],\n+ [96, \"types-macros-and-constants\"],\n [94, \"types-macros-and-constants\"],\n- [91, \"types-macros-and-constants\"],\n- [81, \"types-macros-and-constants\"],\n+ [93, \"types-macros-and-constants\"],\n+ [87, \"types-macros-and-constants\"],\n [98, \"types-macros-and-constants\"],\n [84, \"types-macros-and-constants\"],\n- [80, \"types-macros-and-constants\"],\n- [89, \"types-macros-and-constants\"],\n- [99, \"types-macros-and-constants\"],\n+ [91, \"types-macros-and-constants\"],\n [90, \"types-macros-and-constants\"],\n- [88, \"types-macros-and-constants\"],\n [85, \"types-macros-and-constants\"],\n- [87, \"types-macros-and-constants\"],\n- [93, \"types-macros-and-constants\"],\n- [96, \"types-macros-and-constants\"]\n- ],\n- \"Single evaluation\": [\n- [39, \"single-evaluation\"]\n- ],\n- \"Precomputations\": [\n- [39, \"precomputations\"]\n- ],\n- \"Vector evaluations\": [\n- [39, \"vector-evaluations\"]\n- ],\n- \"Internal discrete logarithm strategies\": [\n- [39, \"internal-discrete-logarithm-strategies\"]\n- ],\n- \"Complete table\": [\n- [39, \"complete-table\"]\n- ],\n- \"Baby-step giant-step table\": [\n- [39, \"baby-step-giant-step-table\"]\n- ],\n- \"Prime-power modulus decomposition\": [\n- [39, \"prime-power-modulus-decomposition\"]\n- ],\n- \"CRT decomposition\": [\n- [39, \"crt-decomposition\"],\n- [2, \"crt-decomposition\"]\n- ],\n- \"padic decomposition\": [\n- [39, \"padic-decomposition\"]\n- ],\n- \"Pollard rho method\": [\n- [39, \"pollard-rho-method\"]\n- ],\n- \"ca_vec.h \\u2013 vectors of real and complex numbers\": [\n- [31, \"ca-vec-h-vectors-of-real-and-complex-numbers\"]\n+ [88, \"types-macros-and-constants\"],\n+ [81, \"types-macros-and-constants\"],\n+ [82, \"types-macros-and-constants\"],\n+ [89, \"types-macros-and-constants\"]\n ],\n \"Memory management\": [\n- [31, \"memory-management\"],\n- [27, \"memory-management\"],\n [29, \"memory-management\"],\n [20, \"memory-management\"],\n- [36, \"memory-management\"],\n- [23, \"memory-management\"],\n+ [28, \"memory-management\"],\n [37, \"memory-management\"],\n+ [23, \"memory-management\"],\n+ [36, \"memory-management\"],\n [30, \"memory-management\"],\n- [28, \"memory-management\"],\n- [54, \"memory-management\"],\n+ [31, \"memory-management\"],\n+ [27, \"memory-management\"],\n [51, \"memory-management\"],\n+ [53, \"memory-management\"],\n+ [50, \"memory-management\"],\n [52, \"memory-management\"],\n+ [54, \"memory-management\"],\n+ [45, \"memory-management\"],\n [56, \"memory-management\"],\n [55, \"memory-management\"],\n- [50, \"memory-management\"],\n- [53, \"memory-management\"],\n- [45, \"memory-management\"],\n- [75, \"memory-management\"],\n [65, \"memory-management\"],\n+ [72, \"memory-management\"],\n+ [74, \"memory-management\"],\n+ [69, \"memory-management\"],\n [64, \"memory-management\"],\n+ [63, \"memory-management\"],\n [62, \"memory-management\"],\n- [70, \"memory-management\"],\n+ [79, \"memory-management\"],\n [73, \"memory-management\"],\n- [74, \"memory-management\"],\n- [69, \"memory-management\"],\n- [72, \"memory-management\"],\n- [68, \"memory-management\"],\n [60, \"memory-management\"],\n- [63, \"memory-management\"],\n+ [75, \"memory-management\"],\n+ [70, \"memory-management\"],\n [71, \"memory-management\"],\n- [79, \"memory-management\"],\n+ [68, \"memory-management\"],\n [78, \"memory-management\"],\n- [10, \"memory-management\"],\n+ [12, \"memory-management\"],\n+ [0, \"memory-management\"],\n+ [6, \"memory-management\"],\n [18, \"memory-management\"],\n+ [13, \"memory-management\"],\n [19, \"memory-management\"],\n- [6, \"memory-management\"],\n+ [10, \"memory-management\"],\n [8, \"memory-management\"],\n- [13, \"memory-management\"],\n- [0, \"memory-management\"],\n- [12, \"memory-management\"],\n+ [156, \"memory-management\"],\n [145, \"memory-management\"],\n [146, \"memory-management\"],\n- [156, \"memory-management\"],\n- [143, \"memory-management\"],\n [142, \"memory-management\"],\n- [154, \"memory-management\"],\n- [149, \"memory-management\"],\n- [147, \"memory-management\"],\n [155, \"memory-management\"],\n+ [149, \"memory-management\"],\n+ [143, \"memory-management\"],\n+ [154, \"memory-management\"],\n [140, \"memory-management\"],\n- [139, \"memory-management\"],\n+ [147, \"memory-management\"],\n+ [129, \"memory-management\"],\n+ [138, \"memory-management\"],\n [130, \"memory-management\"],\n+ [137, \"memory-management\"],\n [131, \"memory-management\"],\n+ [139, \"memory-management\"],\n [128, \"memory-management\"],\n- [138, \"memory-management\"],\n- [129, \"memory-management\"],\n- [137, \"memory-management\"],\n- [108, \"memory-management\"],\n [109, \"memory-management\"],\n- [101, \"memory-management\"],\n- [115, \"memory-management\"],\n [107, \"memory-management\"],\n [103, \"memory-management\"],\n- [95, \"memory-management\"],\n- [81, \"memory-management\"],\n- [98, \"memory-management\"],\n- [84, \"memory-management\"],\n+ [115, \"memory-management\"],\n+ [108, \"memory-management\"],\n+ [101, \"memory-management\"],\n [80, \"memory-management\"],\n- [89, \"memory-management\"],\n [99, \"memory-management\"],\n- [90, \"memory-management\"],\n- [88, \"memory-management\"],\n- [85, \"memory-management\"],\n+ [96, \"memory-management\"],\n+ [93, \"memory-management\"],\n [87, \"memory-management\"],\n+ [98, \"memory-management\"],\n+ [84, \"memory-management\"],\n+ [95, \"memory-management\"],\n [92, \"memory-management\"],\n- [93, \"memory-management\"],\n- [96, \"memory-management\"]\n- ],\n- \"Length\": [\n- [31, \"length\"]\n+ [90, \"memory-management\"],\n+ [85, \"memory-management\"],\n+ [88, \"memory-management\"],\n+ [81, \"memory-management\"],\n+ [89, \"memory-management\"]\n ],\n- \"Assignment\": [\n- [31, \"assignment\"],\n- [70, \"assignment\"],\n- [74, \"assignment\"],\n- [156, \"assignment\"],\n- [149, \"assignment\"]\n+ \"Assignment and conversions\": [\n+ [29, \"assignment-and-conversions\"],\n+ [128, \"assignment-and-conversions\"],\n+ [103, \"assignment-and-conversions\"]\n ],\n- \"Special vectors\": [\n- [31, \"special-vectors\"]\n+ \"Random generation\": [\n+ [29, \"random-generation\"],\n+ [26, \"random-generation\"],\n+ [23, \"random-generation\"],\n+ [30, \"random-generation\"],\n+ [52, \"random-generation\"],\n+ [56, \"random-generation\"],\n+ [63, \"random-generation\"],\n+ [62, \"random-generation\"],\n+ [70, \"random-generation\"],\n+ [68, \"random-generation\"],\n+ [6, \"random-generation\"],\n+ [18, \"random-generation\"],\n+ [19, \"random-generation\"],\n+ [8, \"random-generation\"],\n+ [156, \"random-generation\"],\n+ [138, \"random-generation\"],\n+ [128, \"random-generation\"],\n+ [108, \"random-generation\"],\n+ [88, \"random-generation\"]\n ],\n \"Input and output\": [\n- [31, \"input-and-output\"],\n- [32, \"input-and-output\"],\n- [27, \"input-and-output\"],\n [29, \"input-and-output\"],\n [20, \"input-and-output\"],\n- [36, \"input-and-output\"],\n+ [28, \"input-and-output\"],\n [23, \"input-and-output\"],\n+ [36, \"input-and-output\"],\n [30, \"input-and-output\"],\n- [28, \"input-and-output\"],\n- [54, \"input-and-output\"],\n+ [31, \"input-and-output\"],\n+ [32, \"input-and-output\"],\n+ [27, \"input-and-output\"],\n [51, \"input-and-output\"],\n- [58, \"input-and-output\"],\n- [56, \"input-and-output\"],\n- [55, \"input-and-output\"],\n [50, \"input-and-output\"],\n+ [54, \"input-and-output\"],\n [45, \"input-and-output\"],\n- [75, \"input-and-output\"],\n+ [56, \"input-and-output\"],\n+ [58, \"input-and-output\"],\n+ [55, \"input-and-output\"],\n [65, \"input-and-output\"],\n+ [72, \"input-and-output\"],\n+ [76, \"input-and-output\"],\n+ [74, \"input-and-output\"],\n [62, \"input-and-output\"],\n- [70, \"input-and-output\"],\n [73, \"input-and-output\"],\n- [74, \"input-and-output\"],\n- [72, \"input-and-output\"],\n [60, \"input-and-output\"],\n- [76, \"input-and-output\"],\n+ [75, \"input-and-output\"],\n+ [70, \"input-and-output\"],\n [71, \"input-and-output\"],\n+ [0, \"input-and-output\"],\n+ [6, \"input-and-output\"],\n [18, \"input-and-output\"],\n+ [13, \"input-and-output\"],\n [19, \"input-and-output\"],\n- [6, \"input-and-output\"],\n [8, \"input-and-output\"],\n- [13, \"input-and-output\"],\n- [0, \"input-and-output\"],\n+ [156, \"input-and-output\"],\n [145, \"input-and-output\"],\n [146, \"input-and-output\"],\n- [156, \"input-and-output\"],\n [142, \"input-and-output\"],\n- [147, \"input-and-output\"],\n [140, \"input-and-output\"],\n+ [147, \"input-and-output\"],\n [128, \"input-and-output\"],\n+ [107, \"input-and-output\"],\n [108, \"input-and-output\"],\n [101, \"input-and-output\"],\n- [107, \"input-and-output\"],\n [95, \"input-and-output\"],\n [92, \"input-and-output\"]\n ],\n- \"List operations\": [\n- [31, \"list-operations\"]\n+ \"Special matrices\": [\n+ [29, \"special-matrices\"],\n+ [23, \"special-matrices\"],\n+ [51, \"special-matrices\"],\n+ [73, \"special-matrices\"],\n+ [60, \"special-matrices\"],\n+ [6, \"special-matrices\"],\n+ [18, \"special-matrices\"],\n+ [142, \"special-matrices\"],\n+ [107, \"special-matrices\"]\n+ ],\n+ \"Comparisons and properties\": [\n+ [29, \"comparisons-and-properties\"],\n+ [31, \"comparisons-and-properties\"]\n+ ],\n+ \"Conjugate and transpose\": [\n+ [29, \"conjugate-and-transpose\"]\n ],\n \"Arithmetic\": [\n- [31, \"arithmetic\"],\n [29, \"arithmetic\"],\n [26, \"arithmetic\"],\n- [23, \"arithmetic\"],\n [37, \"arithmetic\"],\n+ [23, \"arithmetic\"],\n [30, \"arithmetic\"],\n- [40, \"arithmetic\"],\n+ [31, \"arithmetic\"],\n [50, \"arithmetic\"],\n [41, \"arithmetic\"],\n- [61, \"arithmetic\"],\n+ [40, \"arithmetic\"],\n+ [76, \"arithmetic\"],\n [67, \"arithmetic\"],\n- [70, \"arithmetic\"],\n [73, \"arithmetic\"],\n- [76, \"arithmetic\"],\n- [10, \"arithmetic\"],\n+ [61, \"arithmetic\"],\n+ [70, \"arithmetic\"],\n+ [0, \"arithmetic\"],\n+ [6, \"arithmetic\"],\n [18, \"arithmetic\"],\n+ [13, \"arithmetic\"],\n [19, \"arithmetic\"],\n- [6, \"arithmetic\"],\n+ [10, \"arithmetic\"],\n [8, \"arithmetic\"],\n- [13, \"arithmetic\"],\n- [0, \"arithmetic\"],\n [156, \"arithmetic\"],\n [142, \"arithmetic\"],\n- [135, \"arithmetic\"],\n [131, \"arithmetic\"],\n+ [135, \"arithmetic\"],\n [128, \"arithmetic\"],\n- [108, \"arithmetic\"],\n [109, \"arithmetic\"],\n [107, \"arithmetic\"],\n [103, \"arithmetic\"],\n- [111, \"arithmetic\"]\n- ],\n- \"Comparisons and properties\": [\n- [31, \"comparisons-and-properties\"],\n- [29, \"comparisons-and-properties\"]\n- ],\n- \"Internal representation\": [\n- [31, \"internal-representation\"],\n- [26, \"internal-representation\"]\n- ],\n- \"Contributing to FLINT\": [\n- [34, \"contributing-to-flint\"]\n- ],\n- \"Code conventions\": [\n- [34, \"code-conventions\"]\n- ],\n- \"Test code\": [\n- [34, \"test-code\"]\n- ],\n- \"calcium.h \\u2013 global definitions\": [\n- [32, \"calcium-h-global-definitions\"]\n- ],\n- \"Version\": [\n- [32, \"version\"]\n- ],\n- \"Triple-valued logic\": [\n- [32, \"triple-valued-logic\"]\n- ],\n- \"Flint, Arb and Antic extras\": [\n- [32, \"flint-arb-and-antic-extras\"]\n- ],\n- \"dirichlet.h \\u2013 Dirichlet characters\": [\n- [38, \"dirichlet-h-dirichlet-characters\"]\n- ],\n- \"Dirichlet characters\": [\n- [38, \"dirichlet-characters\"]\n- ],\n- \"Multiplicative group modulo q\": [\n- [38, \"multiplicative-group-modulo-q\"]\n- ],\n- \"Character type\": [\n- [38, \"character-type\"]\n- ],\n- \"Character properties\": [\n- [38, \"character-properties\"]\n- ],\n- \"Character evaluation\": [\n- [38, \"character-evaluation\"]\n- ],\n- \"Character operations\": [\n- [38, \"character-operations\"]\n- ],\n- \"Building, testing and installing\": [\n- [25, \"building-testing-and-installing\"]\n- ],\n- \"Quick start\": [\n- [25, \"quick-start\"]\n- ],\n- \"Library and install paths\": [\n- [25, \"library-and-install-paths\"]\n- ],\n- \"Testing FLINT\": [\n- [25, \"testing-flint\"]\n- ],\n- \"Number of test iterations\": [\n- [25, \"number-of-test-iterations\"]\n- ],\n- \"Testing single modules\": [\n- [25, \"testing-single-modules\"]\n- ],\n- \"Testing single functions\": [\n- [25, \"testing-single-functions\"]\n- ],\n- \"Test coverage\": [\n- [25, \"test-coverage\"]\n- ],\n- \"Static or dynamic library only\": [\n- [25, \"static-or-dynamic-library-only\"]\n- ],\n- \"AVX2 instructions\": [\n- [25, \"avx2-instructions\"]\n- ],\n- \"TLS, reentrancy and single mode\": [\n- [25, \"tls-reentrancy-and-single-mode\"]\n- ],\n- \"ABI and architecture support\": [\n- [25, \"abi-and-architecture-support\"]\n- ],\n- \"CMake build for Windows users\": [\n- [25, \"cmake-build-for-windows-users\"]\n- ],\n- \"Uninstalling FLINT\": [\n- [25, \"uninstalling-flint\"]\n- ],\n- \"Assertion checking\": [\n- [25, \"assertion-checking\"]\n- ],\n- \"Linking and running code\": [\n- [25, \"linking-and-running-code\"]\n- ],\n- \"ca_ext.h \\u2013 real and complex extension numbers\": [\n- [27, \"ca-ext-h-real-and-complex-extension-numbers\"]\n- ],\n- \"Type and macros\": [\n- [27, \"type-and-macros\"],\n- [28, \"type-and-macros\"]\n- ],\n- \"Structure\": [\n- [27, \"structure\"]\n- ],\n- \"Numerical evaluation\": [\n- [27, \"numerical-evaluation\"],\n- [26, \"numerical-evaluation\"]\n- ],\n- \"Cache\": [\n- [27, \"cache\"],\n- [28, \"cache\"]\n- ],\n- \"ca_mat.h \\u2013 matrices over the real and complex numbers\": [\n- [29, \"ca-mat-h-matrices-over-the-real-and-complex-numbers\"]\n- ],\n- \"Assignment and conversions\": [\n- [29, \"assignment-and-conversions\"],\n- [128, \"assignment-and-conversions\"],\n- [103, \"assignment-and-conversions\"]\n- ],\n- \"Random generation\": [\n- [29, \"random-generation\"],\n- [26, \"random-generation\"],\n- [23, \"random-generation\"],\n- [30, \"random-generation\"],\n- [52, \"random-generation\"],\n- [56, \"random-generation\"],\n- [62, \"random-generation\"],\n- [70, \"random-generation\"],\n- [68, \"random-generation\"],\n- [63, \"random-generation\"],\n- [18, \"random-generation\"],\n- [19, \"random-generation\"],\n- [6, \"random-generation\"],\n- [8, \"random-generation\"],\n- [156, \"random-generation\"],\n- [128, \"random-generation\"],\n- [138, \"random-generation\"],\n- [108, \"random-generation\"],\n- [88, \"random-generation\"]\n- ],\n- \"Special matrices\": [\n- [29, \"special-matrices\"],\n- [23, \"special-matrices\"],\n- [51, \"special-matrices\"],\n- [73, \"special-matrices\"],\n- [60, \"special-matrices\"],\n- [18, \"special-matrices\"],\n- [6, \"special-matrices\"],\n- [142, \"special-matrices\"],\n- [107, \"special-matrices\"]\n- ],\n- \"Conjugate and transpose\": [\n- [29, \"conjugate-and-transpose\"]\n+ [111, \"arithmetic\"],\n+ [108, \"arithmetic\"]\n ],\n \"Powers\": [\n [29, \"powers\"]\n ],\n \"Polynomial evaluation\": [\n [29, \"polynomial-evaluation\"],\n [156, \"polynomial-evaluation\"]\n@@ -87231,23 +87066,23 @@\n \"Characteristic polynomial\": [\n [29, \"characteristic-polynomial\"],\n [51, \"characteristic-polynomial\"],\n [62, \"characteristic-polynomial\"],\n [60, \"characteristic-polynomial\"],\n [137, \"characteristic-polynomial\"],\n [107, \"characteristic-polynomial\"],\n- [98, \"characteristic-polynomial\"],\n- [84, \"characteristic-polynomial\"],\n [80, \"characteristic-polynomial\"],\n- [87, \"characteristic-polynomial\"]\n+ [87, \"characteristic-polynomial\"],\n+ [98, \"characteristic-polynomial\"],\n+ [84, \"characteristic-polynomial\"]\n ],\n \"Eigenvalues and eigenvectors\": [\n [29, \"eigenvalues-and-eigenvectors\"],\n- [18, \"eigenvalues-and-eigenvectors\"],\n- [6, \"eigenvalues-and-eigenvectors\"]\n+ [6, \"eigenvalues-and-eigenvectors\"],\n+ [18, \"eigenvalues-and-eigenvectors\"]\n ],\n \"Jordan canonical form\": [\n [29, \"jordan-canonical-form\"]\n ],\n \"Matrix functions\": [\n [29, \"matrix-functions\"],\n [107, \"matrix-functions\"]\n@@ -87275,40 +87110,40 @@\n \"Shallow assignment\": [\n [20, \"shallow-assignment\"]\n ],\n \"Random number generation\": [\n [20, \"random-number-generation\"],\n [50, \"random-number-generation\"],\n [76, \"random-number-generation\"],\n- [13, \"random-number-generation\"],\n- [0, \"random-number-generation\"]\n+ [0, \"random-number-generation\"],\n+ [13, \"random-number-generation\"]\n ],\n \"Addition and multiplication\": [\n [20, \"addition-and-multiplication\"],\n [12, \"addition-and-multiplication\"]\n ],\n \"Summation\": [\n [20, \"summation\"],\n [115, \"summation\"]\n ],\n \"Dot products\": [\n [20, \"dot-products\"],\n [143, \"dot-products\"],\n- [101, \"dot-products\"],\n [111, \"dot-products\"],\n+ [101, \"dot-products\"],\n [95, \"dot-products\"],\n [92, \"dot-products\"]\n ],\n \"Division\": [\n [20, \"division\"],\n [52, \"division\"],\n [65, \"division\"],\n- [68, \"division\"],\n- [63, \"division\"],\n [76, \"division\"],\n+ [63, \"division\"],\n+ [68, \"division\"],\n [140, \"division\"],\n [138, \"division\"],\n [132, \"division\"],\n [103, \"division\"],\n [88, \"division\"]\n ],\n \"Square roots\": [\n@@ -87321,99 +87156,14 @@\n ],\n \"Complex arithmetic\": [\n [20, \"complex-arithmetic\"]\n ],\n \"Low-level methods\": [\n [20, \"low-level-methods\"]\n ],\n- \"d_mat.h \\u2013 double precision matrices\": [\n- [36, \"d-mat-h-double-precision-matrices\"]\n- ],\n- \"Basic assignment and manipulation\": [\n- [36, \"basic-assignment-and-manipulation\"],\n- [73, \"basic-assignment-and-manipulation\"],\n- [60, \"basic-assignment-and-manipulation\"],\n- [142, \"basic-assignment-and-manipulation\"]\n- ],\n- \"Random matrix generation\": [\n- [36, \"random-matrix-generation\"],\n- [51, \"random-matrix-generation\"],\n- [73, \"random-matrix-generation\"],\n- [60, \"random-matrix-generation\"],\n- [146, \"random-matrix-generation\"],\n- [142, \"random-matrix-generation\"],\n- [137, \"random-matrix-generation\"],\n- [98, \"random-matrix-generation\"],\n- [84, \"random-matrix-generation\"],\n- [80, \"random-matrix-generation\"],\n- [87, \"random-matrix-generation\"]\n- ],\n- \"Comparison\": [\n- [36, \"comparison\"],\n- [37, \"comparison\"],\n- [54, \"comparison\"],\n- [52, \"comparison\"],\n- [56, \"comparison\"],\n- [50, \"comparison\"],\n- [75, \"comparison\"],\n- [65, \"comparison\"],\n- [62, \"comparison\"],\n- [74, \"comparison\"],\n- [68, \"comparison\"],\n- [60, \"comparison\"],\n- [63, \"comparison\"],\n- [71, \"comparison\"],\n- [79, \"comparison\"],\n- [78, \"comparison\"],\n- [12, \"comparison\"],\n- [145, \"comparison\"],\n- [146, \"comparison\"],\n- [154, \"comparison\"],\n- [147, \"comparison\"],\n- [155, \"comparison\"],\n- [140, \"comparison\"],\n- [135, \"comparison\"],\n- [130, \"comparison\"],\n- [138, \"comparison\"],\n- [137, \"comparison\"],\n- [101, \"comparison\"],\n- [95, \"comparison\"],\n- [81, \"comparison\"],\n- [98, \"comparison\"],\n- [84, \"comparison\"],\n- [80, \"comparison\"],\n- [99, \"comparison\"],\n- [90, \"comparison\"],\n- [88, \"comparison\"],\n- [85, \"comparison\"],\n- [87, \"comparison\"],\n- [92, \"comparison\"],\n- [93, \"comparison\"],\n- [96, \"comparison\"]\n- ],\n- \"Transpose\": [\n- [36, \"transpose\"],\n- [23, \"transpose\"],\n- [73, \"transpose\"],\n- [60, \"transpose\"],\n- [18, \"transpose\"],\n- [6, \"transpose\"],\n- [146, \"transpose\"]\n- ],\n- \"Matrix multiplication\": [\n- [36, \"matrix-multiplication\"],\n- [51, \"matrix-multiplication\"],\n- [62, \"matrix-multiplication\"],\n- [60, \"matrix-multiplication\"],\n- [137, \"matrix-multiplication\"],\n- [98, \"matrix-multiplication\"],\n- [84, \"matrix-multiplication\"],\n- [80, \"matrix-multiplication\"],\n- [87, \"matrix-multiplication\"]\n- ],\n \"ca.h \\u2013 exact real and complex numbers\": [\n [26, \"ca-h-exact-real-and-complex-numbers\"]\n ],\n \"Introduction: numbers\": [\n [26, \"introduction-numbers\"]\n ],\n \"Introduction: special values\": [\n@@ -87431,20 +87181,20 @@\n \"Symbolic expressions\": [\n [26, \"symbolic-expressions\"],\n [104, \"symbolic-expressions\"]\n ],\n \"Printing\": [\n [26, \"printing\"],\n [143, \"printing\"],\n- [127, \"printing\"],\n [137, \"printing\"],\n- [98, \"printing\"],\n- [84, \"printing\"],\n+ [127, \"printing\"],\n [80, \"printing\"],\n- [87, \"printing\"]\n+ [87, \"printing\"],\n+ [98, \"printing\"],\n+ [84, \"printing\"]\n ],\n \"Assignment and conversion\": [\n [26, \"assignment-and-conversion\"]\n ],\n \"Conversion of algebraic numbers\": [\n [26, \"conversion-of-algebraic-numbers\"]\n ],\n@@ -87455,150 +87205,248 @@\n [26, \"value-predicates\"]\n ],\n \"Comparisons\": [\n [26, \"comparisons\"],\n [30, \"comparisons\"],\n [45, \"comparisons\"],\n [70, \"comparisons\"],\n+ [6, \"comparisons\"],\n [18, \"comparisons\"],\n+ [13, \"comparisons\"],\n [19, \"comparisons\"],\n- [6, \"comparisons\"],\n [8, \"comparisons\"],\n- [13, \"comparisons\"],\n [156, \"comparisons\"],\n [127, \"comparisons\"],\n [128, \"comparisons\"],\n- [108, \"comparisons\"],\n- [107, \"comparisons\"]\n+ [107, \"comparisons\"],\n+ [108, \"comparisons\"]\n ],\n \"Field structure operations\": [\n [26, \"field-structure-operations\"]\n ],\n \"Powers and roots\": [\n [26, \"powers-and-roots\"],\n- [13, \"powers-and-roots\"],\n [0, \"powers-and-roots\"],\n+ [13, \"powers-and-roots\"],\n [156, \"powers-and-roots\"]\n ],\n \"Complex parts\": [\n [26, \"complex-parts\"],\n [0, \"complex-parts\"],\n [156, \"complex-parts\"]\n ],\n \"Exponentials and logarithms\": [\n [26, \"exponentials-and-logarithms\"],\n- [13, \"exponentials-and-logarithms\"],\n- [0, \"exponentials-and-logarithms\"]\n+ [0, \"exponentials-and-logarithms\"],\n+ [13, \"exponentials-and-logarithms\"]\n ],\n \"Trigonometric functions\": [\n [26, \"trigonometric-functions\"],\n- [13, \"trigonometric-functions\"],\n- [0, \"trigonometric-functions\"]\n+ [0, \"trigonometric-functions\"],\n+ [13, \"trigonometric-functions\"]\n ],\n \"Special functions\": [\n [26, \"special-functions\"],\n [23, \"special-functions\"],\n+ [50, \"special-functions\"],\n+ [56, \"special-functions\"],\n [46, \"special-functions\"],\n [40, \"special-functions\"],\n- [56, \"special-functions\"],\n- [50, \"special-functions\"],\n [79, \"special-functions\"],\n [78, \"special-functions\"],\n- [18, \"special-functions\"],\n [6, \"special-functions\"],\n+ [18, \"special-functions\"],\n [145, \"special-functions\"],\n [154, \"special-functions\"],\n [128, \"special-functions\"],\n [117, \"special-functions\"],\n- [85, \"special-functions\"],\n- [96, \"special-functions\"]\n+ [96, \"special-functions\"],\n+ [85, \"special-functions\"]\n+ ],\n+ \"Numerical evaluation\": [\n+ [26, \"numerical-evaluation\"],\n+ [27, \"numerical-evaluation\"]\n ],\n \"Rewriting and simplification\": [\n [26, \"rewriting-and-simplification\"]\n ],\n \"Factorization\": [\n [26, \"factorization\"],\n [103, \"factorization\"]\n ],\n \"Factorization options\": [\n [26, \"factorization-options\"]\n ],\n \"Context options\": [\n [26, \"context-options\"]\n ],\n- \"bool_mat.h \\u2013 matrices over booleans\": [\n- [23, \"bool-mat-h-matrices-over-booleans\"]\n+ \"Internal representation\": [\n+ [26, \"internal-representation\"],\n+ [31, \"internal-representation\"]\n ],\n- \"Conversions\": [\n- [23, \"conversions\"],\n- [55, \"conversions\"],\n- [75, \"conversions\"],\n- [61, \"conversions\"],\n- [67, \"conversions\"],\n- [62, \"conversions\"],\n- [60, \"conversions\"],\n- [18, \"conversions\"],\n- [19, \"conversions\"],\n- [6, \"conversions\"],\n- [8, \"conversions\"],\n- [146, \"conversions\"],\n- [156, \"conversions\"],\n- [98, \"conversions\"],\n- [84, \"conversions\"],\n- [80, \"conversions\"],\n- [87, \"conversions\"]\n+ \"dirichlet.h \\u2013 Dirichlet characters\": [\n+ [38, \"dirichlet-h-dirichlet-characters\"]\n ],\n- \"Value comparisons\": [\n- [23, \"value-comparisons\"]\n+ \"Dirichlet characters\": [\n+ [38, \"dirichlet-characters\"]\n+ ],\n+ \"Multiplicative group modulo q\": [\n+ [38, \"multiplicative-group-modulo-q\"]\n+ ],\n+ \"Character type\": [\n+ [38, \"character-type\"]\n+ ],\n+ \"Character properties\": [\n+ [38, \"character-properties\"]\n+ ],\n+ \"Character evaluation\": [\n+ [38, \"character-evaluation\"]\n+ ],\n+ \"Character operations\": [\n+ [38, \"character-operations\"]\n+ ],\n+ \"ca_field.h \\u2013 extension fields\": [\n+ [28, \"ca-field-h-extension-fields\"]\n+ ],\n+ \"Type and macros\": [\n+ [28, \"type-and-macros\"],\n+ [27, \"type-and-macros\"]\n+ ],\n+ \"Ideal\": [\n+ [28, \"ideal\"]\n+ ],\n+ \"Structure operations\": [\n+ [28, \"structure-operations\"]\n+ ],\n+ \"Cache\": [\n+ [28, \"cache\"],\n+ [27, \"cache\"]\n ],\n \"d_vec.h \\u2013 double precision vectors\": [\n [37, \"d-vec-h-double-precision-vectors\"]\n ],\n \"Randomisation\": [\n [37, \"randomisation\"],\n [55, \"randomisation\"],\n- [75, \"randomisation\"],\n [65, \"randomisation\"],\n [74, \"randomisation\"],\n- [71, \"randomisation\"],\n [79, \"randomisation\"],\n+ [75, \"randomisation\"],\n+ [71, \"randomisation\"],\n [78, \"randomisation\"],\n [145, \"randomisation\"],\n- [154, \"randomisation\"],\n [149, \"randomisation\"],\n+ [154, \"randomisation\"],\n [147, \"randomisation\"],\n [130, \"randomisation\"],\n [101, \"randomisation\"],\n- [95, \"randomisation\"],\n- [81, \"randomisation\"],\n [99, \"randomisation\"],\n+ [96, \"randomisation\"],\n+ [93, \"randomisation\"],\n+ [95, \"randomisation\"],\n+ [92, \"randomisation\"],\n [90, \"randomisation\"],\n [85, \"randomisation\"],\n- [92, \"randomisation\"],\n- [93, \"randomisation\"],\n- [96, \"randomisation\"]\n+ [81, \"randomisation\"]\n ],\n \"Assignment and basic manipulation\": [\n [37, \"assignment-and-basic-manipulation\"],\n- [75, \"assignment-and-basic-manipulation\"],\n [65, \"assignment-and-basic-manipulation\"],\n+ [75, \"assignment-and-basic-manipulation\"],\n [71, \"assignment-and-basic-manipulation\"],\n- [147, \"assignment-and-basic-manipulation\"],\n [140, \"assignment-and-basic-manipulation\"],\n+ [147, \"assignment-and-basic-manipulation\"],\n [101, \"assignment-and-basic-manipulation\"],\n- [95, \"assignment-and-basic-manipulation\"],\n- [81, \"assignment-and-basic-manipulation\"],\n [99, \"assignment-and-basic-manipulation\"],\n- [90, \"assignment-and-basic-manipulation\"],\n+ [93, \"assignment-and-basic-manipulation\"],\n+ [95, \"assignment-and-basic-manipulation\"],\n [92, \"assignment-and-basic-manipulation\"],\n- [93, \"assignment-and-basic-manipulation\"]\n+ [90, \"assignment-and-basic-manipulation\"],\n+ [81, \"assignment-and-basic-manipulation\"]\n+ ],\n+ \"Comparison\": [\n+ [37, \"comparison\"],\n+ [36, \"comparison\"],\n+ [50, \"comparison\"],\n+ [52, \"comparison\"],\n+ [54, \"comparison\"],\n+ [56, \"comparison\"],\n+ [65, \"comparison\"],\n+ [74, \"comparison\"],\n+ [63, \"comparison\"],\n+ [62, \"comparison\"],\n+ [79, \"comparison\"],\n+ [60, \"comparison\"],\n+ [75, \"comparison\"],\n+ [71, \"comparison\"],\n+ [68, \"comparison\"],\n+ [78, \"comparison\"],\n+ [12, \"comparison\"],\n+ [145, \"comparison\"],\n+ [146, \"comparison\"],\n+ [155, \"comparison\"],\n+ [154, \"comparison\"],\n+ [140, \"comparison\"],\n+ [147, \"comparison\"],\n+ [138, \"comparison\"],\n+ [130, \"comparison\"],\n+ [137, \"comparison\"],\n+ [135, \"comparison\"],\n+ [101, \"comparison\"],\n+ [80, \"comparison\"],\n+ [99, \"comparison\"],\n+ [96, \"comparison\"],\n+ [93, \"comparison\"],\n+ [87, \"comparison\"],\n+ [98, \"comparison\"],\n+ [84, \"comparison\"],\n+ [95, \"comparison\"],\n+ [92, \"comparison\"],\n+ [90, \"comparison\"],\n+ [85, \"comparison\"],\n+ [88, \"comparison\"],\n+ [81, \"comparison\"]\n ],\n \"Dot product and norm\": [\n [37, \"dot-product-and-norm\"]\n ],\n+ \"bool_mat.h \\u2013 matrices over booleans\": [\n+ [23, \"bool-mat-h-matrices-over-booleans\"]\n+ ],\n+ \"Conversions\": [\n+ [23, \"conversions\"],\n+ [55, \"conversions\"],\n+ [67, \"conversions\"],\n+ [62, \"conversions\"],\n+ [61, \"conversions\"],\n+ [60, \"conversions\"],\n+ [75, \"conversions\"],\n+ [6, \"conversions\"],\n+ [18, \"conversions\"],\n+ [19, \"conversions\"],\n+ [8, \"conversions\"],\n+ [156, \"conversions\"],\n+ [146, \"conversions\"],\n+ [80, \"conversions\"],\n+ [87, \"conversions\"],\n+ [98, \"conversions\"],\n+ [84, \"conversions\"]\n+ ],\n+ \"Value comparisons\": [\n+ [23, \"value-comparisons\"]\n+ ],\n+ \"Transpose\": [\n+ [23, \"transpose\"],\n+ [36, \"transpose\"],\n+ [73, \"transpose\"],\n+ [60, \"transpose\"],\n+ [6, \"transpose\"],\n+ [18, \"transpose\"],\n+ [146, \"transpose\"]\n+ ],\n \"Algorithms for mathematical constants\": [\n [33, \"algorithms-for-mathematical-constants\"]\n ],\n \"Pi\": [\n [33, \"pi\"]\n ],\n \"Logarithms of integers\": [\n@@ -87618,72 +87466,94 @@\n ],\n \"Glaisher\\u2019s constant\": [\n [33, \"glaisher-s-constant\"]\n ],\n \"Reciprocal Fibonacci constant\": [\n [33, \"reciprocal-fibonacci-constant\"]\n ],\n- \"Bug reporting\": [\n- [24, \"bug-reporting\"]\n+ \"Building, testing and installing\": [\n+ [25, \"building-testing-and-installing\"]\n ],\n- \"Reporting bugs\": [\n- [24, \"reporting-bugs\"]\n+ \"Quick start\": [\n+ [25, \"quick-start\"]\n ],\n- \"arith.h \\u2013 arithmetic and special functions\": [\n- [21, \"arith-h-arithmetic-and-special-functions\"]\n+ \"Library and install paths\": [\n+ [25, \"library-and-install-paths\"]\n ],\n- \"Primorials\": [\n- [21, \"primorials\"]\n+ \"Testing FLINT\": [\n+ [25, \"testing-flint\"]\n ],\n- \"Harmonic numbers\": [\n- [21, \"harmonic-numbers\"]\n+ \"Number of test iterations\": [\n+ [25, \"number-of-test-iterations\"]\n ],\n- \"Stirling numbers\": [\n- [21, \"stirling-numbers\"]\n+ \"Testing single modules\": [\n+ [25, \"testing-single-modules\"]\n ],\n- \"Bell numbers\": [\n- [21, \"bell-numbers\"]\n+ \"Testing single functions\": [\n+ [25, \"testing-single-functions\"]\n ],\n- \"Bernoulli numbers and polynomials\": [\n- [21, \"bernoulli-numbers-and-polynomials\"],\n- [13, \"bernoulli-numbers-and-polynomials\"]\n+ \"Test coverage\": [\n+ [25, \"test-coverage\"]\n ],\n- \"Euler numbers and polynomials\": [\n- [21, \"euler-numbers-and-polynomials\"]\n+ \"Static or dynamic library only\": [\n+ [25, \"static-or-dynamic-library-only\"]\n ],\n- \"Multiplicative functions\": [\n- [21, \"multiplicative-functions\"]\n+ \"AVX2 instructions\": [\n+ [25, \"avx2-instructions\"]\n ],\n- \"Landau\\u2019s function\": [\n- [21, \"landau-s-function\"]\n+ \"TLS, reentrancy and single mode\": [\n+ [25, \"tls-reentrancy-and-single-mode\"]\n ],\n- \"Dedekind sums\": [\n- [21, \"dedekind-sums\"],\n- [50, \"dedekind-sums\"]\n+ \"ABI and architecture support\": [\n+ [25, \"abi-and-architecture-support\"]\n ],\n- \"Number of partitions\": [\n- [21, \"number-of-partitions\"]\n+ \"CMake build for Windows users\": [\n+ [25, \"cmake-build-for-windows-users\"]\n ],\n- \"Sums of squares\": [\n- [21, \"sums-of-squares\"]\n+ \"Uninstalling FLINT\": [\n+ [25, \"uninstalling-flint\"]\n ],\n- \"bernoulli.h \\u2013 support for Bernoulli numbers\": [\n- [22, \"bernoulli-h-support-for-bernoulli-numbers\"]\n+ \"Assertion checking\": [\n+ [25, \"assertion-checking\"]\n ],\n- \"Generation of Bernoulli numbers\": [\n- [22, \"generation-of-bernoulli-numbers\"]\n+ \"Linking and running code\": [\n+ [25, \"linking-and-running-code\"]\n ],\n- \"Caching\": [\n- [22, \"caching\"]\n+ \"d_mat.h \\u2013 double precision matrices\": [\n+ [36, \"d-mat-h-double-precision-matrices\"]\n ],\n- \"Bounding\": [\n- [22, \"bounding\"]\n+ \"Basic assignment and manipulation\": [\n+ [36, \"basic-assignment-and-manipulation\"],\n+ [73, \"basic-assignment-and-manipulation\"],\n+ [60, \"basic-assignment-and-manipulation\"],\n+ [142, \"basic-assignment-and-manipulation\"]\n ],\n- \"Isolated Bernoulli numbers\": [\n- [22, \"isolated-bernoulli-numbers\"]\n+ \"Random matrix generation\": [\n+ [36, \"random-matrix-generation\"],\n+ [51, \"random-matrix-generation\"],\n+ [73, \"random-matrix-generation\"],\n+ [60, \"random-matrix-generation\"],\n+ [146, \"random-matrix-generation\"],\n+ [142, \"random-matrix-generation\"],\n+ [137, \"random-matrix-generation\"],\n+ [80, \"random-matrix-generation\"],\n+ [87, \"random-matrix-generation\"],\n+ [98, \"random-matrix-generation\"],\n+ [84, \"random-matrix-generation\"]\n+ ],\n+ \"Matrix multiplication\": [\n+ [36, \"matrix-multiplication\"],\n+ [51, \"matrix-multiplication\"],\n+ [62, \"matrix-multiplication\"],\n+ [60, \"matrix-multiplication\"],\n+ [137, \"matrix-multiplication\"],\n+ [80, \"matrix-multiplication\"],\n+ [87, \"matrix-multiplication\"],\n+ [98, \"matrix-multiplication\"],\n+ [84, \"matrix-multiplication\"]\n ],\n \"ca_poly.h \\u2013 dense univariate polynomials over the real and complex numbers\": [\n [30, \"ca-poly-h-dense-univariate-polynomials-over-the-real-and-complex-numbers\"]\n ],\n \"Assignment and simple values\": [\n [30, \"assignment-and-simple-values\"]\n ],\n@@ -87717,38 +87587,168 @@\n [30, \"greatest-common-divisor\"],\n [161, \"greatest-common-divisor\"],\n [54, \"greatest-common-divisor\"],\n [56, \"greatest-common-divisor\"],\n [65, \"greatest-common-divisor\"],\n [71, \"greatest-common-divisor\"],\n [140, \"greatest-common-divisor\"],\n- [81, \"greatest-common-divisor\"],\n [99, \"greatest-common-divisor\"],\n+ [93, \"greatest-common-divisor\"],\n [90, \"greatest-common-divisor\"],\n- [93, \"greatest-common-divisor\"]\n+ [81, \"greatest-common-divisor\"]\n ],\n \"Roots and factorization\": [\n [30, \"roots-and-factorization\"]\n ],\n \"Vectors of polynomials\": [\n [30, \"vectors-of-polynomials\"]\n ],\n- \"ca_field.h \\u2013 extension fields\": [\n- [28, \"ca-field-h-extension-fields\"]\n+ \"ca_vec.h \\u2013 vectors of real and complex numbers\": [\n+ [31, \"ca-vec-h-vectors-of-real-and-complex-numbers\"]\n ],\n- \"Ideal\": [\n- [28, \"ideal\"]\n+ \"Length\": [\n+ [31, \"length\"]\n ],\n- \"Structure operations\": [\n- [28, \"structure-operations\"]\n+ \"Assignment\": [\n+ [31, \"assignment\"],\n+ [74, \"assignment\"],\n+ [70, \"assignment\"],\n+ [156, \"assignment\"],\n+ [149, \"assignment\"]\n+ ],\n+ \"Special vectors\": [\n+ [31, \"special-vectors\"]\n+ ],\n+ \"List operations\": [\n+ [31, \"list-operations\"]\n ],\n \"Contributors\": [\n [35, \"contributors\"],\n [35, \"id2\"]\n ],\n+ \"calcium.h \\u2013 global definitions\": [\n+ [32, \"calcium-h-global-definitions\"]\n+ ],\n+ \"Version\": [\n+ [32, \"version\"]\n+ ],\n+ \"Triple-valued logic\": [\n+ [32, \"triple-valued-logic\"]\n+ ],\n+ \"Flint, Arb and Antic extras\": [\n+ [32, \"flint-arb-and-antic-extras\"]\n+ ],\n+ \"bernoulli.h \\u2013 support for Bernoulli numbers\": [\n+ [22, \"bernoulli-h-support-for-bernoulli-numbers\"]\n+ ],\n+ \"Generation of Bernoulli numbers\": [\n+ [22, \"generation-of-bernoulli-numbers\"]\n+ ],\n+ \"Caching\": [\n+ [22, \"caching\"]\n+ ],\n+ \"Bounding\": [\n+ [22, \"bounding\"]\n+ ],\n+ \"Isolated Bernoulli numbers\": [\n+ [22, \"isolated-bernoulli-numbers\"]\n+ ],\n+ \"arith.h \\u2013 arithmetic and special functions\": [\n+ [21, \"arith-h-arithmetic-and-special-functions\"]\n+ ],\n+ \"Primorials\": [\n+ [21, \"primorials\"]\n+ ],\n+ \"Harmonic numbers\": [\n+ [21, \"harmonic-numbers\"]\n+ ],\n+ \"Stirling numbers\": [\n+ [21, \"stirling-numbers\"]\n+ ],\n+ \"Bell numbers\": [\n+ [21, \"bell-numbers\"]\n+ ],\n+ \"Bernoulli numbers and polynomials\": [\n+ [21, \"bernoulli-numbers-and-polynomials\"],\n+ [13, \"bernoulli-numbers-and-polynomials\"]\n+ ],\n+ \"Euler numbers and polynomials\": [\n+ [21, \"euler-numbers-and-polynomials\"]\n+ ],\n+ \"Multiplicative functions\": [\n+ [21, \"multiplicative-functions\"]\n+ ],\n+ \"Landau\\u2019s function\": [\n+ [21, \"landau-s-function\"]\n+ ],\n+ \"Dedekind sums\": [\n+ [21, \"dedekind-sums\"],\n+ [50, \"dedekind-sums\"]\n+ ],\n+ \"Number of partitions\": [\n+ [21, \"number-of-partitions\"]\n+ ],\n+ \"Sums of squares\": [\n+ [21, \"sums-of-squares\"]\n+ ],\n+ \"ca_ext.h \\u2013 real and complex extension numbers\": [\n+ [27, \"ca-ext-h-real-and-complex-extension-numbers\"]\n+ ],\n+ \"Structure\": [\n+ [27, \"structure\"]\n+ ],\n+ \"dlog.h \\u2013 discrete logarithms mod ulong primes\": [\n+ [39, \"dlog-h-discrete-logarithms-mod-ulong-primes\"]\n+ ],\n+ \"Single evaluation\": [\n+ [39, \"single-evaluation\"]\n+ ],\n+ \"Precomputations\": [\n+ [39, \"precomputations\"]\n+ ],\n+ \"Vector evaluations\": [\n+ [39, \"vector-evaluations\"]\n+ ],\n+ \"Internal discrete logarithm strategies\": [\n+ [39, \"internal-discrete-logarithm-strategies\"]\n+ ],\n+ \"Complete table\": [\n+ [39, \"complete-table\"]\n+ ],\n+ \"Baby-step giant-step table\": [\n+ [39, \"baby-step-giant-step-table\"]\n+ ],\n+ \"Prime-power modulus decomposition\": [\n+ [39, \"prime-power-modulus-decomposition\"]\n+ ],\n+ \"CRT decomposition\": [\n+ [39, \"crt-decomposition\"],\n+ [2, \"crt-decomposition\"]\n+ ],\n+ \"padic decomposition\": [\n+ [39, \"padic-decomposition\"]\n+ ],\n+ \"Pollard rho method\": [\n+ [39, \"pollard-rho-method\"]\n+ ],\n+ \"Bug reporting\": [\n+ [24, \"bug-reporting\"]\n+ ],\n+ \"Reporting bugs\": [\n+ [24, \"reporting-bugs\"]\n+ ],\n+ \"Contributing to FLINT\": [\n+ [34, \"contributing-to-flint\"]\n+ ],\n+ \"Code conventions\": [\n+ [34, \"code-conventions\"]\n+ ],\n+ \"Test code\": [\n+ [34, \"test-code\"]\n+ ],\n \"Threading\": [\n [160, \"threading\"]\n ],\n \"Multithreaded FLINT\": [\n [160, \"multithreaded-flint\"]\n ],\n \"Writing threaded functions in FLINT\": [\n@@ -87786,16 +87786,16 @@\n \"ulong_extras.h \\u2013 arithmetic and number-theoretic functions for single-word integers\": [\n [161, \"ulong-extras-h-arithmetic-and-number-theoretic-functions-for-single-word-integers\"]\n ],\n \"Simple example\": [\n [161, \"simple-example\"],\n [56, \"simple-example\"],\n [65, \"simple-example\"],\n- [73, \"simple-example\"],\n [74, \"simple-example\"],\n+ [73, \"simple-example\"],\n [60, \"simple-example\"],\n [71, \"simple-example\"],\n [140, \"simple-example\"]\n ],\n \"Random functions\": [\n [161, \"random-functions\"],\n [40, \"random-functions\"],\n@@ -87805,16 +87805,16 @@\n \"Basic arithmetic\": [\n [161, \"basic-arithmetic\"],\n [56, \"basic-arithmetic\"],\n [79, \"basic-arithmetic\"],\n [78, \"basic-arithmetic\"],\n [154, \"basic-arithmetic\"],\n [130, \"basic-arithmetic\"],\n- [85, \"basic-arithmetic\"],\n- [96, \"basic-arithmetic\"]\n+ [96, \"basic-arithmetic\"],\n+ [85, \"basic-arithmetic\"]\n ],\n \"Miscellaneous\": [\n [161, \"miscellaneous\"]\n ],\n \"Basic arithmetic with precomputed inverses\": [\n [161, \"basic-arithmetic-with-precomputed-inverses\"]\n ],\n@@ -87826,18 +87826,18 @@\n ],\n \"Divisibility testing\": [\n [161, \"divisibility-testing\"],\n [54, \"divisibility-testing\"],\n [65, \"divisibility-testing\"],\n [71, \"divisibility-testing\"],\n [140, \"divisibility-testing\"],\n- [81, \"divisibility-testing\"],\n [99, \"divisibility-testing\"],\n+ [93, \"divisibility-testing\"],\n [90, \"divisibility-testing\"],\n- [93, \"divisibility-testing\"]\n+ [81, \"divisibility-testing\"]\n ],\n \"Prime number generation and counting\": [\n [161, \"prime-number-generation-and-counting\"]\n ],\n \"Primality testing\": [\n [161, \"primality-testing\"],\n [56, \"primality-testing\"],\n@@ -87849,410 +87849,120 @@\n ],\n \"Square root and perfect power testing\": [\n [161, \"square-root-and-perfect-power-testing\"]\n ],\n \"Factorisation\": [\n [161, \"factorisation\"],\n [53, \"factorisation\"],\n- [66, \"factorisation\"],\n- [64, \"factorisation\"],\n [69, \"factorisation\"],\n+ [64, \"factorisation\"],\n+ [66, \"factorisation\"],\n [141, \"factorisation\"],\n [139, \"factorisation\"],\n [100, \"factorisation\"],\n- [82, \"factorisation\"],\n [94, \"factorisation\"],\n [91, \"factorisation\"],\n+ [82, \"factorisation\"],\n [89, \"factorisation\"]\n ],\n \"Arithmetic functions\": [\n [161, \"arithmetic-functions\"]\n ],\n \"Factorials\": [\n [161, \"factorials\"]\n ],\n \"Primitive Roots and Discrete Logarithms\": [\n [161, \"primitive-roots-and-discrete-logarithms\"]\n ],\n \"Elliptic curve method for factorization of mp_limb_t\": [\n [161, \"elliptic-curve-method-for-factorization-of-mp-limb-t\"]\n ],\n- \"fmpq_poly.h \\u2013 univariate polynomials over the rational numbers\": [\n- [54, \"fmpq-poly-h-univariate-polynomials-over-the-rational-numbers\"]\n- ],\n- \"Polynomial parameters\": [\n- [54, \"polynomial-parameters\"],\n- [71, \"polynomial-parameters\"],\n- [147, \"polynomial-parameters\"],\n- [81, \"polynomial-parameters\"],\n- [99, \"polynomial-parameters\"],\n- [90, \"polynomial-parameters\"],\n- [93, \"polynomial-parameters\"]\n- ],\n- \"Accessing the numerator and denominator\": [\n- [54, \"accessing-the-numerator-and-denominator\"]\n- ],\n- \"Random testing\": [\n- [54, \"random-testing\"]\n- ],\n- \"Assignment, swap, negation\": [\n- [54, \"assignment-swap-negation\"]\n- ],\n- \"Getting and setting coefficients\": [\n- [54, \"getting-and-setting-coefficients\"],\n- [65, \"getting-and-setting-coefficients\"],\n- [71, \"getting-and-setting-coefficients\"],\n- [147, \"getting-and-setting-coefficients\"],\n- [140, \"getting-and-setting-coefficients\"],\n- [81, \"getting-and-setting-coefficients\"],\n- [99, \"getting-and-setting-coefficients\"],\n- [90, \"getting-and-setting-coefficients\"],\n- [93, \"getting-and-setting-coefficients\"]\n- ],\n- \"Addition and subtraction\": [\n- [54, \"addition-and-subtraction\"],\n- [75, \"addition-and-subtraction\"],\n- [65, \"addition-and-subtraction\"],\n- [62, \"addition-and-subtraction\"],\n- [74, \"addition-and-subtraction\"],\n- [60, \"addition-and-subtraction\"],\n- [71, \"addition-and-subtraction\"],\n- [146, \"addition-and-subtraction\"],\n- [147, \"addition-and-subtraction\"],\n- [140, \"addition-and-subtraction\"],\n- [137, \"addition-and-subtraction\"],\n- [101, \"addition-and-subtraction\"],\n- [95, \"addition-and-subtraction\"],\n- [81, \"addition-and-subtraction\"],\n- [98, \"addition-and-subtraction\"],\n- [84, \"addition-and-subtraction\"],\n- [80, \"addition-and-subtraction\"],\n- [99, \"addition-and-subtraction\"],\n- [90, \"addition-and-subtraction\"],\n- [87, \"addition-and-subtraction\"],\n- [92, \"addition-and-subtraction\"],\n- [93, \"addition-and-subtraction\"]\n- ],\n- \"Scalar multiplication and division\": [\n- [54, \"scalar-multiplication-and-division\"],\n- [75, \"scalar-multiplication-and-division\"],\n- [65, \"scalar-multiplication-and-division\"],\n- [74, \"scalar-multiplication-and-division\"],\n- [140, \"scalar-multiplication-and-division\"],\n- [101, \"scalar-multiplication-and-division\"],\n- [95, \"scalar-multiplication-and-division\"],\n- [81, \"scalar-multiplication-and-division\"],\n- [99, \"scalar-multiplication-and-division\"],\n- [90, \"scalar-multiplication-and-division\"],\n- [92, \"scalar-multiplication-and-division\"],\n- [93, \"scalar-multiplication-and-division\"]\n- ],\n- \"Multiplication\": [\n- [54, \"multiplication\"],\n- [52, \"multiplication\"],\n- [67, \"multiplication\"],\n- [65, \"multiplication\"],\n- [68, \"multiplication\"],\n- [63, \"multiplication\"],\n- [71, \"multiplication\"],\n- [146, \"multiplication\"],\n- [147, \"multiplication\"],\n- [140, \"multiplication\"],\n- [138, \"multiplication\"],\n- [132, \"multiplication\"],\n- [81, \"multiplication\"],\n- [99, \"multiplication\"],\n- [90, \"multiplication\"],\n- [88, \"multiplication\"],\n- [93, \"multiplication\"]\n- ],\n- \"Powering\": [\n- [54, \"powering\"],\n- [54, \"id1\"],\n- [52, \"powering\"],\n- [74, \"powering\"],\n- [68, \"powering\"],\n- [63, \"powering\"],\n- [71, \"powering\"],\n- [147, \"powering\"],\n- [140, \"powering\"],\n- [138, \"powering\"],\n- [109, \"powering\"],\n- [103, \"powering\"],\n- [81, \"powering\"],\n- [99, \"powering\"],\n- [90, \"powering\"],\n- [88, \"powering\"],\n- [93, \"powering\"]\n- ],\n- \"Shifting\": [\n- [54, \"shifting\"],\n- [65, \"shifting\"],\n- [71, \"shifting\"],\n- [147, \"shifting\"],\n- [140, \"shifting\"],\n- [109, \"shifting\"],\n- [81, \"shifting\"],\n- [99, \"shifting\"],\n- [90, \"shifting\"],\n- [93, \"shifting\"]\n- ],\n- \"Euclidean division\": [\n- [54, \"euclidean-division\"],\n- [71, \"euclidean-division\"],\n- [81, \"euclidean-division\"],\n- [99, \"euclidean-division\"],\n- [90, \"euclidean-division\"],\n- [93, \"euclidean-division\"]\n- ],\n- \"Power sums\": [\n- [54, \"power-sums\"],\n- [71, \"power-sums\"],\n- [8, \"power-sums\"],\n- [140, \"power-sums\"]\n- ],\n- \"Transcendental functions\": [\n- [54, \"transcendental-functions\"],\n- [140, \"transcendental-functions\"]\n- ],\n- \"Orthogonal polynomials\": [\n- [54, \"orthogonal-polynomials\"],\n- [46, \"orthogonal-polynomials\"],\n- [71, \"orthogonal-polynomials\"],\n- [16, \"orthogonal-polynomials\"],\n- [110, \"orthogonal-polynomials\"]\n- ],\n- \"Evaluation\": [\n- [54, \"evaluation\"],\n- [52, \"evaluation\"],\n- [65, \"evaluation\"],\n- [73, \"evaluation\"],\n- [74, \"evaluation\"],\n- [68, \"evaluation\"],\n- [63, \"evaluation\"],\n- [71, \"evaluation\"],\n- [15, \"evaluation\"],\n- [19, \"evaluation\"],\n- [8, \"evaluation\"],\n- [142, \"evaluation\"],\n- [147, \"evaluation\"],\n- [140, \"evaluation\"],\n- [138, \"evaluation\"],\n- [109, \"evaluation\"],\n- [81, \"evaluation\"],\n- [99, \"evaluation\"],\n- [90, \"evaluation\"],\n- [88, \"evaluation\"],\n- [93, \"evaluation\"]\n- ],\n- \"Interpolation\": [\n- [54, \"interpolation\"],\n- [71, \"interpolation\"],\n- [19, \"interpolation\"],\n- [8, \"interpolation\"],\n- [140, \"interpolation\"]\n- ],\n- \"Composition\": [\n- [54, \"composition\"],\n- [45, \"composition\"],\n- [65, \"composition\"],\n- [71, \"composition\"],\n- [19, \"composition\"],\n- [8, \"composition\"],\n- [149, \"composition\"],\n- [147, \"composition\"],\n- [140, \"composition\"],\n- [109, \"composition\"],\n- [81, \"composition\"],\n- [99, \"composition\"],\n- [90, \"composition\"],\n- [93, \"composition\"]\n- ],\n- \"Power series composition\": [\n- [54, \"power-series-composition\"],\n- [71, \"power-series-composition\"],\n- [140, \"power-series-composition\"]\n- ],\n- \"Power series reversion\": [\n- [54, \"power-series-reversion\"],\n- [71, \"power-series-reversion\"],\n- [140, \"power-series-reversion\"]\n- ],\n- \"Gaussian content\": [\n- [54, \"gaussian-content\"],\n- [75, \"gaussian-content\"],\n- [71, \"gaussian-content\"]\n- ],\n- \"Square-free\": [\n- [54, \"square-free\"],\n- [71, \"square-free\"]\n- ],\n- \"Arb example programs\": [\n- [43, \"arb-example-programs\"]\n- ],\n- \"pi.c\": [\n- [43, \"pi-c\"]\n- ],\n- \"zeta_zeros.c\": [\n- [43, \"zeta-zeros-c\"],\n- [43, \"id2\"]\n- ],\n- \"bernoulli.c\": [\n- [43, \"bernoulli-c\"]\n- ],\n- \"class_poly.c\": [\n- [43, \"class-poly-c\"]\n- ],\n- \"hilbert_matrix.c\": [\n- [43, \"hilbert-matrix-c\"],\n- [44, \"hilbert-matrix-c\"]\n- ],\n- \"keiper_li.c\": [\n- [43, \"keiper-li-c\"]\n- ],\n- \"logistic.c\": [\n- [43, \"logistic-c\"]\n- ],\n- \"real_roots.c\": [\n- [43, \"real-roots-c\"]\n- ],\n- \"poly_roots.c\": [\n- [43, \"poly-roots-c\"]\n- ],\n- \"complex_plot.c\": [\n- [43, \"complex-plot-c\"]\n- ],\n- \"lvalue.c\": [\n- [43, \"lvalue-c\"]\n- ],\n- \"lcentral.c\": [\n- [43, \"lcentral-c\"]\n- ],\n- \"integrals.c\": [\n- [43, \"integrals-c\"]\n- ],\n- \"fpwrap.c\": [\n- [43, \"fpwrap-c\"]\n- ],\n- \"functions_benchmark.c\": [\n- [43, \"functions-benchmark-c\"]\n- ],\n- \"fexpr_builtin.h \\u2013 builtin symbols\": [\n- [46, \"fexpr-builtin-h-builtin-symbols\"]\n- ],\n- \"C helper functions\": [\n- [46, \"c-helper-functions\"]\n- ],\n- \"Variables and iteration\": [\n- [46, \"variables-and-iteration\"]\n- ],\n- \"Booleans and logic\": [\n- [46, \"booleans-and-logic\"]\n- ],\n- \"Tuples, lists and sets\": [\n- [46, \"tuples-lists-and-sets\"]\n- ],\n- \"Numbers and arithmetic\": [\n- [46, \"numbers-and-arithmetic\"]\n- ],\n- \"Undefined\": [\n- [46, \"undefined\"]\n- ],\n- \"Particular numbers\": [\n- [46, \"particular-numbers\"]\n- ],\n- \"Number constructors\": [\n- [46, \"number-constructors\"]\n+ \"fmpz_lll.h \\u2013 LLL reduction\": [\n+ [59, \"fmpz-lll-h-lll-reduction\"]\n ],\n- \"Arithmetic operations\": [\n- [46, \"arithmetic-operations\"],\n- [145, \"arithmetic-operations\"],\n- [143, \"arithmetic-operations\"]\n+ \"Parameter manipulation\": [\n+ [59, \"parameter-manipulation\"]\n ],\n- \"Inequalities\": [\n- [46, \"inequalities\"]\n+ \"Random parameter generation\": [\n+ [59, \"random-parameter-generation\"]\n ],\n- \"Sets of numbers\": [\n- [46, \"sets-of-numbers\"]\n+ \"Heuristic dot product\": [\n+ [59, \"heuristic-dot-product\"]\n ],\n- \"Infinities and extended numbers\": [\n- [46, \"infinities-and-extended-numbers\"]\n+ \"The various Babai\\u2019s\": [\n+ [59, \"the-various-babai-s\"]\n ],\n- \"Operators and calculus\": [\n- [46, \"operators-and-calculus\"]\n+ \"Shift\": [\n+ [59, \"shift\"]\n ],\n- \"Sums and products\": [\n- [46, \"sums-and-products\"],\n- [75, \"sums-and-products\"],\n- [111, \"sums-and-products\"]\n+ \"Varieties of LLL\": [\n+ [59, \"varieties-of-lll\"]\n ],\n- \"Solutions and zeros\": [\n- [46, \"solutions-and-zeros\"]\n+ \"ULLL\": [\n+ [59, \"ulll\"]\n ],\n- \"Extreme values\": [\n- [46, \"extreme-values\"]\n+ \"LLL-reducedness\": [\n+ [59, \"lll-reducedness\"]\n ],\n- \"Limits\": [\n- [46, \"limits\"]\n+ \"Modified ULLL\": [\n+ [59, \"modified-ulll\"]\n ],\n- \"Derivatives\": [\n- [46, \"derivatives\"]\n+ \"Main LLL functions\": [\n+ [59, \"main-lll-functions\"]\n ],\n- \"Integrals\": [\n- [46, \"integrals\"]\n+ \"fft.h \\u2013 Schoenhage-Strassen FFT\": [\n+ [47, \"fft-h-schoenhage-strassen-fft\"]\n ],\n- \"Complex analysis\": [\n- [46, \"complex-analysis\"]\n+ \"Split/combine FFT coefficients\": [\n+ [47, \"split-combine-fft-coefficients\"]\n ],\n- \"Matrices and linear algebra\": [\n- [46, \"matrices-and-linear-algebra\"]\n+ \"Test helper functions\": [\n+ [47, \"test-helper-functions\"]\n ],\n- \"Polynomials, series and rings\": [\n- [46, \"polynomials-series-and-rings\"]\n+ \"Arithmetic modulo a generalised Fermat number\": [\n+ [47, \"arithmetic-modulo-a-generalised-fermat-number\"]\n ],\n- \"Number parts and step functions\": [\n- [46, \"number-parts-and-step-functions\"]\n+ \"Generic butterflies\": [\n+ [47, \"generic-butterflies\"]\n ],\n- \"Primes and divisibility\": [\n- [46, \"primes-and-divisibility\"]\n+ \"Radix 2 transforms\": [\n+ [47, \"radix-2-transforms\"]\n ],\n- \"Combinatorial functions\": [\n- [46, \"combinatorial-functions\"]\n+ \"Matrix Fourier Transforms\": [\n+ [47, \"matrix-fourier-transforms\"]\n ],\n- \"Gamma function and factorials\": [\n- [46, \"gamma-function-and-factorials\"],\n- [19, \"gamma-function-and-factorials\"],\n- [13, \"gamma-function-and-factorials\"]\n+ \"Negacyclic multiplication\": [\n+ [47, \"negacyclic-multiplication\"]\n ],\n- \"Exponential integrals\": [\n- [46, \"exponential-integrals\"]\n+ \"Integer multiplication\": [\n+ [47, \"integer-multiplication\"],\n+ [48, \"integer-multiplication\"]\n ],\n- \"Bessel and Airy functions\": [\n- [46, \"bessel-and-airy-functions\"]\n+ \"Convolution\": [\n+ [47, \"convolution\"],\n+ [2, \"convolution\"]\n ],\n- \"Hypergeometric functions\": [\n- [46, \"hypergeometric-functions\"],\n- [16, \"hypergeometric-functions\"],\n- [110, \"hypergeometric-functions\"]\n+ \"FFT Precaching\": [\n+ [47, \"fft-precaching\"]\n ],\n- \"Zeta and L-functions\": [\n- [46, \"zeta-and-l-functions\"]\n+ \"fft_small.h \\u2013 FFT modulo word-size primes\": [\n+ [48, \"fft-small-h-fft-modulo-word-size-primes\"]\n ],\n- \"Elliptic integrals\": [\n- [46, \"elliptic-integrals\"],\n- [110, \"elliptic-integrals\"]\n+ \"Polynomial arithmetic\": [\n+ [48, \"polynomial-arithmetic\"]\n ],\n- \"Elliptic, theta and modular functions\": [\n- [46, \"elliptic-theta-and-modular-functions\"]\n+ \"Preconditioned polynomial arithmetic\": [\n+ [48, \"preconditioned-polynomial-arithmetic\"]\n ],\n- \"Nonsemantic markup\": [\n- [46, \"nonsemantic-markup\"]\n+ \"Examples\": [\n+ [42, \"examples\"]\n ],\n- \"double_extras.h \\u2013 support functions for double arithmetic\": [\n- [40, \"double-extras-h-support-functions-for-double-arithmetic\"]\n+ \"Example programs\": [\n+ [42, \"example-programs\"],\n+ [117, \"example-programs\"]\n ],\n \"fmpq_mat.h \\u2013 matrices over the rational numbers\": [\n [51, \"fmpq-mat-h-matrices-over-the-rational-numbers\"]\n ],\n \"Entry access\": [\n [51, \"entry-access\"]\n ],\n@@ -88264,27 +87974,27 @@\n \"Addition, scalar multiplication\": [\n [51, \"addition-scalar-multiplication\"]\n ],\n \"Window\": [\n [51, \"window\"],\n [60, \"window\"],\n [137, \"window\"],\n- [98, \"window\"],\n- [84, \"window\"],\n [80, \"window\"],\n- [87, \"window\"]\n+ [87, \"window\"],\n+ [98, \"window\"],\n+ [84, \"window\"]\n ],\n \"Concatenate\": [\n [51, \"concatenate\"],\n [60, \"concatenate\"],\n [137, \"concatenate\"],\n- [98, \"concatenate\"],\n- [84, \"concatenate\"],\n [80, \"concatenate\"],\n- [87, \"concatenate\"]\n+ [87, \"concatenate\"],\n+ [98, \"concatenate\"],\n+ [84, \"concatenate\"]\n ],\n \"Basic comparison and properties\": [\n [51, \"basic-comparison-and-properties\"],\n [73, \"basic-comparison-and-properties\"],\n [142, \"basic-comparison-and-properties\"]\n ],\n \"Integer matrix conversion\": [\n@@ -88317,17 +88027,17 @@\n \"Inverse\": [\n [51, \"inverse\"],\n [62, \"inverse\"],\n [73, \"inverse\"],\n [60, \"inverse\"],\n [142, \"inverse\"],\n [137, \"inverse\"],\n- [84, \"inverse\"],\n [80, \"inverse\"],\n- [87, \"inverse\"]\n+ [87, \"inverse\"],\n+ [84, \"inverse\"]\n ],\n \"Echelon form\": [\n [51, \"echelon-form\"],\n [60, \"echelon-form\"]\n ],\n \"Gram-Schmidt Orthogonalisation\": [\n [51, \"gram-schmidt-orthogonalisation\"]\n@@ -88336,323 +88046,415 @@\n [51, \"transforms\"],\n [62, \"transforms\"],\n [60, \"transforms\"],\n [19, \"transforms\"],\n [8, \"transforms\"],\n [137, \"transforms\"],\n [117, \"transforms\"],\n- [98, \"transforms\"],\n- [84, \"transforms\"],\n [80, \"transforms\"],\n- [87, \"transforms\"]\n+ [87, \"transforms\"],\n+ [98, \"transforms\"],\n+ [84, \"transforms\"]\n ],\n \"Minimal polynomial\": [\n [51, \"minimal-polynomial\"],\n [62, \"minimal-polynomial\"],\n [60, \"minimal-polynomial\"],\n [137, \"minimal-polynomial\"],\n [107, \"minimal-polynomial\"],\n- [98, \"minimal-polynomial\"],\n- [84, \"minimal-polynomial\"],\n [80, \"minimal-polynomial\"],\n- [87, \"minimal-polynomial\"]\n- ],\n- \"fmpz_factor.h \\u2013 integer factorisation\": [\n- [58, \"fmpz-factor-h-integer-factorisation\"]\n- ],\n- \"Factoring integers\": [\n- [58, \"factoring-integers\"]\n- ],\n- \"Elliptic curve (ECM) method\": [\n- [58, \"elliptic-curve-ecm-method\"]\n- ],\n- \"flint.h \\u2013 global definitions\": [\n- [49, \"flint-h-global-definitions\"]\n- ],\n- \"Macros\": [\n- [49, \"macros\"],\n- [146, \"macros\"],\n- [132, \"macros\"]\n- ],\n- \"Integer types\": [\n- [49, \"integer-types\"]\n- ],\n- \"Allocation Functions\": [\n- [49, \"allocation-functions\"]\n- ],\n- \"Random Numbers\": [\n- [49, \"random-numbers\"]\n- ],\n- \"Thread functions\": [\n- [49, \"thread-functions\"]\n- ],\n- \"Input/Output\": [\n- [49, \"input-output\"],\n- [52, \"input-output\"],\n- [68, \"input-output\"],\n- [63, \"input-output\"],\n- [138, \"input-output\"],\n- [88, \"input-output\"]\n- ],\n- \"Exceptions\": [\n- [49, \"exceptions\"]\n+ [87, \"minimal-polynomial\"],\n+ [98, \"minimal-polynomial\"],\n+ [84, \"minimal-polynomial\"]\n ],\n- \"Calcium example programs\": [\n- [44, \"calcium-example-programs\"]\n+ \"fmpq_mpoly_factor.h \\u2013 factorisation of multivariate polynomials over the rational numbers\": [\n+ [53, \"fmpq-mpoly-factor-h-factorisation-of-multivariate-polynomials-over-the-rational-numbers\"]\n ],\n- \"elementary.c\": [\n- [44, \"elementary-c\"]\n+ \"Basic manipulation\": [\n+ [53, \"basic-manipulation\"],\n+ [52, \"basic-manipulation\"],\n+ [41, \"basic-manipulation\"],\n+ [76, \"basic-manipulation\"],\n+ [69, \"basic-manipulation\"],\n+ [64, \"basic-manipulation\"],\n+ [63, \"basic-manipulation\"],\n+ [68, \"basic-manipulation\"],\n+ [0, \"basic-manipulation\"],\n+ [19, \"basic-manipulation\"],\n+ [10, \"basic-manipulation\"],\n+ [155, \"basic-manipulation\"],\n+ [138, \"basic-manipulation\"],\n+ [130, \"basic-manipulation\"],\n+ [133, \"basic-manipulation\"],\n+ [135, \"basic-manipulation\"],\n+ [139, \"basic-manipulation\"],\n+ [109, \"basic-manipulation\"],\n+ [108, \"basic-manipulation\"],\n+ [88, \"basic-manipulation\"],\n+ [89, \"basic-manipulation\"]\n ],\n- \"binet.c\": [\n- [44, \"binet-c\"]\n+ \"fmpq.h \\u2013 rational numbers\": [\n+ [50, \"fmpq-h-rational-numbers\"]\n ],\n- \"machin.c\": [\n- [44, \"machin-c\"]\n+ \"Canonicalisation\": [\n+ [50, \"canonicalisation\"],\n+ [70, \"canonicalisation\"]\n ],\n- \"swinnerton_dyer_poly.c\": [\n- [44, \"swinnerton-dyer-poly-c\"]\n+ \"Conversion\": [\n+ [50, \"conversion\"],\n+ [56, \"conversion\"],\n+ [65, \"conversion\"],\n+ [68, \"conversion\"],\n+ [135, \"conversion\"]\n ],\n- \"huge_expr.c\": [\n- [44, \"huge-expr-c\"]\n+ \"Rational enumeration\": [\n+ [50, \"rational-enumeration\"]\n ],\n- \"dft.c\": [\n- [44, \"dft-c\"]\n+ \"Continued fractions\": [\n+ [50, \"continued-fractions\"]\n ],\n \"fmpq_mpoly.h \\u2013 multivariate polynomials over the rational numbers\": [\n [52, \"fmpq-mpoly-h-multivariate-polynomials-over-the-rational-numbers\"]\n ],\n \"Context object\": [\n [52, \"context-object\"],\n+ [63, \"context-object\"],\n [61, \"context-object\"],\n [68, \"context-object\"],\n- [63, \"context-object\"],\n [138, \"context-object\"],\n [88, \"context-object\"]\n ],\n- \"Basic manipulation\": [\n- [52, \"basic-manipulation\"],\n- [41, \"basic-manipulation\"],\n- [53, \"basic-manipulation\"],\n- [64, \"basic-manipulation\"],\n- [69, \"basic-manipulation\"],\n- [68, \"basic-manipulation\"],\n- [63, \"basic-manipulation\"],\n- [76, \"basic-manipulation\"],\n- [10, \"basic-manipulation\"],\n- [19, \"basic-manipulation\"],\n- [0, \"basic-manipulation\"],\n- [155, \"basic-manipulation\"],\n- [135, \"basic-manipulation\"],\n- [139, \"basic-manipulation\"],\n- [130, \"basic-manipulation\"],\n- [133, \"basic-manipulation\"],\n- [138, \"basic-manipulation\"],\n- [108, \"basic-manipulation\"],\n- [109, \"basic-manipulation\"],\n- [89, \"basic-manipulation\"],\n- [88, \"basic-manipulation\"]\n+ \"Input/Output\": [\n+ [52, \"input-output\"],\n+ [49, \"input-output\"],\n+ [63, \"input-output\"],\n+ [68, \"input-output\"],\n+ [138, \"input-output\"],\n+ [88, \"input-output\"]\n ],\n \"Constants\": [\n [52, \"constants\"],\n- [68, \"constants\"],\n [63, \"constants\"],\n+ [68, \"constants\"],\n [13, \"constants\"],\n [138, \"constants\"],\n [88, \"constants\"]\n ],\n \"Degrees\": [\n [52, \"degrees\"],\n- [68, \"degrees\"],\n [63, \"degrees\"],\n+ [68, \"degrees\"],\n [138, \"degrees\"],\n [88, \"degrees\"]\n ],\n \"Coefficients\": [\n [52, \"coefficients\"],\n- [68, \"coefficients\"],\n [63, \"coefficients\"],\n+ [68, \"coefficients\"],\n [138, \"coefficients\"],\n [88, \"coefficients\"]\n ],\n \"Container operations\": [\n [52, \"container-operations\"],\n- [68, \"container-operations\"],\n [63, \"container-operations\"],\n+ [68, \"container-operations\"],\n [138, \"container-operations\"],\n [108, \"container-operations\"],\n [88, \"container-operations\"]\n ],\n \"Addition/Subtraction\": [\n [52, \"addition-subtraction\"],\n- [68, \"addition-subtraction\"],\n [63, \"addition-subtraction\"],\n+ [68, \"addition-subtraction\"],\n [138, \"addition-subtraction\"],\n [88, \"addition-subtraction\"]\n ],\n \"Scalar operations\": [\n [52, \"scalar-operations\"],\n- [68, \"scalar-operations\"],\n [63, \"scalar-operations\"],\n+ [68, \"scalar-operations\"],\n [146, \"scalar-operations\"],\n [138, \"scalar-operations\"],\n [88, \"scalar-operations\"]\n ],\n \"Differentiation/Integration\": [\n [52, \"differentiation-integration\"],\n [68, \"differentiation-integration\"]\n ],\n+ \"Evaluation\": [\n+ [52, \"evaluation\"],\n+ [54, \"evaluation\"],\n+ [65, \"evaluation\"],\n+ [74, \"evaluation\"],\n+ [63, \"evaluation\"],\n+ [73, \"evaluation\"],\n+ [71, \"evaluation\"],\n+ [68, \"evaluation\"],\n+ [19, \"evaluation\"],\n+ [15, \"evaluation\"],\n+ [8, \"evaluation\"],\n+ [142, \"evaluation\"],\n+ [140, \"evaluation\"],\n+ [147, \"evaluation\"],\n+ [138, \"evaluation\"],\n+ [109, \"evaluation\"],\n+ [99, \"evaluation\"],\n+ [93, \"evaluation\"],\n+ [90, \"evaluation\"],\n+ [88, \"evaluation\"],\n+ [81, \"evaluation\"]\n+ ],\n+ \"Multiplication\": [\n+ [52, \"multiplication\"],\n+ [54, \"multiplication\"],\n+ [65, \"multiplication\"],\n+ [67, \"multiplication\"],\n+ [63, \"multiplication\"],\n+ [71, \"multiplication\"],\n+ [68, \"multiplication\"],\n+ [146, \"multiplication\"],\n+ [140, \"multiplication\"],\n+ [147, \"multiplication\"],\n+ [138, \"multiplication\"],\n+ [132, \"multiplication\"],\n+ [99, \"multiplication\"],\n+ [93, \"multiplication\"],\n+ [90, \"multiplication\"],\n+ [88, \"multiplication\"],\n+ [81, \"multiplication\"]\n+ ],\n+ \"Powering\": [\n+ [52, \"powering\"],\n+ [54, \"powering\"],\n+ [54, \"id1\"],\n+ [74, \"powering\"],\n+ [63, \"powering\"],\n+ [71, \"powering\"],\n+ [68, \"powering\"],\n+ [140, \"powering\"],\n+ [147, \"powering\"],\n+ [138, \"powering\"],\n+ [109, \"powering\"],\n+ [103, \"powering\"],\n+ [99, \"powering\"],\n+ [93, \"powering\"],\n+ [90, \"powering\"],\n+ [88, \"powering\"],\n+ [81, \"powering\"]\n+ ],\n \"Greatest Common Divisor\": [\n [52, \"greatest-common-divisor\"],\n- [68, \"greatest-common-divisor\"],\n [63, \"greatest-common-divisor\"],\n+ [68, \"greatest-common-divisor\"],\n [138, \"greatest-common-divisor\"],\n [88, \"greatest-common-divisor\"]\n ],\n \"Square Root\": [\n [52, \"square-root\"],\n- [68, \"square-root\"],\n [63, \"square-root\"],\n+ [68, \"square-root\"],\n [138, \"square-root\"],\n [88, \"square-root\"]\n ],\n \"Univariate Functions\": [\n [52, \"univariate-functions\"],\n- [68, \"univariate-functions\"],\n [63, \"univariate-functions\"],\n+ [68, \"univariate-functions\"],\n [138, \"univariate-functions\"],\n [88, \"univariate-functions\"]\n ],\n- \"fmpz_lll.h \\u2013 LLL reduction\": [\n- [59, \"fmpz-lll-h-lll-reduction\"]\n- ],\n- \"Parameter manipulation\": [\n- [59, \"parameter-manipulation\"]\n- ],\n- \"Random parameter generation\": [\n- [59, \"random-parameter-generation\"]\n- ],\n- \"Heuristic dot product\": [\n- [59, \"heuristic-dot-product\"]\n- ],\n- \"The various Babai\\u2019s\": [\n- [59, \"the-various-babai-s\"]\n+ \"double_interval.h \\u2013 double-precision interval arithmetic and helpers\": [\n+ [41, \"double-interval-h-double-precision-interval-arithmetic-and-helpers\"]\n ],\n- \"Shift\": [\n- [59, \"shift\"]\n+ \"Fast arithmetic\": [\n+ [41, \"fast-arithmetic\"]\n ],\n- \"Varieties of LLL\": [\n- [59, \"varieties-of-lll\"]\n+ \"Calcium example programs\": [\n+ [44, \"calcium-example-programs\"]\n ],\n- \"ULLL\": [\n- [59, \"ulll\"]\n+ \"elementary.c\": [\n+ [44, \"elementary-c\"]\n ],\n- \"LLL-reducedness\": [\n- [59, \"lll-reducedness\"]\n+ \"binet.c\": [\n+ [44, \"binet-c\"]\n ],\n- \"Modified ULLL\": [\n- [59, \"modified-ulll\"]\n+ \"machin.c\": [\n+ [44, \"machin-c\"]\n ],\n- \"Main LLL functions\": [\n- [59, \"main-lll-functions\"]\n+ \"swinnerton_dyer_poly.c\": [\n+ [44, \"swinnerton-dyer-poly-c\"]\n ],\n- \"fmpz.h \\u2013 integers\": [\n- [56, \"fmpz-h-integers\"]\n+ \"huge_expr.c\": [\n+ [44, \"huge-expr-c\"]\n ],\n- \"Conversion\": [\n- [56, \"conversion\"],\n- [50, \"conversion\"],\n- [65, \"conversion\"],\n- [68, \"conversion\"],\n- [135, \"conversion\"]\n+ \"hilbert_matrix.c\": [\n+ [44, \"hilbert-matrix-c\"],\n+ [43, \"hilbert-matrix-c\"]\n ],\n- \"Basic properties and manipulation\": [\n- [56, \"basic-properties-and-manipulation\"],\n- [8, \"basic-properties-and-manipulation\"],\n- [137, \"basic-properties-and-manipulation\"],\n- [98, \"basic-properties-and-manipulation\"],\n- [84, \"basic-properties-and-manipulation\"],\n- [80, \"basic-properties-and-manipulation\"],\n- [87, \"basic-properties-and-manipulation\"]\n+ \"dft.c\": [\n+ [44, \"dft-c\"]\n ],\n- \"Modular arithmetic\": [\n- [56, \"modular-arithmetic\"],\n- [127, \"modular-arithmetic\"],\n- [125, \"modular-arithmetic\"]\n+ \"fmpq_poly.h \\u2013 univariate polynomials over the rational numbers\": [\n+ [54, \"fmpq-poly-h-univariate-polynomials-over-the-rational-numbers\"]\n ],\n- \"Bit packing and unpacking\": [\n- [56, \"bit-packing-and-unpacking\"],\n- [140, \"bit-packing-and-unpacking\"]\n+ \"Polynomial parameters\": [\n+ [54, \"polynomial-parameters\"],\n+ [71, \"polynomial-parameters\"],\n+ [147, \"polynomial-parameters\"],\n+ [99, \"polynomial-parameters\"],\n+ [93, \"polynomial-parameters\"],\n+ [90, \"polynomial-parameters\"],\n+ [81, \"polynomial-parameters\"]\n ],\n- \"Logic Operations\": [\n- [56, \"logic-operations\"]\n+ \"Accessing the numerator and denominator\": [\n+ [54, \"accessing-the-numerator-and-denominator\"]\n ],\n- \"fft_small.h \\u2013 FFT modulo word-size primes\": [\n- [48, \"fft-small-h-fft-modulo-word-size-primes\"]\n+ \"Random testing\": [\n+ [54, \"random-testing\"]\n ],\n- \"Integer multiplication\": [\n- [48, \"integer-multiplication\"],\n- [47, \"integer-multiplication\"]\n+ \"Assignment, swap, negation\": [\n+ [54, \"assignment-swap-negation\"]\n ],\n- \"Polynomial arithmetic\": [\n- [48, \"polynomial-arithmetic\"]\n+ \"Getting and setting coefficients\": [\n+ [54, \"getting-and-setting-coefficients\"],\n+ [65, \"getting-and-setting-coefficients\"],\n+ [71, \"getting-and-setting-coefficients\"],\n+ [140, \"getting-and-setting-coefficients\"],\n+ [147, \"getting-and-setting-coefficients\"],\n+ [99, \"getting-and-setting-coefficients\"],\n+ [93, \"getting-and-setting-coefficients\"],\n+ [90, \"getting-and-setting-coefficients\"],\n+ [81, \"getting-and-setting-coefficients\"]\n ],\n- \"Preconditioned polynomial arithmetic\": [\n- [48, \"preconditioned-polynomial-arithmetic\"]\n+ \"Addition and subtraction\": [\n+ [54, \"addition-and-subtraction\"],\n+ [65, \"addition-and-subtraction\"],\n+ [74, \"addition-and-subtraction\"],\n+ [62, \"addition-and-subtraction\"],\n+ [60, \"addition-and-subtraction\"],\n+ [75, \"addition-and-subtraction\"],\n+ [71, \"addition-and-subtraction\"],\n+ [146, \"addition-and-subtraction\"],\n+ [140, \"addition-and-subtraction\"],\n+ [147, \"addition-and-subtraction\"],\n+ [137, \"addition-and-subtraction\"],\n+ [101, \"addition-and-subtraction\"],\n+ [80, \"addition-and-subtraction\"],\n+ [99, \"addition-and-subtraction\"],\n+ [93, \"addition-and-subtraction\"],\n+ [87, \"addition-and-subtraction\"],\n+ [98, \"addition-and-subtraction\"],\n+ [84, \"addition-and-subtraction\"],\n+ [95, \"addition-and-subtraction\"],\n+ [92, \"addition-and-subtraction\"],\n+ [90, \"addition-and-subtraction\"],\n+ [81, \"addition-and-subtraction\"]\n ],\n- \"fmpq_vec.h \\u2013 vectors over rational numbers\": [\n- [55, \"fmpq-vec-h-vectors-over-rational-numbers\"]\n+ \"Scalar multiplication and division\": [\n+ [54, \"scalar-multiplication-and-division\"],\n+ [65, \"scalar-multiplication-and-division\"],\n+ [74, \"scalar-multiplication-and-division\"],\n+ [75, \"scalar-multiplication-and-division\"],\n+ [140, \"scalar-multiplication-and-division\"],\n+ [101, \"scalar-multiplication-and-division\"],\n+ [99, \"scalar-multiplication-and-division\"],\n+ [93, \"scalar-multiplication-and-division\"],\n+ [95, \"scalar-multiplication-and-division\"],\n+ [92, \"scalar-multiplication-and-division\"],\n+ [90, \"scalar-multiplication-and-division\"],\n+ [81, \"scalar-multiplication-and-division\"]\n ],\n- \"Sorting\": [\n- [55, \"sorting\"],\n- [75, \"sorting\"]\n+ \"Shifting\": [\n+ [54, \"shifting\"],\n+ [65, \"shifting\"],\n+ [71, \"shifting\"],\n+ [140, \"shifting\"],\n+ [147, \"shifting\"],\n+ [109, \"shifting\"],\n+ [99, \"shifting\"],\n+ [93, \"shifting\"],\n+ [90, \"shifting\"],\n+ [81, \"shifting\"]\n ],\n- \"Dot product\": [\n- [55, \"dot-product\"],\n- [75, \"dot-product\"],\n- [13, \"dot-product\"],\n- [0, \"dot-product\"]\n+ \"Euclidean division\": [\n+ [54, \"euclidean-division\"],\n+ [71, \"euclidean-division\"],\n+ [99, \"euclidean-division\"],\n+ [93, \"euclidean-division\"],\n+ [90, \"euclidean-division\"],\n+ [81, \"euclidean-division\"]\n ],\n- \"fmpq.h \\u2013 rational numbers\": [\n- [50, \"fmpq-h-rational-numbers\"]\n+ \"Power sums\": [\n+ [54, \"power-sums\"],\n+ [71, \"power-sums\"],\n+ [8, \"power-sums\"],\n+ [140, \"power-sums\"]\n ],\n- \"Canonicalisation\": [\n- [50, \"canonicalisation\"],\n- [70, \"canonicalisation\"]\n+ \"Transcendental functions\": [\n+ [54, \"transcendental-functions\"],\n+ [140, \"transcendental-functions\"]\n ],\n- \"Rational enumeration\": [\n- [50, \"rational-enumeration\"]\n+ \"Orthogonal polynomials\": [\n+ [54, \"orthogonal-polynomials\"],\n+ [46, \"orthogonal-polynomials\"],\n+ [71, \"orthogonal-polynomials\"],\n+ [16, \"orthogonal-polynomials\"],\n+ [110, \"orthogonal-polynomials\"]\n ],\n- \"Continued fractions\": [\n- [50, \"continued-fractions\"]\n+ \"Interpolation\": [\n+ [54, \"interpolation\"],\n+ [71, \"interpolation\"],\n+ [19, \"interpolation\"],\n+ [8, \"interpolation\"],\n+ [140, \"interpolation\"]\n ],\n- \"double_interval.h \\u2013 double-precision interval arithmetic and helpers\": [\n- [41, \"double-interval-h-double-precision-interval-arithmetic-and-helpers\"]\n+ \"Composition\": [\n+ [54, \"composition\"],\n+ [45, \"composition\"],\n+ [65, \"composition\"],\n+ [71, \"composition\"],\n+ [19, \"composition\"],\n+ [8, \"composition\"],\n+ [149, \"composition\"],\n+ [140, \"composition\"],\n+ [147, \"composition\"],\n+ [109, \"composition\"],\n+ [99, \"composition\"],\n+ [93, \"composition\"],\n+ [90, \"composition\"],\n+ [81, \"composition\"]\n ],\n- \"Fast arithmetic\": [\n- [41, \"fast-arithmetic\"]\n+ \"Power series composition\": [\n+ [54, \"power-series-composition\"],\n+ [71, \"power-series-composition\"],\n+ [140, \"power-series-composition\"]\n ],\n- \"Examples\": [\n- [42, \"examples\"]\n+ \"Power series reversion\": [\n+ [54, \"power-series-reversion\"],\n+ [71, \"power-series-reversion\"],\n+ [140, \"power-series-reversion\"]\n ],\n- \"Example programs\": [\n- [42, \"example-programs\"],\n- [117, \"example-programs\"]\n+ \"Gaussian content\": [\n+ [54, \"gaussian-content\"],\n+ [75, \"gaussian-content\"],\n+ [71, \"gaussian-content\"]\n ],\n- \"fmpq_mpoly_factor.h \\u2013 factorisation of multivariate polynomials over the rational numbers\": [\n- [53, \"fmpq-mpoly-factor-h-factorisation-of-multivariate-polynomials-over-the-rational-numbers\"]\n+ \"Square-free\": [\n+ [54, \"square-free\"],\n+ [71, \"square-free\"]\n ],\n \"fexpr.h \\u2013 flat-packed symbolic expressions\": [\n [45, \"fexpr-h-flat-packed-symbolic-expressions\"]\n ],\n \"Introduction\": [\n [45, \"introduction\"],\n [71, \"introduction\"],\n [145, \"introduction\"],\n- [153, \"introduction\"],\n [155, \"introduction\"],\n+ [153, \"introduction\"],\n [122, \"introduction\"],\n [123, \"introduction\"],\n [103, \"introduction\"],\n [116, \"introduction\"]\n ],\n \"Computing and embedding data\": [\n [45, \"computing-and-embedding-data\"]\n@@ -88684,44 +88486,220 @@\n [45, \"arithmetic-expressions\"]\n ],\n \"Vectors\": [\n [45, \"vectors\"],\n [68, \"vectors\"],\n [104, \"vectors\"]\n ],\n- \"fft.h \\u2013 Schoenhage-Strassen FFT\": [\n- [47, \"fft-h-schoenhage-strassen-fft\"]\n+ \"Arb example programs\": [\n+ [43, \"arb-example-programs\"]\n ],\n- \"Split/combine FFT coefficients\": [\n- [47, \"split-combine-fft-coefficients\"]\n+ \"pi.c\": [\n+ [43, \"pi-c\"]\n ],\n- \"Test helper functions\": [\n- [47, \"test-helper-functions\"]\n+ \"zeta_zeros.c\": [\n+ [43, \"zeta-zeros-c\"],\n+ [43, \"id2\"]\n ],\n- \"Arithmetic modulo a generalised Fermat number\": [\n- [47, \"arithmetic-modulo-a-generalised-fermat-number\"]\n+ \"bernoulli.c\": [\n+ [43, \"bernoulli-c\"]\n ],\n- \"Generic butterflies\": [\n- [47, \"generic-butterflies\"]\n+ \"class_poly.c\": [\n+ [43, \"class-poly-c\"]\n ],\n- \"Radix 2 transforms\": [\n- [47, \"radix-2-transforms\"]\n+ \"keiper_li.c\": [\n+ [43, \"keiper-li-c\"]\n ],\n- \"Matrix Fourier Transforms\": [\n- [47, \"matrix-fourier-transforms\"]\n+ \"logistic.c\": [\n+ [43, \"logistic-c\"]\n ],\n- \"Negacyclic multiplication\": [\n- [47, \"negacyclic-multiplication\"]\n+ \"real_roots.c\": [\n+ [43, \"real-roots-c\"]\n ],\n- \"Convolution\": [\n- [47, \"convolution\"],\n- [2, \"convolution\"]\n+ \"poly_roots.c\": [\n+ [43, \"poly-roots-c\"]\n ],\n- \"FFT Precaching\": [\n- [47, \"fft-precaching\"]\n+ \"complex_plot.c\": [\n+ [43, \"complex-plot-c\"]\n+ ],\n+ \"lvalue.c\": [\n+ [43, \"lvalue-c\"]\n+ ],\n+ \"lcentral.c\": [\n+ [43, \"lcentral-c\"]\n+ ],\n+ \"integrals.c\": [\n+ [43, \"integrals-c\"]\n+ ],\n+ \"fpwrap.c\": [\n+ [43, \"fpwrap-c\"]\n+ ],\n+ \"functions_benchmark.c\": [\n+ [43, \"functions-benchmark-c\"]\n+ ],\n+ \"flint.h \\u2013 global definitions\": [\n+ [49, \"flint-h-global-definitions\"]\n+ ],\n+ \"Macros\": [\n+ [49, \"macros\"],\n+ [146, \"macros\"],\n+ [132, \"macros\"]\n+ ],\n+ \"Integer types\": [\n+ [49, \"integer-types\"]\n+ ],\n+ \"Allocation Functions\": [\n+ [49, \"allocation-functions\"]\n+ ],\n+ \"Random Numbers\": [\n+ [49, \"random-numbers\"]\n+ ],\n+ \"Thread functions\": [\n+ [49, \"thread-functions\"]\n+ ],\n+ \"Exceptions\": [\n+ [49, \"exceptions\"]\n+ ],\n+ \"fmpz.h \\u2013 integers\": [\n+ [56, \"fmpz-h-integers\"]\n+ ],\n+ \"Basic properties and manipulation\": [\n+ [56, \"basic-properties-and-manipulation\"],\n+ [8, \"basic-properties-and-manipulation\"],\n+ [137, \"basic-properties-and-manipulation\"],\n+ [80, \"basic-properties-and-manipulation\"],\n+ [87, \"basic-properties-and-manipulation\"],\n+ [98, \"basic-properties-and-manipulation\"],\n+ [84, \"basic-properties-and-manipulation\"]\n+ ],\n+ \"Modular arithmetic\": [\n+ [56, \"modular-arithmetic\"],\n+ [125, \"modular-arithmetic\"],\n+ [127, \"modular-arithmetic\"]\n+ ],\n+ \"Bit packing and unpacking\": [\n+ [56, \"bit-packing-and-unpacking\"],\n+ [140, \"bit-packing-and-unpacking\"]\n+ ],\n+ \"Logic Operations\": [\n+ [56, \"logic-operations\"]\n+ ],\n+ \"fexpr_builtin.h \\u2013 builtin symbols\": [\n+ [46, \"fexpr-builtin-h-builtin-symbols\"]\n+ ],\n+ \"C helper functions\": [\n+ [46, \"c-helper-functions\"]\n+ ],\n+ \"Variables and iteration\": [\n+ [46, \"variables-and-iteration\"]\n+ ],\n+ \"Booleans and logic\": [\n+ [46, \"booleans-and-logic\"]\n+ ],\n+ \"Tuples, lists and sets\": [\n+ [46, \"tuples-lists-and-sets\"]\n+ ],\n+ \"Numbers and arithmetic\": [\n+ [46, \"numbers-and-arithmetic\"]\n+ ],\n+ \"Undefined\": [\n+ [46, \"undefined\"]\n+ ],\n+ \"Particular numbers\": [\n+ [46, \"particular-numbers\"]\n+ ],\n+ \"Number constructors\": [\n+ [46, \"number-constructors\"]\n+ ],\n+ \"Arithmetic operations\": [\n+ [46, \"arithmetic-operations\"],\n+ [145, \"arithmetic-operations\"],\n+ [143, \"arithmetic-operations\"]\n+ ],\n+ \"Inequalities\": [\n+ [46, \"inequalities\"]\n+ ],\n+ \"Sets of numbers\": [\n+ [46, \"sets-of-numbers\"]\n+ ],\n+ \"Infinities and extended numbers\": [\n+ [46, \"infinities-and-extended-numbers\"]\n+ ],\n+ \"Operators and calculus\": [\n+ [46, \"operators-and-calculus\"]\n+ ],\n+ \"Sums and products\": [\n+ [46, \"sums-and-products\"],\n+ [75, \"sums-and-products\"],\n+ [111, \"sums-and-products\"]\n+ ],\n+ \"Solutions and zeros\": [\n+ [46, \"solutions-and-zeros\"]\n+ ],\n+ \"Extreme values\": [\n+ [46, \"extreme-values\"]\n+ ],\n+ \"Limits\": [\n+ [46, \"limits\"]\n+ ],\n+ \"Derivatives\": [\n+ [46, \"derivatives\"]\n+ ],\n+ \"Integrals\": [\n+ [46, \"integrals\"]\n+ ],\n+ \"Complex analysis\": [\n+ [46, \"complex-analysis\"]\n+ ],\n+ \"Matrices and linear algebra\": [\n+ [46, \"matrices-and-linear-algebra\"]\n+ ],\n+ \"Polynomials, series and rings\": [\n+ [46, \"polynomials-series-and-rings\"]\n+ ],\n+ \"Number parts and step functions\": [\n+ [46, \"number-parts-and-step-functions\"]\n+ ],\n+ \"Primes and divisibility\": [\n+ [46, \"primes-and-divisibility\"]\n+ ],\n+ \"Combinatorial functions\": [\n+ [46, \"combinatorial-functions\"]\n+ ],\n+ \"Gamma function and factorials\": [\n+ [46, \"gamma-function-and-factorials\"],\n+ [13, \"gamma-function-and-factorials\"],\n+ [19, \"gamma-function-and-factorials\"]\n+ ],\n+ \"Exponential integrals\": [\n+ [46, \"exponential-integrals\"]\n+ ],\n+ \"Bessel and Airy functions\": [\n+ [46, \"bessel-and-airy-functions\"]\n+ ],\n+ \"Hypergeometric functions\": [\n+ [46, \"hypergeometric-functions\"],\n+ [16, \"hypergeometric-functions\"],\n+ [110, \"hypergeometric-functions\"]\n+ ],\n+ \"Zeta and L-functions\": [\n+ [46, \"zeta-and-l-functions\"]\n+ ],\n+ \"Elliptic integrals\": [\n+ [46, \"elliptic-integrals\"],\n+ [110, \"elliptic-integrals\"]\n+ ],\n+ \"Elliptic, theta and modular functions\": [\n+ [46, \"elliptic-theta-and-modular-functions\"]\n+ ],\n+ \"Nonsemantic markup\": [\n+ [46, \"nonsemantic-markup\"]\n+ ],\n+ \"double_extras.h \\u2013 support functions for double arithmetic\": [\n+ [40, \"double-extras-h-support-functions-for-double-arithmetic\"]\n ],\n \"fmpz_extras.h \\u2013 extra methods for FLINT integers\": [\n [57, \"fmpz-extras-h-extra-methods-for-flint-integers\"]\n ],\n \"Memory-related methods\": [\n [57, \"memory-related-methods\"]\n ],\n@@ -88730,49 +88708,35 @@\n ],\n \"Inlined arithmetic\": [\n [57, \"inlined-arithmetic\"]\n ],\n \"Low-level conversions\": [\n [57, \"low-level-conversions\"]\n ],\n- \"fmpz_vec.h \\u2013 vectors of integers\": [\n- [75, \"fmpz-vec-h-vectors-of-integers\"]\n- ],\n- \"Bit sizes and norms\": [\n- [75, \"bit-sizes-and-norms\"],\n- [71, \"bit-sizes-and-norms\"]\n- ],\n- \"Reduction mod p\": [\n- [75, \"reduction-mod-p\"]\n- ],\n- \"fmpz_mod.h \\u2013 arithmetic modulo integers\": [\n- [61, \"fmpz-mod-h-arithmetic-modulo-integers\"]\n- ],\n- \"Discrete Logarithms via Pohlig-Hellman\": [\n- [61, \"discrete-logarithms-via-pohlig-hellman\"],\n- [136, \"discrete-logarithms-via-pohlig-hellman\"]\n+ \"fmpz_factor.h \\u2013 integer factorisation\": [\n+ [58, \"fmpz-factor-h-integer-factorisation\"]\n ],\n- \"fmpz_mod_vec.h \\u2013 vectors over integers mod n\": [\n- [67, \"fmpz-mod-vec-h-vectors-over-integers-mod-n\"]\n+ \"Factoring integers\": [\n+ [58, \"factoring-integers\"]\n ],\n- \"Scalar Multiplication\": [\n- [67, \"scalar-multiplication\"]\n+ \"Elliptic curve (ECM) method\": [\n+ [58, \"elliptic-curve-ecm-method\"]\n ],\n- \"Dot Product\": [\n- [67, \"dot-product\"]\n+ \"fmpq_vec.h \\u2013 vectors over rational numbers\": [\n+ [55, \"fmpq-vec-h-vectors-over-rational-numbers\"]\n ],\n- \"fmpz_mod_poly_factor.h \\u2013 factorisation of polynomials over integers mod n\": [\n- [66, \"fmpz-mod-poly-factor-h-factorisation-of-polynomials-over-integers-mod-n\"]\n+ \"Sorting\": [\n+ [55, \"sorting\"],\n+ [75, \"sorting\"]\n ],\n- \"Root Finding\": [\n- [66, \"root-finding\"],\n- [100, \"root-finding\"],\n- [82, \"root-finding\"],\n- [94, \"root-finding\"],\n- [91, \"root-finding\"]\n+ \"Dot product\": [\n+ [55, \"dot-product\"],\n+ [75, \"dot-product\"],\n+ [0, \"dot-product\"],\n+ [13, \"dot-product\"]\n ],\n \"fmpz_mod_poly.h \\u2013 polynomials over integers mod n\": [\n [65, \"fmpz-mod-poly-h-polynomials-over-integers-mod-n\"]\n ],\n \"Attributes\": [\n [65, \"attributes\"]\n ],\n@@ -88797,18 +88761,18 @@\n [140, \"discriminant\"]\n ],\n \"Derivative\": [\n [65, \"derivative\"],\n [74, \"derivative\"],\n [71, \"derivative\"],\n [147, \"derivative\"],\n- [81, \"derivative\"],\n [99, \"derivative\"],\n+ [93, \"derivative\"],\n [90, \"derivative\"],\n- [93, \"derivative\"]\n+ [81, \"derivative\"]\n ],\n \"Multipoint evaluation\": [\n [65, \"multipoint-evaluation\"],\n [19, \"multipoint-evaluation\"],\n [8, \"multipoint-evaluation\"],\n [140, \"multipoint-evaluation\"]\n ],\n@@ -88823,126 +88787,203 @@\n \"Radix conversion\": [\n [65, \"radix-conversion\"]\n ],\n \"Inflation and deflation\": [\n [65, \"inflation-and-deflation\"],\n [71, \"inflation-and-deflation\"],\n [140, \"inflation-and-deflation\"],\n- [81, \"inflation-and-deflation\"],\n [99, \"inflation-and-deflation\"],\n+ [93, \"inflation-and-deflation\"],\n [90, \"inflation-and-deflation\"],\n- [93, \"inflation-and-deflation\"]\n+ [81, \"inflation-and-deflation\"]\n ],\n \"Berlekamp-Massey Algorithm\": [\n [65, \"berlekamp-massey-algorithm\"],\n [140, \"berlekamp-massey-algorithm\"]\n ],\n+ \"fmpz_poly_factor.h \\u2013 factorisation of polynomials over the integers\": [\n+ [72, \"fmpz-poly-factor-h-factorisation-of-polynomials-over-the-integers\"]\n+ ],\n+ \"Manipulating factors\": [\n+ [72, \"manipulating-factors\"]\n+ ],\n+ \"Factoring algorithms\": [\n+ [72, \"factoring-algorithms\"]\n+ ],\n+ \"fmpzi.h \\u2013 Gaussian integers\": [\n+ [76, \"fmpzi-h-gaussian-integers\"]\n+ ],\n+ \"Properties\": [\n+ [76, \"properties\"],\n+ [70, \"properties\"],\n+ [156, \"properties\"],\n+ [154, \"properties\"],\n+ [125, \"properties\"]\n+ ],\n+ \"Units\": [\n+ [76, \"units\"]\n+ ],\n+ \"Norms\": [\n+ [76, \"norms\"],\n+ [73, \"norms\"],\n+ [6, \"norms\"],\n+ [18, \"norms\"],\n+ [142, \"norms\"],\n+ [99, \"norms\"],\n+ [93, \"norms\"],\n+ [90, \"norms\"],\n+ [81, \"norms\"]\n+ ],\n+ \"GCD\": [\n+ [76, \"gcd\"],\n+ [132, \"gcd\"],\n+ [109, \"gcd\"]\n+ ],\n+ \"fmpz_poly_q.h \\u2013 rational functions over the rational numbers\": [\n+ [74, \"fmpz-poly-q-h-rational-functions-over-the-rational-numbers\"]\n+ ],\n+ \"Multiplication and division\": [\n+ [74, \"multiplication-and-division\"]\n+ ],\n+ \"fmpz_mpoly_factor.h \\u2013 factorisation of multivariate polynomials over the integers\": [\n+ [69, \"fmpz-mpoly-factor-h-factorisation-of-multivariate-polynomials-over-the-integers\"]\n+ ],\n \"fmpz_mod_mpoly_factor.h \\u2013 factorisation of multivariate polynomials over the integers mod n\": [\n [64, \"fmpz-mod-mpoly-factor-h-factorisation-of-multivariate-polynomials-over-the-integers-mod-n\"]\n ],\n+ \"fmpz_mod_vec.h \\u2013 vectors over integers mod n\": [\n+ [67, \"fmpz-mod-vec-h-vectors-over-integers-mod-n\"]\n+ ],\n+ \"Scalar Multiplication\": [\n+ [67, \"scalar-multiplication\"]\n+ ],\n+ \"Dot Product\": [\n+ [67, \"dot-product\"]\n+ ],\n+ \"fmpz_mod_mpoly.h \\u2013 polynomials over the integers mod n\": [\n+ [63, \"fmpz-mod-mpoly-h-polynomials-over-the-integers-mod-n\"]\n+ ],\n+ \"Differentiation\": [\n+ [63, \"differentiation\"],\n+ [19, \"differentiation\"],\n+ [8, \"differentiation\"],\n+ [138, \"differentiation\"],\n+ [88, \"differentiation\"]\n+ ],\n+ \"Internal Functions\": [\n+ [63, \"internal-functions\"],\n+ [68, \"internal-functions\"],\n+ [138, \"internal-functions\"]\n+ ],\n \"fmpz_mod_mat.h \\u2013 matrices over integers mod n\": [\n [62, \"fmpz-mod-mat-h-matrices-over-integers-mod-n\"]\n ],\n \"Element access\": [\n [62, \"element-access\"]\n ],\n \"Windows and concatenation\": [\n [62, \"windows-and-concatenation\"]\n ],\n \"Set and transpose\": [\n [62, \"set-and-transpose\"]\n ],\n \"Scalar arithmetic\": [\n [62, \"scalar-arithmetic\"],\n- [18, \"scalar-arithmetic\"],\n- [6, \"scalar-arithmetic\"]\n+ [6, \"scalar-arithmetic\"],\n+ [18, \"scalar-arithmetic\"]\n ],\n \"Gaussian elimination\": [\n [62, \"gaussian-elimination\"],\n [107, \"gaussian-elimination\"]\n ],\n \"Strong echelon form and Howell form\": [\n [62, \"strong-echelon-form-and-howell-form\"],\n [60, \"strong-echelon-form-and-howell-form\"],\n [137, \"strong-echelon-form-and-howell-form\"]\n ],\n \"LU decomposition\": [\n [62, \"lu-decomposition\"],\n [137, \"lu-decomposition\"],\n- [98, \"lu-decomposition\"],\n- [84, \"lu-decomposition\"],\n [80, \"lu-decomposition\"],\n- [87, \"lu-decomposition\"]\n+ [87, \"lu-decomposition\"],\n+ [98, \"lu-decomposition\"],\n+ [84, \"lu-decomposition\"]\n ],\n \"Triangular solving\": [\n [62, \"triangular-solving\"],\n [137, \"triangular-solving\"],\n- [98, \"triangular-solving\"],\n- [84, \"triangular-solving\"],\n [80, \"triangular-solving\"],\n- [87, \"triangular-solving\"]\n+ [87, \"triangular-solving\"],\n+ [98, \"triangular-solving\"],\n+ [84, \"triangular-solving\"]\n ],\n \"Solving\": [\n [62, \"solving\"],\n [73, \"solving\"],\n [142, \"solving\"],\n [107, \"solving\"],\n- [98, \"solving\"],\n- [84, \"solving\"],\n [80, \"solving\"],\n- [87, \"solving\"]\n- ],\n- \"fmpz_mpoly_q.h \\u2013 multivariate rational functions over Q\": [\n- [70, \"fmpz-mpoly-q-h-multivariate-rational-functions-over-q\"]\n+ [87, \"solving\"],\n+ [98, \"solving\"],\n+ [84, \"solving\"]\n ],\n- \"Properties\": [\n- [70, \"properties\"],\n- [76, \"properties\"],\n- [156, \"properties\"],\n- [154, \"properties\"],\n- [125, \"properties\"]\n+ \"fmpz_mod_poly_factor.h \\u2013 factorisation of polynomials over integers mod n\": [\n+ [66, \"fmpz-mod-poly-factor-h-factorisation-of-polynomials-over-integers-mod-n\"]\n ],\n- \"Content\": [\n- [70, \"content\"],\n- [60, \"content\"]\n+ \"Root Finding\": [\n+ [66, \"root-finding\"],\n+ [100, \"root-finding\"],\n+ [94, \"root-finding\"],\n+ [91, \"root-finding\"],\n+ [82, \"root-finding\"]\n ],\n- \"General formulas and bounds\": [\n- [77, \"general-formulas-and-bounds\"]\n+ \"fq_default_default.h \\u2013 unified finite fields\": [\n+ [79, \"fq-default-default-h-unified-finite-fields\"]\n ],\n- \"Error propagation\": [\n- [77, \"error-propagation\"]\n+ \"Context Management\": [\n+ [79, \"context-management\"],\n+ [78, \"context-management\"],\n+ [96, \"context-management\"],\n+ [85, \"context-management\"]\n ],\n- \"Sums and series\": [\n- [77, \"sums-and-series\"]\n+ \"Roots\": [\n+ [79, \"roots\"],\n+ [71, \"roots\"],\n+ [78, \"roots\"],\n+ [109, \"roots\"],\n+ [96, \"roots\"],\n+ [85, \"roots\"]\n ],\n- \"Complex analytic functions\": [\n- [77, \"complex-analytic-functions\"]\n+ \"Output\": [\n+ [79, \"output\"],\n+ [78, \"output\"],\n+ [154, \"output\"],\n+ [99, \"output\"],\n+ [96, \"output\"],\n+ [93, \"output\"],\n+ [90, \"output\"],\n+ [85, \"output\"],\n+ [81, \"output\"]\n ],\n- \"Euler-Maclaurin formula\": [\n- [77, \"euler-maclaurin-formula\"]\n+ \"Assignments and conversions\": [\n+ [79, \"assignments-and-conversions\"],\n+ [78, \"assignments-and-conversions\"],\n+ [145, \"assignments-and-conversions\"],\n+ [154, \"assignments-and-conversions\"],\n+ [96, \"assignments-and-conversions\"],\n+ [85, \"assignments-and-conversions\"]\n ],\n \"fmpz_poly_mat.h \\u2013 matrices of polynomials over the integers\": [\n [73, \"fmpz-poly-mat-h-matrices-of-polynomials-over-the-integers\"]\n ],\n \"Basic properties\": [\n [73, \"basic-properties\"],\n [142, \"basic-properties\"],\n [103, \"basic-properties\"]\n ],\n- \"Norms\": [\n- [73, \"norms\"],\n- [76, \"norms\"],\n- [18, \"norms\"],\n- [6, \"norms\"],\n- [142, \"norms\"],\n- [81, \"norms\"],\n- [99, \"norms\"],\n- [90, \"norms\"],\n- [93, \"norms\"]\n- ],\n \"Row reduction\": [\n [73, \"row-reduction\"],\n [60, \"row-reduction\"],\n [142, \"row-reduction\"]\n ],\n \"Determinant and rank\": [\n [73, \"determinant-and-rank\"],\n@@ -88952,59 +88993,36 @@\n \"Nullspace\": [\n [73, \"nullspace\"],\n [60, \"nullspace\"],\n [142, \"nullspace\"],\n [137, \"nullspace\"],\n [107, \"nullspace\"]\n ],\n- \"fmpz_poly_q.h \\u2013 rational functions over the rational numbers\": [\n- [74, \"fmpz-poly-q-h-rational-functions-over-the-rational-numbers\"]\n- ],\n- \"Multiplication and division\": [\n- [74, \"multiplication-and-division\"]\n- ],\n- \"fmpz_mpoly_factor.h \\u2013 factorisation of multivariate polynomials over the integers\": [\n- [69, \"fmpz-mpoly-factor-h-factorisation-of-multivariate-polynomials-over-the-integers\"]\n- ],\n- \"fmpz_poly_factor.h \\u2013 factorisation of polynomials over the integers\": [\n- [72, \"fmpz-poly-factor-h-factorisation-of-polynomials-over-the-integers\"]\n- ],\n- \"Manipulating factors\": [\n- [72, \"manipulating-factors\"]\n- ],\n- \"Factoring algorithms\": [\n- [72, \"factoring-algorithms\"]\n- ],\n- \"fmpz_mpoly.h \\u2013 multivariate polynomials over the integers\": [\n- [68, \"fmpz-mpoly-h-multivariate-polynomials-over-the-integers\"]\n- ],\n- \"Internal Functions\": [\n- [68, \"internal-functions\"],\n- [63, \"internal-functions\"],\n- [138, \"internal-functions\"]\n- ],\n- \"Ideals and Gr\\u00f6bner bases\": [\n- [68, \"ideals-and-grobner-bases\"]\n+ \"fmpz_mod.h \\u2013 arithmetic modulo integers\": [\n+ [61, \"fmpz-mod-h-arithmetic-modulo-integers\"]\n ],\n- \"Special polynomials\": [\n- [68, \"special-polynomials\"],\n- [15, \"special-polynomials\"],\n- [140, \"special-polynomials\"]\n+ \"Discrete Logarithms via Pohlig-Hellman\": [\n+ [61, \"discrete-logarithms-via-pohlig-hellman\"],\n+ [136, \"discrete-logarithms-via-pohlig-hellman\"]\n ],\n \"fmpz_mat.h \\u2013 matrices over the integers\": [\n [60, \"fmpz-mat-h-matrices-over-the-integers\"]\n ],\n \"Modular reduction and reconstruction\": [\n [60, \"modular-reduction-and-reconstruction\"],\n [71, \"modular-reduction-and-reconstruction\"]\n ],\n \"Matrix-scalar arithmetic\": [\n [60, \"matrix-scalar-arithmetic\"],\n [137, \"matrix-scalar-arithmetic\"]\n ],\n+ \"Content\": [\n+ [60, \"content\"],\n+ [70, \"content\"]\n+ ],\n \"Rank\": [\n [60, \"rank\"],\n [107, \"rank\"]\n ],\n \"Column partitioning\": [\n [60, \"column-partitioning\"]\n ],\n@@ -89022,59 +89040,66 @@\n ],\n \"Classical LLL\": [\n [60, \"classical-lll\"]\n ],\n \"Modified LLL\": [\n [60, \"modified-lll\"]\n ],\n- \"fmpz_mod_mpoly.h \\u2013 polynomials over the integers mod n\": [\n- [63, \"fmpz-mod-mpoly-h-polynomials-over-the-integers-mod-n\"]\n+ \"fmpz_vec.h \\u2013 vectors of integers\": [\n+ [75, \"fmpz-vec-h-vectors-of-integers\"]\n ],\n- \"Differentiation\": [\n- [63, \"differentiation\"],\n- [19, \"differentiation\"],\n- [8, \"differentiation\"],\n- [138, \"differentiation\"],\n- [88, \"differentiation\"]\n+ \"Bit sizes and norms\": [\n+ [75, \"bit-sizes-and-norms\"],\n+ [71, \"bit-sizes-and-norms\"]\n ],\n- \"fmpzi.h \\u2013 Gaussian integers\": [\n- [76, \"fmpzi-h-gaussian-integers\"]\n+ \"Reduction mod p\": [\n+ [75, \"reduction-mod-p\"]\n ],\n- \"Units\": [\n- [76, \"units\"]\n+ \"fmpz_mpoly_q.h \\u2013 multivariate rational functions over Q\": [\n+ [70, \"fmpz-mpoly-q-h-multivariate-rational-functions-over-q\"]\n ],\n- \"GCD\": [\n- [76, \"gcd\"],\n- [132, \"gcd\"],\n- [109, \"gcd\"]\n+ \"General formulas and bounds\": [\n+ [77, \"general-formulas-and-bounds\"]\n+ ],\n+ \"Error propagation\": [\n+ [77, \"error-propagation\"]\n+ ],\n+ \"Sums and series\": [\n+ [77, \"sums-and-series\"]\n+ ],\n+ \"Complex analytic functions\": [\n+ [77, \"complex-analytic-functions\"]\n+ ],\n+ \"Euler-Maclaurin formula\": [\n+ [77, \"euler-maclaurin-formula\"]\n ],\n \"fmpz_poly.h \\u2013 univariate polynomials over the integers\": [\n [71, \"fmpz-poly-h-univariate-polynomials-over-the-integers\"]\n ],\n \"Definition of the fmpz_poly_t type\": [\n [71, \"definition-of-the-fmpz-poly-t-type\"]\n ],\n \"Scalar absolute value, multiplication and division\": [\n [71, \"scalar-absolute-value-multiplication-and-division\"]\n ],\n \"Bit packing\": [\n [71, \"bit-packing\"],\n [78, \"bit-packing\"],\n- [85, \"bit-packing\"],\n- [96, \"bit-packing\"]\n+ [96, \"bit-packing\"],\n+ [85, \"bit-packing\"]\n ],\n \"FFT precached multiplication\": [\n [71, \"fft-precached-multiplication\"]\n ],\n \"Squaring\": [\n [71, \"squaring\"],\n- [81, \"squaring\"],\n [99, \"squaring\"],\n+ [93, \"squaring\"],\n [90, \"squaring\"],\n- [93, \"squaring\"]\n+ [81, \"squaring\"]\n ],\n \"Division with precomputed inverse\": [\n [71, \"division-with-precomputed-inverse\"]\n ],\n \"Division mod p\": [\n [71, \"division-mod-p\"]\n ],\n@@ -89087,33 +89112,25 @@\n \"Taylor shift\": [\n [71, \"taylor-shift\"],\n [140, \"taylor-shift\"]\n ],\n \"Square root\": [\n [71, \"square-root\"],\n [154, \"square-root\"],\n- [81, \"square-root\"],\n [99, \"square-root\"],\n+ [93, \"square-root\"],\n [90, \"square-root\"],\n- [93, \"square-root\"]\n+ [81, \"square-root\"]\n ],\n \"Signature\": [\n [71, \"signature\"]\n ],\n \"Hensel lifting\": [\n [71, \"hensel-lifting\"]\n ],\n- \"Roots\": [\n- [71, \"roots\"],\n- [79, \"roots\"],\n- [78, \"roots\"],\n- [109, \"roots\"],\n- [85, \"roots\"],\n- [96, \"roots\"]\n- ],\n \"Minimal polynomials\": [\n [71, \"minimal-polynomials\"]\n ],\n \"Fibonacci polynomials\": [\n [71, \"fibonacci-polynomials\"]\n ],\n \"Eulerian numbers and polynomials\": [\n@@ -89121,309 +89138,323 @@\n ],\n \"Modular forms and q-series\": [\n [71, \"modular-forms-and-q-series\"]\n ],\n \"CLD bounds\": [\n [71, \"cld-bounds\"]\n ],\n- \"fq_default_default.h \\u2013 unified finite fields\": [\n- [79, \"fq-default-default-h-unified-finite-fields\"]\n- ],\n- \"Context Management\": [\n- [79, \"context-management\"],\n- [78, \"context-management\"],\n- [85, \"context-management\"],\n- [96, \"context-management\"]\n+ \"fmpz_mpoly.h \\u2013 multivariate polynomials over the integers\": [\n+ [68, \"fmpz-mpoly-h-multivariate-polynomials-over-the-integers\"]\n ],\n- \"Output\": [\n- [79, \"output\"],\n- [78, \"output\"],\n- [154, \"output\"],\n- [81, \"output\"],\n- [99, \"output\"],\n- [90, \"output\"],\n- [85, \"output\"],\n- [93, \"output\"],\n- [96, \"output\"]\n+ \"Ideals and Gr\\u00f6bner bases\": [\n+ [68, \"ideals-and-grobner-bases\"]\n ],\n- \"Assignments and conversions\": [\n- [79, \"assignments-and-conversions\"],\n- [78, \"assignments-and-conversions\"],\n- [145, \"assignments-and-conversions\"],\n- [154, \"assignments-and-conversions\"],\n- [85, \"assignments-and-conversions\"],\n- [96, \"assignments-and-conversions\"]\n+ \"Special polynomials\": [\n+ [68, \"special-polynomials\"],\n+ [15, \"special-polynomials\"],\n+ [140, \"special-polynomials\"]\n ],\n \"fq.h \\u2013 finite fields\": [\n [78, \"fq-h-finite-fields\"]\n ],\n- \"acb_dft.h \\u2013 Discrete Fourier transform\": [\n- [2, \"acb-dft-h-discrete-fourier-transform\"]\n+ \"acb_hypgeom.h \\u2013 hypergeometric functions of complex variables\": [\n+ [5, \"acb-hypgeom-h-hypergeometric-functions-of-complex-variables\"]\n ],\n- \"Main DFT functions\": [\n- [2, \"main-dft-functions\"]\n+ \"Rising factorials\": [\n+ [5, \"rising-factorials\"],\n+ [0, \"rising-factorials\"],\n+ [17, \"rising-factorials\"]\n ],\n- \"DFT on products\": [\n- [2, \"dft-on-products\"]\n+ \"Gamma function\": [\n+ [5, \"gamma-function\"],\n+ [0, \"gamma-function\"],\n+ [17, \"gamma-function\"],\n+ [8, \"gamma-function\"]\n ],\n- \"FFT algorithms\": [\n- [2, \"fft-algorithms\"]\n+ \"Convergent series\": [\n+ [5, \"convergent-series\"],\n+ [114, \"convergent-series\"]\n ],\n- \"Naive algorithm\": [\n- [2, \"naive-algorithm\"]\n+ \"Asymptotic series\": [\n+ [5, \"asymptotic-series\"]\n ],\n- \"Cooley-Tukey decomposition\": [\n- [2, \"cooley-tukey-decomposition\"]\n+ \"Generalized hypergeometric function\": [\n+ [5, \"generalized-hypergeometric-function\"],\n+ [17, \"generalized-hypergeometric-function\"]\n ],\n- \"Radix 2 decomposition\": [\n- [2, \"radix-2-decomposition\"]\n+ \"Confluent hypergeometric functions\": [\n+ [5, \"confluent-hypergeometric-functions\"],\n+ [17, \"confluent-hypergeometric-functions\"]\n ],\n- \"Bluestein transform\": [\n- [2, \"bluestein-transform\"]\n+ \"Error functions and Fresnel integrals\": [\n+ [5, \"error-functions-and-fresnel-integrals\"],\n+ [17, \"error-functions-and-fresnel-integrals\"]\n ],\n- \"arb_fpwrap.h \\u2013 floating-point wrappers of Arb mathematical functions\": [\n- [16, \"arb-fpwrap-h-floating-point-wrappers-of-arb-mathematical-functions\"]\n+ \"Bessel functions\": [\n+ [5, \"bessel-functions\"],\n+ [17, \"bessel-functions\"]\n ],\n- \"Option and return flags\": [\n- [16, \"option-and-return-flags\"]\n+ \"Modified Bessel functions\": [\n+ [5, \"modified-bessel-functions\"]\n ],\n- \"Types\": [\n- [16, \"types\"],\n- [12, \"types\"],\n- [127, \"types\"]\n+ \"Airy functions\": [\n+ [5, \"airy-functions\"],\n+ [17, \"airy-functions\"]\n ],\n- \"Functions\": [\n- [16, \"functions\"]\n+ \"Coulomb wave functions\": [\n+ [5, \"coulomb-wave-functions\"],\n+ [17, \"coulomb-wave-functions\"]\n ],\n- \"Gamma, zeta and related functions\": [\n- [16, \"gamma-zeta-and-related-functions\"]\n+ \"Incomplete gamma and beta functions\": [\n+ [5, \"incomplete-gamma-and-beta-functions\"],\n+ [17, \"incomplete-gamma-and-beta-functions\"]\n ],\n- \"Error functions and exponential integrals\": [\n- [16, \"error-functions-and-exponential-integrals\"]\n+ \"Exponential and trigonometric integrals\": [\n+ [5, \"exponential-and-trigonometric-integrals\"],\n+ [17, \"exponential-and-trigonometric-integrals\"]\n ],\n- \"Bessel, Airy and Coulomb functions\": [\n- [16, \"bessel-airy-and-coulomb-functions\"],\n- [110, \"bessel-airy-and-coulomb-functions\"]\n+ \"Gauss hypergeometric function\": [\n+ [5, \"gauss-hypergeometric-function\"],\n+ [17, \"gauss-hypergeometric-function\"]\n ],\n- \"Elliptic integrals, elliptic functions and modular forms\": [\n- [16, \"elliptic-integrals-elliptic-functions-and-modular-forms\"]\n+ \"Orthogonal polynomials and functions\": [\n+ [5, \"orthogonal-polynomials-and-functions\"],\n+ [17, \"orthogonal-polynomials-and-functions\"]\n ],\n- \"Calling from C\": [\n- [16, \"calling-from-c\"]\n+ \"Dilogarithm\": [\n+ [5, \"dilogarithm\"],\n+ [17, \"dilogarithm\"]\n ],\n- \"Interfacing from Python\": [\n- [16, \"interfacing-from-python\"]\n+ \"Algorithms for the arithmetic-geometric mean\": [\n+ [11, \"algorithms-for-the-arithmetic-geometric-mean\"]\n ],\n- \"Interfacing from Julia\": [\n- [16, \"interfacing-from-julia\"]\n+ \"Functional equation\": [\n+ [11, \"functional-equation\"]\n ],\n- \"arb_fmpz_poly.h \\u2013 extra methods for integer polynomials\": [\n- [15, \"arb-fmpz-poly-h-extra-methods-for-integer-polynomials\"]\n+ \"AGM iteration\": [\n+ [11, \"agm-iteration\"]\n ],\n- \"Utility methods\": [\n- [15, \"utility-methods\"]\n+ \"First derivative\": [\n+ [11, \"first-derivative\"]\n ],\n- \"Polynomial roots\": [\n- [15, \"polynomial-roots\"],\n- [156, \"polynomial-roots\"]\n+ \"Higher derivatives\": [\n+ [11, \"higher-derivatives\"]\n ],\n- \"acb_calc.h \\u2013 calculus with complex-valued functions\": [\n- [1, \"acb-calc-h-calculus-with-complex-valued-functions\"]\n+ \"aprcl.h \\u2013 APRCL primality testing\": [\n+ [12, \"aprcl-h-aprcl-primality-testing\"]\n ],\n- \"Integration\": [\n- [1, \"integration\"]\n+ \"Primality test functions\": [\n+ [12, \"primality-test-functions\"]\n ],\n- \"Options for integration\": [\n- [1, \"options-for-integration\"]\n+ \"Configuration functions\": [\n+ [12, \"configuration-functions\"]\n ],\n- \"Local integration algorithms\": [\n- [1, \"local-integration-algorithms\"]\n+ \"Cyclotomic arithmetic\": [\n+ [12, \"cyclotomic-arithmetic\"]\n ],\n- \"Integration (old)\": [\n- [1, \"integration-old\"]\n+ \"Types\": [\n+ [12, \"types\"],\n+ [16, \"types\"],\n+ [127, \"types\"]\n ],\n- \"acf.h \\u2013 complex floating-point numbers\": [\n- [10, \"acf-h-complex-floating-point-numbers\"]\n+ \"Coefficient management\": [\n+ [12, \"coefficient-management\"]\n ],\n- \"Approximate arithmetic\": [\n- [10, \"approximate-arithmetic\"]\n+ \"Scalar multiplication\": [\n+ [12, \"scalar-multiplication\"],\n+ [147, \"scalar-multiplication\"]\n ],\n- \"arb_hypgeom.h \\u2013 hypergeometric functions of real variables\": [\n- [17, \"arb-hypgeom-h-hypergeometric-functions-of-real-variables\"]\n+ \"Powering functions\": [\n+ [12, \"powering-functions\"]\n ],\n- \"Rising factorials\": [\n- [17, \"rising-factorials\"],\n- [5, \"rising-factorials\"],\n- [0, \"rising-factorials\"]\n+ \"Cyclotomic reduction\": [\n+ [12, \"cyclotomic-reduction\"]\n ],\n- \"Gamma function\": [\n- [17, \"gamma-function\"],\n- [5, \"gamma-function\"],\n- [8, \"gamma-function\"],\n- [0, \"gamma-function\"]\n+ \"Automorphism and inverse\": [\n+ [12, \"automorphism-and-inverse\"]\n ],\n- \"Binomial coefficients\": [\n- [17, \"binomial-coefficients\"]\n+ \"Jacobi sum\": [\n+ [12, \"jacobi-sum\"]\n ],\n- \"Generalized hypergeometric function\": [\n- [17, \"generalized-hypergeometric-function\"],\n- [5, \"generalized-hypergeometric-function\"]\n+ \"Extended rings\": [\n+ [12, \"extended-rings\"]\n ],\n- \"Confluent hypergeometric functions\": [\n- [17, \"confluent-hypergeometric-functions\"],\n- [5, \"confluent-hypergeometric-functions\"]\n+ \"acb.h \\u2013 complex numbers\": [\n+ [0, \"acb-h-complex-numbers\"]\n ],\n- \"Gauss hypergeometric function\": [\n- [17, \"gauss-hypergeometric-function\"],\n- [5, \"gauss-hypergeometric-function\"]\n+ \"Precision and comparisons\": [\n+ [0, \"precision-and-comparisons\"]\n ],\n- \"Error functions and Fresnel integrals\": [\n- [17, \"error-functions-and-fresnel-integrals\"],\n- [5, \"error-functions-and-fresnel-integrals\"]\n+ \"Mathematical constants\": [\n+ [0, \"mathematical-constants\"],\n+ [110, \"mathematical-constants\"]\n ],\n- \"Incomplete gamma and beta functions\": [\n- [17, \"incomplete-gamma-and-beta-functions\"],\n- [5, \"incomplete-gamma-and-beta-functions\"]\n+ \"Inverse trigonometric functions\": [\n+ [0, \"inverse-trigonometric-functions\"],\n+ [13, \"inverse-trigonometric-functions\"]\n ],\n- \"Internal evaluation functions\": [\n- [17, \"internal-evaluation-functions\"]\n+ \"Hyperbolic functions\": [\n+ [0, \"hyperbolic-functions\"],\n+ [13, \"hyperbolic-functions\"]\n ],\n- \"Exponential and trigonometric integrals\": [\n- [17, \"exponential-and-trigonometric-integrals\"],\n- [5, \"exponential-and-trigonometric-integrals\"]\n+ \"Inverse hyperbolic functions\": [\n+ [0, \"inverse-hyperbolic-functions\"],\n+ [13, \"inverse-hyperbolic-functions\"]\n ],\n- \"Bessel functions\": [\n- [17, \"bessel-functions\"],\n- [5, \"bessel-functions\"]\n+ \"Lambert W function\": [\n+ [0, \"lambert-w-function\"],\n+ [13, \"lambert-w-function\"],\n+ [19, \"lambert-w-function\"],\n+ [8, \"lambert-w-function\"]\n ],\n- \"Airy functions\": [\n- [17, \"airy-functions\"],\n- [5, \"airy-functions\"]\n+ \"Zeta function\": [\n+ [0, \"zeta-function\"],\n+ [13, \"zeta-function\"],\n+ [19, \"zeta-function\"],\n+ [8, \"zeta-function\"]\n ],\n- \"Coulomb wave functions\": [\n- [17, \"coulomb-wave-functions\"],\n- [5, \"coulomb-wave-functions\"]\n+ \"Polylogarithms\": [\n+ [0, \"polylogarithms\"],\n+ [13, \"polylogarithms\"]\n ],\n- \"Orthogonal polynomials and functions\": [\n- [17, \"orthogonal-polynomials-and-functions\"],\n- [5, \"orthogonal-polynomials-and-functions\"]\n+ \"Arithmetic-geometric mean\": [\n+ [0, \"arithmetic-geometric-mean\"]\n ],\n- \"Dilogarithm\": [\n- [17, \"dilogarithm\"],\n- [5, \"dilogarithm\"]\n+ \"Other special functions\": [\n+ [0, \"other-special-functions\"],\n+ [13, \"other-special-functions\"],\n+ [8, \"other-special-functions\"]\n ],\n- \"Hypergeometric sums\": [\n- [17, \"hypergeometric-sums\"]\n+ \"Piecewise real functions\": [\n+ [0, \"piecewise-real-functions\"]\n ],\n- \"arb_mat.h \\u2013 matrices over the real numbers\": [\n- [18, \"arb-mat-h-matrices-over-the-real-numbers\"]\n+ \"Vector functions\": [\n+ [0, \"vector-functions\"],\n+ [13, \"vector-functions\"]\n+ ],\n+ \"acb_elliptic.h \\u2013 elliptic integrals and functions of complex variables\": [\n+ [4, \"acb-elliptic-h-elliptic-integrals-and-functions-of-complex-variables\"]\n+ ],\n+ \"Complete elliptic integrals\": [\n+ [4, \"complete-elliptic-integrals\"]\n+ ],\n+ \"Legendre incomplete elliptic integrals\": [\n+ [4, \"legendre-incomplete-elliptic-integrals\"]\n+ ],\n+ \"Carlson symmetric elliptic integrals\": [\n+ [4, \"carlson-symmetric-elliptic-integrals\"]\n+ ],\n+ \"Weierstrass elliptic functions\": [\n+ [4, \"weierstrass-elliptic-functions\"]\n+ ],\n+ \"acb_mat.h \\u2013 matrices over the complex numbers\": [\n+ [6, \"acb-mat-h-matrices-over-the-complex-numbers\"]\n ],\n \"Vector arithmetic\": [\n- [18, \"vector-arithmetic\"],\n- [6, \"vector-arithmetic\"]\n+ [6, \"vector-arithmetic\"],\n+ [18, \"vector-arithmetic\"]\n ],\n \"Gaussian elimination and solving\": [\n- [18, \"gaussian-elimination-and-solving\"],\n- [6, \"gaussian-elimination-and-solving\"]\n- ],\n- \"Cholesky decomposition and solving\": [\n- [18, \"cholesky-decomposition-and-solving\"]\n+ [6, \"gaussian-elimination-and-solving\"],\n+ [18, \"gaussian-elimination-and-solving\"]\n ],\n \"Characteristic polynomial and companion matrix\": [\n- [18, \"characteristic-polynomial-and-companion-matrix\"],\n- [6, \"characteristic-polynomial-and-companion-matrix\"]\n- ],\n- \"Sparsity structure\": [\n- [18, \"sparsity-structure\"]\n+ [6, \"characteristic-polynomial-and-companion-matrix\"],\n+ [18, \"characteristic-polynomial-and-companion-matrix\"]\n ],\n \"Component and error operations\": [\n- [18, \"component-and-error-operations\"],\n- [6, \"component-and-error-operations\"]\n+ [6, \"component-and-error-operations\"],\n+ [18, \"component-and-error-operations\"]\n ],\n- \"LLL reduction\": [\n- [18, \"lll-reduction\"]\n+ \"acb_theta.h \\u2013 Riemann theta functions\": [\n+ [9, \"acb-theta-h-riemann-theta-functions\"]\n ],\n- \"acb_dirichlet.h \\u2013 Dirichlet L-functions, Riemann zeta and related functions\": [\n- [3, \"acb-dirichlet-h-dirichlet-l-functions-riemann-zeta-and-related-functions\"]\n+ \"Main user functions\": [\n+ [9, \"main-user-functions\"]\n ],\n- \"Roots of unity\": [\n- [3, \"roots-of-unity\"]\n+ \"Example of usage\": [\n+ [9, \"example-of-usage\"]\n ],\n- \"Truncated L-series and power sums\": [\n- [3, \"truncated-l-series-and-power-sums\"]\n+ \"The Siegel modular group\": [\n+ [9, \"the-siegel-modular-group\"]\n ],\n- \"Riemann zeta function\": [\n- [3, \"riemann-zeta-function\"]\n+ \"The Siegel half space\": [\n+ [9, \"the-siegel-half-space\"]\n ],\n- \"Riemann-Siegel formula\": [\n- [3, \"riemann-siegel-formula\"]\n+ \"Theta characteristics\": [\n+ [9, \"theta-characteristics\"]\n ],\n- \"Hurwitz zeta function\": [\n- [3, \"hurwitz-zeta-function\"]\n+ \"Ellipsoids: types and macros\": [\n+ [9, \"ellipsoids-types-and-macros\"]\n ],\n- \"Hurwitz zeta function precomputation\": [\n- [3, \"hurwitz-zeta-function-precomputation\"]\n+ \"Ellipsoids: memory management and computations\": [\n+ [9, \"ellipsoids-memory-management-and-computations\"]\n ],\n- \"Lerch transcendent\": [\n- [3, \"lerch-transcendent\"]\n+ \"Naive algorithms: error bounds\": [\n+ [9, \"naive-algorithms-error-bounds\"]\n ],\n- \"Stieltjes constants\": [\n- [3, \"stieltjes-constants\"]\n+ \"Naive algorithms: main functions\": [\n+ [9, \"naive-algorithms-main-functions\"]\n ],\n- \"Dirichlet character evaluation\": [\n- [3, \"dirichlet-character-evaluation\"]\n+ \"Naive algorithms for derivatives\": [\n+ [9, \"naive-algorithms-for-derivatives\"]\n ],\n- \"Dirichlet character Gauss, Jacobi and theta sums\": [\n- [3, \"dirichlet-character-gauss-jacobi-and-theta-sums\"]\n+ \"Quasi-linear algorithms: presentation\": [\n+ [9, \"quasi-linear-algorithms-presentation\"]\n ],\n- \"Discrete Fourier transforms\": [\n- [3, \"discrete-fourier-transforms\"]\n+ \"Quasi-linear algorithms: distances\": [\n+ [9, \"quasi-linear-algorithms-distances\"]\n ],\n- \"Dirichlet L-functions\": [\n- [3, \"dirichlet-l-functions\"]\n+ \"Quasi-linear algorithms: AGM steps\": [\n+ [9, \"quasi-linear-algorithms-agm-steps\"]\n ],\n- \"Hardy Z-functions\": [\n- [3, \"hardy-z-functions\"]\n+ \"Quasi-linear algorithms: main functions\": [\n+ [9, \"quasi-linear-algorithms-main-functions\"]\n ],\n- \"Gram points\": [\n- [3, \"gram-points\"]\n+ \"Quasi-linear algorithms: derivatives\": [\n+ [9, \"quasi-linear-algorithms-derivatives\"]\n ],\n- \"Riemann zeta function zeros\": [\n- [3, \"riemann-zeta-function-zeros\"]\n+ \"The transformation formula\": [\n+ [9, \"the-transformation-formula\"]\n ],\n- \"Riemann zeta function zeros (Platt\\u2019s method)\": [\n- [3, \"riemann-zeta-function-zeros-platt-s-method\"]\n+ \"Dimension 2 specifics\": [\n+ [9, \"dimension-2-specifics\"]\n ],\n- \"acb_hypgeom.h \\u2013 hypergeometric functions of complex variables\": [\n- [5, \"acb-hypgeom-h-hypergeometric-functions-of-complex-variables\"]\n+ \"Tests\": [\n+ [9, \"tests\"]\n ],\n- \"Convergent series\": [\n- [5, \"convergent-series\"],\n- [114, \"convergent-series\"]\n+ \"Profiling\": [\n+ [9, \"profiling\"]\n ],\n- \"Asymptotic series\": [\n- [5, \"asymptotic-series\"]\n+ \"arb_mat.h \\u2013 matrices over the real numbers\": [\n+ [18, \"arb-mat-h-matrices-over-the-real-numbers\"]\n ],\n- \"Modified Bessel functions\": [\n- [5, \"modified-bessel-functions\"]\n+ \"Cholesky decomposition and solving\": [\n+ [18, \"cholesky-decomposition-and-solving\"]\n ],\n- \"Algorithms for the arithmetic-geometric mean\": [\n- [11, \"algorithms-for-the-arithmetic-geometric-mean\"]\n+ \"Sparsity structure\": [\n+ [18, \"sparsity-structure\"]\n ],\n- \"Functional equation\": [\n- [11, \"functional-equation\"]\n+ \"LLL reduction\": [\n+ [18, \"lll-reduction\"]\n ],\n- \"AGM iteration\": [\n- [11, \"agm-iteration\"]\n+ \"arb.h \\u2013 real numbers\": [\n+ [13, \"arb-h-real-numbers\"]\n ],\n- \"First derivative\": [\n- [11, \"first-derivative\"]\n+ \"Assignment and rounding\": [\n+ [13, \"assignment-and-rounding\"]\n ],\n- \"Higher derivatives\": [\n- [11, \"higher-derivatives\"]\n+ \"Assignment of special values\": [\n+ [13, \"assignment-of-special-values\"]\n+ ],\n+ \"Radius and interval operations\": [\n+ [13, \"radius-and-interval-operations\"]\n+ ],\n+ \"Internals for computing elementary functions\": [\n+ [13, \"internals-for-computing-elementary-functions\"]\n ],\n \"arb_poly.h \\u2013 polynomials over the real numbers\": [\n [19, \"arb-poly-h-polynomials-over-the-real-numbers\"]\n ],\n \"Bounds\": [\n [19, \"bounds\"],\n [8, \"bounds\"]\n@@ -89431,58 +89462,36 @@\n \"Product trees\": [\n [19, \"product-trees\"],\n [8, \"product-trees\"]\n ],\n \"Powers and elementary functions\": [\n [19, \"powers-and-elementary-functions\"]\n ],\n- \"Lambert W function\": [\n- [19, \"lambert-w-function\"],\n- [8, \"lambert-w-function\"],\n- [13, \"lambert-w-function\"],\n- [0, \"lambert-w-function\"]\n- ],\n- \"Zeta function\": [\n- [19, \"zeta-function\"],\n- [8, \"zeta-function\"],\n- [13, \"zeta-function\"],\n- [0, \"zeta-function\"]\n- ],\n \"Root-finding\": [\n [19, \"root-finding\"],\n [8, \"root-finding\"]\n ],\n \"Other special polynomials\": [\n [19, \"other-special-polynomials\"]\n ],\n- \"acb_mat.h \\u2013 matrices over the complex numbers\": [\n- [6, \"acb-mat-h-matrices-over-the-complex-numbers\"]\n- ],\n- \"acb_poly.h \\u2013 polynomials over the complex numbers\": [\n- [8, \"acb-poly-h-polynomials-over-the-complex-numbers\"]\n- ],\n- \"Other special functions\": [\n- [8, \"other-special-functions\"],\n- [13, \"other-special-functions\"],\n- [0, \"other-special-functions\"]\n- ],\n- \"acb_elliptic.h \\u2013 elliptic integrals and functions of complex variables\": [\n- [4, \"acb-elliptic-h-elliptic-integrals-and-functions-of-complex-variables\"]\n+ \"acf.h \\u2013 complex floating-point numbers\": [\n+ [10, \"acf-h-complex-floating-point-numbers\"]\n ],\n- \"Complete elliptic integrals\": [\n- [4, \"complete-elliptic-integrals\"]\n+ \"Approximate arithmetic\": [\n+ [10, \"approximate-arithmetic\"]\n ],\n- \"Legendre incomplete elliptic integrals\": [\n- [4, \"legendre-incomplete-elliptic-integrals\"]\n+ \"arb_fmpz_poly.h \\u2013 extra methods for integer polynomials\": [\n+ [15, \"arb-fmpz-poly-h-extra-methods-for-integer-polynomials\"]\n ],\n- \"Carlson symmetric elliptic integrals\": [\n- [4, \"carlson-symmetric-elliptic-integrals\"]\n+ \"Utility methods\": [\n+ [15, \"utility-methods\"]\n ],\n- \"Weierstrass elliptic functions\": [\n- [4, \"weierstrass-elliptic-functions\"]\n+ \"Polynomial roots\": [\n+ [15, \"polynomial-roots\"],\n+ [156, \"polynomial-roots\"]\n ],\n \"acb_modular.h \\u2013 modular forms of complex variables\": [\n [7, \"acb-modular-h-modular-forms-of-complex-variables\"]\n ],\n \"The modular group\": [\n [7, \"the-modular-group\"]\n ],\n@@ -89503,206 +89512,167 @@\n ],\n \"Elliptic integrals and functions\": [\n [7, \"elliptic-integrals-and-functions\"]\n ],\n \"Class polynomials\": [\n [7, \"class-polynomials\"]\n ],\n- \"arb.h \\u2013 real numbers\": [\n- [13, \"arb-h-real-numbers\"]\n- ],\n- \"Assignment and rounding\": [\n- [13, \"assignment-and-rounding\"]\n- ],\n- \"Assignment of special values\": [\n- [13, \"assignment-of-special-values\"]\n- ],\n- \"Radius and interval operations\": [\n- [13, \"radius-and-interval-operations\"]\n- ],\n- \"Inverse trigonometric functions\": [\n- [13, \"inverse-trigonometric-functions\"],\n- [0, \"inverse-trigonometric-functions\"]\n- ],\n- \"Hyperbolic functions\": [\n- [13, \"hyperbolic-functions\"],\n- [0, \"hyperbolic-functions\"]\n- ],\n- \"Inverse hyperbolic functions\": [\n- [13, \"inverse-hyperbolic-functions\"],\n- [0, \"inverse-hyperbolic-functions\"]\n- ],\n- \"Polylogarithms\": [\n- [13, \"polylogarithms\"],\n- [0, \"polylogarithms\"]\n- ],\n- \"Internals for computing elementary functions\": [\n- [13, \"internals-for-computing-elementary-functions\"]\n- ],\n- \"Vector functions\": [\n- [13, \"vector-functions\"],\n- [0, \"vector-functions\"]\n- ],\n- \"acb.h \\u2013 complex numbers\": [\n- [0, \"acb-h-complex-numbers\"]\n+ \"arb_calc.h \\u2013 calculus with real-valued functions\": [\n+ [14, \"arb-calc-h-calculus-with-real-valued-functions\"]\n ],\n- \"Precision and comparisons\": [\n- [0, \"precision-and-comparisons\"]\n+ \"Debugging\": [\n+ [14, \"debugging\"]\n ],\n- \"Mathematical constants\": [\n- [0, \"mathematical-constants\"],\n- [110, \"mathematical-constants\"]\n+ \"Subdivision-based root finding\": [\n+ [14, \"subdivision-based-root-finding\"]\n ],\n- \"Arithmetic-geometric mean\": [\n- [0, \"arithmetic-geometric-mean\"]\n+ \"Newton-based root finding\": [\n+ [14, \"newton-based-root-finding\"]\n ],\n- \"Piecewise real functions\": [\n- [0, \"piecewise-real-functions\"]\n+ \"acb_dft.h \\u2013 Discrete Fourier transform\": [\n+ [2, \"acb-dft-h-discrete-fourier-transform\"]\n ],\n- \"acb_theta.h \\u2013 Riemann theta functions\": [\n- [9, \"acb-theta-h-riemann-theta-functions\"]\n+ \"Main DFT functions\": [\n+ [2, \"main-dft-functions\"]\n ],\n- \"Main user functions\": [\n- [9, \"main-user-functions\"]\n+ \"DFT on products\": [\n+ [2, \"dft-on-products\"]\n ],\n- \"Example of usage\": [\n- [9, \"example-of-usage\"]\n+ \"FFT algorithms\": [\n+ [2, \"fft-algorithms\"]\n ],\n- \"The Siegel modular group\": [\n- [9, \"the-siegel-modular-group\"]\n+ \"Naive algorithm\": [\n+ [2, \"naive-algorithm\"]\n ],\n- \"The Siegel half space\": [\n- [9, \"the-siegel-half-space\"]\n+ \"Cooley-Tukey decomposition\": [\n+ [2, \"cooley-tukey-decomposition\"]\n ],\n- \"Theta characteristics\": [\n- [9, \"theta-characteristics\"]\n+ \"Radix 2 decomposition\": [\n+ [2, \"radix-2-decomposition\"]\n ],\n- \"Ellipsoids: types and macros\": [\n- [9, \"ellipsoids-types-and-macros\"]\n+ \"Bluestein transform\": [\n+ [2, \"bluestein-transform\"]\n ],\n- \"Ellipsoids: memory management and computations\": [\n- [9, \"ellipsoids-memory-management-and-computations\"]\n+ \"arb_hypgeom.h \\u2013 hypergeometric functions of real variables\": [\n+ [17, \"arb-hypgeom-h-hypergeometric-functions-of-real-variables\"]\n ],\n- \"Naive algorithms: error bounds\": [\n- [9, \"naive-algorithms-error-bounds\"]\n+ \"Binomial coefficients\": [\n+ [17, \"binomial-coefficients\"]\n ],\n- \"Naive algorithms: main functions\": [\n- [9, \"naive-algorithms-main-functions\"]\n+ \"Internal evaluation functions\": [\n+ [17, \"internal-evaluation-functions\"]\n ],\n- \"Naive algorithms for derivatives\": [\n- [9, \"naive-algorithms-for-derivatives\"]\n+ \"Hypergeometric sums\": [\n+ [17, \"hypergeometric-sums\"]\n ],\n- \"Quasi-linear algorithms: presentation\": [\n- [9, \"quasi-linear-algorithms-presentation\"]\n+ \"acb_dirichlet.h \\u2013 Dirichlet L-functions, Riemann zeta and related functions\": [\n+ [3, \"acb-dirichlet-h-dirichlet-l-functions-riemann-zeta-and-related-functions\"]\n ],\n- \"Quasi-linear algorithms: distances\": [\n- [9, \"quasi-linear-algorithms-distances\"]\n+ \"Roots of unity\": [\n+ [3, \"roots-of-unity\"]\n ],\n- \"Quasi-linear algorithms: AGM steps\": [\n- [9, \"quasi-linear-algorithms-agm-steps\"]\n+ \"Truncated L-series and power sums\": [\n+ [3, \"truncated-l-series-and-power-sums\"]\n ],\n- \"Quasi-linear algorithms: main functions\": [\n- [9, \"quasi-linear-algorithms-main-functions\"]\n+ \"Riemann zeta function\": [\n+ [3, \"riemann-zeta-function\"]\n ],\n- \"Quasi-linear algorithms: derivatives\": [\n- [9, \"quasi-linear-algorithms-derivatives\"]\n+ \"Riemann-Siegel formula\": [\n+ [3, \"riemann-siegel-formula\"]\n ],\n- \"The transformation formula\": [\n- [9, \"the-transformation-formula\"]\n+ \"Hurwitz zeta function\": [\n+ [3, \"hurwitz-zeta-function\"]\n ],\n- \"Dimension 2 specifics\": [\n- [9, \"dimension-2-specifics\"]\n+ \"Hurwitz zeta function precomputation\": [\n+ [3, \"hurwitz-zeta-function-precomputation\"]\n ],\n- \"Tests\": [\n- [9, \"tests\"]\n+ \"Lerch transcendent\": [\n+ [3, \"lerch-transcendent\"]\n ],\n- \"Profiling\": [\n- [9, \"profiling\"]\n+ \"Stieltjes constants\": [\n+ [3, \"stieltjes-constants\"]\n ],\n- \"aprcl.h \\u2013 APRCL primality testing\": [\n- [12, \"aprcl-h-aprcl-primality-testing\"]\n+ \"Dirichlet character evaluation\": [\n+ [3, \"dirichlet-character-evaluation\"]\n ],\n- \"Primality test functions\": [\n- [12, \"primality-test-functions\"]\n+ \"Dirichlet character Gauss, Jacobi and theta sums\": [\n+ [3, \"dirichlet-character-gauss-jacobi-and-theta-sums\"]\n ],\n- \"Configuration functions\": [\n- [12, \"configuration-functions\"]\n+ \"Discrete Fourier transforms\": [\n+ [3, \"discrete-fourier-transforms\"]\n ],\n- \"Cyclotomic arithmetic\": [\n- [12, \"cyclotomic-arithmetic\"]\n+ \"Dirichlet L-functions\": [\n+ [3, \"dirichlet-l-functions\"]\n ],\n- \"Coefficient management\": [\n- [12, \"coefficient-management\"]\n+ \"Hardy Z-functions\": [\n+ [3, \"hardy-z-functions\"]\n ],\n- \"Scalar multiplication\": [\n- [12, \"scalar-multiplication\"],\n- [147, \"scalar-multiplication\"]\n+ \"Gram points\": [\n+ [3, \"gram-points\"]\n ],\n- \"Powering functions\": [\n- [12, \"powering-functions\"]\n+ \"Riemann zeta function zeros\": [\n+ [3, \"riemann-zeta-function-zeros\"]\n ],\n- \"Cyclotomic reduction\": [\n- [12, \"cyclotomic-reduction\"]\n+ \"Riemann zeta function zeros (Platt\\u2019s method)\": [\n+ [3, \"riemann-zeta-function-zeros-platt-s-method\"]\n ],\n- \"Automorphism and inverse\": [\n- [12, \"automorphism-and-inverse\"]\n+ \"arb_fpwrap.h \\u2013 floating-point wrappers of Arb mathematical functions\": [\n+ [16, \"arb-fpwrap-h-floating-point-wrappers-of-arb-mathematical-functions\"]\n ],\n- \"Jacobi sum\": [\n- [12, \"jacobi-sum\"]\n+ \"Option and return flags\": [\n+ [16, \"option-and-return-flags\"]\n ],\n- \"Extended rings\": [\n- [12, \"extended-rings\"]\n+ \"Functions\": [\n+ [16, \"functions\"]\n ],\n- \"arb_calc.h \\u2013 calculus with real-valued functions\": [\n- [14, \"arb-calc-h-calculus-with-real-valued-functions\"]\n+ \"Gamma, zeta and related functions\": [\n+ [16, \"gamma-zeta-and-related-functions\"]\n ],\n- \"Debugging\": [\n- [14, \"debugging\"]\n+ \"Error functions and exponential integrals\": [\n+ [16, \"error-functions-and-exponential-integrals\"]\n ],\n- \"Subdivision-based root finding\": [\n- [14, \"subdivision-based-root-finding\"]\n+ \"Bessel, Airy and Coulomb functions\": [\n+ [16, \"bessel-airy-and-coulomb-functions\"],\n+ [110, \"bessel-airy-and-coulomb-functions\"]\n ],\n- \"Newton-based root finding\": [\n- [14, \"newton-based-root-finding\"]\n+ \"Elliptic integrals, elliptic functions and modular forms\": [\n+ [16, \"elliptic-integrals-elliptic-functions-and-modular-forms\"]\n ],\n- \"partitions.h \\u2013 computation of the partition function\": [\n- [148, \"partitions-h-computation-of-the-partition-function\"]\n+ \"Calling from C\": [\n+ [16, \"calling-from-c\"]\n ],\n- \"padic.h \\u2013 p-adic numbers\": [\n- [145, \"padic-h-p-adic-numbers\"]\n+ \"Interfacing from Python\": [\n+ [16, \"interfacing-from-python\"]\n ],\n- \"Data structures\": [\n- [145, \"data-structures\"],\n- [154, \"data-structures\"]\n+ \"Interfacing from Julia\": [\n+ [16, \"interfacing-from-julia\"]\n ],\n- \"Context\": [\n- [145, \"context\"],\n- [154, \"context\"]\n+ \"acb_calc.h \\u2013 calculus with complex-valued functions\": [\n+ [1, \"acb-calc-h-calculus-with-complex-valued-functions\"]\n ],\n- \"Exponential\": [\n- [145, \"exponential\"]\n+ \"Integration\": [\n+ [1, \"integration\"]\n ],\n- \"Logarithm\": [\n- [145, \"logarithm\"]\n+ \"Options for integration\": [\n+ [1, \"options-for-integration\"]\n ],\n- \"thread_pool.h \\u2013 thread pool\": [\n- [159, \"thread-pool-h-thread-pool\"]\n+ \"Local integration algorithms\": [\n+ [1, \"local-integration-algorithms\"]\n ],\n- \"Thread pool\": [\n- [159, \"id1\"]\n+ \"Integration (old)\": [\n+ [1, \"integration-old\"]\n ],\n- \"padic_mat.h \\u2013 matrices over p-adic numbers\": [\n- [146, \"padic-mat-h-matrices-over-p-adic-numbers\"]\n+ \"acb_poly.h \\u2013 polynomials over the complex numbers\": [\n+ [8, \"acb-poly-h-polynomials-over-the-complex-numbers\"]\n ],\n- \"Module documentation\": [\n- [146, \"module-documentation\"],\n- [147, \"module-documentation\"]\n+ \"Feature overview\": [\n+ [144, \"feature-overview\"]\n ],\n- \"Entries\": [\n- [146, \"entries\"]\n+ \"nmod_poly_factor.h \\u2013 factorisation of univariate polynomials over integers mod n (word-size n)\": [\n+ [141, \"nmod-poly-factor-h-factorisation-of-univariate-polynomials-over-integers-mod-n-word-size-n\"]\n ],\n \"qqbar.h \\u2013 algebraic numbers represented by minimal polynomials\": [\n [156, \"qqbar-h-algebraic-numbers-represented-by-minimal-polynomials\"]\n ],\n \"Integer parts\": [\n [156, \"integer-parts\"]\n ],\n@@ -89723,40 +89693,65 @@\n ],\n \"Symbolic expressions and conversion to radicals\": [\n [156, \"symbolic-expressions-and-conversion-to-radicals\"]\n ],\n \"Internal functions\": [\n [156, \"internal-functions\"]\n ],\n+ \"Portability\": [\n+ [151, \"portability\"]\n+ ],\n+ \"Portable FLINT types\": [\n+ [151, \"portable-flint-types\"]\n+ ],\n+ \"thread_pool.h \\u2013 thread pool\": [\n+ [159, \"thread-pool-h-thread-pool\"]\n+ ],\n+ \"Thread pool\": [\n+ [159, \"id1\"]\n+ ],\n \"qsieve.h \\u2013 Quadratic sieve\": [\n [157, \"qsieve-h-quadratic-sieve\"]\n ],\n- \"nmod_vec.h \\u2013 vectors over integers mod n (word-size n)\": [\n- [143, \"nmod-vec-h-vectors-over-integers-mod-n-word-size-n\"]\n+ \"References\": [\n+ [158, \"references\"],\n+ [116, \"references\"]\n ],\n- \"Basic manipulation and comparison\": [\n- [143, \"basic-manipulation-and-comparison\"]\n+ \"padic.h \\u2013 p-adic numbers\": [\n+ [145, \"padic-h-p-adic-numbers\"]\n ],\n- \"nmod_poly_mat.h \\u2013 matrices of univariate polynomials over integers mod n (word-size n)\": [\n- [142, \"nmod-poly-mat-h-matrices-of-univariate-polynomials-over-integers-mod-n-word-size-n\"]\n+ \"Data structures\": [\n+ [145, \"data-structures\"],\n+ [154, \"data-structures\"]\n ],\n- \"Truncate, shift\": [\n- [142, \"truncate-shift\"]\n+ \"Context\": [\n+ [145, \"context\"],\n+ [154, \"context\"]\n ],\n- \"qadic.h \\u2013 unramified extensions over p-adic numbers\": [\n- [154, \"qadic-h-unramified-extensions-over-p-adic-numbers\"]\n+ \"Exponential\": [\n+ [145, \"exponential\"]\n ],\n- \"Algorithms for polylogarithms\": [\n- [150, \"algorithms-for-polylogarithms\"]\n+ \"Logarithm\": [\n+ [145, \"logarithm\"]\n ],\n- \"Computation for small z\": [\n- [150, \"computation-for-small-z\"]\n+ \"padic_mat.h \\u2013 matrices over p-adic numbers\": [\n+ [146, \"padic-mat-h-matrices-over-p-adic-numbers\"]\n ],\n- \"Expansion for general z\": [\n- [150, \"expansion-for-general-z\"]\n+ \"Module documentation\": [\n+ [146, \"module-documentation\"],\n+ [147, \"module-documentation\"]\n+ ],\n+ \"Entries\": [\n+ [146, \"entries\"]\n+ ],\n+ \"nmod_poly_mat.h \\u2013 matrices of univariate polynomials over integers mod n (word-size n)\": [\n+ [142, \"nmod-poly-mat-h-matrices-of-univariate-polynomials-over-integers-mod-n-word-size-n\"]\n+ ],\n+ \"Truncate, shift\": [\n+ [142, \"truncate-shift\"]\n ],\n \"profiler.h \\u2013 performance profiling\": [\n [152, \"profiler-h-performance-profiling\"]\n ],\n \"Timer based on the cycle counter\": [\n [152, \"timer-based-on-the-cycle-counter\"]\n ],\n@@ -89765,70 +89760,66 @@\n ],\n \"Memory usage\": [\n [152, \"memory-usage\"]\n ],\n \"Simple profiling macros\": [\n [152, \"simple-profiling-macros\"]\n ],\n- \"flint_ctypes - Python interface\": [\n- [153, \"flint-ctypes-python-interface\"]\n+ \"partitions.h \\u2013 computation of the partition function\": [\n+ [148, \"partitions-h-computation-of-the-partition-function\"]\n ],\n- \"Types, parents and coercions\": [\n- [153, \"types-parents-and-coercions\"]\n+ \"qfb.h \\u2013 binary quadratic forms\": [\n+ [155, \"qfb-h-binary-quadratic-forms\"]\n ],\n- \"Real and complex numbers\": [\n- [153, \"real-and-complex-numbers\"],\n- [117, \"real-and-complex-numbers\"],\n- [116, \"real-and-complex-numbers\"]\n+ \"Hash table\": [\n+ [155, \"hash-table\"]\n ],\n- \"API documentation\": [\n- [153, \"api-documentation\"]\n+ \"Input/output\": [\n+ [155, \"input-output\"]\n ],\n- \"nmod_poly_factor.h \\u2013 factorisation of univariate polynomials over integers mod n (word-size n)\": [\n- [141, \"nmod-poly-factor-h-factorisation-of-univariate-polynomials-over-integers-mod-n-word-size-n\"]\n+ \"Computing with forms\": [\n+ [155, \"computing-with-forms\"]\n ],\n \"perm.h \\u2013 permutations\": [\n [149, \"perm-h-permutations\"]\n ],\n \"Parity\": [\n [149, \"parity\"]\n ],\n- \"Feature overview\": [\n- [144, \"feature-overview\"]\n- ],\n- \"Portability\": [\n- [151, \"portability\"]\n+ \"flint_ctypes - Python interface\": [\n+ [153, \"flint-ctypes-python-interface\"]\n ],\n- \"Portable FLINT types\": [\n- [151, \"portable-flint-types\"]\n+ \"Types, parents and coercions\": [\n+ [153, \"types-parents-and-coercions\"]\n ],\n- \"padic_poly.h \\u2013 polynomials over p-adic numbers\": [\n- [147, \"padic-poly-h-polynomials-over-p-adic-numbers\"]\n+ \"Real and complex numbers\": [\n+ [153, \"real-and-complex-numbers\"],\n+ [117, \"real-and-complex-numbers\"],\n+ [116, \"real-and-complex-numbers\"]\n ],\n- \"Series inversion\": [\n- [147, \"series-inversion\"]\n+ \"API documentation\": [\n+ [153, \"api-documentation\"]\n ],\n- \"Testing\": [\n- [147, \"testing\"]\n+ \"Algorithms for polylogarithms\": [\n+ [150, \"algorithms-for-polylogarithms\"]\n ],\n- \"qfb.h \\u2013 binary quadratic forms\": [\n- [155, \"qfb-h-binary-quadratic-forms\"]\n+ \"Computation for small z\": [\n+ [150, \"computation-for-small-z\"]\n ],\n- \"Hash table\": [\n- [155, \"hash-table\"]\n+ \"Expansion for general z\": [\n+ [150, \"expansion-for-general-z\"]\n ],\n- \"Input/output\": [\n- [155, \"input-output\"]\n+ \"nmod_vec.h \\u2013 vectors over integers mod n (word-size n)\": [\n+ [143, \"nmod-vec-h-vectors-over-integers-mod-n-word-size-n\"]\n ],\n- \"Computing with forms\": [\n- [155, \"computing-with-forms\"]\n+ \"Basic manipulation and comparison\": [\n+ [143, \"basic-manipulation-and-comparison\"]\n ],\n- \"References\": [\n- [158, \"references\"],\n- [116, \"references\"]\n+ \"qadic.h \\u2013 unramified extensions over p-adic numbers\": [\n+ [154, \"qadic-h-unramified-extensions-over-p-adic-numbers\"]\n ],\n \"nmod_poly.h \\u2013 univariate polynomials over integers mod n (word-size n)\": [\n [140, \"nmod-poly-h-univariate-polynomials-over-integers-mod-n-word-size-n\"]\n ],\n \"Helper functions\": [\n [140, \"helper-functions\"]\n ],\n@@ -89840,50 +89831,44 @@\n ],\n \"KS2/KS4 Reduction\": [\n [140, \"ks2-ks4-reduction\"]\n ],\n \"Chinese Remaindering\": [\n [140, \"chinese-remaindering\"]\n ],\n- \"nf_elem.h \\u2013 number field elements\": [\n- [135, \"nf-elem-h-number-field-elements\"]\n- ],\n- \"Initialisation\": [\n- [135, \"initialisation\"]\n+ \"padic_poly.h \\u2013 polynomials over p-adic numbers\": [\n+ [147, \"padic-poly-h-polynomials-over-p-adic-numbers\"]\n ],\n- \"I/O\": [\n- [135, \"i-o\"]\n+ \"Series inversion\": [\n+ [147, \"series-inversion\"]\n ],\n- \"Representation matrix\": [\n- [135, \"representation-matrix\"]\n+ \"Testing\": [\n+ [147, \"testing\"]\n ],\n- \"Modular reduction\": [\n- [135, \"modular-reduction\"]\n+ \"Memory allocation functions\": [\n+ [129, \"memory-allocation-functions\"]\n ],\n- \"nmod_mpoly_factor.h \\u2013 factorisation of multivariate polynomials over integers mod n (word-size n)\": [\n- [139, \"nmod-mpoly-factor-h-factorisation-of-multivariate-polynomials-over-integers-mod-n-word-size-n\"]\n+ \"Global caches and cleanup\": [\n+ [129, \"global-caches-and-cleanup\"]\n ],\n- \"machine_vectors.h \\u2013 SIMD-accelerated operations on fixed-length vectors\": [\n- [127, \"machine-vectors-h-simd-accelerated-operations-on-fixed-length-vectors\"]\n+ \"Temporary allocation\": [\n+ [129, \"temporary-allocation\"]\n ],\n- \"Access and conversions\": [\n- [127, \"access-and-conversions\"]\n+ \"nmod_mpoly.h \\u2013 multivariate polynomials over integers mod n (word-size n)\": [\n+ [138, \"nmod-mpoly-h-multivariate-polynomials-over-integers-mod-n-word-size-n\"]\n ],\n- \"Permutations\": [\n- [127, \"permutations\"]\n+ \"longlong.h \\u2013 support functions for multi-word arithmetic\": [\n+ [126, \"longlong-h-support-functions-for-multi-word-arithmetic\"]\n ],\n- \"Arithmetic and basic operations\": [\n- [127, \"arithmetic-and-basic-operations\"]\n+ \"Auxiliary asm macros\": [\n+ [126, \"auxiliary-asm-macros\"]\n ],\n \"mpfr_mat.h \\u2013 matrices of MPFR floating-point numbers\": [\n [130, \"mpfr-mat-h-matrices-of-mpfr-floating-point-numbers\"]\n ],\n- \"Rational numbers : detailed table of contents\": [\n- [121, \"rational-numbers-detailed-table-of-contents\"]\n- ],\n \"mpoly.h \\u2013 support functions for multivariate polynomials\": [\n [133, \"mpoly-h-support-functions-for-multivariate-polynomials\"]\n ],\n \"Orderings\": [\n [133, \"orderings\"]\n ],\n \"Monomial arithmetic\": [\n@@ -89903,32 +89888,14 @@\n ],\n \"Chunking\": [\n [133, \"chunking\"]\n ],\n \"Chained heap functions\": [\n [133, \"chained-heap-functions\"]\n ],\n- \"long_extras.h \\u2013 support functions for signed word arithmetic\": [\n- [125, \"long-extras-h-support-functions-for-signed-word-arithmetic\"]\n- ],\n- \"Checked Arithmetic\": [\n- [125, \"checked-arithmetic\"]\n- ],\n- \"longlong.h \\u2013 support functions for multi-word arithmetic\": [\n- [126, \"longlong-h-support-functions-for-multi-word-arithmetic\"]\n- ],\n- \"Auxiliary asm macros\": [\n- [126, \"auxiliary-asm-macros\"]\n- ],\n- \"nmod.h \\u2013 integers mod n (word-size n)\": [\n- [136, \"nmod-h-integers-mod-n-word-size-n\"]\n- ],\n- \"Modular reduction and arithmetic\": [\n- [136, \"modular-reduction-and-arithmetic\"]\n- ],\n \"What is Flint?\": [\n [122, \"what-is-flint\"]\n ],\n \"Maintainers and Authors\": [\n [122, \"maintainers-and-authors\"]\n ],\n \"Requirements\": [\n@@ -89936,40 +89903,95 @@\n ],\n \"Structure of Flint\": [\n [122, \"structure-of-flint\"]\n ],\n \"License\": [\n [122, \"license\"]\n ],\n+ \"nf.h \\u2013 number fields\": [\n+ [134, \"nf-h-number-fields\"]\n+ ],\n+ \"nmod_mat.h \\u2013 matrices over integers mod n (word-size n)\": [\n+ [137, \"nmod-mat-h-matrices-over-integers-mod-n-word-size-n\"]\n+ ],\n+ \"Transposition and permutations\": [\n+ [137, \"transposition-and-permutations\"]\n+ ],\n+ \"Matrix Exponentiation\": [\n+ [137, \"matrix-exponentiation\"]\n+ ],\n+ \"Nonsingular square solving\": [\n+ [137, \"nonsingular-square-solving\"]\n+ ],\n+ \"Reduced row echelon form\": [\n+ [137, \"reduced-row-echelon-form\"],\n+ [80, \"reduced-row-echelon-form\"],\n+ [87, \"reduced-row-echelon-form\"],\n+ [98, \"reduced-row-echelon-form\"],\n+ [84, \"reduced-row-echelon-form\"]\n+ ],\n \"mpfr_vec.h \\u2013 vectors of MPFR floating-point numbers\": [\n [131, \"mpfr-vec-h-vectors-of-mpfr-floating-point-numbers\"]\n ],\n- \"nf.h \\u2013 number fields\": [\n- [134, \"nf-h-number-fields\"]\n+ \"nmod.h \\u2013 integers mod n (word-size n)\": [\n+ [136, \"nmod-h-integers-mod-n-word-size-n\"]\n ],\n- \"mag.h \\u2013 fixed-precision unsigned floating-point numbers for bounds\": [\n- [128, \"mag-h-fixed-precision-unsigned-floating-point-numbers-for-bounds\"]\n+ \"Modular reduction and arithmetic\": [\n+ [136, \"modular-reduction-and-arithmetic\"]\n ],\n- \"Fast, unsafe arithmetic\": [\n- [128, \"fast-unsafe-arithmetic\"]\n+ \"long_extras.h \\u2013 support functions for signed word arithmetic\": [\n+ [125, \"long-extras-h-support-functions-for-signed-word-arithmetic\"]\n ],\n- \"Powers and logarithms\": [\n- [128, \"powers-and-logarithms\"]\n+ \"Checked Arithmetic\": [\n+ [125, \"checked-arithmetic\"]\n+ ],\n+ \"nf_elem.h \\u2013 number field elements\": [\n+ [135, \"nf-elem-h-number-field-elements\"]\n+ ],\n+ \"Initialisation\": [\n+ [135, \"initialisation\"]\n+ ],\n+ \"I/O\": [\n+ [135, \"i-o\"]\n+ ],\n+ \"Representation matrix\": [\n+ [135, \"representation-matrix\"]\n+ ],\n+ \"Modular reduction\": [\n+ [135, \"modular-reduction\"]\n ],\n \"Exact numbers in Calcium\": [\n [123, \"exact-numbers-in-calcium\"]\n ],\n \"Usage details\": [\n [123, \"usage-details\"]\n ],\n \"FAQ\": [\n [123, \"faq\"]\n ],\n- \"nmod_mpoly.h \\u2013 multivariate polynomials over integers mod n (word-size n)\": [\n- [138, \"nmod-mpoly-h-multivariate-polynomials-over-integers-mod-n-word-size-n\"]\n+ \"nmod_mpoly_factor.h \\u2013 factorisation of multivariate polynomials over integers mod n (word-size n)\": [\n+ [139, \"nmod-mpoly-factor-h-factorisation-of-multivariate-polynomials-over-integers-mod-n-word-size-n\"]\n+ ],\n+ \"machine_vectors.h \\u2013 SIMD-accelerated operations on fixed-length vectors\": [\n+ [127, \"machine-vectors-h-simd-accelerated-operations-on-fixed-length-vectors\"]\n+ ],\n+ \"Access and conversions\": [\n+ [127, \"access-and-conversions\"]\n+ ],\n+ \"Permutations\": [\n+ [127, \"permutations\"]\n+ ],\n+ \"Arithmetic and basic operations\": [\n+ [127, \"arithmetic-and-basic-operations\"]\n+ ],\n+ \"Rational numbers : detailed table of contents\": [\n+ [121, \"rational-numbers-detailed-table-of-contents\"]\n+ ],\n+ \"Integers mod n : detailed table of contents\": [\n+ [120, \"integers-mod-n-detailed-table-of-contents\"]\n ],\n \"mpn_extras.h \\u2013 support functions for limb arrays\": [\n [132, \"mpn-extras-h-support-functions-for-limb-arrays\"]\n ],\n \"Utility functions\": [\n [132, \"utility-functions\"]\n ],\n@@ -89996,69 +90018,232 @@\n ],\n \"Interface changes\": [\n [124, \"interface-changes\"]\n ],\n \"General note on correctness\": [\n [124, \"general-note-on-correctness\"]\n ],\n- \"Memory allocation functions\": [\n- [129, \"memory-allocation-functions\"]\n+ \"mag.h \\u2013 fixed-precision unsigned floating-point numbers for bounds\": [\n+ [128, \"mag-h-fixed-precision-unsigned-floating-point-numbers-for-bounds\"]\n ],\n- \"Global caches and cleanup\": [\n- [129, \"global-caches-and-cleanup\"]\n+ \"Fast, unsafe arithmetic\": [\n+ [128, \"fast-unsafe-arithmetic\"]\n ],\n- \"Temporary allocation\": [\n- [129, \"temporary-allocation\"]\n+ \"Powers and logarithms\": [\n+ [128, \"powers-and-logarithms\"]\n ],\n- \"nmod_mat.h \\u2013 matrices over integers mod n (word-size n)\": [\n- [137, \"nmod-mat-h-matrices-over-integers-mod-n-word-size-n\"]\n+ \"gr.h (continued) \\u2013 implementing rings\": [\n+ [106, \"gr-h-continued-implementing-rings\"]\n ],\n- \"Transposition and permutations\": [\n- [137, \"transposition-and-permutations\"]\n+ \"Example\": [\n+ [106, \"example\"]\n ],\n- \"Matrix Exponentiation\": [\n- [137, \"matrix-exponentiation\"]\n+ \"Method table\": [\n+ [106, \"method-table\"]\n ],\n- \"Nonsingular square solving\": [\n- [137, \"nonsingular-square-solving\"]\n+ \"Placeholder and trivial methods\": [\n+ [106, \"placeholder-and-trivial-methods\"]\n ],\n- \"Reduced row echelon form\": [\n- [137, \"reduced-row-echelon-form\"],\n- [98, \"reduced-row-echelon-form\"],\n- [84, \"reduced-row-echelon-form\"],\n- [80, \"reduced-row-echelon-form\"],\n- [87, \"reduced-row-echelon-form\"]\n+ \"Required methods\": [\n+ [106, \"required-methods\"]\n ],\n- \"Integers mod n : detailed table of contents\": [\n- [120, \"integers-mod-n-detailed-table-of-contents\"]\n+ \"Testing rings\": [\n+ [106, \"testing-rings\"]\n ],\n- \"gr_mpoly.h \\u2013 sparse multivariate polynomials over generic rings\": [\n- [108, \"gr-mpoly-h-sparse-multivariate-polynomials-over-generic-rings\"]\n+ \"Algorithms for the gamma function\": [\n+ [102, \"algorithms-for-the-gamma-function\"]\n+ ],\n+ \"The Stirling series\": [\n+ [102, \"the-stirling-series\"]\n+ ],\n+ \"Rational arguments\": [\n+ [102, \"rational-arguments\"]\n+ ],\n+ \"gr_special.h \\u2013 special arithmetic and transcendental functions\": [\n+ [110, \"gr-special-h-special-arithmetic-and-transcendental-functions\"]\n+ ],\n+ \"Factorials and gamma functions\": [\n+ [110, \"factorials-and-gamma-functions\"]\n+ ],\n+ \"Combinatorial numbers\": [\n+ [110, \"combinatorial-numbers\"]\n+ ],\n+ \"Error function and exponential integrals\": [\n+ [110, \"error-function-and-exponential-integrals\"]\n+ ],\n+ \"Riemann zeta, polylogarithms and Dirichlet L-functions\": [\n+ [110, \"riemann-zeta-polylogarithms-and-dirichlet-l-functions\"]\n+ ],\n+ \"Elliptic, modular and theta functions\": [\n+ [110, \"elliptic-modular-and-theta-functions\"]\n+ ],\n+ \"gr.h (continued) \\u2013 builtin domains and types\": [\n+ [104, \"gr-h-continued-builtin-domains-and-types\"]\n+ ],\n+ \"Coercions\": [\n+ [104, \"coercions\"]\n+ ],\n+ \"Domain properties\": [\n+ [104, \"domain-properties\"]\n+ ],\n+ \"Groups\": [\n+ [104, \"groups\"]\n+ ],\n+ \"Base rings and fields\": [\n+ [104, \"base-rings-and-fields\"]\n+ ],\n+ \"Extended number sets\": [\n+ [104, \"extended-number-sets\"]\n+ ],\n+ \"Floating-point arithmetic\": [\n+ [104, \"floating-point-arithmetic\"]\n+ ],\n+ \"Matrices\": [\n+ [104, \"matrices\"],\n+ [117, \"matrices\"]\n+ ],\n+ \"Polynomial rings\": [\n+ [104, \"polynomial-rings\"]\n+ ],\n+ \"Fraction fields\": [\n+ [104, \"fraction-fields\"]\n+ ],\n+ \"Real and complex numbers (Arb) : detailed table of contents\": [\n+ [117, \"real-and-complex-numbers-arb-detailed-table-of-contents\"]\n+ ],\n+ \"General information\": [\n+ [117, \"general-information\"]\n+ ],\n+ \"Floating-point numbers\": [\n+ [117, \"floating-point-numbers\"]\n+ ],\n+ \"Polynomials and power series\": [\n+ [117, \"polynomials-and-power-series\"]\n+ ],\n+ \"Calculus\": [\n+ [117, \"calculus\"]\n+ ],\n+ \"Wrappers\": [\n+ [117, \"wrappers\"]\n+ ],\n+ \"Extra utility modules\": [\n+ [117, \"extra-utility-modules\"]\n+ ],\n+ \"Supplementary algorithm notes\": [\n+ [117, \"supplementary-algorithm-notes\"]\n+ ],\n+ \"fq_zech_poly_factor.h \\u2013 factorisation of univariate polynomials over finite fields (Zech logarithm representation)\": [\n+ [100, \"fq-zech-poly-factor-h-factorisation-of-univariate-polynomials-over-finite-fields-zech-logarithm-representation\"]\n+ ],\n+ \"Memory Management\": [\n+ [100, \"memory-management\"],\n+ [94, \"memory-management\"],\n+ [91, \"memory-management\"],\n+ [82, \"memory-management\"]\n+ ],\n+ \"Basic Operations\": [\n+ [100, \"basic-operations\"],\n+ [94, \"basic-operations\"],\n+ [91, \"basic-operations\"],\n+ [82, \"basic-operations\"]\n+ ],\n+ \"Irreducibility Testing\": [\n+ [100, \"irreducibility-testing\"],\n+ [94, \"irreducibility-testing\"],\n+ [91, \"irreducibility-testing\"],\n+ [82, \"irreducibility-testing\"]\n+ ],\n+ \"gr_generic.h \\u2013 basic algorithms and fallback implementations for generic elements\": [\n+ [105, \"gr-generic-h-basic-algorithms-and-fallback-implementations-for-generic-elements\"]\n+ ],\n+ \"Generic string parsing\": [\n+ [105, \"generic-string-parsing\"]\n+ ],\n+ \"Generic arithmetic\": [\n+ [105, \"generic-arithmetic\"]\n+ ],\n+ \"Generic special functions\": [\n+ [105, \"generic-special-functions\"]\n+ ],\n+ \"Generic vector methods\": [\n+ [105, \"generic-vector-methods\"]\n+ ],\n+ \"gr_poly.h \\u2013 dense univariate polynomials over generic rings\": [\n+ [109, \"gr-poly-h-dense-univariate-polynomials-over-generic-rings\"]\n+ ],\n+ \"Type compatibility\": [\n+ [109, \"type-compatibility\"],\n+ [107, \"type-compatibility\"]\n ],\n \"Weak normalization\": [\n- [108, \"weak-normalization\"],\n- [109, \"weak-normalization\"]\n+ [109, \"weak-normalization\"],\n+ [108, \"weak-normalization\"]\n ],\n- \"Coefficient and exponent access\": [\n- [108, \"coefficient-and-exponent-access\"]\n+ \"Scalar division\": [\n+ [109, \"scalar-division\"]\n ],\n- \"Algorithms for hypergeometric functions\": [\n- [114, \"algorithms-for-hypergeometric-functions\"]\n+ \"Division with remainder\": [\n+ [109, \"division-with-remainder\"]\n ],\n- \"Convergent series of power series\": [\n- [114, \"convergent-series-of-power-series\"]\n+ \"Exact division\": [\n+ [109, \"exact-division\"]\n ],\n- \"Asymptotic series for the confluent hypergeometric function\": [\n- [114, \"asymptotic-series-for-the-confluent-hypergeometric-function\"]\n+ \"Multipoint evaluation and interpolation\": [\n+ [109, \"multipoint-evaluation-and-interpolation\"]\n ],\n- \"Asymptotic series for Airy functions\": [\n- [114, \"asymptotic-series-for-airy-functions\"]\n+ \"Power series composition and reversion\": [\n+ [109, \"power-series-composition-and-reversion\"]\n ],\n- \"Corner case of the Gauss hypergeometric function\": [\n- [114, \"corner-case-of-the-gauss-hypergeometric-function\"]\n+ \"Monic polynomials\": [\n+ [109, \"monic-polynomials\"]\n+ ],\n+ \"Squarefree factorization\": [\n+ [109, \"squarefree-factorization\"]\n+ ],\n+ \"Power series special functions\": [\n+ [109, \"power-series-special-functions\"]\n+ ],\n+ \"gr_mat.h \\u2013 dense matrices over generic rings\": [\n+ [107, \"gr-mat-h-dense-matrices-over-generic-rings\"]\n+ ],\n+ \"Window matrices\": [\n+ [107, \"window-matrices\"]\n+ ],\n+ \"Assignment and special values\": [\n+ [107, \"assignment-and-special-values\"]\n+ ],\n+ \"Basic row, column and entry operations\": [\n+ [107, \"basic-row-column-and-entry-operations\"]\n+ ],\n+ \"Diagonal and triangular matrices\": [\n+ [107, \"diagonal-and-triangular-matrices\"]\n+ ],\n+ \"Row echelon form\": [\n+ [107, \"row-echelon-form\"]\n+ ],\n+ \"Inverse and adjugate\": [\n+ [107, \"inverse-and-adjugate\"]\n+ ],\n+ \"Similarity transformations\": [\n+ [107, \"similarity-transformations\"]\n+ ],\n+ \"Eigenvalues\": [\n+ [107, \"eigenvalues\"]\n+ ],\n+ \"Jordan decomposition\": [\n+ [107, \"jordan-decomposition\"]\n+ ],\n+ \"Hessenberg form\": [\n+ [107, \"hessenberg-form\"]\n+ ],\n+ \"Random matrices\": [\n+ [107, \"random-matrices\"]\n+ ],\n+ \"Helper functions for reduction\": [\n+ [107, \"helper-functions-for-reduction\"]\n ],\n \"History and changes\": [\n [112, \"history-and-changes\"]\n ],\n \"FLINT version history\": [\n [112, \"flint-version-history\"]\n ],\n@@ -90428,175 +90613,14 @@\n ],\n \"2012-09-29 \\u2013 Arb 0.2\": [\n [112, \"arb-0-2\"]\n ],\n \"2012-09-14 \\u2013 Arb 0.1\": [\n [112, \"arb-0-1\"]\n ],\n- \"Algorithms for the Hurwitz zeta function\": [\n- [113, \"algorithms-for-the-hurwitz-zeta-function\"]\n- ],\n- \"Euler-Maclaurin summation\": [\n- [113, \"euler-maclaurin-summation\"]\n- ],\n- \"Parameter Taylor series\": [\n- [113, \"parameter-taylor-series\"]\n- ],\n- \"gr_poly.h \\u2013 dense univariate polynomials over generic rings\": [\n- [109, \"gr-poly-h-dense-univariate-polynomials-over-generic-rings\"]\n- ],\n- \"Type compatibility\": [\n- [109, \"type-compatibility\"],\n- [107, \"type-compatibility\"]\n- ],\n- \"Scalar division\": [\n- [109, \"scalar-division\"]\n- ],\n- \"Division with remainder\": [\n- [109, \"division-with-remainder\"]\n- ],\n- \"Exact division\": [\n- [109, \"exact-division\"]\n- ],\n- \"Multipoint evaluation and interpolation\": [\n- [109, \"multipoint-evaluation-and-interpolation\"]\n- ],\n- \"Power series composition and reversion\": [\n- [109, \"power-series-composition-and-reversion\"]\n- ],\n- \"Monic polynomials\": [\n- [109, \"monic-polynomials\"]\n- ],\n- \"Squarefree factorization\": [\n- [109, \"squarefree-factorization\"]\n- ],\n- \"Power series special functions\": [\n- [109, \"power-series-special-functions\"]\n- ],\n- \"fq_zech_poly_factor.h \\u2013 factorisation of univariate polynomials over finite fields (Zech logarithm representation)\": [\n- [100, \"fq-zech-poly-factor-h-factorisation-of-univariate-polynomials-over-finite-fields-zech-logarithm-representation\"]\n- ],\n- \"Memory Management\": [\n- [100, \"memory-management\"],\n- [82, \"memory-management\"],\n- [94, \"memory-management\"],\n- [91, \"memory-management\"]\n- ],\n- \"Basic Operations\": [\n- [100, \"basic-operations\"],\n- [82, \"basic-operations\"],\n- [94, \"basic-operations\"],\n- [91, \"basic-operations\"]\n- ],\n- \"Irreducibility Testing\": [\n- [100, \"irreducibility-testing\"],\n- [82, \"irreducibility-testing\"],\n- [94, \"irreducibility-testing\"],\n- [91, \"irreducibility-testing\"]\n- ],\n- \"fq_zech_vec.h \\u2013 vectors over finite fields (Zech logarithm representation)\": [\n- [101, \"fq-zech-vec-h-vectors-over-finite-fields-zech-logarithm-representation\"]\n- ],\n- \"hypgeom.h \\u2013 support for hypergeometric series\": [\n- [115, \"hypgeom-h-support-for-hypergeometric-series\"]\n- ],\n- \"Strategy for error bounding\": [\n- [115, \"strategy-for-error-bounding\"]\n- ],\n- \"Error bounding\": [\n- [115, \"error-bounding\"]\n- ],\n- \"gr_special.h \\u2013 special arithmetic and transcendental functions\": [\n- [110, \"gr-special-h-special-arithmetic-and-transcendental-functions\"]\n- ],\n- \"Factorials and gamma functions\": [\n- [110, \"factorials-and-gamma-functions\"]\n- ],\n- \"Combinatorial numbers\": [\n- [110, \"combinatorial-numbers\"]\n- ],\n- \"Error function and exponential integrals\": [\n- [110, \"error-function-and-exponential-integrals\"]\n- ],\n- \"Riemann zeta, polylogarithms and Dirichlet L-functions\": [\n- [110, \"riemann-zeta-polylogarithms-and-dirichlet-l-functions\"]\n- ],\n- \"Elliptic, modular and theta functions\": [\n- [110, \"elliptic-modular-and-theta-functions\"]\n- ],\n- \"Real and complex numbers (Arb) : detailed table of contents\": [\n- [117, \"real-and-complex-numbers-arb-detailed-table-of-contents\"]\n- ],\n- \"General information\": [\n- [117, \"general-information\"]\n- ],\n- \"Floating-point numbers\": [\n- [117, \"floating-point-numbers\"]\n- ],\n- \"Polynomials and power series\": [\n- [117, \"polynomials-and-power-series\"]\n- ],\n- \"Matrices\": [\n- [117, \"matrices\"],\n- [104, \"matrices\"]\n- ],\n- \"Calculus\": [\n- [117, \"calculus\"]\n- ],\n- \"Wrappers\": [\n- [117, \"wrappers\"]\n- ],\n- \"Extra utility modules\": [\n- [117, \"extra-utility-modules\"]\n- ],\n- \"Supplementary algorithm notes\": [\n- [117, \"supplementary-algorithm-notes\"]\n- ],\n- \"Generic rings : detailed table of contents\": [\n- [118, \"generic-rings-detailed-table-of-contents\"]\n- ],\n- \"gr_mat.h \\u2013 dense matrices over generic rings\": [\n- [107, \"gr-mat-h-dense-matrices-over-generic-rings\"]\n- ],\n- \"Window matrices\": [\n- [107, \"window-matrices\"]\n- ],\n- \"Assignment and special values\": [\n- [107, \"assignment-and-special-values\"]\n- ],\n- \"Basic row, column and entry operations\": [\n- [107, \"basic-row-column-and-entry-operations\"]\n- ],\n- \"Diagonal and triangular matrices\": [\n- [107, \"diagonal-and-triangular-matrices\"]\n- ],\n- \"Row echelon form\": [\n- [107, \"row-echelon-form\"]\n- ],\n- \"Inverse and adjugate\": [\n- [107, \"inverse-and-adjugate\"]\n- ],\n- \"Similarity transformations\": [\n- [107, \"similarity-transformations\"]\n- ],\n- \"Eigenvalues\": [\n- [107, \"eigenvalues\"]\n- ],\n- \"Jordan decomposition\": [\n- [107, \"jordan-decomposition\"]\n- ],\n- \"Hessenberg form\": [\n- [107, \"hessenberg-form\"]\n- ],\n- \"Random matrices\": [\n- [107, \"random-matrices\"]\n- ],\n- \"Helper functions for reduction\": [\n- [107, \"helper-functions-for-reduction\"]\n- ],\n \"gr.h \\u2013 generic structures and their elements\": [\n [103, \"gr-h-generic-structures-and-their-elements\"]\n ],\n \"Parents and elements\": [\n [103, \"parents-and-elements\"]\n ],\n \"Parent and element types\": [\n@@ -90634,94 +90658,70 @@\n ],\n \"Enclosure and interval methods\": [\n [103, \"enclosure-and-interval-methods\"]\n ],\n \"Finite field methods\": [\n [103, \"finite-field-methods\"]\n ],\n- \"gr_generic.h \\u2013 basic algorithms and fallback implementations for generic elements\": [\n- [105, \"gr-generic-h-basic-algorithms-and-fallback-implementations-for-generic-elements\"]\n- ],\n- \"Generic string parsing\": [\n- [105, \"generic-string-parsing\"]\n- ],\n- \"Generic arithmetic\": [\n- [105, \"generic-arithmetic\"]\n- ],\n- \"Generic special functions\": [\n- [105, \"generic-special-functions\"]\n- ],\n- \"Generic vector methods\": [\n- [105, \"generic-vector-methods\"]\n- ],\n- \"Integers : detailed table of contents\": [\n- [119, \"integers-detailed-table-of-contents\"]\n- ],\n- \"gr.h (continued) \\u2013 builtin domains and types\": [\n- [104, \"gr-h-continued-builtin-domains-and-types\"]\n- ],\n- \"Coercions\": [\n- [104, \"coercions\"]\n- ],\n- \"Domain properties\": [\n- [104, \"domain-properties\"]\n+ \"hypgeom.h \\u2013 support for hypergeometric series\": [\n+ [115, \"hypgeom-h-support-for-hypergeometric-series\"]\n ],\n- \"Groups\": [\n- [104, \"groups\"]\n+ \"Strategy for error bounding\": [\n+ [115, \"strategy-for-error-bounding\"]\n ],\n- \"Base rings and fields\": [\n- [104, \"base-rings-and-fields\"]\n+ \"Error bounding\": [\n+ [115, \"error-bounding\"]\n ],\n- \"Extended number sets\": [\n- [104, \"extended-number-sets\"]\n+ \"gr_vec.h \\u2013 vectors over generic rings\": [\n+ [111, \"gr-vec-h-vectors-over-generic-rings\"]\n ],\n- \"Floating-point arithmetic\": [\n- [104, \"floating-point-arithmetic\"]\n+ \"Types and basic operations\": [\n+ [111, \"types-and-basic-operations\"]\n ],\n- \"Polynomial rings\": [\n- [104, \"polynomial-rings\"]\n+ \"Other functions\": [\n+ [111, \"other-functions\"]\n ],\n- \"Fraction fields\": [\n- [104, \"fraction-fields\"]\n+ \"gr_mpoly.h \\u2013 sparse multivariate polynomials over generic rings\": [\n+ [108, \"gr-mpoly-h-sparse-multivariate-polynomials-over-generic-rings\"]\n ],\n- \"Algorithms for the gamma function\": [\n- [102, \"algorithms-for-the-gamma-function\"]\n+ \"Coefficient and exponent access\": [\n+ [108, \"coefficient-and-exponent-access\"]\n ],\n- \"The Stirling series\": [\n- [102, \"the-stirling-series\"]\n+ \"Generic rings : detailed table of contents\": [\n+ [118, \"generic-rings-detailed-table-of-contents\"]\n ],\n- \"Rational arguments\": [\n- [102, \"rational-arguments\"]\n+ \"Algorithms for the Hurwitz zeta function\": [\n+ [113, \"algorithms-for-the-hurwitz-zeta-function\"]\n ],\n- \"gr.h (continued) \\u2013 implementing rings\": [\n- [106, \"gr-h-continued-implementing-rings\"]\n+ \"Euler-Maclaurin summation\": [\n+ [113, \"euler-maclaurin-summation\"]\n ],\n- \"Example\": [\n- [106, \"example\"]\n+ \"Parameter Taylor series\": [\n+ [113, \"parameter-taylor-series\"]\n ],\n- \"Method table\": [\n- [106, \"method-table\"]\n+ \"Integers : detailed table of contents\": [\n+ [119, \"integers-detailed-table-of-contents\"]\n ],\n- \"Placeholder and trivial methods\": [\n- [106, \"placeholder-and-trivial-methods\"]\n+ \"fq_zech_vec.h \\u2013 vectors over finite fields (Zech logarithm representation)\": [\n+ [101, \"fq-zech-vec-h-vectors-over-finite-fields-zech-logarithm-representation\"]\n ],\n- \"Required methods\": [\n- [106, \"required-methods\"]\n+ \"Algorithms for hypergeometric functions\": [\n+ [114, \"algorithms-for-hypergeometric-functions\"]\n ],\n- \"Testing rings\": [\n- [106, \"testing-rings\"]\n+ \"Convergent series of power series\": [\n+ [114, \"convergent-series-of-power-series\"]\n ],\n- \"gr_vec.h \\u2013 vectors over generic rings\": [\n- [111, \"gr-vec-h-vectors-over-generic-rings\"]\n+ \"Asymptotic series for the confluent hypergeometric function\": [\n+ [114, \"asymptotic-series-for-the-confluent-hypergeometric-function\"]\n ],\n- \"Types and basic operations\": [\n- [111, \"types-and-basic-operations\"]\n+ \"Asymptotic series for Airy functions\": [\n+ [114, \"asymptotic-series-for-airy-functions\"]\n ],\n- \"Other functions\": [\n- [111, \"other-functions\"]\n+ \"Corner case of the Gauss hypergeometric function\": [\n+ [114, \"corner-case-of-the-gauss-hypergeometric-function\"]\n ],\n \"FLINT: Fast Library for Number Theory\": [\n [116, \"flint-fast-library-for-number-theory\"]\n ],\n \"General utilities\": [\n [116, \"general-utilities\"]\n ],\n@@ -90754,73 +90754,73 @@\n ],\n \"Interfaces\": [\n [116, \"interfaces\"]\n ],\n \"Version history\": [\n [116, \"version-history\"]\n ],\n- \"fq_embed.h \\u2013 Computing isomorphisms and embeddings of finite fields\": [\n- [83, \"fq-embed-h-computing-isomorphisms-and-embeddings-of-finite-fields\"]\n+ \"fq_default_mat.h \\u2013 matrices over finite fields\": [\n+ [80, \"fq-default-mat-h-matrices-over-finite-fields\"]\n ],\n- \"fq_default_poly_factor.h \\u2013 factorisation of univariate polynomials over finite fields\": [\n- [82, \"fq-default-poly-factor-h-factorisation-of-univariate-polynomials-over-finite-fields\"]\n+ \"fq_zech_poly.h \\u2013 univariate polynomials over finite fields (Zech logarithm representation)\": [\n+ [99, \"fq-zech-poly-h-univariate-polynomials-over-finite-fields-zech-logarithm-representation\"]\n+ ],\n+ \"fq_zech.h \\u2013 finite fields (Zech logarithm representation)\": [\n+ [96, \"fq-zech-h-finite-fields-zech-logarithm-representation\"]\n ],\n \"fq_poly_factor.h \\u2013 factorisation of univariate polynomials over finite fields\": [\n [94, \"fq-poly-factor-h-factorisation-of-univariate-polynomials-over-finite-fields\"]\n ],\n- \"fq_nmod_poly_factor.h \\u2013 factorisation of univariate polynomials over finite fields (word-size characteristic)\": [\n- [91, \"fq-nmod-poly-factor-h-factorisation-of-univariate-polynomials-over-finite-fields-word-size-characteristic\"]\n- ],\n- \"fq_vec.h \\u2013 vectors over finite fields\": [\n- [95, \"fq-vec-h-vectors-over-finite-fields\"]\n+ \"fq_poly.h \\u2013 univariate polynomials over finite fields\": [\n+ [93, \"fq-poly-h-univariate-polynomials-over-finite-fields\"]\n ],\n- \"fq_nmod_embed.h \\u2013 Computing isomorphisms and embeddings of finite fields\": [\n- [86, \"fq-nmod-embed-h-computing-isomorphisms-and-embeddings-of-finite-fields\"]\n+ \"fq_nmod_mat.h \\u2013 matrices over finite fields (word-size characteristic)\": [\n+ [87, \"fq-nmod-mat-h-matrices-over-finite-fields-word-size-characteristic\"]\n ],\n- \"fq_default_poly.h \\u2013 univariate polynomials over finite fields\": [\n- [81, \"fq-default-poly-h-univariate-polynomials-over-finite-fields\"]\n+ \"fq_zech_mat.h \\u2013 matrices over finite fields (Zech logarithm representation)\": [\n+ [98, \"fq-zech-mat-h-matrices-over-finite-fields-zech-logarithm-representation\"]\n ],\n \"fq_zech_embed.h \\u2013 Computing isomorphisms and embeddings of finite fields\": [\n [97, \"fq-zech-embed-h-computing-isomorphisms-and-embeddings-of-finite-fields\"]\n ],\n- \"fq_zech_mat.h \\u2013 matrices over finite fields (Zech logarithm representation)\": [\n- [98, \"fq-zech-mat-h-matrices-over-finite-fields-zech-logarithm-representation\"]\n- ],\n \"fq_mat.h \\u2013 matrices over finite fields\": [\n [84, \"fq-mat-h-matrices-over-finite-fields\"]\n ],\n- \"fq_default_mat.h \\u2013 matrices over finite fields\": [\n- [80, \"fq-default-mat-h-matrices-over-finite-fields\"]\n+ \"fq_nmod_embed.h \\u2013 Computing isomorphisms and embeddings of finite fields\": [\n+ [86, \"fq-nmod-embed-h-computing-isomorphisms-and-embeddings-of-finite-fields\"]\n ],\n- \"fq_nmod_mpoly_factor.h \\u2013 factorisation of multivariate polynomials over finite fields of word-sized characteristic\": [\n- [89, \"fq-nmod-mpoly-factor-h-factorisation-of-multivariate-polynomials-over-finite-fields-of-word-sized-characteristic\"]\n+ \"fq_vec.h \\u2013 vectors over finite fields\": [\n+ [95, \"fq-vec-h-vectors-over-finite-fields\"]\n ],\n- \"fq_zech_poly.h \\u2013 univariate polynomials over finite fields (Zech logarithm representation)\": [\n- [99, \"fq-zech-poly-h-univariate-polynomials-over-finite-fields-zech-logarithm-representation\"]\n+ \"fq_nmod_poly_factor.h \\u2013 factorisation of univariate polynomials over finite fields (word-size characteristic)\": [\n+ [91, \"fq-nmod-poly-factor-h-factorisation-of-univariate-polynomials-over-finite-fields-word-size-characteristic\"]\n+ ],\n+ \"fq_nmod_vec.h \\u2013 vectors over finite fields (word-size characteristic)\": [\n+ [92, \"fq-nmod-vec-h-vectors-over-finite-fields-word-size-characteristic\"]\n ],\n \"fq_nmod_poly.h \\u2013 univariate polynomials over finite fields (word-size characteristic)\": [\n [90, \"fq-nmod-poly-h-univariate-polynomials-over-finite-fields-word-size-characteristic\"]\n ],\n- \"fq_nmod_mpoly.h \\u2013 multivariate polynomials over finite fields of word-sized characteristic\": [\n- [88, \"fq-nmod-mpoly-h-multivariate-polynomials-over-finite-fields-of-word-sized-characteristic\"]\n- ],\n \"fq_nmod.h \\u2013 finite fields (word-size characteristic)\": [\n [85, \"fq-nmod-h-finite-fields-word-size-characteristic\"]\n ],\n- \"fq_nmod_mat.h \\u2013 matrices over finite fields (word-size characteristic)\": [\n- [87, \"fq-nmod-mat-h-matrices-over-finite-fields-word-size-characteristic\"]\n+ \"fq_nmod_mpoly.h \\u2013 multivariate polynomials over finite fields of word-sized characteristic\": [\n+ [88, \"fq-nmod-mpoly-h-multivariate-polynomials-over-finite-fields-of-word-sized-characteristic\"]\n ],\n- \"fq_nmod_vec.h \\u2013 vectors over finite fields (word-size characteristic)\": [\n- [92, \"fq-nmod-vec-h-vectors-over-finite-fields-word-size-characteristic\"]\n+ \"fq_default_poly.h \\u2013 univariate polynomials over finite fields\": [\n+ [81, \"fq-default-poly-h-univariate-polynomials-over-finite-fields\"]\n ],\n- \"fq_poly.h \\u2013 univariate polynomials over finite fields\": [\n- [93, \"fq-poly-h-univariate-polynomials-over-finite-fields\"]\n+ \"fq_default_poly_factor.h \\u2013 factorisation of univariate polynomials over finite fields\": [\n+ [82, \"fq-default-poly-factor-h-factorisation-of-univariate-polynomials-over-finite-fields\"]\n ],\n- \"fq_zech.h \\u2013 finite fields (Zech logarithm representation)\": [\n- [96, \"fq-zech-h-finite-fields-zech-logarithm-representation\"]\n+ \"fq_embed.h \\u2013 Computing isomorphisms and embeddings of finite fields\": [\n+ [83, \"fq-embed-h-computing-isomorphisms-and-embeddings-of-finite-fields\"]\n+ ],\n+ \"fq_nmod_mpoly_factor.h \\u2013 factorisation of multivariate polynomials over finite fields of word-sized characteristic\": [\n+ [89, \"fq-nmod-mpoly-factor-h-factorisation-of-multivariate-polynomials-over-finite-fields-of-word-sized-characteristic\"]\n ]\n },\n \"indexentries\": {\n \"_acb_vec_add (c function)\": [\n [0, \"c._acb_vec_add\"]\n ],\n \"_acb_vec_add_error_arf_vec (c function)\": [\n"}]}]}]}]}]}