{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.yCBu69Yl/b1/pandas_2.2.2+dfsg-3_armhf.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.yCBu69Yl/b2/pandas_2.2.2+dfsg-3_armhf.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,5 +1,5 @@\n \n- 3a55e97e9808a58282006590426681bb 10513356 doc optional python-pandas-doc_2.2.2+dfsg-3_all.deb\n- 5bdb09138f25978c10beeb07b8f87ce6 63758232 debug optional python3-pandas-lib-dbgsym_2.2.2+dfsg-3_armhf.deb\n- 169a9a02fe130bb35f52ff6b42bb288b 6967608 python optional python3-pandas-lib_2.2.2+dfsg-3_armhf.deb\n+ ad859c98632119be65bd079e79dbfdcf 10514208 doc optional python-pandas-doc_2.2.2+dfsg-3_all.deb\n+ f374b0fd85447100abc431bde5c19311 63759992 debug optional python3-pandas-lib-dbgsym_2.2.2+dfsg-3_armhf.deb\n+ 9aaba308f26ee73e95ac03e3a64caa2d 6967584 python optional python3-pandas-lib_2.2.2+dfsg-3_armhf.deb\n 79841846609e9a58fb4ebe99b09ff8ac 3095376 python optional python3-pandas_2.2.2+dfsg-3_all.deb\n"}, {"source1": "python-pandas-doc_2.2.2+dfsg-3_all.deb", "source2": "python-pandas-doc_2.2.2+dfsg-3_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2024-05-06 13:47:52.000000 debian-binary\n -rw-r--r-- 0 0 0 147452 2024-05-06 13:47:52.000000 control.tar.xz\n--rw-r--r-- 0 0 0 10365712 2024-05-06 13:47:52.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 10366564 2024-05-06 13:47:52.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./control", "source2": "./control", "unified_diff": "@@ -1,13 +1,13 @@\n Package: python-pandas-doc\n Source: pandas\n Version: 2.2.2+dfsg-3\n Architecture: all\n Maintainer: Debian Science Team \n-Installed-Size: 197870\n+Installed-Size: 197872\n Depends: libjs-sphinxdoc (>= 7.3), libjs-mathjax\n Suggests: python3-pandas\n Section: doc\n Priority: optional\n Multi-Arch: foreign\n Homepage: https://pandas.pydata.org/\n Description: data structures for \"relational\" or \"labeled\" data - documentation\n"}, {"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -6255,61 +6255,61 @@\n -rw-r--r-- 0 root (0) root (0) 206416 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html\n -rw-r--r-- 0 root (0) root (0) 38771 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html\n -rw-r--r-- 0 root (0) root (0) 38909 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html\n -rw-r--r-- 0 root (0) root (0) 43513 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html\n -rw-r--r-- 0 root (0) root (0) 244 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/release.html\n -rw-r--r-- 0 root (0) root (0) 269 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 7370 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/search.html\n--rw-r--r-- 0 root (0) root (0) 2427893 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 2427934 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n -rw-r--r-- 0 root (0) root (0) 259 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html\n -rw-r--r-- 0 root (0) root (0) 244 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/style.html\n -rw-r--r-- 0 root (0) root (0) 255 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/text.html\n -rw-r--r-- 0 root (0) root (0) 256 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 277 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 272 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html\n drwxr-xr-x 0 root (0) root (0) 0 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/\n -rw-r--r-- 0 root (0) root (0) 161368 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html\n--rw-r--r-- 0 root (0) root (0) 274158 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n+-rw-r--r-- 0 root (0) root (0) 274147 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n -rw-r--r-- 0 root (0) root (0) 426415 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html\n -rw-r--r-- 0 root (0) root (0) 26009 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html\n -rw-r--r-- 0 root (0) root (0) 207636 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html\n -rw-r--r-- 0 root (0) root (0) 7710 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html\n -rw-r--r-- 0 root (0) root (0) 55657 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html\n -rw-r--r-- 0 root (0) root (0) 150189 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html\n -rw-r--r-- 0 root (0) root (0) 70826 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html\n--rw-r--r-- 0 root (0) root (0) 110962 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n+-rw-r--r-- 0 root (0) root (0) 110944 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n -rw-r--r-- 0 root (0) root (0) 99489 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html\n -rw-r--r-- 0 root (0) root (0) 291225 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html\n -rw-r--r-- 0 root (0) root (0) 49266 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html\n -rw-r--r-- 0 root (0) root (0) 383926 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html\n -rw-r--r-- 0 root (0) root (0) 31200 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html\n -rw-r--r-- 0 root (0) root (0) 1138594 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html\n -rw-r--r-- 0 root (0) root (0) 198947 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html\n -rw-r--r-- 0 root (0) root (0) 168482 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html\n -rw-r--r-- 0 root (0) root (0) 101657 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html\n -rw-r--r-- 0 root (0) root (0) 136945 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html\n -rw-r--r-- 0 root (0) root (0) 152685 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 105029 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n -rw-r--r-- 0 root (0) root (0) 55406 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html\n -rw-r--r-- 0 root (0) root (0) 688567 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html\n--rw-r--r-- 0 root (0) root (0) 87898 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 88259 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 154971 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html\n -rw-r--r-- 0 root (0) root (0) 90572 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 477039 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 192397 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html\n -rw-r--r-- 0 root (0) root (0) 131481 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html\n -rw-r--r-- 0 root (0) root (0) 270 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html\n drwxr-xr-x 0 root (0) root (0) 0 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/\n -rw-r--r-- 0 root (0) root (0) 97789 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html\n -rw-r--r-- 0 root (0) root (0) 8694 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz\n -rw-r--r-- 0 root (0) root (0) 74137 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html\n -rw-r--r-- 0 root (0) root (0) 56321 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html\n -rw-r--r-- 0 root (0) root (0) 72353 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html\n -rw-r--r-- 0 root (0) root (0) 93294 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html\n--rw-r--r-- 0 root (0) root (0) 209195 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n+-rw-r--r-- 0 root (0) root (0) 209190 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n -rw-r--r-- 0 root (0) root (0) 78570 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html\n -rw-r--r-- 0 root (0) root (0) 229824 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html\n -rw-r--r-- 0 root (0) root (0) 71904 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html\n -rw-r--r-- 0 root (0) root (0) 239384 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html\n -rw-r--r-- 0 root (0) root (0) 57843 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html\n -rw-r--r-- 0 root (0) root (0) 64214 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html\n -rw-r--r-- 0 root (0) root (0) 133735 2024-05-06 13:47:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html\n"}, {"source1": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "source2": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -21418,15 +21418,15 @@\n \"6\": \"py:function\",\n \"7\": \"py:exception\"\n },\n \"terms\": {\n \"\": [0, 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 16, 17, 18, 19, 22, 24, 25, 26, 28, 29, 30, 31, 32, 34, 35, 37, 39, 46, 68, 70, 71, 77, 79, 80, 82, 83, 89, 91, 92, 97, 98, 99, 102, 103, 104, 105, 106, 107, 110, 112, 113, 115, 116, 123, 126, 128, 134, 137, 138, 144, 146, 147, 153, 155, 156, 158, 160, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 174, 176, 182, 184, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 202, 203, 205, 207, 208, 210, 211, 212, 213, 218, 224, 225, 227, 228, 231, 232, 233, 241, 245, 249, 251, 253, 256, 258, 260, 262, 263, 265, 266, 267, 268, 270, 272, 273, 276, 277, 278, 279, 280, 284, 285, 287, 288, 289, 291, 292, 293, 294, 295, 296, 298, 300, 301, 304, 305, 314, 317, 318, 319, 320, 322, 323, 324, 329, 331, 332, 339, 341, 345, 354, 355, 359, 360, 366, 370, 376, 378, 380, 385, 392, 403, 411, 412, 414, 416, 417, 418, 421, 424, 428, 432, 436, 465, 483, 485, 489, 491, 492, 493, 498, 500, 501, 511, 519, 523, 526, 532, 533, 541, 547, 548, 549, 551, 560, 562, 563, 574, 576, 577, 579, 580, 581, 582, 586, 587, 588, 589, 591, 592, 593, 594, 597, 599, 601, 604, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 628, 629, 630, 632, 633, 634, 635, 637, 639, 640, 641, 643, 644, 645, 646, 647, 649, 650, 651, 652, 656, 657, 667, 671, 673, 674, 675, 677, 678, 679, 681, 682, 683, 684, 686, 688, 690, 691, 698, 699, 702, 704, 709, 711, 714, 715, 716, 720, 721, 722, 723, 724, 727, 728, 729, 730, 731, 733, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 748, 750, 751, 752, 754, 757, 758, 760, 762, 764, 765, 766, 767, 768, 769, 770, 771, 776, 778, 779, 781, 782, 783, 784, 785, 786, 787, 788, 789, 793, 794, 800, 801, 802, 803, 805, 806, 807, 808, 810, 812, 813, 814, 815, 818, 819, 820, 821, 824, 827, 828, 829, 831, 833, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 872, 873, 874, 875, 876, 877, 879, 880, 882, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 898, 900, 902, 903, 904, 906, 907, 908, 912, 913, 916, 917, 918, 919, 922, 923, 929, 930, 938, 939, 940, 943, 948, 949, 953, 954, 957, 970, 973, 997, 1012, 1017, 1031, 1040, 1051, 1052, 1061, 1064, 1067, 1068, 1069, 1071, 1072, 1076, 1088, 1118, 1141, 1148, 1149, 1153, 1154, 1155, 1158, 1164, 1173, 1174, 1175, 1188, 1190, 1193, 1202, 1203, 1207, 1208, 1211, 1212, 1213, 1221, 1231, 1232, 1234, 1235, 1242, 1243, 1249, 1251, 1254, 1264, 1269, 1270, 1272, 1275, 1280, 1286, 1289, 1296, 1305, 1306, 1309, 1315, 1316, 1318, 1320, 1322, 1323, 1324, 1326, 1328, 1329, 1330, 1331, 1332, 1333, 1335, 1336, 1337, 1343, 1344, 1345, 1354, 1355, 1358, 1377, 1388, 1389, 1390, 1391, 1395, 1396, 1397, 1400, 1403, 1404, 1406, 1414, 1415, 1416, 1421, 1422, 1423, 1430, 1431, 1432, 1433, 1445, 1446, 1447, 1453, 1456, 1457, 1458, 1460, 1468, 1469, 1470, 1471, 1473, 1475, 1476, 1478, 1479, 1482, 1483, 1484, 1485, 1486, 1487, 1488, 1490, 1497, 1498, 1499, 1500, 1699, 1720, 2036, 2054, 2166, 2167, 2184, 2185, 2186, 2187, 2191, 2192, 2193, 2194, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2240, 2253, 2254, 2257, 2260, 2261, 2262, 2264],\n \"0\": [2, 3, 5, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 39, 42, 44, 46, 54, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 181, 182, 183, 184, 185, 186, 188, 189, 190, 191, 193, 194, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 323, 324, 325, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 352, 354, 355, 356, 357, 359, 360, 361, 363, 364, 366, 370, 371, 376, 377, 378, 379, 380, 381, 391, 392, 393, 394, 395, 398, 399, 402, 406, 411, 412, 413, 414, 417, 419, 420, 421, 424, 427, 428, 430, 431, 433, 434, 436, 437, 440, 445, 447, 448, 449, 452, 453, 454, 455, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 482, 483, 484, 486, 487, 489, 490, 492, 498, 499, 500, 501, 502, 503, 505, 509, 510, 513, 515, 517, 519, 522, 524, 530, 532, 535, 540, 543, 545, 547, 548, 549, 565, 568, 569, 570, 571, 573, 574, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 591, 592, 593, 594, 595, 597, 598, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 678, 679, 681, 682, 683, 684, 686, 688, 689, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 724, 725, 726, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 759, 760, 761, 762, 764, 765, 766, 767, 768, 769, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 906, 907, 908, 910, 911, 912, 913, 914, 916, 917, 919, 920, 921, 922, 923, 927, 928, 929, 934, 938, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 952, 953, 983, 996, 1001, 1003, 1004, 1006, 1021, 1024, 1036, 1044, 1045, 1046, 1051, 1052, 1054, 1060, 1061, 1063, 1067, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1082, 1088, 1092, 1095, 1096, 1099, 1106, 1109, 1111, 1113, 1118, 1123, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1350, 1354, 1355, 1362, 1371, 1374, 1375, 1380, 1381, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1416, 1419, 1421, 1422, 1423, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1456, 1458, 1463, 1465, 1466, 1467, 1468, 1469, 1470, 1471, 1472, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1481, 1482, 1483, 1484, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1496, 1497, 1498, 1499, 1500, 1509, 1517, 1527, 1535, 1545, 1553, 1563, 1571, 1578, 1583, 1591, 1598, 1604, 1612, 1623, 1631, 1640, 1648, 1657, 1662, 1670, 1677, 1683, 1691, 1699, 1704, 1712, 1720, 1725, 1733, 1741, 1744, 1752, 1762, 1770, 1779, 1787, 1793, 1798, 1806, 1815, 1820, 1828, 1843, 1851, 1857, 1860, 1868, 1880, 1888, 1898, 1906, 1916, 1924, 1933, 1941, 1950, 1958, 1968, 1976, 1985, 1993, 2003, 2011, 2022, 2030, 2040, 2048, 2058, 2066, 2076, 2084, 2090, 2093, 2101, 2108, 2111, 2119, 2130, 2138, 2148, 2156, 2165, 2166, 2167, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2274, 2275, 2278, 2279, 2286, 2287, 2290, 2292, 2293, 2295, 2297, 2308],\n \"00\": [0, 3, 18, 26, 27, 29, 30, 31, 68, 79, 80, 84, 88, 107, 139, 140, 144, 202, 207, 213, 218, 261, 264, 276, 277, 278, 286, 287, 288, 289, 293, 295, 296, 298, 299, 300, 301, 310, 311, 312, 315, 316, 317, 318, 319, 321, 322, 323, 324, 326, 329, 330, 331, 345, 363, 445, 511, 513, 515, 519, 526, 529, 531, 532, 533, 535, 547, 548, 549, 551, 554, 556, 560, 561, 562, 575, 577, 591, 592, 595, 600, 629, 637, 639, 640, 641, 645, 647, 649, 650, 651, 652, 654, 663, 664, 665, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 684, 685, 686, 781, 788, 793, 893, 902, 903, 904, 905, 909, 916, 917, 919, 922, 926, 928, 929, 931, 932, 933, 934, 937, 939, 940, 941, 943, 945, 946, 947, 948, 949, 953, 954, 955, 956, 957, 959, 960, 969, 970, 972, 982, 984, 987, 992, 996, 997, 1001, 1003, 1004, 1005, 1011, 1012, 1013, 1014, 1016, 1020, 1021, 1024, 1118, 1122, 1144, 1147, 1164, 1171, 1174, 1175, 1176, 1192, 1206, 1221, 1228, 1233, 1253, 1268, 1269, 1270, 1272, 1275, 1278, 1279, 1280, 1286, 1296, 1314, 1344, 1367, 1372, 1393, 1403, 1404, 1433, 1447, 1487, 1489, 1491, 1497, 1498, 1500, 1578, 1598, 1620, 1637, 1657, 1677, 1699, 1720, 1758, 1776, 1793, 1815, 1839, 1857, 1876, 1894, 1912, 1930, 1947, 1964, 1982, 2000, 2018, 2036, 2054, 2090, 2108, 2127, 2145, 2163, 2184, 2185, 2186, 2191, 2195, 2199, 2200, 2201, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2261, 2271, 2289, 2294, 2298, 2302],\n- \"000\": [78, 162, 205, 268, 532, 778, 836, 837, 838, 839, 840, 841, 842, 843, 844, 1186, 1247, 1280, 1302, 1403, 1404, 1485, 1489, 2185, 2186, 2193, 2197, 2199, 2201, 2207, 2208, 2210, 2218, 2227, 2235, 2241, 2274, 2308],\n+ \"000\": [78, 162, 205, 268, 532, 778, 836, 837, 838, 839, 840, 841, 842, 843, 844, 1186, 1247, 1280, 1302, 1403, 1404, 1485, 1489, 2186, 2193, 2197, 2199, 2201, 2207, 2208, 2210, 2218, 2227, 2235, 2241, 2274, 2308],\n \"0000\": [24, 25, 28, 29, 31, 956, 995, 1013, 1018, 1019, 1403, 2202, 2210, 2225, 2246, 2271, 2301],\n \"00000\": [2201, 2235],\n \"000000\": [23, 28, 102, 121, 146, 162, 182, 185, 232, 273, 311, 532, 663, 696, 720, 760, 806, 900, 955, 1005, 1152, 1158, 1186, 1199, 1203, 1205, 1247, 1260, 1267, 1294, 1298, 1300, 1304, 1306, 1323, 1335, 1337, 1403, 1433, 1454, 2184, 2186, 2191, 2195, 2197, 2199, 2201, 2207, 2209, 2210, 2211, 2212, 2218, 2222, 2232, 2235, 2257, 2264, 2277, 2283],\n \"000000000\": [315, 532, 575, 668, 681, 893, 909, 2163, 2186, 2199, 2210, 2235, 2238, 2246, 2261],\n \"000000000000004\": 2241,\n \"000000001\": [315, 668, 669, 681, 928, 947, 996, 1498, 2199, 2201, 2209, 2232, 2238],\n \"0000000011\": 1498,\n@@ -21476,30 +21476,30 @@\n \"000830\": 2214,\n \"000895\": 2195,\n \"000951\": 2186,\n \"000k\": 1489,\n \"000m\": 1489,\n \"000n\": 1489,\n \"000z\": 2294,\n- \"001\": [532, 874, 1467, 2193, 2232, 2264],\n+ \"001\": [532, 874, 1467, 2232, 2264],\n \"001000\": [917, 919, 922, 929, 1876, 2209],\n \"001294\": 2210,\n \"001372\": 2207,\n \"001376\": 2207,\n \"001427\": 2214,\n \"001438\": 2195,\n \"001486\": [102, 1158],\n \"00180\": 2294,\n \"002\": 2264,\n \"002000\": 2232,\n \"002040\": 2235,\n \"002118\": [2230, 2231],\n \"002653\": 2207,\n \"002846\": 2229,\n- \"003\": [2185, 2193, 2235],\n+ \"003\": [2185, 2235],\n \"003144\": 2210,\n \"003337\": 2207,\n \"003494\": 15,\n \"003507\": [2209, 2218],\n \"003556\": 2207,\n \"00360\": 2294,\n \"003733\": 2207,\n@@ -21522,14 +21522,15 @@\n \"005000\": 2218,\n \"005361\": 2207,\n \"005383\": 2220,\n \"005446\": 2219,\n \"005462\": 2191,\n \"005977\": 2199,\n \"005979\": 2186,\n+ \"006\": 2193,\n \"006123\": 2207,\n \"006154\": [2185, 2197, 2199, 2202, 2204, 2215, 2257],\n \"0062\": 2191,\n \"006349\": 2195,\n \"006438\": 2215,\n \"006549\": [182, 760],\n \"006695\": 2186,\n@@ -21540,23 +21541,21 @@\n \"007200\": 2184,\n \"007207\": [2184, 2214],\n \"007717\": 2199,\n \"007824\": 15,\n \"007952\": 2207,\n \"007996\": 2186,\n \"007f\": 203,\n- \"008\": 2193,\n \"008182\": 2204,\n \"008298\": 2186,\n \"008344\": 2207,\n \"008358\": 2207,\n \"008500\": 15,\n \"008543\": [102, 1158],\n \"008943\": [102, 1158],\n- \"009\": 2193,\n \"009059\": 2191,\n \"009207\": 2207,\n \"009420\": 2195,\n \"009424\": 2207,\n \"009572\": 2207,\n \"009673\": 2195,\n \"009783\": 2207,\n@@ -21572,26 +21571,24 @@\n \"010026\": 2191,\n \"010081\": 15,\n \"010165\": 2199,\n \"010589\": 2193,\n \"010670\": [102, 1158],\n \"0108\": 2257,\n \"010903\": 2207,\n- \"011\": 2193,\n \"011111\": [182, 760],\n \"011342\": 2207,\n \"011351\": 2207,\n \"011374\": 2195,\n \"011470\": 2207,\n \"011736\": 2186,\n \"011829\": 2207,\n \"01183\": 2229,\n \"011860\": [182, 760],\n \"011975\": 2207,\n- \"012\": 2193,\n \"012108\": 2207,\n \"012299\": 2207,\n \"0123456789123456\": [2164, 2165],\n \"012549\": 2207,\n \"012694\": 2199,\n \"012922\": 2219,\n \"013086\": 15,\n@@ -21601,15 +21598,15 @@\n \"013684\": [182, 760],\n \"013692\": [102, 1158],\n \"013747\": 2199,\n \"013768\": 2230,\n \"013810\": [182, 760],\n \"013863\": 2199,\n \"013960\": [2185, 2197, 2199, 2202, 2204, 2215, 2257],\n- \"014\": [2191, 2193],\n+ \"014\": 2191,\n \"014061\": 2207,\n \"014073\": 2204,\n \"014103\": 2207,\n \"014138\": 2191,\n \"014144\": [102, 1158],\n \"014648\": 2186,\n \"014752\": 2235,\n@@ -21619,15 +21616,14 @@\n \"015083\": 2186,\n \"015420\": 2195,\n \"015458\": 2207,\n \"015696\": [2220, 2228, 2230],\n \"015906\": 2186,\n \"015962\": [2184, 2214],\n \"015988\": 2186,\n- \"016\": 2193,\n \"016009\": 15,\n \"016287\": 2210,\n \"016331\": 2210,\n \"016424\": [16, 19],\n \"016692\": [2184, 2195, 2214],\n \"01685762652715874\": [624, 1215],\n \"017106\": 2207,\n@@ -21685,15 +21681,14 @@\n \"023526\": 2191,\n \"023640\": 2230,\n \"023688\": [15, 2185, 2191, 2197],\n \"0237\": 2204,\n \"023721\": 2207,\n \"023888\": 2186,\n \"023898\": 2195,\n- \"024\": 2193,\n \"024121\": 2207,\n \"024180\": [2185, 2197, 2199, 2202, 2204, 2215],\n \"024320\": 2210,\n \"02458\": 2195,\n \"024580\": [2184, 2195, 2214],\n \"024738\": [102, 1158],\n \"024786\": 2207,\n@@ -21711,15 +21706,14 @@\n \"026158\": 2210,\n \"026220\": 2191,\n \"026437\": 2197,\n \"026458\": 2216,\n \"0266708\": 2202,\n \"026692\": 2207,\n \"0267\": 2202,\n- \"027\": 2193,\n \"027496\": 2207,\n \"027778\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275],\n \"028096\": 2210,\n \"028152\": 2207,\n \"028166\": 15,\n \"028182\": 2207,\n \"028578\": 2207,\n@@ -21915,27 +21909,28 @@\n \"052849\": 2212,\n \"0530\": [1498, 2246],\n \"053136\": 2191,\n \"053365\": [182, 760],\n \"053667\": 2207,\n \"053768\": 2199,\n \"053785\": 2219,\n+ \"054\": 2193,\n \"054325\": 2191,\n \"0549\": 2202,\n \"054932\": 2207,\n \"054972\": 2207,\n+ \"055\": 2193,\n \"055224\": 2184,\n \"055300\": 2212,\n \"055457\": 2199,\n \"055473\": 2235,\n \"055501\": 2207,\n \"055556\": [69, 109, 129, 171, 173, 182, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 760],\n \"055758\": 2197,\n \"055914\": 2207,\n- \"056\": 2193,\n \"056367\": [283, 910],\n \"056780\": 2210,\n \"056842\": 2207,\n \"056909\": 2210,\n \"057165\": 2207,\n \"057490\": 2193,\n \"057737\": 2235,\n@@ -21959,16 +21954,15 @@\n \"059481\": 2207,\n \"059552\": 2207,\n \"059761\": 2207,\n \"059869e\": 2191,\n \"059881\": 2210,\n \"059904\": 2214,\n \"05t00\": 2261,\n- \"06\": [26, 27, 29, 30, 31, 36, 207, 213, 218, 230, 273, 292, 294, 332, 363, 526, 534, 536, 637, 644, 646, 688, 781, 788, 793, 804, 900, 969, 993, 1075, 1344, 1441, 1442, 1449, 1450, 1452, 1489, 1497, 1500, 1506, 1524, 1598, 1677, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2226, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2264, 2271, 2298, 2302],\n- \"060\": 2193,\n+ \"06\": [26, 27, 29, 30, 31, 36, 207, 213, 218, 230, 273, 292, 294, 332, 363, 526, 534, 536, 637, 644, 646, 688, 781, 788, 793, 804, 900, 969, 993, 1075, 1344, 1441, 1442, 1449, 1450, 1452, 1489, 1497, 1500, 1506, 1524, 1598, 1677, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2226, 2228, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2264, 2271, 2298, 2302],\n \"060015\": 2207,\n \"060074\": 2185,\n \"060603\": 2207,\n \"060654\": 2207,\n \"060777\": 2207,\n \"061019\": 2199,\n \"061068\": 2210,\n@@ -22065,28 +22059,30 @@\n \"075499\": 2219,\n \"075718\": 2207,\n \"075758\": 2195,\n \"07577\": 2241,\n \"075770\": [15, 2185, 2186, 2191, 2197, 2199, 2215, 2216, 2218, 2219, 2235, 2241, 2264],\n \"0758\": 2191,\n \"075962\": 2191,\n+ \"076\": 2193,\n \"076076\": 2207,\n \"076404\": 2197,\n \"076467\": [15, 2185, 2197, 2199, 2202, 2215, 2257],\n \"076475\": 2207,\n \"076524\": 2216,\n \"076610\": [2184, 2257],\n \"076676\": 2195,\n \"076879\": 2207,\n \"077007\": 2207,\n \"077118\": [2184, 2195, 2214],\n \"077151\": 2199,\n \"077324\": 2195,\n \"077807\": 2207,\n \"077988\": 2207,\n+ \"078\": 2193,\n \"078638\": [2185, 2197, 2199, 2202, 2204],\n \"078716\": 2207,\n \"078718\": 2197,\n \"078832\": 2207,\n \"079115\": 2207,\n \"079150\": 2185,\n \"079255\": 2207,\n@@ -22098,14 +22094,15 @@\n \"079915\": 2193,\n \"07t00\": 2261,\n \"08\": [29, 30, 107, 207, 213, 230, 264, 273, 277, 292, 294, 316, 326, 330, 332, 629, 644, 646, 670, 680, 685, 688, 781, 788, 804, 900, 903, 1075, 1145, 1164, 1221, 1274, 1289, 1344, 1441, 1442, 1449, 1450, 1452, 1495, 1497, 1506, 1598, 1657, 1677, 1699, 1720, 1741, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2218, 2220, 2222, 2226, 2228, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2271, 2294, 2307],\n \"0800\": [953, 2210],\n \"080174\": 2207,\n \"080372\": 2199,\n \"080952\": [2184, 2214],\n+ \"081\": 2193,\n \"081009\": 2195,\n \"081161\": 2216,\n \"081249\": 2207,\n \"081304\": 2207,\n \"081447\": 2210,\n \"081666\": 2211,\n \"081748\": 2210,\n@@ -22142,15 +22139,14 @@\n \"086037\": 2207,\n \"086843\": 2184,\n \"087183\": 2199,\n \"087302\": 2184,\n \"0874\": [2184, 2186, 2191],\n \"087401\": [2184, 2185, 2186, 2191, 2197, 2199, 2202, 2204, 2210, 2214, 2215, 2216, 2218, 2225, 2226, 2231, 2241, 2264],\n \"0875\": 2202,\n- \"088\": 2193,\n \"088060\": 2210,\n \"088224\": 2199,\n \"088259\": 2186,\n \"088417\": 15,\n \"088563\": 2199,\n \"088787\": 2215,\n \"089069\": 2222,\n@@ -22207,29 +22203,30 @@\n \"096364\": 2235,\n \"096576\": 2207,\n \"096701\": 2214,\n \"096705\": 2207,\n \"096706\": 2186,\n \"096946\": 2210,\n \"096959\": 2207,\n- \"097\": 2207,\n+ \"097\": [2193, 2207],\n \"097318\": 2207,\n \"097384\": 2230,\n \"097554\": 2204,\n \"097771\": 2199,\n \"0978826728\": 2199,\n \"097883\": [2185, 2197, 2199, 2202, 2204],\n \"098108\": 2207,\n \"098217\": 2186,\n \"098352\": 2195,\n \"098371\": 2195,\n \"098598\": 2186,\n \"098728\": 2207,\n \"098798\": 2207,\n \"098866\": 2207,\n+ \"099\": 2193,\n \"099274\": 2199,\n \"099395\": 2207,\n \"099774\": 2199,\n \"099873\": 2207,\n \"099998\": 2218,\n \"09t00\": 2261,\n \"0_item\": [71, 580],\n@@ -22247,35 +22244,35 @@\n \"0m\": 1489,\n \"0n\": [1489, 2298],\n \"0px\": 2207,\n \"0rc0\": 13,\n \"0th\": [26, 249, 882, 1202, 2185, 2197, 2199, 2235],\n \"0x00\": 2294,\n \"0x40\": 2294,\n+ \"0x77596780\": 2230,\n+ \"0x7a298c18\": 2246,\n \"0x7efd0c0b0690\": 3,\n- \"0xb86adfd8\": 2230,\n- \"0xbb389be8\": 2246,\n- \"0xe060cfb8\": 2197,\n- \"0xe118d270\": 2199,\n- \"0xe13b6db0\": 2195,\n- \"0xeb52dcf8\": 2210,\n+ \"0x9f777190\": 2197,\n+ \"0x9fa452a0\": 2195,\n+ \"0xa5a56288\": 2199,\n+ \"0xa8cc22a8\": 2210,\n \"1\": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309],\n \"10\": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308],\n \"100\": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307],\n \"1000\": [9, 10, 15, 16, 17, 18, 19, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294],\n \"10000\": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266],\n \"100000\": [1354, 1372, 2199, 2201, 2210],\n \"1000000\": [144, 2199, 2228],\n \"1000000000000000\": 1039,\n \"100000d\": 1497,\n \"100001\": 1497,\n \"10001\": 2232,\n \"10008\": [2231, 2232],\n \"1000x5\": 2206,\n- \"1001\": [16, 17, 18, 19, 2195, 2199, 2235],\n+ \"1001\": [16, 17, 18, 19, 2193, 2195, 2199, 2235],\n \"100123\": 2225,\n \"1001m\": [917, 919, 922, 929],\n \"1002\": [16, 17, 18, 19, 2199, 2205, 2235],\n \"10022\": 2226,\n \"100230\": 2184,\n \"10024\": 2226,\n \"10025\": 2226,\n@@ -22382,15 +22379,15 @@\n \"102889\": 18,\n \"10289\": 2227,\n \"1029\": 2199,\n \"10291\": 2230,\n \"10292\": 2227,\n \"10295\": 2228,\n \"10299\": 2229,\n- \"103\": [139, 140, 1174, 1175, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2227, 2230, 2232, 2235, 2246, 2255],\n+ \"103\": [139, 140, 1174, 1175, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2227, 2230, 2232, 2235, 2246, 2255],\n \"1030\": 2199,\n \"10303\": 2227,\n \"1031\": 2199,\n \"103104\": 2235,\n \"10317\": 2227,\n \"10319\": 2277,\n \"103219\": 2207,\n@@ -22575,15 +22572,15 @@\n \"107780\": 2235,\n \"10779\": 2228,\n \"1078\": 2194,\n \"10789\": 2230,\n \"1079\": [2194, 2228],\n \"10791\": 2228,\n \"10792\": [2228, 2235],\n- \"108\": [273, 900, 2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246],\n+ \"108\": [273, 900, 2184, 2185, 2186, 2188, 2191, 2192, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246],\n \"1080\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 2194, 2212],\n \"10804\": 2228,\n \"10806\": 2232,\n \"1081\": [2194, 2212],\n \"10817\": 2228,\n \"10819\": 2228,\n \"1082\": [2194, 2212],\n@@ -22975,15 +22972,15 @@\n \"11788\": 2199,\n \"117887\": 2195,\n \"11790\": 2230,\n \"11792\": 2246,\n \"11794\": 2230,\n \"117949\": 2214,\n \"117967\": 2216,\n- \"118\": [268, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2228, 2230, 2232, 2242, 2249, 2265],\n+ \"118\": [268, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2228, 2230, 2232, 2242, 2249, 2265],\n \"11804\": 2230,\n \"11805\": 2230,\n \"11806\": 2199,\n \"118076\": 2186,\n \"11808\": 2230,\n \"118091\": 2207,\n \"11818\": 2230,\n@@ -23126,15 +23123,14 @@\n \"12185\": 2232,\n \"1219\": 2298,\n \"12190\": 2238,\n \"121950\": 2207,\n \"12198\": 2230,\n \"121991\": 2207,\n \"122\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2220, 2232],\n- \"1220\": 2193,\n \"12202\": 2230,\n \"12203\": 2231,\n \"1221\": 2298,\n \"12211\": 2231,\n \"12213\": 2265,\n \"12216\": 2232,\n \"12217\": 2230,\n@@ -23193,27 +23189,28 @@\n \"12386\": 2230,\n \"12388\": 2232,\n \"1239\": [2185, 2191, 2194],\n \"12392\": 2238,\n \"12396\": 2241,\n \"12397\": 2235,\n \"12399\": 2232,\n- \"124\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2210, 2211, 2220, 2232],\n+ \"124\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2210, 2211, 2218, 2220, 2232],\n \"1240\": [2185, 2191, 2194],\n \"12401\": 2238,\n \"12405\": 2236,\n \"12409\": 2230,\n \"12411\": 2231,\n \"124124\": 2207,\n \"12424\": 2232,\n \"12425\": 2241,\n \"12448\": 2230,\n \"124518\": 2230,\n \"12467\": 2231,\n \"12468\": 2199,\n+ \"1247\": 2193,\n \"12471\": 2230,\n \"12473\": 2231,\n \"12486\": 2231,\n \"124862\": 2191,\n \"12489\": 2230,\n \"12492\": 2230,\n \"12493\": 2231,\n@@ -23412,15 +23409,15 @@\n \"12988\": 2231,\n \"12995\": 2232,\n \"12997\": 2294,\n \"12h\": [84, 595, 2210, 2231, 2239, 2240],\n \"12pt\": 2207,\n \"12th\": 2199,\n \"13\": [9, 15, 17, 18, 19, 24, 25, 26, 28, 29, 30, 31, 32, 77, 108, 127, 133, 134, 157, 182, 187, 208, 213, 230, 268, 288, 341, 420, 522, 524, 530, 564, 566, 639, 703, 708, 732, 760, 763, 782, 788, 799, 804, 940, 1169, 1226, 1276, 1298, 1299, 1306, 1308, 1397, 1430, 1447, 1498, 1501, 1598, 1657, 1677, 2090, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2231, 2232, 2238, 2240, 2241, 2246, 2249, 2257, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"130\": [15, 1443, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2204, 2208, 2210, 2211, 2225, 2232, 2283],\n+ \"130\": [15, 1443, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2204, 2208, 2210, 2211, 2225, 2232, 2283],\n \"13000\": [2185, 2220],\n \"13000101\": 1498,\n \"13001\": 2232,\n \"13005\": 2231,\n \"13006\": 2232,\n \"13008\": 2231,\n \"13012\": 2241,\n@@ -23671,15 +23668,15 @@\n \"13589\": 2235,\n \"13590\": 2232,\n \"13592\": 2232,\n \"13593\": 2241,\n \"13595\": 2238,\n \"13598\": 2232,\n \"13599\": 2232,\n- \"136\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2208, 2210, 2211, 2232, 2235, 2249],\n+ \"136\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2208, 2210, 2211, 2232, 2235, 2249],\n \"1360\": [2199, 2203, 2212, 2298],\n \"13601\": 2265,\n \"13602\": 2235,\n \"13603\": 2232,\n \"136056\": 2207,\n \"13607\": 2232,\n \"13611\": [2232, 2241],\n@@ -24004,15 +24001,15 @@\n \"145616\": 2207,\n \"14570\": 2235,\n \"145775\": 2235,\n \"14580\": 2235,\n \"14582\": 2234,\n \"145823\": 2230,\n \"14583\": 2235,\n- \"146\": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2210, 2211, 2212, 2227, 2232, 2253, 2298],\n+ \"146\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2210, 2211, 2212, 2227, 2232, 2253, 2298],\n \"14615\": 2246,\n \"14617\": 2235,\n \"14618\": 2234,\n \"146194\": 22,\n \"14620\": 2235,\n \"146201\": 2204,\n \"14621\": 2234,\n@@ -24093,15 +24090,15 @@\n \"14882\": 2235,\n \"14883\": 2235,\n \"14885\": 2249,\n \"14887\": 2235,\n \"1489\": 2197,\n \"14894\": 2234,\n \"14898\": 2235,\n- \"149\": [2184, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2202, 2210, 2211, 2232],\n+ \"149\": [2184, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2210, 2211, 2232],\n \"1490\": 2197,\n \"14901\": 2235,\n \"1490195805\": [1498, 2210],\n \"1490195805433502912\": [1498, 2210],\n \"14908\": 2235,\n \"1491\": 2197,\n \"14910\": 2235,\n@@ -24397,15 +24394,15 @@\n \"15785\": 2241,\n \"15787\": 2235,\n \"157892\": [15, 2185, 2186, 2191, 2197, 2199, 2202, 2215, 2216, 2218, 2219, 2235, 2241, 2264],\n \"157898\": 2207,\n \"1579\": [2184, 2186, 2191, 2194],\n \"15793\": 2238,\n \"15797\": 2235,\n- \"158\": [2185, 2186, 2188, 2195, 2197, 2199, 2201, 2210, 2211, 2256],\n+ \"158\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2210, 2211, 2256],\n \"1580\": [2184, 2186, 2194],\n \"15800\": 2241,\n \"158091\": 15,\n \"158131\": 2186,\n \"15819\": 2236,\n \"15822\": 2235,\n \"15828\": 2235,\n@@ -24718,15 +24715,15 @@\n \"16875\": 2238,\n \"16877\": 2238,\n \"1688\": [2185, 2265],\n \"16889\": 2238,\n \"1689\": [2185, 2197, 2265],\n \"168904\": 2197,\n \"16896\": 2238,\n- \"169\": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2210, 2211, 2283],\n+ \"169\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2210, 2211, 2283],\n \"1690\": [2185, 2197, 2265],\n \"16900\": 2238,\n \"16905\": 2238,\n \"169060\": 2207,\n \"1690785\": [1345, 1391, 1488, 1490, 2202],\n \"16909\": 2238,\n \"1691\": [2185, 2197, 2263, 2265],\n@@ -24836,15 +24833,15 @@\n \"17280\": 2249,\n \"172800\": [683, 2209, 2298],\n \"17284\": 2241,\n \"172860\": 2228,\n \"17294\": 2265,\n \"17295\": [2238, 2265],\n \"17296\": 2238,\n- \"173\": [15, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2210, 2211, 2218, 2283],\n+ \"173\": [15, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2210, 2211, 2283],\n \"173006\": 2207,\n \"17301\": 2241,\n \"173016\": 2207,\n \"17302\": 2238,\n \"17304\": 2265,\n \"17312\": 2241,\n \"173166\": 2207,\n@@ -25390,15 +25387,15 @@\n \"1917\": 2199,\n \"19176\": 2241,\n \"1918\": 2199,\n \"19186\": 2241,\n \"1919\": 2199,\n \"191943\": 2257,\n \"19197\": 2241,\n- \"192\": [1302, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2241],\n+ \"192\": [1302, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211, 2241],\n \"1920\": 2199,\n \"19200\": 2241,\n \"19206\": 2241,\n \"1921\": 2199,\n \"19214\": 2246,\n \"1922\": 2199,\n \"192202\": 2199,\n@@ -25460,14 +25457,15 @@\n \"19398\": 2246,\n \"194\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2255],\n \"1940\": [114, 148, 149, 177, 178, 402, 725, 726, 755, 756],\n \"19403\": 2241,\n \"19417\": 2241,\n \"19420\": 2246,\n \"19427\": 2241,\n+ \"1943378976\": 2246,\n \"19434\": 2265,\n \"194472\": 2207,\n \"194489\": 2199,\n \"19453\": 2246,\n \"19454\": 2246,\n \"19458\": 2241,\n \"19474\": 2241,\n@@ -25491,15 +25489,15 @@\n \"195563\": 2235,\n \"19565\": 2241,\n \"19566\": 2241,\n \"19577\": 2246,\n \"19582\": 2241,\n \"19589\": 2246,\n \"19595\": 2246,\n- \"196\": [2185, 2186, 2188, 2191, 2194, 2195, 2197, 2199, 2205, 2210, 2211],\n+ \"196\": [2185, 2186, 2188, 2191, 2194, 2195, 2197, 2199, 2210, 2211],\n \"1960\": [1498, 2210, 2235],\n \"19602\": 2271,\n \"19603\": 2241,\n \"196087\": 2220,\n \"19612\": 2241,\n \"196155\": 2207,\n \"19617\": 2249,\n@@ -25728,15 +25726,15 @@\n \"2017q4\": 2238,\n \"2018\": [13, 35, 80, 84, 88, 127, 157, 187, 213, 271, 277, 278, 288, 291, 296, 298, 302, 304, 305, 308, 309, 314, 318, 322, 327, 331, 418, 421, 445, 512, 513, 515, 517, 518, 522, 524, 529, 530, 534, 535, 536, 551, 562, 592, 595, 600, 639, 643, 652, 656, 657, 660, 661, 667, 673, 677, 681, 686, 703, 732, 763, 788, 899, 903, 904, 940, 943, 944, 948, 1109, 1145, 1272, 1275, 1286, 1296, 1344, 1452, 1498, 2185, 2199, 2210, 2212, 2213, 2238, 2246, 2298],\n \"20180101\": [1272, 1275, 1286, 1296],\n \"20180310\": [115, 681],\n \"2018q1\": [529, 2238],\n \"2018q2\": 2238,\n \"2019\": [13, 26, 27, 29, 30, 31, 418, 421, 1344, 1487, 1560, 2199, 2210, 2213, 2241, 2242, 2243, 2245, 2271, 2302],\n- \"202\": [2184, 2185, 2186, 2188, 2195, 2197, 2199, 2207, 2210, 2211],\n+ \"202\": [2184, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2207, 2210, 2211],\n \"2020\": [22, 82, 121, 218, 230, 268, 286, 287, 289, 293, 295, 298, 300, 317, 323, 324, 329, 519, 521, 523, 542, 547, 548, 549, 551, 593, 641, 645, 647, 649, 650, 651, 671, 678, 679, 684, 696, 793, 804, 939, 955, 956, 957, 958, 962, 963, 964, 965, 966, 967, 968, 970, 972, 973, 975, 976, 977, 978, 979, 980, 981, 983, 990, 992, 993, 994, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1010, 1013, 1014, 1017, 1018, 1019, 1023, 1025, 1075, 1392, 1459, 1464, 1498, 1506, 1524, 1542, 1560, 2199, 2201, 2204, 2210, 2212, 2213, 2283, 2289, 2294, 2298, 2302, 2307],\n \"20200101\": [82, 593],\n \"2020q1\": 1008,\n \"2021\": [288, 296, 318, 639, 652, 673, 940, 943, 948, 957, 970, 997, 1542, 2201, 2207, 2213, 2277, 2289, 2294],\n \"2022\": [5, 22, 523, 525, 528, 537, 982, 1185, 1246, 1288, 1491, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1542, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1560, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1578, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1598, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1620, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1637, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1657, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1677, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1699, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1720, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1758, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1776, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1793, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1815, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1839, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1857, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1876, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1894, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1912, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1930, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1947, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1964, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1982, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2018, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2036, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2054, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2108, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2127, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2145, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2186, 2203, 2213, 2227, 2298, 2302, 2307],\n \"2022a\": 2294,\n \"2023\": [34, 270, 298, 301, 320, 363, 511, 519, 526, 533, 543, 544, 545, 546, 547, 548, 549, 551, 554, 555, 556, 557, 558, 560, 563, 564, 565, 566, 567, 651, 894, 898, 954, 959, 960, 982, 984, 1000, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1024, 1122, 1141, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1501, 1620, 1930, 2090, 2127, 2145, 2213],\n@@ -25746,14 +25744,15 @@\n \"2025\": [544, 546, 555, 567, 894, 898, 2228],\n \"20251\": 2307,\n \"202602\": 2205,\n \"202646\": 2230,\n \"20271\": 2241,\n \"202872\": [2184, 2214],\n \"202946\": 2207,\n+ \"2029910304\": 2246,\n \"203\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2253],\n \"2030\": 2265,\n \"20303\": 2265,\n \"20306\": 2302,\n \"203098\": 2186,\n \"20342\": 2246,\n \"2035\": 2199,\n@@ -25942,15 +25941,15 @@\n \"20994\": 2242,\n \"20995\": 2265,\n \"20_000\": 1485,\n \"20px\": 1423,\n \"20th\": 31,\n \"20x\": [2199, 2225, 2228, 2307],\n \"21\": [3, 15, 17, 18, 19, 22, 24, 25, 28, 29, 30, 31, 32, 101, 108, 213, 219, 242, 283, 345, 586, 788, 817, 910, 987, 1198, 1397, 1430, 1437, 1438, 1439, 1657, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2240, 2241, 2246, 2249, 2265, 2271, 2274, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"210\": [134, 709, 1433, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211, 2212],\n+ \"210\": [134, 709, 1433, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2212],\n \"21002\": 2243,\n \"21003\": 2277,\n \"2101\": 2264,\n \"21015\": 2242,\n \"21020\": 2277,\n \"2102402\": 2205,\n \"21025\": 2242,\n@@ -26137,15 +26136,15 @@\n \"216718\": 2214,\n \"21673\": 2283,\n \"21678\": 2246,\n \"21681\": 2246,\n \"21688\": 2246,\n \"21697\": 2246,\n \"216974\": 2197,\n- \"217\": [25, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211],\n+ \"217\": [25, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211],\n \"217002\": 2207,\n \"21704\": 2246,\n \"21716\": 2245,\n \"217165\": 2207,\n \"217196\": 2207,\n \"217262\": 2207,\n \"21729\": 2249,\n@@ -26560,15 +26559,15 @@\n \"23675\": 2246,\n \"23677\": 2246,\n \"23679\": 2249,\n \"23682\": 2246,\n \"23683\": 2249,\n \"23687\": 2246,\n \"23697\": 2289,\n- \"237\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2220, 2298],\n+ \"237\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220, 2298],\n \"237000\": [2185, 2220],\n \"23705\": 2249,\n \"23711\": 2246,\n \"237124\": 2207,\n \"237159\": 2199,\n \"23719\": 2265,\n \"237242\": [2191, 2207],\n@@ -26818,15 +26817,15 @@\n \"24874\": 2246,\n \"24880\": 2249,\n \"24889\": 2249,\n \"24892\": 2289,\n \"24893\": 2265,\n \"24895\": 2249,\n \"248959\": 2199,\n- \"249\": [1482, 1483, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2220, 2257],\n+ \"249\": [1482, 1483, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220, 2257],\n \"249000\": [2185, 2220],\n \"249012\": 2207,\n \"24910\": 2249,\n \"24919\": 2249,\n \"24923\": 2249,\n \"24925\": 2248,\n \"249281\": 2235,\n@@ -27256,15 +27255,15 @@\n \"268413\": 2207,\n \"2685\": 2221,\n \"268520\": [2184, 2195, 2214],\n \"2686\": 2215,\n \"2687\": 2215,\n \"2689\": 2215,\n \"268968\": 2207,\n- \"269\": [2186, 2188, 2195, 2197, 2199, 2210],\n+ \"269\": [2186, 2188, 2195, 2197, 2199, 2210, 2218],\n \"2690\": 2215,\n \"26916\": 2249,\n \"26919\": 2283,\n \"2692\": 2215,\n \"269219\": [242, 817],\n \"26934\": 2249,\n \"26939\": 2265,\n@@ -27693,15 +27692,15 @@\n \"29072\": 2283,\n \"290720\": 2235,\n \"2908\": [2185, 2222],\n \"2909\": 2185,\n \"290936\": 2207,\n \"290990\": 2207,\n \"290994\": [2186, 2212],\n- \"291\": [2186, 2197, 2199, 2210, 2255],\n+ \"291\": [2186, 2193, 2197, 2199, 2210, 2255],\n \"2910\": [2185, 2199],\n \"29102\": 2294,\n \"2911\": [2185, 2199],\n \"2912\": 2199,\n \"29122\": 2265,\n \"29128\": 2265,\n \"29129\": 2289,\n@@ -27727,15 +27726,15 @@\n \"2926\": 2199,\n \"292600\": 2207,\n \"292697\": 2207,\n \"2927\": 2199,\n \"2928\": 2199,\n \"2929\": 2199,\n \"292952\": 2207,\n- \"293\": [2186, 2197, 2199, 2210, 2231],\n+ \"293\": [2186, 2193, 2197, 2199, 2210, 2231],\n \"2930\": 2199,\n \"29305\": 2265,\n \"293083\": 2210,\n \"2931\": 2199,\n \"2932\": 2199,\n \"2933\": 2199,\n \"293343\": 1334,\n@@ -27870,15 +27869,15 @@\n \"2t\": 1455,\n \"2to3\": [2218, 2253],\n \"2w\": 1502,\n \"2x\": [2226, 2228, 2256],\n \"2xn\": [2211, 2271],\n \"3\": [2, 4, 6, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 39, 46, 56, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 116, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 134, 136, 137, 138, 141, 142, 143, 144, 145, 146, 147, 153, 154, 155, 156, 157, 158, 160, 162, 163, 165, 166, 167, 168, 169, 171, 173, 174, 176, 179, 180, 182, 184, 185, 186, 187, 191, 192, 194, 195, 197, 198, 199, 202, 203, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 237, 240, 241, 242, 243, 244, 248, 249, 250, 254, 255, 256, 257, 259, 261, 262, 263, 264, 265, 267, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 287, 288, 290, 291, 292, 294, 296, 298, 299, 300, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 318, 319, 321, 322, 326, 327, 330, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 358, 361, 363, 364, 367, 370, 371, 372, 375, 376, 377, 380, 382, 383, 385, 386, 387, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 401, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 419, 420, 421, 422, 424, 425, 426, 427, 429, 432, 434, 435, 436, 437, 440, 445, 455, 459, 461, 462, 463, 469, 473, 475, 477, 483, 486, 490, 491, 492, 496, 497, 499, 501, 519, 524, 532, 540, 547, 548, 549, 551, 557, 562, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 579, 580, 581, 582, 583, 586, 589, 590, 591, 593, 594, 595, 596, 599, 600, 601, 603, 604, 609, 614, 615, 616, 618, 619, 620, 621, 622, 625, 626, 627, 628, 629, 630, 632, 633, 634, 635, 636, 637, 639, 640, 642, 643, 644, 646, 648, 651, 652, 654, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 673, 674, 675, 677, 680, 681, 682, 683, 685, 686, 688, 689, 690, 691, 692, 696, 697, 698, 699, 700, 701, 702, 703, 704, 708, 709, 711, 712, 714, 715, 717, 719, 720, 721, 722, 723, 724, 729, 730, 731, 732, 733, 735, 736, 737, 738, 740, 741, 743, 744, 745, 750, 751, 752, 754, 757, 758, 760, 762, 763, 767, 769, 770, 772, 776, 778, 779, 781, 782, 783, 784, 785, 786, 787, 788, 789, 793, 794, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 812, 813, 815, 816, 817, 819, 820, 821, 823, 824, 827, 828, 830, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 853, 856, 858, 859, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 872, 874, 880, 881, 882, 883, 885, 888, 890, 891, 892, 894, 895, 896, 897, 898, 899, 900, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 918, 920, 921, 923, 927, 930, 931, 932, 933, 937, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 951, 955, 958, 963, 964, 965, 966, 967, 968, 975, 976, 977, 978, 979, 980, 981, 992, 994, 999, 1009, 1023, 1025, 1032, 1033, 1034, 1035, 1038, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1048, 1049, 1052, 1053, 1054, 1055, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1065, 1066, 1067, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1082, 1085, 1086, 1087, 1088, 1089, 1091, 1099, 1100, 1101, 1105, 1106, 1109, 1113, 1117, 1118, 1119, 1121, 1123, 1124, 1127, 1128, 1129, 1135, 1136, 1138, 1140, 1142, 1143, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1157, 1158, 1159, 1160, 1161, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1173, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1216, 1217, 1218, 1221, 1222, 1223, 1225, 1226, 1227, 1228, 1231, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1343, 1344, 1345, 1347, 1350, 1359, 1362, 1369, 1375, 1380, 1381, 1384, 1385, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1414, 1415, 1416, 1417, 1419, 1422, 1423, 1424, 1430, 1432, 1433, 1434, 1435, 1436, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1456, 1458, 1463, 1466, 1467, 1468, 1469, 1470, 1474, 1476, 1478, 1479, 1483, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1506, 1508, 1524, 1526, 1544, 1560, 1562, 1581, 1602, 1622, 1639, 1660, 1681, 1702, 1723, 1741, 1743, 1761, 1778, 1793, 1795, 1815, 1817, 1842, 1857, 1859, 1879, 1897, 1915, 1932, 1949, 1967, 1982, 1984, 2000, 2002, 2021, 2036, 2039, 2054, 2057, 2075, 2092, 2108, 2110, 2129, 2147, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2232, 2234, 2235, 2236, 2238, 2239, 2240, 2242, 2243, 2246, 2248, 2249, 2250, 2251, 2254, 2255, 2257, 2263, 2264, 2265, 2267, 2270, 2271, 2276, 2277, 2278, 2279, 2289, 2290, 2294, 2295, 2296, 2306, 2308, 2309],\n \"30\": [6, 15, 17, 18, 19, 24, 27, 28, 31, 68, 74, 79, 80, 83, 85, 88, 111, 134, 138, 142, 160, 188, 189, 190, 192, 193, 207, 208, 213, 230, 234, 277, 278, 286, 288, 296, 306, 307, 308, 309, 316, 318, 331, 345, 363, 556, 560, 577, 583, 586, 591, 592, 594, 596, 600, 617, 618, 633, 637, 639, 652, 658, 659, 660, 661, 670, 673, 686, 709, 714, 738, 764, 765, 766, 768, 781, 782, 788, 804, 903, 904, 940, 943, 948, 957, 958, 970, 992, 997, 1014, 1189, 1192, 1250, 1253, 1259, 1264, 1272, 1275, 1286, 1323, 1344, 1392, 1447, 1491, 1498, 1524, 1560, 1620, 1637, 1699, 1720, 1815, 1930, 1947, 2000, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2213, 2216, 2217, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2262, 2265, 2271, 2277, 2283, 2289, 2292, 2294, 2298],\n- \"300\": [118, 132, 135, 141, 142, 159, 161, 175, 345, 717, 2186, 2197, 2199, 2200, 2210, 2225, 2230, 2235, 2241, 2255],\n+ \"300\": [118, 132, 135, 141, 142, 159, 161, 175, 345, 717, 2186, 2193, 2197, 2199, 2200, 2210, 2225, 2230, 2235, 2241, 2255],\n \"3000\": [10, 141, 717, 2193],\n \"300000\": [1354, 2210],\n \"30003\": 2265,\n \"300108\": 2207,\n \"30011\": 2265,\n \"30017\": 2289,\n \"300218\": 15,\n@@ -27963,15 +27962,14 @@\n \"304762\": 2207,\n \"30482\": 2298,\n \"30484\": 2271,\n \"30489\": 2298,\n \"305\": [2186, 2197, 2199, 2210],\n \"30511\": 2271,\n \"305288\": 2207,\n- \"3053246848\": 2246,\n \"305384\": 2197,\n \"30543\": 2271,\n \"30546\": 2298,\n \"30562\": 2298,\n \"305657\": 2207,\n \"30567\": 2265,\n \"30568\": 2265,\n@@ -27992,15 +27990,15 @@\n \"3066101993807095471566981359501369297504425048828125\": 2199,\n \"30667\": 2271,\n \"306704\": 2199,\n \"306735\": 2185,\n \"306796\": 2199,\n \"306912\": 15,\n \"306996\": [15, 2202],\n- \"307\": [32, 2186, 2197, 2199, 2210],\n+ \"307\": [32, 2186, 2193, 2197, 2199, 2210],\n \"3070\": 2216,\n \"30702\": 2298,\n \"307108\": 2205,\n \"307135\": 2207,\n \"30722\": 2265,\n \"30726\": 2269,\n \"307380\": 2207,\n@@ -28087,15 +28085,14 @@\n \"312\": [2186, 2197, 2199, 2210, 2219, 2255],\n \"3120\": [2184, 2199, 2205],\n \"31200\": 2271,\n \"31204\": 2271,\n \"31205\": 2266,\n \"3121\": [2184, 2199, 2205],\n \"3122\": [2184, 2199, 2205],\n- \"3122610400\": 2246,\n \"312403\": 2191,\n \"31242\": 2277,\n \"31243\": 2294,\n \"31251\": 2271,\n \"312652\": [2220, 2228, 2230],\n \"31269\": 2271,\n \"31271\": 2271,\n@@ -28221,15 +28218,15 @@\n \"3178\": 30,\n \"31783\": 2271,\n \"31784\": 2271,\n \"31785\": 2267,\n \"31789\": 2267,\n \"317901\": 2207,\n \"31793\": 2289,\n- \"318\": [2186, 2193, 2197, 2199, 2210],\n+ \"318\": [2186, 2197, 2199, 2210],\n \"31802\": 2267,\n \"31809\": [2271, 2298],\n \"318152\": [2220, 2230],\n \"318154\": 2191,\n \"31819\": 2267,\n \"31840\": [2271, 2298],\n \"31847\": 2267,\n@@ -28710,15 +28707,15 @@\n \"341734\": [2185, 2197, 2199, 2202, 2204],\n \"3417343559\": 2199,\n \"34178\": 2271,\n \"34191\": 2271,\n \"34193\": 2298,\n \"34195\": 2266,\n \"34197\": 2294,\n- \"342\": [2186, 2188, 2197, 2199, 2210, 2257],\n+ \"342\": [2185, 2186, 2188, 2197, 2199, 2210, 2257],\n \"342006\": 2212,\n \"342054\": 2230,\n \"342074\": 2207,\n \"34211\": 2271,\n \"34224\": 2271,\n \"34225\": 2277,\n \"342250\": 2195,\n@@ -28951,15 +28948,15 @@\n \"35462\": 2272,\n \"35471\": 2273,\n \"35486\": 2272,\n \"35488\": 2272,\n \"35490\": 2272,\n \"35493\": 2272,\n \"35499\": 2272,\n- \"355\": [2186, 2193, 2197, 2199, 2210, 2255, 2298],\n+ \"355\": [2186, 2197, 2199, 2210, 2255, 2298],\n \"35509\": 2275,\n \"355203\": 2207,\n \"35521\": 2273,\n \"35529\": 2277,\n \"3553\": 2193,\n \"35534\": 2274,\n \"355392\": 2186,\n@@ -29505,15 +29502,15 @@\n \"3817\": [2185, 2191, 2194],\n \"38172\": 2289,\n \"38178\": 2277,\n \"38187\": 2277,\n \"38195\": 2277,\n \"38197\": 2277,\n \"381994\": 2197,\n- \"382\": [16, 17, 18, 19, 2186, 2193, 2197, 2199, 2210, 2235],\n+ \"382\": [16, 17, 18, 19, 2186, 2197, 2199, 2210, 2235],\n \"382141\": 2206,\n \"382242\": 2199,\n \"38225\": 2277,\n \"382263\": 2207,\n \"38227\": 2277,\n \"38234\": 2277,\n \"382459\": 2184,\n@@ -30237,15 +30234,15 @@\n \"41485\": [2283, 2289, 2298],\n \"41486\": 2298,\n \"41491\": 2298,\n \"41492\": 2283,\n \"41495\": 2298,\n \"41496\": 2298,\n \"41497\": 2283,\n- \"415\": [2185, 2186, 2193, 2199, 2210],\n+ \"415\": [2185, 2186, 2199, 2210],\n \"41504\": 2298,\n \"41505\": 2298,\n \"41506\": 2298,\n \"41508\": 2298,\n \"4151\": 2197,\n \"41510\": 2298,\n \"41511\": 2298,\n@@ -30378,15 +30375,15 @@\n \"421422\": 2207,\n \"4215\": 2217,\n \"4216\": 2217,\n \"421655\": 2207,\n \"421830\": 2219,\n \"42185\": 2289,\n \"4219\": 2218,\n- \"422\": [2185, 2186, 2199, 2210],\n+ \"422\": [2186, 2199, 2210],\n \"4220\": 2218,\n \"422008\": 2207,\n \"42201\": 2289,\n \"422022\": 2207,\n \"422060\": 2210,\n \"422064\": 2207,\n \"422106\": 2207,\n@@ -30447,15 +30444,15 @@\n \"42463\": 2289,\n \"42465\": 2289,\n \"42476\": 2289,\n \"424779\": 2207,\n \"42482\": 2298,\n \"424844\": 2207,\n \"424972\": [2184, 2185, 2186, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2225, 2226, 2231, 2241],\n- \"425\": [2184, 2186, 2191, 2193, 2199, 2210, 2256],\n+ \"425\": [2184, 2186, 2191, 2199, 2210, 2256],\n \"42501\": 2285,\n \"42505\": 2288,\n \"42511\": 2289,\n \"42530\": [2285, 2289],\n \"42537\": [2284, 2285],\n \"42540766452641154071740215577757643572\": 2241,\n \"425439\": 2222,\n@@ -30942,15 +30939,15 @@\n \"44354\": 2294,\n \"443568\": 29,\n \"44366\": 2289,\n \"4437\": 2218,\n \"44382\": 2289,\n \"443863\": 2207,\n \"443982\": 2229,\n- \"444\": [2199, 2207, 2210, 2256],\n+ \"444\": [2193, 2199, 2207, 2210, 2256],\n \"4440\": 2218,\n \"44410\": 2294,\n \"44411\": 2289,\n \"44414\": 2289,\n \"44417\": 2289,\n \"44421\": 2302,\n \"44424\": 2302,\n@@ -31659,14 +31656,15 @@\n \"47851\": 2298,\n \"47856\": 2294,\n \"478587\": 2191,\n \"47862\": 2302,\n \"47864\": 2294,\n \"47867\": 2293,\n \"47880\": 2294,\n+ \"478896\": 2228,\n \"4789\": 2218,\n \"478935\": 2207,\n \"478942\": 2207,\n \"479\": [2199, 2210, 2257],\n \"47902\": 2294,\n \"47910\": 2298,\n \"47912\": [2294, 2298],\n@@ -31827,15 +31825,15 @@\n \"48778\": 2295,\n \"48780\": 2295,\n \"48784\": 2295,\n \"4879\": 2218,\n \"48791\": 2298,\n \"48794\": 2295,\n \"48796\": 2298,\n- \"488\": [2184, 2185, 2199, 2203, 2205, 2210],\n+ \"488\": [2184, 2199, 2203, 2205, 2210],\n \"48801\": 2298,\n \"48812\": 2298,\n \"48813\": 2298,\n \"488153\": 2205,\n \"48818\": 2298,\n \"48821\": 2298,\n \"48826\": 2295,\n@@ -31911,15 +31909,15 @@\n \"49177\": 2298,\n \"49178\": 2298,\n \"4918\": 2218,\n \"491814\": 2201,\n \"491888\": 2195,\n \"491906\": 2204,\n \"491974\": 2199,\n- \"492\": [16, 17, 18, 19, 2194, 2199, 2201, 2203, 2210, 2232, 2235, 2249, 2257, 2283, 2294, 2298, 2307],\n+ \"492\": [16, 17, 18, 19, 2193, 2194, 2199, 2201, 2203, 2210, 2232, 2235, 2249, 2257, 2283, 2294, 2298, 2307],\n \"49207\": 2297,\n \"492097\": 2207,\n \"492125\": 15,\n \"49222\": 2298,\n \"49223\": 2298,\n \"492257\": 2207,\n \"49228\": 2298,\n@@ -32008,15 +32006,15 @@\n \"49632\": 2298,\n \"49649\": 2297,\n \"496599\": 2207,\n \"49660\": 2298,\n \"49676\": 2296,\n \"49684\": 2298,\n \"496902\": 2207,\n- \"497\": [2199, 2210, 2249, 2257],\n+ \"497\": [2199, 2210, 2218, 2249, 2257],\n \"497026\": 2207,\n \"497074\": 2201,\n \"49714\": 2298,\n \"49715\": 2298,\n \"49722\": 2298,\n \"49732\": [2296, 2297],\n \"49737\": 2298,\n@@ -32025,14 +32023,15 @@\n \"4975\": 2218,\n \"49751\": 2296,\n \"49759\": 2298,\n \"49769\": 2296,\n \"49771\": 2297,\n \"497767\": 2193,\n \"497796\": 2207,\n+ \"497874\": 2228,\n \"49793\": 2298,\n \"49795\": 2298,\n \"497968\": 2186,\n \"498\": [2184, 2199, 2205, 2210, 2249, 2257],\n \"498073\": 2207,\n \"4982\": 2218,\n \"49824\": 2298,\n@@ -32362,15 +32361,15 @@\n \"51363\": 2307,\n \"51365\": 2298,\n \"5137\": [2192, 2197],\n \"51373\": 2298,\n \"5138\": [2192, 2197],\n \"51397\": 2298,\n \"513979\": 2207,\n- \"514\": [16, 17, 18, 19, 1444, 2185, 2194, 2199, 2201, 2203, 2235, 2283, 2294, 2307],\n+ \"514\": [16, 17, 18, 19, 1444, 2194, 2199, 2201, 2203, 2235, 2283, 2294, 2307],\n \"51413\": 2298,\n \"51422\": 2302,\n \"51423\": 2302,\n \"51424\": 2302,\n \"5143\": 2218,\n \"51443\": 2298,\n \"514474\": 2210,\n@@ -33249,15 +33248,15 @@\n \"56051\": 2307,\n \"56062\": 2307,\n \"560660\": 2207,\n \"5607\": [2192, 2197],\n \"56089\": 2307,\n \"5609\": [2192, 2197, 2220],\n \"56099\": 2307,\n- \"561\": [2, 2193, 2199],\n+ \"561\": [2, 2199],\n \"5610\": [2192, 2197, 2220],\n \"56101\": 2307,\n \"56102\": 2307,\n \"56106\": 2307,\n \"5611\": [2192, 2197],\n \"56110\": 2307,\n \"56115\": 2307,\n@@ -33706,15 +33705,14 @@\n \"601544\": 2185,\n \"601618\": 2207,\n \"6018\": 2219,\n \"601965\": 15,\n \"602\": 2199,\n \"6021\": 2219,\n \"602268\": 2207,\n- \"602371\": 2228,\n \"602549\": 15,\n \"6026\": 2219,\n \"602763\": 2166,\n \"6028\": 2219,\n \"603\": [2199, 2298],\n \"603194\": 2207,\n \"603594\": 2207,\n@@ -33727,15 +33725,14 @@\n \"604736\": 2207,\n \"604745\": [2214, 2235],\n \"6048\": 2220,\n \"6049\": 2257,\n \"605\": [2199, 2298],\n \"605081\": 2207,\n \"6051\": [196, 771],\n- \"605443\": 2228,\n \"6055\": 2219,\n \"6056\": 2219,\n \"605632\": 2207,\n \"605656\": 2197,\n \"6059\": 2219,\n \"605928\": 2193,\n \"605946\": 2193,\n@@ -33801,15 +33798,15 @@\n \"614264\": 2207,\n \"614266\": 2199,\n \"614523\": 2191,\n \"614533\": 2197,\n \"614581\": [2184, 2195],\n \"6148\": 2219,\n \"6149\": 2220,\n- \"615\": [2193, 2199],\n+ \"615\": 2199,\n \"6150\": 2219,\n \"6152\": 2219,\n \"615303\": 2191,\n \"615385\": [121, 696, 2212],\n \"615396\": 2230,\n \"6155\": 2219,\n \"615556\": 27,\n@@ -33847,15 +33844,15 @@\n \"619104\": 2207,\n \"619366\": 2207,\n \"6194\": 2232,\n \"61941\": 2257,\n \"6199759194\": 2199,\n \"619976\": [2185, 2191, 2197, 2199, 2202, 2204],\n \"619993\": 2235,\n- \"62\": [15, 17, 18, 19, 81, 187, 213, 242, 283, 763, 788, 817, 910, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"62\": [15, 17, 18, 19, 81, 187, 213, 242, 283, 763, 788, 817, 910, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"620\": [16, 17, 18, 19, 2199, 2203, 2232, 2235, 2262, 2298],\n \"620145\": 2191,\n \"62036035\": [624, 1215],\n \"620399\": 2199,\n \"620498\": 2207,\n \"6205\": 2220,\n \"620544\": 2191,\n@@ -33908,15 +33905,15 @@\n \"626300\": 1323,\n \"6263001\": 1323,\n \"6264\": 2192,\n \"626404\": 2235,\n \"626444\": 15,\n \"6265\": 2220,\n \"626968\": 2217,\n- \"627\": [2193, 2199],\n+ \"627\": 2199,\n \"627068\": 2207,\n \"627081\": [2184, 2195, 2214],\n \"6273\": 2220,\n \"6274\": 2220,\n \"627712\": 2197,\n \"627796\": 2235,\n \"6279\": 2271,\n@@ -33972,15 +33969,15 @@\n \"6342\": 2220,\n \"634248\": 2199,\n \"6344\": 2220,\n \"6345\": 2220,\n \"634509\": 2191,\n \"634686\": 2207,\n \"6348\": 2220,\n- \"635\": 2199,\n+ \"635\": [2185, 2199],\n \"6351\": 2220,\n \"6355\": 2220,\n \"636\": 2199,\n \"6360\": 2246,\n \"636123\": 2207,\n \"636524\": [2220, 2228, 2230, 2231],\n \"6366\": 2220,\n@@ -34179,15 +34176,15 @@\n \"658899\": 2207,\n \"6589\": 2206,\n \"659\": 2199,\n \"659221\": 2207,\n \"659369\": 2207,\n \"659584\": 2207,\n \"659955\": 2207,\n- \"66\": [17, 19, 24, 139, 140, 219, 273, 900, 1174, 1175, 1433, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"66\": [17, 19, 24, 139, 140, 219, 273, 900, 1174, 1175, 1433, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"660\": [2199, 2201],\n \"6600\": 2220,\n \"660294\": 2195,\n \"6604\": 2220,\n \"660402\": 2207,\n \"660515\": 2210,\n \"660522\": 2199,\n@@ -34266,15 +34263,15 @@\n \"6681\": 2220,\n \"668149\": 2199,\n \"668157\": 2207,\n \"6685\": 2220,\n \"668777\": 2207,\n \"6689\": 2220,\n \"668909\": 2207,\n- \"669\": 2199,\n+ \"669\": [2193, 2199],\n \"669046\": 1198,\n \"669052\": [2184, 2214],\n \"669567\": 2207,\n \"669692\": 2197,\n \"6697\": 2298,\n \"669700\": 2207,\n \"669934\": 2216,\n@@ -34495,15 +34492,15 @@\n \"693043\": 2210,\n \"6932\": 2222,\n \"693205\": [2184, 2214],\n \"693429\": 28,\n \"6937\": 2221,\n \"693884\": 2210,\n \"6939\": 2220,\n- \"694\": 2199,\n+ \"694\": [2193, 2199],\n \"694268\": 28,\n \"6945\": 2241,\n \"694592\": 2207,\n \"695\": 2199,\n \"6951\": 2220,\n \"695148\": 2186,\n \"6952\": 2220,\n@@ -34642,25 +34639,25 @@\n \"7098\": 2220,\n \"71\": [15, 17, 24, 25, 28, 29, 32, 133, 208, 708, 718, 782, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"710\": 2199,\n \"7101\": 2220,\n \"7103\": 2222,\n \"7105\": 2220,\n \"7106\": 2220,\n- \"711\": 2199,\n+ \"711\": [2193, 2199],\n \"711409\": 2186,\n \"7115\": 2223,\n \"7117\": 2235,\n- \"712\": [3, 2185, 2192, 2193],\n+ \"712\": [3, 2185, 2192],\n \"712009\": 2199,\n \"712369\": 2186,\n \"7124\": 2229,\n \"712702\": 2230,\n \"712795\": 2199,\n- \"713\": [2192, 2199],\n+ \"713\": [2192, 2193, 2199],\n \"713216\": 2217,\n \"713416\": [2185, 2207],\n \"713897\": 2197,\n \"7139\": 2226,\n \"713941\": 2204,\n \"714\": [24, 25, 28],\n \"7140\": 2221,\n@@ -34856,15 +34853,15 @@\n \"739013\": 2207,\n \"7391\": 2221,\n \"739185\": 2207,\n \"7394\": 2221,\n \"739537\": 2195,\n \"7398\": 2202,\n \"7399\": 2221,\n- \"74\": [31, 182, 190, 193, 760, 766, 768, 964, 966, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"74\": [31, 182, 190, 193, 760, 766, 768, 964, 966, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"740\": 2199,\n \"7400\": 2221,\n \"740050\": 29,\n \"7401\": 2225,\n \"740139\": 2186,\n \"7402\": 22,\n \"7403\": 2225,\n@@ -35074,14 +35071,15 @@\n \"7711\": 2222,\n \"771208\": 2184,\n \"771452\": 18,\n \"7715\": 2222,\n \"771533\": 2229,\n \"7718\": 2230,\n \"771805\": 2207,\n+ \"772\": 2185,\n \"7720\": [2186, 2227],\n \"772115\": 2215,\n \"7722\": 2222,\n \"772263\": 2216,\n \"7724\": 2224,\n \"772485\": 2191,\n \"7725\": 2222,\n@@ -35317,15 +35315,15 @@\n \"801196\": 2197,\n \"8014\": 2222,\n \"8015\": 2224,\n \"8017\": 2222,\n \"801859\": 2207,\n \"801872\": 2230,\n \"8019\": 2222,\n- \"802\": 2258,\n+ \"802\": [2193, 2258],\n \"8020\": 2230,\n \"8021\": 2222,\n \"802148\": 2230,\n \"802159\": 2205,\n \"802241\": 2199,\n \"802298\": 2210,\n \"802374\": 2235,\n@@ -35721,15 +35719,15 @@\n \"8592\": 2223,\n \"8594\": 2265,\n \"859511\": 2207,\n \"859588\": [2220, 2228, 2230, 2231],\n \"8596\": 2232,\n \"859691\": 2191,\n \"85a3\": 2241,\n- \"86\": [16, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n+ \"86\": [16, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n \"860\": [182, 760, 2199],\n \"860059\": 2204,\n \"8601\": [662, 923, 983, 2199, 2209, 2210, 2230, 2235, 2241, 2271, 2277, 2283, 2298],\n \"8602\": 2224,\n \"860312\": 2199,\n \"8607\": 2223,\n \"860736\": 15,\n@@ -36037,15 +36035,15 @@\n \"899734\": 15,\n \"8999\": 2229,\n \"8a2e\": 2241,\n \"8em\": 2207,\n \"8h\": 2294,\n \"8x\": 2228,\n \"9\": [5, 10, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 63, 69, 72, 73, 74, 77, 79, 81, 84, 88, 92, 108, 109, 111, 113, 120, 129, 137, 144, 146, 160, 163, 171, 173, 183, 185, 186, 187, 197, 199, 203, 204, 206, 212, 213, 215, 216, 217, 220, 221, 222, 228, 234, 244, 256, 265, 274, 275, 280, 284, 341, 345, 440, 564, 566, 583, 591, 595, 600, 603, 616, 635, 720, 738, 741, 761, 762, 763, 787, 788, 888, 895, 907, 912, 923, 1021, 1075, 1147, 1148, 1149, 1150, 1151, 1157, 1160, 1161, 1162, 1163, 1168, 1170, 1171, 1173, 1176, 1178, 1181, 1185, 1186, 1188, 1189, 1191, 1196, 1197, 1200, 1203, 1206, 1209, 1210, 1214, 1217, 1218, 1219, 1220, 1225, 1227, 1228, 1233, 1237, 1240, 1246, 1247, 1249, 1250, 1252, 1257, 1258, 1261, 1265, 1268, 1273, 1277, 1278, 1279, 1288, 1293, 1304, 1321, 1336, 1340, 1400, 1402, 1406, 1407, 1433, 1435, 1436, 1440, 1448, 1454, 1456, 1463, 1478, 1479, 1489, 1490, 1578, 1598, 1677, 1758, 1839, 1876, 1894, 1912, 1964, 2018, 2166, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2224, 2225, 2226, 2227, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2260, 2261, 2265, 2271, 2274, 2276, 2277, 2278, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"90\": [74, 137, 182, 213, 583, 760, 788, 1173, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2249, 2271, 2298],\n+ \"90\": [74, 137, 182, 213, 583, 760, 788, 1173, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2249, 2271, 2298],\n \"900\": [74, 583],\n \"9000\": [2185, 2220, 2224],\n \"900000\": 2218,\n \"90010907\": [624, 1215],\n \"9002\": 2230,\n \"9003\": 2228,\n \"900321\": 2199,\n@@ -36072,15 +36070,14 @@\n \"905122\": 2199,\n \"9052\": 2230,\n \"9054\": 2226,\n \"9057\": 2227,\n \"905793e\": 2204,\n \"905836\": 2215,\n \"9059\": 2227,\n- \"906\": 2205,\n \"9064\": 2225,\n \"9066\": 2225,\n \"9067\": 2202,\n \"9068\": 2226,\n \"9070\": 2249,\n \"9071\": 2225,\n \"907105\": 2229,\n@@ -36098,15 +36095,15 @@\n \"9093\": 2271,\n \"909316\": 2230,\n \"9094\": 2225,\n \"909500\": 2195,\n \"9096\": 2225,\n \"909872\": 2185,\n \"9099\": 2225,\n- \"91\": [15, 182, 760, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2294, 2298],\n+ \"91\": [15, 182, 760, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2294, 2298],\n \"9100\": 2225,\n \"910199\": 2199,\n \"910400\": 28,\n \"911055\": 2195,\n \"911128\": 2207,\n \"911385\": 2207,\n \"9114\": 2232,\n@@ -36575,15 +36572,15 @@\n \"98\": [15, 1447, 2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2230, 2232, 2235, 2238, 2246, 2294],\n \"980\": 2199,\n \"9804\": 2226,\n \"9805\": 2226,\n \"9807\": 2226,\n \"980796\": 2207,\n \"980950\": 2195,\n- \"981\": [2199, 2207],\n+ \"981\": [2193, 2199, 2207],\n \"981293\": 2207,\n \"9816\": 2228,\n \"981683\": 2207,\n \"981845\": 2199,\n \"981981\": 1306,\n \"982\": 2199,\n \"982353\": 29,\n@@ -36936,15 +36933,15 @@\n \"_get_numeric_data\": 2218,\n \"_get_object_pars\": 2199,\n \"_get_opt\": [2202, 2298],\n \"_get_pyarrow_opt\": [2203, 2298],\n \"_get_root\": 2202,\n \"_get_single_kei\": 2202,\n \"_get_slice_axi\": [2185, 2197],\n- \"_get_valu\": [2185, 2191, 2193, 2194, 2197],\n+ \"_get_valu\": [2185, 2191, 2194, 2197],\n \"_getbool_axi\": [2185, 2197],\n \"_getitem_axi\": [2185, 2197],\n \"_getitem_lowerdim\": [2185, 2197],\n \"_getitem_tupl\": [2185, 2197],\n \"_getitem_tuple_same_dim\": 2185,\n \"_handled_typ\": 1031,\n \"_has_inf\": 2221,\n@@ -41581,15 +41578,15 @@\n \"ly\": 2210,\n \"lz4\": [256, 263, 888, 2199, 2236],\n \"lz4hc\": [256, 888, 2199, 2236],\n \"lzip\": 2218,\n \"lzma\": [251, 258, 265, 268, 272, 884, 889, 895, 1469, 1476, 1479, 1480, 1485, 1486, 1487, 2213, 2289, 2298, 2302],\n \"lzmafil\": [251, 258, 265, 268, 272, 884, 889, 895, 1469, 1476, 1479, 1480, 1485, 1486, 1487, 2302],\n \"lzo\": [256, 888, 2199],\n- \"m\": [1, 2, 5, 8, 13, 16, 17, 19, 22, 23, 24, 25, 27, 31, 32, 153, 163, 169, 241, 258, 264, 270, 273, 276, 284, 287, 298, 300, 301, 320, 322, 326, 423, 513, 515, 519, 522, 523, 525, 528, 532, 535, 537, 538, 541, 547, 548, 549, 551, 557, 558, 562, 563, 564, 566, 651, 677, 680, 741, 857, 889, 898, 900, 902, 912, 916, 917, 918, 923, 938, 939, 953, 954, 997, 999, 1000, 1008, 1017, 1051, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1338, 1339, 1340, 1341, 1393, 1397, 1430, 1433, 1446, 1452, 1459, 1464, 1469, 1476, 1482, 1483, 1484, 1486, 1492, 1497, 1498, 1500, 1501, 1578, 1657, 1677, 1699, 1720, 1741, 2186, 2188, 2193, 2197, 2199, 2200, 2201, 2203, 2205, 2207, 2208, 2209, 2210, 2214, 2216, 2218, 2220, 2221, 2222, 2227, 2228, 2230, 2231, 2232, 2238, 2246, 2249, 2257, 2264, 2265, 2271, 2277, 2294, 2298, 2302],\n+ \"m\": [1, 2, 5, 8, 13, 16, 17, 19, 22, 23, 24, 25, 27, 31, 32, 153, 163, 169, 241, 258, 264, 270, 273, 276, 284, 287, 298, 300, 301, 320, 322, 326, 423, 513, 515, 519, 522, 523, 525, 528, 532, 535, 537, 538, 541, 547, 548, 549, 551, 557, 558, 562, 563, 564, 566, 651, 677, 680, 741, 857, 889, 898, 900, 902, 912, 916, 917, 918, 923, 938, 939, 953, 954, 997, 999, 1000, 1008, 1017, 1051, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1338, 1339, 1340, 1341, 1393, 1397, 1430, 1433, 1446, 1452, 1459, 1464, 1469, 1476, 1482, 1483, 1484, 1486, 1492, 1497, 1498, 1500, 1501, 1578, 1657, 1677, 1699, 1720, 1741, 2185, 2186, 2188, 2193, 2197, 2199, 2200, 2201, 2203, 2205, 2207, 2208, 2209, 2210, 2214, 2216, 2218, 2220, 2221, 2222, 2227, 2228, 2230, 2231, 2232, 2238, 2246, 2249, 2257, 2264, 2265, 2271, 2277, 2294, 2298, 2302],\n \"m8\": [46, 1114, 2210, 2216, 2228, 2230, 2298],\n \"ma\": [2211, 2283, 2298],\n \"mac\": [6, 22],\n \"machin\": [1, 2, 4, 11, 16, 19, 22, 1491, 2193, 2194, 2199, 2289],\n \"maco\": [5, 22, 250, 883, 2246, 2249, 2250, 2278],\n \"macro\": 2277,\n \"mactch\": 2200,\n@@ -43747,15 +43744,15 @@\n \"seri\": [2, 3, 7, 8, 10, 12, 13, 14, 15, 18, 21, 24, 25, 26, 29, 32, 33, 34, 35, 41, 45, 46, 51, 52, 53, 56, 57, 61, 62, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 134, 135, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 181, 182, 183, 186, 190, 191, 193, 194, 195, 196, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 240, 241, 242, 243, 244, 245, 249, 252, 256, 258, 261, 271, 273, 275, 276, 277, 278, 279, 280, 281, 283, 284, 285, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 321, 323, 324, 325, 328, 329, 331, 332, 333, 342, 343, 344, 345, 346, 351, 355, 356, 357, 359, 360, 362, 369, 373, 376, 377, 378, 385, 392, 401, 402, 403, 405, 406, 408, 411, 412, 414, 416, 417, 419, 420, 423, 424, 427, 428, 431, 432, 433, 435, 436, 439, 441, 442, 443, 444, 465, 484, 489, 503, 519, 540, 547, 548, 549, 568, 914, 931, 940, 942, 943, 945, 946, 947, 948, 949, 950, 952, 1027, 1028, 1029, 1030, 1031, 1034, 1035, 1040, 1052, 1060, 1064, 1069, 1071, 1072, 1078, 1081, 1084, 1088, 1093, 1097, 1101, 1104, 1110, 1111, 1112, 1113, 1115, 1117, 1118, 1120, 1122, 1141, 1143, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1199, 1200, 1201, 1202, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1345, 1349, 1350, 1352, 1355, 1358, 1360, 1377, 1382, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1394, 1395, 1396, 1397, 1411, 1430, 1436, 1441, 1442, 1446, 1447, 1448, 1449, 1450, 1456, 1457, 1458, 1460, 1463, 1466, 1467, 1476, 1479, 1488, 1490, 1493, 1494, 1496, 1498, 1499, 1500, 2163, 2165, 2167, 2171, 2172, 2173, 2174, 2179, 2183, 2186, 2187, 2190, 2192, 2193, 2194, 2196, 2197, 2198, 2199, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2209, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2223, 2224, 2225, 2226, 2227, 2229, 2230, 2231, 2233, 2234, 2236, 2237, 2239, 2240, 2242, 2243, 2245, 2247, 2248, 2250, 2251, 2253, 2254, 2255, 2256, 2258, 2259, 2260, 2262, 2263, 2264, 2266, 2267, 2269, 2272, 2273, 2274, 2275, 2276, 2277, 2278, 2279, 2280, 2282, 2284, 2285, 2286, 2287, 2288, 2290, 2291, 2293, 2295, 2296, 2297, 2299, 2300, 2301, 2303, 2304, 2306, 2308, 2309],\n \"serial\": [9, 10, 16, 253, 265, 341, 352, 886, 895, 1431, 1474, 1478, 1479, 2172, 2199, 2202, 2215, 2218, 2226, 2228, 2230, 2231, 2235, 2238, 2239, 2261, 2271, 2285, 2289, 2298, 2302],\n \"serialis\": [258, 889, 2225, 2231],\n \"serializ\": 2199,\n \"series1\": 2185,\n \"series2\": [2185, 2211],\n \"series_gen\": 2194,\n- \"series_gener\": 2194,\n+ \"series_gener\": [2193, 2194],\n \"series_minut\": 2210,\n \"series_monthli\": 2210,\n \"series_second\": 2210,\n \"seriesformatt\": [1345, 1391, 1488, 1490, 2202],\n \"seriesgroupbi\": [186, 205, 223, 709, 762, 778, 798, 1147, 1150, 1151, 1157, 1160, 1161, 1162, 1163, 1165, 1166, 1170, 1171, 1176, 1178, 1180, 1181, 1185, 1186, 1188, 1189, 1195, 1196, 1197, 1199, 1200, 1204, 1205, 1268, 1273, 1277, 1278, 1279, 1284, 1287, 1288, 1292, 1293, 2172, 2195, 2220, 2221, 2228, 2232, 2238, 2241, 2246, 2249, 2265, 2266, 2267, 2269, 2271, 2275, 2276, 2277, 2278, 2284, 2286, 2287, 2288, 2289, 2297, 2299, 2302, 2304, 2307, 2308],\n \"serif\": 2207,\n \"seriou\": 2,\n@@ -44978,15 +44975,15 @@\n \"tzfile\": [286, 329, 330, 331, 684, 685, 686, 953, 956, 972, 1013, 1014, 2210, 2221],\n \"tzinfo\": [277, 278, 286, 324, 329, 330, 331, 334, 575, 679, 684, 685, 686, 903, 904, 953, 983, 995, 1001, 1004, 1012, 1344, 2210, 2221, 2222, 2238, 2239, 2241, 2283, 2294, 2303],\n \"tzlocal\": [2232, 2246, 2298],\n \"tzname\": 2294,\n \"tzoffset\": 2222,\n \"tzser\": 575,\n \"tzutc\": [2210, 2246],\n- \"u\": [1, 3, 4, 5, 7, 13, 17, 18, 31, 203, 258, 287, 311, 330, 331, 532, 663, 664, 685, 686, 889, 905, 909, 916, 917, 918, 920, 921, 927, 930, 938, 939, 941, 946, 953, 954, 957, 995, 1017, 1085, 1087, 1088, 1204, 1476, 1482, 1483, 1484, 1498, 1500, 2163, 2184, 2185, 2186, 2193, 2194, 2195, 2199, 2203, 2205, 2207, 2208, 2209, 2210, 2218, 2222, 2226, 2228, 2230, 2235, 2238, 2241, 2246, 2249, 2294, 2298, 2302, 2307],\n+ \"u\": [1, 3, 4, 5, 7, 13, 17, 18, 31, 203, 258, 287, 311, 330, 331, 532, 663, 664, 685, 686, 889, 905, 909, 916, 917, 918, 920, 921, 927, 930, 938, 939, 941, 946, 953, 954, 957, 995, 1017, 1085, 1087, 1088, 1204, 1476, 1482, 1483, 1484, 1498, 1500, 2163, 2184, 2185, 2186, 2193, 2194, 2195, 2199, 2203, 2207, 2208, 2209, 2210, 2222, 2226, 2228, 2230, 2235, 2238, 2241, 2246, 2249, 2294, 2298, 2302, 2307],\n \"u1\": [131, 1118, 2185, 2186, 2199],\n \"u4\": 2197,\n \"u5\": 2197,\n \"u8\": 2186,\n \"ubuntu\": 5,\n \"udf\": [72, 73, 77, 273, 581, 582, 586, 900, 1148, 1149, 1152, 1168, 1203, 1207, 1208, 1211, 1225, 1264, 1269, 1270, 1304, 1321, 2195, 2196, 2294],\n \"ufunc\": [10, 586, 808, 1031, 2185, 2186, 2191, 2206, 2213, 2219, 2221, 2232, 2246, 2265, 2277, 2281, 2289, 2293, 2294, 2298, 2307],\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "unified_diff": "@@ -1849,25 +1849,25 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....: \n-514 us +- 4.9 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-195 us +- 1.17 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+7 ms +- 342 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+4.14 ms +- 772 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n \n \n
In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n    .....: %timeit ser.take(indexer)\n    .....: \n-488 us +- 10.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-422 us +- 5.13 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+4.38 ms +- 635 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+4.85 ms +- 219 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n \n
\n

Index types\u00b6

\n

We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown here,\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -1257,23 +1257,23 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....:\n-514 us +- 4.9 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-195 us +- 1.17 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+7 ms +- 342 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+4.14 ms +- 772 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n .....: %timeit ser.take(indexer)\n .....:\n-488 us +- 10.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-422 us +- 5.13 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+4.38 ms +- 635 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+4.85 ms +- 219 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n *\b**\b**\b**\b**\b* I\bIn\bnd\bde\bex\bx t\bty\byp\bpe\bes\bs_\b?\b\u00b6 *\b**\b**\b**\b**\b*\n We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown _\bh_\be_\br_\be, and\n documentation about TimedeltaIndex is found _\bh_\be_\br_\be.\n In the following sub-sections we will highlight some other index types.\n *\b**\b**\b**\b* C\bCa\bat\bte\beg\bgo\bor\bri\bic\bca\bal\blI\bIn\bnd\bde\bex\bx_\b?\b\u00b6 *\b**\b**\b**\b*\n _\bC_\ba_\bt_\be_\bg_\bo_\br_\bi_\bc_\ba_\bl_\bI_\bn_\bd_\be_\bx is a type of index that is useful for supporting indexing with\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "unified_diff": "@@ -529,31 +529,31 @@\n ...: s += f(a + i * dx)\n ...: return s * dx\n ...: \n \n \n

We achieve our result by using DataFrame.apply() (row-wise):

\n
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)\n-237 ms +- 3.18 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+2.2 s +- 146 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n

Let\u2019s take a look and see where the time is spent during this operation\n using the prun ipython magic function:

\n
# most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 0.712 seconds\n+         605946 function calls (605928 primitive calls) in 6.669 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.415    0.000    0.615    0.001 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n-   552423    0.201    0.000    0.201    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n-     3000    0.016    0.000    0.060    0.000 series.py:1095(__getitem__)\n-     3000    0.011    0.000    0.027    0.000 series.py:1220(_get_value)\n+     1000    3.713    0.004    5.694    0.006 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n+   552423    1.981    0.000    1.981    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n+     3000    0.202    0.000    0.711    0.000 series.py:1095(__getitem__)\n+     3000    0.118    0.000    0.149    0.000 base.py:3777(get_loc)\n 
\n
\n

By far the majority of time is spend inside either integrate_f or f,\n hence we\u2019ll concentrate our efforts cythonizing these two functions.

\n
\n
\n

Plain Cython\u00b6

\n@@ -571,15 +571,15 @@\n ...: for i in range(N):\n ...: s += f_plain(a + i * dx)\n ...: return s * dx\n ...: \n \n \n
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)\n-249 ms +- 5.8 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+1.5 s +- 108 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n

This has improved the performance compared to the pure Python approach by one-third.

\n
\n
\n

Declaring C types\u00b6

\n

We can annotate the function variables and return types as well as use cdef\n@@ -595,36 +595,36 @@\n ....: for i in range(N):\n ....: s += f_typed(a + i * dx)\n ....: return s * dx\n ....: \n \n \n

In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-36.9 ms +- 217 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+291 ms +- 25.6 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n

Annotating the functions with C types yields an over ten times performance improvement compared to\n the original Python implementation.

\n
\n
\n

Using ndarray\u00b6

\n

When re-profiling, time is spent creating a Series from each row, and calling __getitem__ from both\n the index and the series (three times for each row). These Python function calls are expensive and\n can be improved by passing an np.ndarray.

\n
In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.088 seconds\n+         52523 function calls (52505 primitive calls) in 0.802 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.014    0.000    0.056    0.000 series.py:1095(__getitem__)\n-     3000    0.009    0.000    0.024    0.000 series.py:1220(_get_value)\n-    16098    0.009    0.000    0.012    0.000 {built-in method builtins.isinstance}\n-     3000    0.008    0.000    0.009    0.000 base.py:3777(get_loc)\n+     3000    0.099    0.000    0.444    0.000 series.py:1095(__getitem__)\n+    16098    0.097    0.000    0.130    0.000 {built-in method builtins.isinstance}\n+     3000    0.078    0.000    0.081    0.000 base.py:3777(get_loc)\n+     1001    0.076    0.000    0.169    0.000 apply.py:1247(series_generator)\n 
\n
\n
In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n@@ -659,33 +659,33 @@\n 
\n

This implementation creates an array of zeros and inserts the result\n of integrate_f_typed applied over each row. Looping over an ndarray is faster\n in Cython than looping over a Series object.

\n

Since apply_integrate_f is typed to accept an np.ndarray, Series.to_numpy()\n calls are needed to utilize this function.

\n
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-3.1 ms +- 14.7 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+39.6 ms +- 4.91 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

Performance has improved from the prior implementation by almost ten times.

\n
\n
\n

Disabling compiler directives\u00b6

\n

The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s boundscheck\n and wraparound checks can yield more performance.

\n
In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-         78 function calls in 0.004 seconds\n+         78 function calls in 0.055 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-        1    0.003    0.003    0.003    0.003 <string>:1(<module>)\n+        1    0.054    0.054    0.054    0.054 <string>:1(<module>)\n         1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}\n-        1    0.000    0.000    0.003    0.003 {built-in method builtins.exec}\n+        1    0.000    0.000    0.055    0.055 {built-in method builtins.exec}\n         3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n 
\n
\n
In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n@@ -1117,19 +1117,19 @@\n compared to standard Python syntax for large DataFrame. This engine requires the\n optional dependency numexpr to be installed.

\n

The 'python' engine is generally not useful except for testing\n other evaluation engines against it. You will achieve no performance\n benefits using eval() with engine='python' and may\n incur a performance hit.

\n
In [40]: %timeit df1 + df2 + df3 + df4\n-26.2 ms +- 355 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+307 ms +- 86.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")\n-28.7 ms +- 627 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+293 ms +- 55 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
\n
\n

The DataFrame.eval() method\u00b6

\n

In addition to the top level pandas.eval() function you can also\n evaluate an expression in the \u201ccontext\u201d of a DataFrame.

\n@@ -1244,39 +1244,39 @@\n
In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]\n 
\n
\n

DataFrame arithmetic:

\n
In [60]: %timeit df1 + df2 + df3 + df4\n-27.1 ms +- 210 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+192 ms +- 23.3 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")\n-15.8 ms +- 318 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+103 ms +- 14.8 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

DataFrame comparison:

\n
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-48.7 ms +- 561 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+300 ms +- 38.5 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")\n-22.9 ms +- 90.3 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+158 ms +- 10.3 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

DataFrame arithmetic with unaligned axes.

\n
In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-49 ms +- 425 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+492 ms +- 74.5 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")\n-18.1 ms +- 382 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+136 ms +- 14.3 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
\n

Note

\n

Operations such as

\n
1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -113,32 +113,32 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f(a + i * dx)\n    ...:     return s * dx\n    ...:\n We achieve our result by using _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\ba_\bp_\bp_\bl_\by_\b(_\b) (row-wise):\n In [5]: %timeit df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]), axis=1)\n-237 ms +- 3.18 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+2.2 s +- 146 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n Let\u2019s take a look and see where the time is spent during this operation using\n the _\bp_\br_\bu_\bn_\b _\bi_\bp_\by_\bt_\bh_\bo_\bn_\b _\bm_\ba_\bg_\bi_\bc_\b _\bf_\bu_\bn_\bc_\bt_\bi_\bo_\bn:\n # most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 0.712 seconds\n+         605946 function calls (605928 primitive calls) in 6.669 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.415    0.000    0.615    0.001 :1\n+     1000    3.713    0.004    5.694    0.006 :1\n (integrate_f)\n-   552423    0.201    0.000    0.201    0.000 :1\n+   552423    1.981    0.000    1.981    0.000 :1\n (f)\n-     3000    0.016    0.000    0.060    0.000 series.py:1095(__getitem__)\n-     3000    0.011    0.000    0.027    0.000 series.py:1220(_get_value)\n+     3000    0.202    0.000    0.711    0.000 series.py:1095(__getitem__)\n+     3000    0.118    0.000    0.149    0.000 base.py:3777(get_loc)\n By far the majority of time is spend inside either integrate_f or f, hence\n we\u2019ll concentrate our efforts cythonizing these two functions.\n *\b**\b**\b**\b* P\bPl\bla\bai\bin\bn C\bCy\byt\bth\bho\bon\bn_\b?\b\u00b6 *\b**\b**\b**\b*\n First we\u2019re going to need to import the Cython magic function to IPython:\n In [7]: %load_ext Cython\n Now, let\u2019s simply copy our functions over to Cython:\n In [8]: %%cython\n@@ -149,15 +149,15 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f_plain(a + i * dx)\n    ...:     return s * dx\n    ...:\n In [9]: %timeit df.apply(lambda x: integrate_f_plain(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-249 ms +- 5.8 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+1.5 s +- 108 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n This has improved the performance compared to the pure Python approach by one-\n third.\n *\b**\b**\b**\b* D\bDe\bec\bcl\bla\bar\bri\bin\bng\bg C\bC t\bty\byp\bpe\bes\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n We can annotate the function variables and return types as well as use cdef and\n cpdef to improve performance:\n In [10]: %%cython\n    ....: cdef double f_typed(double x) except? -2:\n@@ -169,35 +169,35 @@\n    ....:     dx = (b - a) / N\n    ....:     for i in range(N):\n    ....:         s += f_typed(a + i * dx)\n    ....:     return s * dx\n    ....:\n In [11]: %timeit df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-36.9 ms +- 217 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+291 ms +- 25.6 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n Annotating the functions with C types yields an over ten times performance\n improvement compared to the original Python implementation.\n *\b**\b**\b**\b* U\bUs\bsi\bin\bng\bg n\bnd\bda\bar\brr\bra\bay\by_\b?\b\u00b6 *\b**\b**\b**\b*\n When re-profiling, time is spent creating a _\bS_\be_\br_\bi_\be_\bs from each row, and calling\n __getitem__ from both the index and the series (three times for each row).\n These Python function calls are expensive and can be improved by passing an\n np.ndarray.\n In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x\n [\"N\"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.088 seconds\n+         52523 function calls (52505 primitive calls) in 0.802 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.014    0.000    0.056    0.000 series.py:1095(__getitem__)\n-     3000    0.009    0.000    0.024    0.000 series.py:1220(_get_value)\n-    16098    0.009    0.000    0.012    0.000 {built-in method\n+     3000    0.099    0.000    0.444    0.000 series.py:1095(__getitem__)\n+    16098    0.097    0.000    0.130    0.000 {built-in method\n builtins.isinstance}\n-     3000    0.008    0.000    0.009    0.000 base.py:3777(get_loc)\n+     3000    0.078    0.000    0.081    0.000 base.py:3777(get_loc)\n+     1001    0.076    0.000    0.169    0.000 apply.py:1247(series_generator)\n In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n    ....: cpdef double integrate_f_typed(double a, double b, int N):\n    ....:     cdef int i\n@@ -238,31 +238,31 @@\n This implementation creates an array of zeros and inserts the result of\n integrate_f_typed applied over each row. Looping over an ndarray is faster in\n Cython than looping over a _\bS_\be_\br_\bi_\be_\bs object.\n Since apply_integrate_f is typed to accept an np.ndarray, _\bS_\be_\br_\bi_\be_\bs_\b._\bt_\bo_\b__\bn_\bu_\bm_\bp_\by_\b(_\b)\n calls are needed to utilize this function.\n In [14]: %timeit apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(), df\n [\"N\"].to_numpy())\n-3.1 ms +- 14.7 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+39.6 ms +- 4.91 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Performance has improved from the prior implementation by almost ten times.\n *\b**\b**\b**\b* D\bDi\bis\bsa\bab\bbl\bli\bin\bng\bg c\bco\bom\bmp\bpi\bil\ble\ber\br d\bdi\bir\bre\bec\bct\bti\biv\bve\bes\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s\n boundscheck and wraparound checks can yield more performance.\n In [15]: %prun -l 4 apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n-         78 function calls in 0.004 seconds\n+         78 function calls in 0.055 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-        1    0.003    0.003    0.003    0.003 :1()\n+        1    0.054    0.054    0.054    0.054 :1()\n         1    0.000    0.000    0.000    0.000 {method 'disable' of\n '_lsprof.Profiler' objects}\n-        1    0.000    0.000    0.003    0.003 {built-in method builtins.exec}\n+        1    0.000    0.000    0.055    0.055 {built-in method builtins.exec}\n         3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:\n    ....:     return x * (x - 1)\n@@ -649,17 +649,17 @@\n The 'numexpr' engine is the more performant engine that can yield performance\n improvements compared to standard Python syntax for large _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be. This\n engine requires the optional dependency numexpr to be installed.\n The 'python' engine is generally n\bno\bot\bt useful except for testing other evaluation\n engines against it. You will achieve n\bno\bo performance benefits using _\be_\bv_\ba_\bl_\b(_\b) with\n engine='python' and may incur a performance hit.\n In [40]: %timeit df1 + df2 + df3 + df4\n-26.2 ms +- 355 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+307 ms +- 86.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [41]: %timeit pd.eval(\"df1 + df2 + df3 + df4\", engine=\"python\")\n-28.7 ms +- 627 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+293 ms +- 55 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n *\b**\b**\b**\b* T\bTh\bhe\be _\bD\bD_\ba\ba_\bt\bt_\ba\ba_\bF\bF_\br\br_\ba\ba_\bm\bm_\be\be_\b.\b._\be\be_\bv\bv_\ba\ba_\bl\bl_\b(\b(_\b)\b) m\bme\bet\bth\bho\bod\bd_\b?\b\u00b6 *\b**\b**\b**\b*\n In addition to the top level _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) function you can also evaluate an\n expression in the \u201ccontext\u201d of a _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be.\n In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=[\"a\", \"b\"])\n \n In [43]: df.eval(\"a + b\")\n Out[43]:\n@@ -756,29 +756,29 @@\n _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) works well with expressions containing large arrays.\n In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for\n _ in range(4)]\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic:\n In [60]: %timeit df1 + df2 + df3 + df4\n-27.1 ms +- 210 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+192 ms +- 23.3 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [61]: %timeit pd.eval(\"df1 + df2 + df3 + df4\")\n-15.8 ms +- 318 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+103 ms +- 14.8 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be comparison:\n In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-48.7 ms +- 561 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+300 ms +- 38.5 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [63]: %timeit pd.eval(\"(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\")\n-22.9 ms +- 90.3 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+158 ms +- 10.3 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic with unaligned axes.\n In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-49 ms +- 425 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+492 ms +- 74.5 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [66]: %timeit pd.eval(\"df1 + df2 + df3 + df4 + s\")\n-18.1 ms +- 382 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+136 ms +- 14.3 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Note\n Operations such as\n 1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n ~1  # this is okay, but slower when using eval\n should be performed in Python. An exception will be raised if you try to\n perform any boolean/bitwise operations with scalar operands that are not of\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "unified_diff": "@@ -916,16 +916,16 @@\n    ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")\n    ....: counts = pd.Series(dtype=int)\n    ....: for path in files:\n    ....:     df = pd.read_parquet(path)\n    ....:     counts = counts.add(df["name"].value_counts(), fill_value=0)\n    ....: counts.astype(int)\n    ....: \n-CPU times: user 906 us, sys: 196 us, total: 1.1 ms\n-Wall time: 1.12 ms\n+CPU times: user 2.62 ms, sys: 0 ns, total: 2.62 ms\n+Wall time: 2.66 ms\n Out[32]: Series([], dtype: int32)\n 
\n
\n

Some readers, like pandas.read_csv(), offer parameters to control the\n chunksize when reading a single file.

\n

Manually chunking is an OK option for workflows that don\u2019t\n require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby(), are\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -633,16 +633,16 @@\n ....: files = pathlib.Path(\"data/timeseries/\").glob(\"ts*.parquet\")\n ....: counts = pd.Series(dtype=int)\n ....: for path in files:\n ....: df = pd.read_parquet(path)\n ....: counts = counts.add(df[\"name\"].value_counts(), fill_value=0)\n ....: counts.astype(int)\n ....:\n-CPU times: user 906 us, sys: 196 us, total: 1.1 ms\n-Wall time: 1.12 ms\n+CPU times: user 2.62 ms, sys: 0 ns, total: 2.62 ms\n+Wall time: 2.66 ms\n Out[32]: Series([], dtype: int32)\n Some readers, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\br_\be_\ba_\bd_\b__\bc_\bs_\bv_\b(_\b), offer parameters to control the chunksize\n when reading a single file.\n Manually chunking is an OK option for workflows that don\u2019t require too\n sophisticated of operations. Some operations, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\bg_\br_\bo_\bu_\bp_\bb_\by_\b(_\b),\n are much harder to do chunkwise. In these cases, you may be better switching to\n a different library that implements these out-of-core algorithms for you.\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "unified_diff": null, "details": [{"source1": "style.ipynb", "source2": "style.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9985610875706213%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2024-07-06T02:08:40.249358Z', \"", " \"'iopub.status.busy': '2024-07-06T02:08:40.243785Z', 'iopub.status.idle': \"", " \"'2024-07-06T02:08:51.116741Z', 'shell.execute_reply': \"", " \"'2024-07-06T02:08:51.113263Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2024-07-06T02:08:51.168918Z', 'iopub.status.busy': \"", " \"'2024-07-06T02:08:51.167459Z', 'iopub.status.idle': '2024-07-06T02:09:0 [\u2026]"], "unified_diff": "@@ -39,18 +39,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2024-07-05T19:16:59.733379Z\",\n- \"iopub.status.busy\": \"2024-07-05T19:16:59.732659Z\",\n- \"iopub.status.idle\": \"2024-07-05T19:17:00.952388Z\",\n- \"shell.execute_reply\": \"2024-07-05T19:17:00.950052Z\"\n+ \"iopub.execute_input\": \"2024-07-06T02:08:40.249358Z\",\n+ \"iopub.status.busy\": \"2024-07-06T02:08:40.243785Z\",\n+ \"iopub.status.idle\": \"2024-07-06T02:08:51.116741Z\",\n+ \"shell.execute_reply\": \"2024-07-06T02:08:51.113263Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot\\n\",\n \"# We have this here to trigger matplotlib's font cache stuff.\\n\",\n@@ -77,36 +77,36 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2024-07-05T19:17:00.960637Z\",\n- \"iopub.status.busy\": \"2024-07-05T19:17:00.959665Z\",\n- \"iopub.status.idle\": \"2024-07-05T19:17:01.552885Z\",\n- \"shell.execute_reply\": \"2024-07-05T19:17:01.551133Z\"\n+ \"iopub.execute_input\": \"2024-07-06T02:08:51.168918Z\",\n+ \"iopub.status.busy\": \"2024-07-06T02:08:51.167459Z\",\n+ \"iopub.status.idle\": \"2024-07-06T02:09:02.029997Z\",\n+ \"shell.execute_reply\": \"2024-07-06T02:09:02.009884Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import pandas as pd\\n\",\n \"import numpy as np\\n\",\n \"import matplotlib as mpl\\n\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2024-07-05T19:17:01.559942Z\",\n- \"iopub.status.busy\": \"2024-07-05T19:17:01.559033Z\",\n- \"iopub.status.idle\": \"2024-07-05T19:17:01.718487Z\",\n- \"shell.execute_reply\": \"2024-07-05T19:17:01.716460Z\"\n+ \"iopub.execute_input\": \"2024-07-06T02:09:02.092185Z\",\n+ \"iopub.status.busy\": \"2024-07-06T02:09:02.064261Z\",\n+ \"iopub.status.idle\": \"2024-07-06T02:09:03.775360Z\",\n+ \"shell.execute_reply\": \"2024-07-06T02:09:03.766935Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\\n\",\n \"from pandas.io.formats.style import Styler\\n\",\n@@ -123,18 +123,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2024-07-05T19:17:01.726961Z\",\n- \"iopub.status.busy\": \"2024-07-05T19:17:01.725982Z\",\n- \"iopub.status.idle\": \"2024-07-05T19:17:01.755189Z\",\n- \"shell.execute_reply\": \"2024-07-05T19:17:01.753495Z\"\n+ \"iopub.execute_input\": \"2024-07-06T02:09:03.813633Z\",\n+ \"iopub.status.busy\": \"2024-07-06T02:09:03.798433Z\",\n+ \"iopub.status.idle\": \"2024-07-06T02:09:04.059994Z\",\n+ \"shell.execute_reply\": \"2024-07-06T02:09:04.034146Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/html\": [\n \"