{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.6uMKcTTY/b1/python-xarray_2025.03.1-3_i386.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.6uMKcTTY/b2/python-xarray_2025.03.1-3_i386.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,3 +1,3 @@\n \n- ec614bd844c02b8cb60ad0336536ed0a 4464228 doc optional python-xarray-doc_2025.03.1-3_all.deb\n+ 8e8cdea3205d1b7f21294919ca22f5ae 4464144 doc optional python-xarray-doc_2025.03.1-3_all.deb\n 40c2fa3337ac78a106991f38c5e5693c 819384 python optional python3-xarray_2025.03.1-3_all.deb\n"}, {"source1": "python-xarray-doc_2025.03.1-3_all.deb", "source2": "python-xarray-doc_2025.03.1-3_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2025-04-21 13:55:07.000000 debian-binary\n -rw-r--r-- 0 0 0 7364 2025-04-21 13:55:07.000000 control.tar.xz\n--rw-r--r-- 0 0 0 4456672 2025-04-21 13:55:07.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 4456588 2025-04-21 13:55:07.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./control", "source2": "./control", "unified_diff": "@@ -1,13 +1,13 @@\n Package: python-xarray-doc\n Source: python-xarray\n Version: 2025.03.1-3\n Architecture: all\n Maintainer: Debian Science Maintainers \n-Installed-Size: 13791\n+Installed-Size: 13790\n Depends: libjs-sphinxdoc (>= 8.1), libjs-mathjax, libjs-requirejs\n Built-Using: alabaster (= 0.7.16-0.1), sphinx (= 8.1.3-5)\n Section: doc\n Priority: optional\n Multi-Arch: foreign\n Homepage: https://xarray.pydata.org/\n Description: documentation for xarray\n"}, {"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -269,31 +269,31 @@\n -rw-r--r-- 0 root (0) root (0) 461 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/dask.html\n -rw-r--r-- 0 root (0) root (0) 494 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/data-structures.html\n -rw-r--r-- 0 root (0) root (0) 8448 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/developers-meeting.html\n -rw-r--r-- 0 root (0) root (0) 479 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/duckarrays.html\n -rw-r--r-- 0 root (0) root (0) 22909 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/ecosystem.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/\n -rw-r--r-- 0 root (0) root (0) 21694 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/ERA5-GRIB-example.html\n--rw-r--r-- 0 root (0) root (0) 1826 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/ERA5-GRIB-example.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 1828 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/ERA5-GRIB-example.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 38490 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/ROMS_ocean_model.html\n--rw-r--r-- 0 root (0) root (0) 23755 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/ROMS_ocean_model.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 23751 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/ROMS_ocean_model.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 116838 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/apply_ufunc_vectorize_1d.html\n--rw-r--r-- 0 root (0) root (0) 8763 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/apply_ufunc_vectorize_1d.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 8771 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/apply_ufunc_vectorize_1d.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 27577 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/area_weighted_temperature.html\n--rw-r--r-- 0 root (0) root (0) 21010 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/area_weighted_temperature.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 21011 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/area_weighted_temperature.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 11448 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/blank_template.html\n -rw-r--r-- 0 root (0) root (0) 2375 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/blank_template.ipynb\n -rw-r--r-- 0 root (0) root (0) 38981 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/monthly-means.html\n--rw-r--r-- 0 root (0) root (0) 3204 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/monthly-means.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 3203 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/monthly-means.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 30434 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/multidimensional-coords.html\n--rw-r--r-- 0 root (0) root (0) 3227 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/multidimensional-coords.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 3225 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/multidimensional-coords.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 36876 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/visualization_gallery.html\n--rw-r--r-- 0 root (0) root (0) 2850 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/visualization_gallery.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 2847 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/visualization_gallery.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 46324 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/weather-data.html\n--rw-r--r-- 0 root (0) root (0) 3549 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/weather-data.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 3551 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/examples/weather-data.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 491 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/faq.html\n -rw-r--r-- 0 root (0) root (0) 15073 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/gallery.html\n -rw-r--r-- 0 root (0) root (0) 16306 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/genindex.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/getting-started-guide/\n -rw-r--r-- 0 root (0) root (0) 51674 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/getting-started-guide/faq.html\n -rw-r--r-- 0 root (0) root (0) 7741 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/getting-started-guide/index.html\n -rw-r--r-- 0 root (0) root (0) 25661 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/getting-started-guide/installing.html\n@@ -323,15 +323,15 @@\n -rw-r--r-- 0 root (0) root (0) 473 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/plotting.html\n -rw-r--r-- 0 root (0) root (0) 6546 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/py-modindex.html\n -rw-r--r-- 0 root (0) root (0) 524 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/quick-overview.html\n -rw-r--r-- 0 root (0) root (0) 443 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/related-projects.html\n -rw-r--r-- 0 root (0) root (0) 476 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 24428 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/roadmap.html\n -rw-r--r-- 0 root (0) root (0) 6341 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/search.html\n--rw-r--r-- 0 root (0) root (0) 253665 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 253503 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/searchindex.js\n -rw-r--r-- 0 root (0) root (0) 482 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/terminology.html\n -rw-r--r-- 0 root (0) root (0) 482 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/time-series.html\n -rw-r--r-- 0 root (0) root (0) 13358 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/tutorials-and-videos.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/\n -rw-r--r-- 0 root (0) root (0) 58669 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/combining.html\n -rw-r--r-- 0 root (0) root (0) 140306 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/computation.html\n -rw-r--r-- 0 root (0) root (0) 71357 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/dask.html\n@@ -344,15 +344,15 @@\n -rw-r--r-- 0 root (0) root (0) 68746 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/interpolation.html\n -rw-r--r-- 0 root (0) root (0) 147662 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/io.html\n -rw-r--r-- 0 root (0) root (0) 11704 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/options.html\n -rw-r--r-- 0 root (0) root (0) 42216 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/pandas.html\n -rw-r--r-- 0 root (0) root (0) 135242 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/plotting.html\n -rw-r--r-- 0 root (0) root (0) 63000 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 46813 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/terminology.html\n--rw-r--r-- 0 root (0) root (0) 50101 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/testing.html\n+-rw-r--r-- 0 root (0) root (0) 48145 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/testing.html\n -rw-r--r-- 0 root (0) root (0) 53732 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/time-series.html\n -rw-r--r-- 0 root (0) root (0) 47294 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/user-guide/weather-climate.html\n -rw-r--r-- 0 root (0) root (0) 494 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/weather-climate.html\n -rw-r--r-- 0 root (0) root (0) 1051854 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/whats-new.html\n -rw-r--r-- 0 root (0) root (0) 512 2025-04-21 13:55:07.000000 ./usr/share/doc/python-xarray-doc/html/why-xarray.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-04-21 13:55:07.000000 ./usr/share/doc-base/\n -rw-r--r-- 0 root (0) root (0) 290 2025-04-19 13:36:33.000000 ./usr/share/doc-base/python-xarray-doc.python-xarray-doc\n"}, {"source1": "./usr/share/doc/python-xarray-doc/html/examples/ERA5-GRIB-example.ipynb.gz", "source2": "./usr/share/doc/python-xarray-doc/html/examples/ERA5-GRIB-example.ipynb.gz", "unified_diff": null, "details": [{"source1": "ERA5-GRIB-example.ipynb", "source2": "ERA5-GRIB-example.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9985795454545454%", "Differences: {\"'cells'\": \"{2: {'metadata': {'execution': {'iopub.execute_input': '2025-04-21T23:17:17.998005Z', \"", " \"'iopub.status.busy': '2025-04-21T23:17:17.997767Z', 'iopub.status.idle': \"", " \"'2025-04-21T23:17:18.141585Z', 'shell.execute_reply': \"", " \"'2025-04-21T23:17:18.141026Z'}}}, 4: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2025-04-21T23:17:18.176993Z', 'iopub.status.busy': \"", " \"'2025-04-21T23:17:18.176717Z', 'iopub.status.idle': '2025-04-21T23:17:1 [\u2026]"], "unified_diff": "@@ -15,18 +15,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:54.419233Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:54.418970Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:54.563877Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:54.563346Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:17.998005Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:17.997767Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:18.141585Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:18.141026Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"ModuleNotFoundError\",\n \"evalue\": \"No module named 'xarray'\",\n \"output_type\": \"error\",\n@@ -51,18 +51,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:54.599427Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:54.599183Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:54.612151Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:54.611631Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:18.176993Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:18.176717Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:18.189934Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:18.189404Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -86,18 +86,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:54.614159Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:54.613919Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:54.626218Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:54.625704Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:18.191943Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:18.191713Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:18.204226Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:18.203712Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -122,18 +122,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:54.628288Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:54.628057Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:54.763259Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:54.762674Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:18.206191Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:18.205965Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:18.339323Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:18.338782Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'plt' is not defined\",\n \"output_type\": \"error\",\n@@ -166,18 +166,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 5,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:54.765494Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:54.765257Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:54.777661Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:54.777140Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:18.341439Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:18.341188Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:18.353707Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:18.353149Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n"}]}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/examples/ROMS_ocean_model.ipynb.gz", "source2": "./usr/share/doc/python-xarray-doc/html/examples/ROMS_ocean_model.ipynb.gz", "unified_diff": null, "details": [{"source1": "ROMS_ocean_model.ipynb", "source2": "ROMS_ocean_model.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9988051470588235%", "Differences: {\"'cells'\": \"{2: {'metadata': {'execution': {'iopub.execute_input': '2025-04-21T23:17:20.650335Z', \"", " \"'iopub.status.busy': '2025-04-21T23:17:20.650097Z', 'iopub.status.idle': \"", " \"'2025-04-21T23:17:21.709970Z', 'shell.execute_reply': \"", " \"'2025-04-21T23:17:21.709387Z'}}}, 5: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2025-04-21T23:17:21.712181Z', 'iopub.status.busy': \"", " \"'2025-04-21T23:17:21.711932Z', 'iopub.status.idle': '2025-04-21T23:17:2 [\u2026]"], "unified_diff": "@@ -17,18 +17,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:56.310879Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:56.310644Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:57.142909Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:57.142358Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:20.650335Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:20.650097Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:21.709970Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:21.709387Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"ModuleNotFoundError\",\n \"evalue\": \"No module named 'xarray'\",\n \"output_type\": \"error\",\n@@ -87,18 +87,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:57.145044Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:57.144803Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:57.158080Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:57.157553Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:21.712181Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:21.711932Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:21.725850Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:21.725280Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -137,18 +137,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:57.159994Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:57.159762Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:57.176156Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:57.175636Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:21.727904Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:21.727671Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:21.745094Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:21.744562Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -182,18 +182,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:57.177990Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:57.177759Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:57.195137Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:57.194618Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:21.747128Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:21.746894Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:21.765366Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:21.764864Z\"\n },\n \"scrolled\": false\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n@@ -218,18 +218,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 5,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:57.197022Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:57.196793Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:57.210475Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:57.209948Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:21.767314Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:21.767083Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:21.781980Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:21.781423Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -257,18 +257,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 6,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:57.212407Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:57.212175Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:57.224915Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:57.224389Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:21.784014Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:21.783781Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:21.797915Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:21.797173Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -292,18 +292,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 7,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:57.226787Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:57.226559Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:57.319234Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:57.318684Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:21.800013Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:21.799780Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:21.897515Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:21.896895Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n"}]}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/examples/apply_ufunc_vectorize_1d.ipynb.gz", "source2": "./usr/share/doc/python-xarray-doc/html/examples/apply_ufunc_vectorize_1d.ipynb.gz", "unified_diff": null, "details": [{"source1": "apply_ufunc_vectorize_1d.ipynb", "source2": "apply_ufunc_vectorize_1d.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9994283536585367%", "Differences: {\"'cells'\": \"{2: {'metadata': {'execution': {'iopub.execute_input': '2025-04-21T23:17:23.603228Z', \"", " \"'iopub.status.busy': '2025-04-21T23:17:23.602995Z', 'iopub.status.idle': \"", " \"'2025-04-21T23:17:23.755837Z', 'shell.execute_reply': \"", " \"'2025-04-21T23:17:23.755284Z'}}}, 4: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2025-04-21T23:17:23.757922Z', 'iopub.status.busy': \"", " \"'2025-04-21T23:17:23.757684Z', 'iopub.status.idle': '2025-04-21T23:17:2 [\u2026]"], "unified_diff": "@@ -36,18 +36,18 @@\n \"execution_count\": 1,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:45:51.659160Z\",\n \"start_time\": \"2020-01-15T14:45:50.528742Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:58.897555Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:58.897322Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.041066Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.040528Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.603228Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.602995Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.755837Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.755284Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"ModuleNotFoundError\",\n \"evalue\": \"No module named 'xarray'\",\n \"output_type\": \"error\",\n@@ -85,18 +85,18 @@\n \"execution_count\": 2,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:45:55.431708Z\",\n \"start_time\": \"2020-01-15T14:45:55.104701Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.043157Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.042907Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.055526Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.055011Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.757922Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.757684Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.770627Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.770106Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'np' is not defined\",\n \"output_type\": \"error\",\n@@ -125,18 +125,18 @@\n \"execution_count\": 3,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:45:57.889496Z\",\n \"start_time\": \"2020-01-15T14:45:57.792269Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.057427Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.057197Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.071881Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.071322Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.772506Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.772279Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.786852Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.786336Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'air' is not defined\",\n \"output_type\": \"error\",\n@@ -184,18 +184,18 @@\n \"execution_count\": 4,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:45:59.768626Z\",\n \"start_time\": \"2020-01-15T14:45:59.543808Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.073812Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.073585Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.086151Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.085632Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.788990Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.788762Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.801325Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.800805Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -250,18 +250,18 @@\n \"execution_count\": 5,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:46:02.187012Z\",\n \"start_time\": \"2020-01-15T14:46:02.105563Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.088149Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.087919Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.100931Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.100410Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.803610Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.803382Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.816487Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.815959Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -328,18 +328,18 @@\n \"execution_count\": 6,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:46:05.031672Z\",\n \"start_time\": \"2020-01-15T14:46:04.947588Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.102896Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.102666Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.115998Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.115468Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.818638Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.818410Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.831642Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.831115Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -374,18 +374,18 @@\n \"execution_count\": 7,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:46:09.325218Z\",\n \"start_time\": \"2020-01-15T14:46:09.303020Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.117891Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.117663Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.131530Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.131008Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.833707Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.833479Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.847154Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.846632Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -422,18 +422,18 @@\n \"execution_count\": 8,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:46:11.295440Z\",\n \"start_time\": \"2020-01-15T14:46:11.226553Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.133480Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.133251Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.148165Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.147635Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.849199Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.848970Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.863695Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.863166Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -486,18 +486,18 @@\n \"execution_count\": 9,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:46:13.808646Z\",\n \"start_time\": \"2020-01-15T14:46:13.680098Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.150185Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.149955Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.166362Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.165829Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.865860Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.865632Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.883341Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.882660Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -559,18 +559,18 @@\n \"execution_count\": 10,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:46:26.633233Z\",\n \"start_time\": \"2020-01-15T14:46:26.515209Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.168349Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.168123Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.184235Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.183690Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.886070Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.885767Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.905262Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.904520Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -616,18 +616,18 @@\n \"execution_count\": 11,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:46:30.026663Z\",\n \"start_time\": \"2020-01-15T14:46:29.893267Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.186180Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.185954Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.202750Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.202212Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.908205Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.907934Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.931109Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.930355Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -704,18 +704,18 @@\n \"execution_count\": 12,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:48:42.469341Z\",\n \"start_time\": \"2020-01-15T14:48:42.344209Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.204794Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.204565Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.222043Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.221506Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.934392Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.934065Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.955392Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.954829Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -790,18 +790,18 @@\n \"execution_count\": 13,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:48:45.267633Z\",\n \"start_time\": \"2020-01-15T14:48:44.943939Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.224053Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.223824Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.238421Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.237893Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.958248Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.958016Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.973504Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.972938Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"ModuleNotFoundError\",\n \"evalue\": \"No module named 'numba'\",\n \"output_type\": \"error\",\n@@ -842,18 +842,18 @@\n \"execution_count\": 14,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:48:54.755405Z\",\n \"start_time\": \"2020-01-15T14:48:54.634724Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.240358Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.240132Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.256140Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.255600Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.976252Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.976012Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:23.993241Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:23.992690Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -896,18 +896,18 @@\n \"execution_count\": 15,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-15T14:49:28.667528Z\",\n \"start_time\": \"2020-01-15T14:49:28.103914Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:36:59.258072Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:36:59.257844Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:36:59.277984Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:36:59.277474Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:23.996161Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:23.995928Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:24.017588Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:24.017018Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"ModuleNotFoundError\",\n \"evalue\": \"No module named 'numba'\",\n \"output_type\": \"error\",\n"}]}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/examples/area_weighted_temperature.ipynb.gz", "source2": "./usr/share/doc/python-xarray-doc/html/examples/area_weighted_temperature.ipynb.gz", "unified_diff": null, "details": [{"source1": "area_weighted_temperature.ipynb", "source2": "area_weighted_temperature.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.99921875%", "Differences: {\"'cells'\": \"{2: {'metadata': {'execution': {'iopub.execute_input': '2025-04-21T23:17:26.337604Z', \"", " \"'iopub.status.busy': '2025-04-21T23:17:26.337368Z', 'iopub.status.idle': \"", " \"'2025-04-21T23:17:26.961048Z', 'shell.execute_reply': \"", " \"'2025-04-21T23:17:26.960503Z'}}}, 4: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2025-04-21T23:17:26.963110Z', 'iopub.status.busy': \"", " \"'2025-04-21T23:17:26.962866Z', 'iopub.status.idle': '2025-04-21T23:17:2 [\u2026]"], "unified_diff": "@@ -28,18 +28,18 @@\n \"execution_count\": 1,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-03-17T14:43:57.222351Z\",\n \"start_time\": \"2020-03-17T14:43:56.147541Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:01.428003Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:01.427766Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:02.072638Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:02.072063Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:26.337604Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:26.337368Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:26.961048Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:26.960503Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"ModuleNotFoundError\",\n \"evalue\": \"No module named 'xarray'\",\n \"output_type\": \"error\",\n@@ -75,18 +75,18 @@\n \"execution_count\": 2,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-03-17T14:43:57.831734Z\",\n \"start_time\": \"2020-03-17T14:43:57.651845Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:02.074790Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:02.074531Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:02.088817Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:02.088264Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:26.963110Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:26.962866Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:26.976812Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:26.976298Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -122,18 +122,18 @@\n \"execution_count\": 3,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-03-17T14:43:59.887120Z\",\n \"start_time\": \"2020-03-17T14:43:59.582894Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:02.090736Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:02.090493Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:02.176454Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:02.175885Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:26.980523Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:26.980288Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:27.063769Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:27.063006Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'air' is not defined\",\n \"output_type\": \"error\",\n@@ -178,18 +178,18 @@\n \"execution_count\": 4,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-03-17T14:44:18.777092Z\",\n \"start_time\": \"2020-03-17T14:44:18.736587Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:02.178596Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:02.178340Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:02.192692Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:02.192148Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:27.065956Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:27.065711Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:27.080618Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:27.079890Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'air' is not defined\",\n \"output_type\": \"error\",\n@@ -219,18 +219,18 @@\n \"execution_count\": 5,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-03-17T14:44:52.607120Z\",\n \"start_time\": \"2020-03-17T14:44:52.564674Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:02.194674Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:02.194430Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:02.206461Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:02.205919Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:27.082629Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:27.082399Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:27.095100Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:27.094378Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'air' is not defined\",\n \"output_type\": \"error\",\n@@ -252,18 +252,18 @@\n \"execution_count\": 6,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-03-17T14:44:54.334279Z\",\n \"start_time\": \"2020-03-17T14:44:54.280022Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:02.208366Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:02.208123Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:02.220533Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:02.219992Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:27.097022Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:27.096793Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:27.109800Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:27.109064Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'air_weighted' is not defined\",\n \"output_type\": \"error\",\n@@ -294,18 +294,18 @@\n \"execution_count\": 7,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-03-17T14:45:08.877307Z\",\n \"start_time\": \"2020-03-17T14:45:08.673383Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:02.222445Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:02.222205Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:02.235164Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:02.234590Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:27.111779Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:27.111548Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:27.125014Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:27.124282Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'weighted_mean' is not defined\",\n \"output_type\": \"error\",\n"}]}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/examples/blank_template.ipynb", "source2": "./usr/share/doc/python-xarray-doc/html/examples/blank_template.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9991319444444444%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2025-04-21T23:17:28.728332Z', \"", " \"'iopub.status.busy': '2025-04-21T23:17:28.728093Z', 'iopub.status.idle': \"", " \"'2025-04-21T23:17:28.871965Z', 'shell.execute_reply': \"", " \"'2025-04-21T23:17:28.871392Z'}}}}\"}"], "unified_diff": "@@ -12,18 +12,18 @@\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"id\": \"41b90ede\",\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:03.765752Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:03.765507Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:03.913636Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:03.913077Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:28.728332Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:28.728093Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:28.871965Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:28.871392Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"ModuleNotFoundError\",\n \"evalue\": \"No module named 'xarray'\",\n \"output_type\": \"error\",\n"}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/examples/monthly-means.ipynb.gz", "source2": "./usr/share/doc/python-xarray-doc/html/examples/monthly-means.ipynb.gz", "unified_diff": null, "details": [{"source1": "monthly-means.ipynb", "source2": "monthly-means.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.998721590909091%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2025-04-21T23:17:30.224968Z', \"", " \"'iopub.status.busy': '2025-04-21T23:17:30.224730Z', 'iopub.status.idle': \"", " \"'2025-04-21T23:17:31.054686Z', 'shell.execute_reply': \"", " \"'2025-04-21T23:17:31.053899Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2025-04-21T23:17:31.056918Z', 'iopub.status.busy': \"", " \"'2025-04-21T23:17:31.056665Z', 'iopub.status.idle': '2025-04-21T23:17:3 [\u2026]"], "unified_diff": "@@ -19,18 +19,18 @@\n \"execution_count\": 1,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:51:35.958210Z\",\n \"start_time\": \"2018-11-28T20:51:35.936966Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:05.248053Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:05.247820Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:06.081481Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:06.080922Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:30.224968Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:30.224730Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:31.054686Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:31.053899Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"ModuleNotFoundError\",\n \"evalue\": \"No module named 'xarray'\",\n \"output_type\": \"error\",\n@@ -62,18 +62,18 @@\n \"execution_count\": 2,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:51:36.072316Z\",\n \"start_time\": \"2018-11-28T20:51:36.016594Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:06.084181Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:06.083924Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:06.097370Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:06.096853Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:31.056918Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:31.056665Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:31.071020Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:31.070256Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -103,18 +103,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:06.099798Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:06.099566Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:06.111986Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:06.111456Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:31.073076Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:31.072838Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:31.086174Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:31.085430Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -136,18 +136,18 @@\n \"execution_count\": 4,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:51:36.132413Z\",\n \"start_time\": \"2018-11-28T20:51:36.073708Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:06.114363Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:06.114129Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:06.128369Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:06.127843Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:31.088168Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:31.087926Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:31.103080Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:31.102332Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'month_length' is not defined\",\n \"output_type\": \"error\",\n@@ -177,18 +177,18 @@\n \"execution_count\": 5,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:51:36.152913Z\",\n \"start_time\": \"2018-11-28T20:51:36.133997Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:06.130715Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:06.130483Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:06.142431Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:06.141914Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:31.105073Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:31.104837Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:31.117746Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:31.116982Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds_weighted' is not defined\",\n \"output_type\": \"error\",\n@@ -209,18 +209,18 @@\n \"execution_count\": 6,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:51:36.190765Z\",\n \"start_time\": \"2018-11-28T20:51:36.154416Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:06.144822Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:06.144591Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:06.156960Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:06.156441Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:31.119743Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:31.119510Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:31.132669Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:31.131910Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -243,18 +243,18 @@\n \"execution_count\": 7,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:51:40.264871Z\",\n \"start_time\": \"2018-11-28T20:51:36.192467Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:06.159375Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:06.159142Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:06.182382Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:06.181856Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:31.134797Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:31.134407Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:31.158127Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:31.157372Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds_unweighted' is not defined\",\n \"output_type\": \"error\",\n@@ -323,18 +323,18 @@\n \"execution_count\": 8,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:51:40.284898Z\",\n \"start_time\": \"2018-11-28T20:51:40.266406Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:06.184550Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:06.184319Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:06.187907Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:06.187393Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:31.160333Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:31.159913Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:31.164013Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:31.163283Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"# Wrap it into a simple function\\n\",\n \"def season_mean(ds, calendar=\\\"standard\\\"):\\n\",\n \" # Make a DataArray with the number of days in each month, size = len(time)\\n\",\n"}]}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/examples/multidimensional-coords.ipynb.gz", "source2": "./usr/share/doc/python-xarray-doc/html/examples/multidimensional-coords.ipynb.gz", "unified_diff": null, "details": [{"source1": "multidimensional-coords.ipynb", "source2": "multidimensional-coords.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9992708333333333%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2025-04-21T23:17:32.701018Z', \"", " \"'iopub.status.busy': '2025-04-21T23:17:32.700776Z', 'iopub.status.idle': \"", " \"'2025-04-21T23:17:33.528848Z', 'shell.execute_reply': \"", " \"'2025-04-21T23:17:33.528054Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2025-04-21T23:17:33.531093Z', 'iopub.status.busy': \"", " \"'2025-04-21T23:17:33.530842Z', 'iopub.status.idle': '2025-04-21T23:17:3 [\u2026]"], "unified_diff": "@@ -16,18 +16,18 @@\n \"execution_count\": 1,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:49:56.068395Z\",\n \"start_time\": \"2018-11-28T20:49:56.035349Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:07.778242Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:07.778001Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:08.714554Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:08.713918Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:32.701018Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:32.700776Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:33.528848Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:33.528054Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"ModuleNotFoundError\",\n \"evalue\": \"No module named 'xarray'\",\n \"output_type\": \"error\",\n@@ -60,18 +60,18 @@\n \"execution_count\": 2,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:50:13.629720Z\",\n \"start_time\": \"2018-11-28T20:50:13.484542Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:08.717708Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:08.716970Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:08.734181Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:08.733517Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:33.531093Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:33.530842Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:33.545133Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:33.544385Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -100,18 +100,18 @@\n \"execution_count\": 3,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:50:15.836061Z\",\n \"start_time\": \"2018-11-28T20:50:15.768376Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:08.736641Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:08.736311Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:08.752286Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:08.751662Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:33.547144Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:33.546905Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:33.560281Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:33.559542Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -142,18 +142,18 @@\n \"execution_count\": 4,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:50:17.928556Z\",\n \"start_time\": \"2018-11-28T20:50:17.031211Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:08.755053Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:08.754434Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:08.771386Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:08.770708Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:33.562311Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:33.562064Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:33.576422Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:33.575678Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'plt' is not defined\",\n \"output_type\": \"error\",\n@@ -185,18 +185,18 @@\n \"execution_count\": 5,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:50:20.567749Z\",\n \"start_time\": \"2018-11-28T20:50:19.999393Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:08.773853Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:08.773506Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:08.789414Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:08.788769Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:33.578449Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:33.578215Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:33.591481Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:33.590724Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -224,18 +224,18 @@\n \"execution_count\": 6,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:50:31.131708Z\",\n \"start_time\": \"2018-11-28T20:50:30.444697Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:08.792037Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:08.791524Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:08.809625Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:08.808985Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:33.593440Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:33.593181Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:33.608406Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:33.607652Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'plt' is not defined\",\n \"output_type\": \"error\",\n@@ -272,18 +272,18 @@\n \"execution_count\": 7,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2018-11-28T20:50:43.670463Z\",\n \"start_time\": \"2018-11-28T20:50:43.245501Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:08.812095Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:08.811765Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:08.830282Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:08.829654Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:33.610414Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:33.610178Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:33.625345Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:33.624574Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n"}]}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/examples/visualization_gallery.ipynb.gz", "source2": "./usr/share/doc/python-xarray-doc/html/examples/visualization_gallery.ipynb.gz", "unified_diff": null, "details": [{"source1": "visualization_gallery.ipynb", "source2": "visualization_gallery.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9984375%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2025-04-21T23:17:35.290076Z', \"", " \"'iopub.status.busy': '2025-04-21T23:17:35.289842Z', 'iopub.status.idle': \"", " \"'2025-04-21T23:17:35.909707Z', 'shell.execute_reply': \"", " \"'2025-04-21T23:17:35.909133Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2025-04-21T23:17:35.911763Z', 'iopub.status.busy': \"", " \"'2025-04-21T23:17:35.911524Z', 'iopub.status.idle': '2025-04-21T23:17:3 [\u2026]"], "unified_diff": "@@ -10,18 +10,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:10.514848Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:10.514611Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:11.196296Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:11.195753Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:35.290076Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:35.289842Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:35.909707Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:35.909133Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"ModuleNotFoundError\",\n \"evalue\": \"No module named 'xarray'\",\n \"output_type\": \"error\",\n@@ -49,18 +49,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:11.198382Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:11.198143Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:11.210835Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:11.210086Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:35.911763Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:35.911524Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:35.924816Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:35.924283Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'xr' is not defined\",\n \"output_type\": \"error\",\n@@ -91,18 +91,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:11.212731Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:11.212502Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:11.228329Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:11.227826Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:35.926981Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:35.926515Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:35.942375Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:35.941849Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -144,18 +144,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:11.230208Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:11.229981Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:11.247772Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:11.247261Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:35.944532Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:35.944215Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:35.962384Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:35.961854Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -208,18 +208,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 5,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:11.249654Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:11.249415Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:11.271442Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:11.270916Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:35.964270Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:35.964037Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:35.984705Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:35.984190Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -264,18 +264,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 6,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:11.273432Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:11.273201Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:11.289308Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:11.288790Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:35.986620Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:35.986394Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:36.002241Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:36.001689Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n"}]}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/examples/weather-data.ipynb.gz", "source2": "./usr/share/doc/python-xarray-doc/html/examples/weather-data.ipynb.gz", "unified_diff": null, "details": [{"source1": "weather-data.ipynb", "source2": "weather-data.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9992476851851853%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2025-04-21T23:17:37.491182Z', \"", " \"'iopub.status.busy': '2025-04-21T23:17:37.490851Z', 'iopub.status.idle': \"", " \"'2025-04-21T23:17:38.779362Z', 'shell.execute_reply': \"", " \"'2025-04-21T23:17:38.778714Z'}}}, 4: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2025-04-21T23:17:38.781759Z', 'iopub.status.busy': \"", " \"'2025-04-21T23:17:38.781511Z', 'iopub.status.idle': '2025-04-21T23:17:3 [\u2026]"], "unified_diff": "@@ -15,18 +15,18 @@\n \"execution_count\": 1,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-27T15:43:36.127628Z\",\n \"start_time\": \"2020-01-27T15:43:36.081733Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:12.972786Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:12.972539Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:14.279436Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:14.278616Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:37.491182Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:37.490851Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:38.779362Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:38.778714Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"ModuleNotFoundError\",\n \"evalue\": \"No module named 'xarray'\",\n \"output_type\": \"error\",\n@@ -86,18 +86,18 @@\n \"execution_count\": 2,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-27T15:47:14.160297Z\",\n \"start_time\": \"2020-01-27T15:47:14.126738Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:14.281622Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:14.281373Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:14.295479Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:14.294941Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:38.781759Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:38.781511Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:38.795734Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:38.795163Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -119,18 +119,18 @@\n \"execution_count\": 3,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-27T15:47:32.682065Z\",\n \"start_time\": \"2020-01-27T15:47:32.652629Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:14.297401Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:14.297166Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:14.310185Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:14.309408Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:38.797881Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:38.797644Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:38.810918Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:38.810371Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'df' is not defined\",\n \"output_type\": \"error\",\n@@ -158,18 +158,18 @@\n \"execution_count\": 4,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-27T15:47:34.617042Z\",\n \"start_time\": \"2020-01-27T15:47:34.282605Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:14.312808Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:14.312530Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:14.327177Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:14.326389Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:38.813158Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:38.812917Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:38.827291Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:38.826763Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -197,18 +197,18 @@\n \"execution_count\": 5,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-27T15:47:37.643175Z\",\n \"start_time\": \"2020-01-27T15:47:37.202479Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:14.329766Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:14.329499Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:14.347286Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:14.346512Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:38.829574Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:38.829315Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:38.843091Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:38.842570Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'df' is not defined\",\n \"output_type\": \"error\",\n@@ -236,18 +236,18 @@\n \"execution_count\": 6,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-27T15:48:11.241224Z\",\n \"start_time\": \"2020-01-27T15:48:11.211156Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:14.350372Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:14.350003Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:14.367909Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:14.367354Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:38.845279Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:38.845044Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:38.858379Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:38.857836Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -269,18 +269,18 @@\n \"execution_count\": 7,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-27T15:48:13.131247Z\",\n \"start_time\": \"2020-01-27T15:48:12.924985Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:14.370288Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:14.370045Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:14.383661Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:14.383112Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:38.860390Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:38.860157Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:38.872488Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:38.871973Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'freeze' is not defined\",\n \"output_type\": \"error\",\n@@ -308,18 +308,18 @@\n \"execution_count\": 8,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-27T15:48:08.498259Z\",\n \"start_time\": \"2020-01-27T15:48:08.210890Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:14.385707Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:14.385468Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:14.405958Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:14.405422Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:38.874551Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:38.874317Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:38.893365Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:38.892844Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -364,18 +364,18 @@\n \"execution_count\": 9,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-27T15:49:34.855086Z\",\n \"start_time\": \"2020-01-27T15:49:34.406439Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:14.420984Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:14.420715Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:14.435970Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:14.435417Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:38.895522Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:38.895288Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:38.908958Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:38.908437Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -414,18 +414,18 @@\n \"execution_count\": 10,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-27T15:50:09.144586Z\",\n \"start_time\": \"2020-01-27T15:50:08.734682Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:14.438525Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:14.438290Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:14.454654Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:14.454121Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:38.911009Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:38.910779Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:38.925906Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:38.925369Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -474,18 +474,18 @@\n \"execution_count\": 11,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-27T15:51:40.279299Z\",\n \"start_time\": \"2020-01-27T15:51:40.220342Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:14.456777Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:14.456544Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:14.471630Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:14.471082Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:38.927980Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:38.927747Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:38.941786Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:38.941263Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'ds' is not defined\",\n \"output_type\": \"error\",\n@@ -510,18 +510,18 @@\n \"execution_count\": 12,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-27T15:52:11.815769Z\",\n \"start_time\": \"2020-01-27T15:52:11.770825Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:14.474077Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:14.473828Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:14.497077Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:14.496546Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:38.943840Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:38.943608Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:38.957075Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:38.956565Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'both' is not defined\",\n \"output_type\": \"error\",\n@@ -543,18 +543,18 @@\n \"execution_count\": 13,\n \"metadata\": {\n \"ExecuteTime\": {\n \"end_time\": \"2020-01-27T15:52:14.867866Z\",\n \"start_time\": \"2020-01-27T15:52:14.449684Z\"\n },\n \"execution\": {\n- \"iopub.execute_input\": \"2026-05-25T05:37:14.499513Z\",\n- \"iopub.status.busy\": \"2026-05-25T05:37:14.499274Z\",\n- \"iopub.status.idle\": \"2026-05-25T05:37:14.513146Z\",\n- \"shell.execute_reply\": \"2026-05-25T05:37:14.512604Z\"\n+ \"iopub.execute_input\": \"2025-04-21T23:17:38.959139Z\",\n+ \"iopub.status.busy\": \"2025-04-21T23:17:38.958909Z\",\n+ \"iopub.status.idle\": \"2025-04-21T23:17:38.971424Z\",\n+ \"shell.execute_reply\": \"2025-04-21T23:17:38.970914Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"NameError\",\n \"evalue\": \"name 'df' is not defined\",\n \"output_type\": \"error\",\n"}]}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/getting-started-guide/quick-overview.html", "source2": "./usr/share/doc/python-xarray-doc/html/getting-started-guide/quick-overview.html", "unified_diff": "@@ -324,15 +324,15 @@\n \n \n \n
\n

Plotting\u00b6

\n

Visualizing your datasets is quick and convenient:

\n
In [37]: data.plot()\n-Out[37]: <matplotlib.collections.QuadMesh at 0xe831af48>\n+Out[37]: <matplotlib.collections.QuadMesh at 0xe813cf48>\n 
\n
\n \"../_images/plotting_quick_overview.png\"\n

Note the automatic labeling with names and units. Our effort in adding metadata attributes has paid off! Many aspects of these figures are customizable: see Plotting.

\n
\n
\n

pandas\u00b6

\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -253,15 +253,15 @@\n [0.37342613, 1.49497537, 1.33584385]])\n Coordinates:\n * x (x) int32 8B 10 20\n Dimensions without coordinates: y\n *\b**\b**\b**\b**\b* P\bPl\blo\bot\btt\bti\bin\bng\bg_\b?\b\u00b6 *\b**\b**\b**\b**\b*\n Visualizing your datasets is quick and convenient:\n In [37]: data.plot()\n-Out[37]: \n+Out[37]: \n [../_images/plotting_quick_overview.png]\n Note the automatic labeling with names and units. Our effort in adding metadata\n attributes has paid off! Many aspects of these figures are customizable: see\n _\bP_\bl_\bo_\bt_\bt_\bi_\bn_\bg.\n *\b**\b**\b**\b**\b* p\bpa\ban\bnd\bda\bas\bs_\b?\b\u00b6 *\b**\b**\b**\b**\b*\n Xarray objects can be easily converted to and from pandas objects using the\n to_series(), to_dataframe() and _\bt_\bo_\b__\bx_\ba_\br_\br_\ba_\by_\b(_\b) methods:\n"}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/internals/internal-design.html", "source2": "./usr/share/doc/python-xarray-doc/html/internals/internal-design.html", "unified_diff": "@@ -225,15 +225,15 @@\n 705 server_hostname: str = self.host\n \n File /usr/lib/python3/dist-packages/urllib3/connection.py:205, in HTTPConnection._new_conn(self)\n 204 except socket.gaierror as e:\n --> 205 raise NameResolutionError(self.host, self, e) from e\n 206 except SocketTimeout as e:\n \n-NameResolutionError: <urllib3.connection.HTTPSConnection object at 0xe5de0df0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)\n+NameResolutionError: <urllib3.connection.HTTPSConnection object at 0xe59bcdf0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)\n \n The above exception was the direct cause of the following exception:\n \n MaxRetryError Traceback (most recent call last)\n File /usr/lib/python3/dist-packages/requests/adapters.py:667, in HTTPAdapter.send(self, request, stream, timeout, verify, cert, proxies)\n 666 try:\n --> 667 resp = conn.urlopen(\n@@ -259,15 +259,15 @@\n 844 retries.sleep()\n \n File /usr/lib/python3/dist-packages/urllib3/util/retry.py:519, in Retry.increment(self, method, url, response, error, _pool, _stacktrace)\n 518 reason = error or ResponseError(cause)\n --> 519 raise MaxRetryError(_pool, url, reason) from reason # type: ignore[arg-type]\n 521 log.debug("Incremented Retry for (url='%s'): %r", url, new_retry)\n \n-MaxRetryError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe5de0df0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+MaxRetryError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe59bcdf0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n During handling of the above exception, another exception occurred:\n \n ConnectionError Traceback (most recent call last)\n Cell In[1], line 1\n ----> 1 da = xr.tutorial.open_dataset("air_temperature")["air"]\n \n@@ -345,15 +345,15 @@\n 696 if isinstance(e.reason, _SSLError):\n 697 # This branch is for urllib3 v1.22 and later.\n 698 raise SSLError(e, request=request)\n --> 700 raise ConnectionError(e, request=request)\n 702 except ClosedPoolError as e:\n 703 raise ConnectionError(e, request=request)\n \n-ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe5de0df0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe59bcdf0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n In [2]: var = da.variable\n ---------------------------------------------------------------------------\n AttributeError Traceback (most recent call last)\n Cell In[2], line 1\n ----> 1 var = da.variable\n \n@@ -462,15 +462,15 @@\n 705 server_hostname: str = self.host\n \n File /usr/lib/python3/dist-packages/urllib3/connection.py:205, in HTTPConnection._new_conn(self)\n 204 except socket.gaierror as e:\n --> 205 raise NameResolutionError(self.host, self, e) from e\n 206 except SocketTimeout as e:\n \n-NameResolutionError: <urllib3.connection.HTTPSConnection object at 0xe5b8ec90>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)\n+NameResolutionError: <urllib3.connection.HTTPSConnection object at 0xe576cc90>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)\n \n The above exception was the direct cause of the following exception:\n \n MaxRetryError Traceback (most recent call last)\n File /usr/lib/python3/dist-packages/requests/adapters.py:667, in HTTPAdapter.send(self, request, stream, timeout, verify, cert, proxies)\n 666 try:\n --> 667 resp = conn.urlopen(\n@@ -496,15 +496,15 @@\n 844 retries.sleep()\n \n File /usr/lib/python3/dist-packages/urllib3/util/retry.py:519, in Retry.increment(self, method, url, response, error, _pool, _stacktrace)\n 518 reason = error or ResponseError(cause)\n --> 519 raise MaxRetryError(_pool, url, reason) from reason # type: ignore[arg-type]\n 521 log.debug("Incremented Retry for (url='%s'): %r", url, new_retry)\n \n-MaxRetryError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe5b8ec90>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+MaxRetryError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe576cc90>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n During handling of the above exception, another exception occurred:\n \n ConnectionError Traceback (most recent call last)\n Cell In[7], line 1\n ----> 1 da = xr.tutorial.open_dataset("air_temperature")["air"]\n \n@@ -582,15 +582,15 @@\n 696 if isinstance(e.reason, _SSLError):\n 697 # This branch is for urllib3 v1.22 and later.\n 698 raise SSLError(e, request=request)\n --> 700 raise ConnectionError(e, request=request)\n 702 except ClosedPoolError as e:\n 703 raise ConnectionError(e, request=request)\n \n-ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe5b8ec90>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe576cc90>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n In [8]: var = da.variable\n ---------------------------------------------------------------------------\n AttributeError Traceback (most recent call last)\n Cell In[8], line 1\n ----> 1 var = da.variable\n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -184,15 +184,15 @@\n \n File /usr/lib/python3/dist-packages/urllib3/connection.py:205, in\n HTTPConnection._new_conn(self)\n 204 except socket.gaierror as e:\n --> 205 raise NameResolutionError(self.host, self, e) from e\n 206 except SocketTimeout as e:\n \n-NameResolutionError: :\n+NameResolutionError: :\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\n \n The above exception was the direct cause of the following exception:\n \n MaxRetryError Traceback (most recent call last)\n File /usr/lib/python3/dist-packages/requests/adapters.py:667, in\n@@ -228,15 +228,15 @@\n 518 reason = error or ResponseError(cause)\n --> 519 raise MaxRetryError(_pool, url, reason) from reason # type: ignore\n [arg-type]\n 521 log.debug(\"Incremented Retry for (url='%s'): %r\", url, new_retry)\n \n MaxRetryError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n During handling of the above exception, another exception occurred:\n \n ConnectionError Traceback (most recent call last)\n Cell In[1], line 1\n@@ -332,15 +332,15 @@\n 698 raise SSLError(e, request=request)\n --> 700 raise ConnectionError(e, request=request)\n 702 except ClosedPoolError as e:\n 703 raise ConnectionError(e, request=request)\n \n ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n In [2]: var = da.variable\n ---------------------------------------------------------------------------\n AttributeError Traceback (most recent call last)\n Cell In[2], line 1\n@@ -459,15 +459,15 @@\n \n File /usr/lib/python3/dist-packages/urllib3/connection.py:205, in\n HTTPConnection._new_conn(self)\n 204 except socket.gaierror as e:\n --> 205 raise NameResolutionError(self.host, self, e) from e\n 206 except SocketTimeout as e:\n \n-NameResolutionError: :\n+NameResolutionError: :\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\n \n The above exception was the direct cause of the following exception:\n \n MaxRetryError Traceback (most recent call last)\n File /usr/lib/python3/dist-packages/requests/adapters.py:667, in\n@@ -503,15 +503,15 @@\n 518 reason = error or ResponseError(cause)\n --> 519 raise MaxRetryError(_pool, url, reason) from reason # type: ignore\n [arg-type]\n 521 log.debug(\"Incremented Retry for (url='%s'): %r\", url, new_retry)\n \n MaxRetryError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n During handling of the above exception, another exception occurred:\n \n ConnectionError Traceback (most recent call last)\n Cell In[7], line 1\n@@ -607,15 +607,15 @@\n 698 raise SSLError(e, request=request)\n --> 700 raise ConnectionError(e, request=request)\n 702 except ClosedPoolError as e:\n 703 raise ConnectionError(e, request=request)\n \n ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n In [8]: var = da.variable\n ---------------------------------------------------------------------------\n AttributeError Traceback (most recent call last)\n Cell In[8], line 1\n"}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/internals/zarr-encoding-spec.html", "source2": "./usr/share/doc/python-xarray-doc/html/internals/zarr-encoding-spec.html", "unified_diff": "@@ -167,15 +167,15 @@\n 705 server_hostname: str = self.host\n \n File /usr/lib/python3/dist-packages/urllib3/connection.py:205, in HTTPConnection._new_conn(self)\n 204 except socket.gaierror as e:\n --> 205 raise NameResolutionError(self.host, self, e) from e\n 206 except SocketTimeout as e:\n \n-NameResolutionError: <urllib3.connection.HTTPSConnection object at 0xe4d28190>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)\n+NameResolutionError: <urllib3.connection.HTTPSConnection object at 0xe495b190>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)\n \n The above exception was the direct cause of the following exception:\n \n MaxRetryError Traceback (most recent call last)\n File /usr/lib/python3/dist-packages/requests/adapters.py:667, in HTTPAdapter.send(self, request, stream, timeout, verify, cert, proxies)\n 666 try:\n --> 667 resp = conn.urlopen(\n@@ -201,15 +201,15 @@\n 844 retries.sleep()\n \n File /usr/lib/python3/dist-packages/urllib3/util/retry.py:519, in Retry.increment(self, method, url, response, error, _pool, _stacktrace)\n 518 reason = error or ResponseError(cause)\n --> 519 raise MaxRetryError(_pool, url, reason) from reason # type: ignore[arg-type]\n 521 log.debug("Incremented Retry for (url='%s'): %r", url, new_retry)\n \n-MaxRetryError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/rasm.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe4d28190>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+MaxRetryError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/rasm.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe495b190>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n During handling of the above exception, another exception occurred:\n \n ConnectionError Traceback (most recent call last)\n Cell In[4], line 1\n ----> 1 ds = xr.tutorial.load_dataset("rasm")\n \n@@ -298,18 +298,18 @@\n 696 if isinstance(e.reason, _SSLError):\n 697 # This branch is for urllib3 v1.22 and later.\n 698 raise SSLError(e, request=request)\n --> 700 raise ConnectionError(e, request=request)\n 702 except ClosedPoolError as e:\n 703 raise ConnectionError(e, request=request)\n \n-ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/rasm.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe4d28190>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/rasm.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe495b190>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n In [5]: ds.to_zarr("rasm.zarr", mode="w")\n-Out[5]: <xarray.backends.zarr.ZarrStore at 0xe62a0fa0>\n+Out[5]: <xarray.backends.zarr.ZarrStore at 0xe5f86fa0>\n \n In [6]: zgroup = zarr.open("rasm.zarr")\n \n In [7]: print(os.listdir("rasm.zarr"))\n ['zarr.json', 'time']\n \n In [8]: print(zgroup.tree())\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -123,15 +123,15 @@\n \n File /usr/lib/python3/dist-packages/urllib3/connection.py:205, in\n HTTPConnection._new_conn(self)\n 204 except socket.gaierror as e:\n --> 205 raise NameResolutionError(self.host, self, e) from e\n 206 except SocketTimeout as e:\n \n-NameResolutionError: :\n+NameResolutionError: :\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\n \n The above exception was the direct cause of the following exception:\n \n MaxRetryError Traceback (most recent call last)\n File /usr/lib/python3/dist-packages/requests/adapters.py:667, in\n@@ -167,15 +167,15 @@\n 518 reason = error or ResponseError(cause)\n --> 519 raise MaxRetryError(_pool, url, reason) from reason # type: ignore\n [arg-type]\n 521 log.debug(\"Incremented Retry for (url='%s'): %r\", url, new_retry)\n \n MaxRetryError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/rasm.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n During handling of the above exception, another exception occurred:\n \n ConnectionError Traceback (most recent call last)\n Cell In[4], line 1\n@@ -284,20 +284,20 @@\n 698 raise SSLError(e, request=request)\n --> 700 raise ConnectionError(e, request=request)\n 702 except ClosedPoolError as e:\n 703 raise ConnectionError(e, request=request)\n \n ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/rasm.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n In [5]: ds.to_zarr(\"rasm.zarr\", mode=\"w\")\n-Out[5]: \n+Out[5]: \n \n In [6]: zgroup = zarr.open(\"rasm.zarr\")\n \n In [7]: print(os.listdir(\"rasm.zarr\"))\n ['zarr.json', 'time']\n \n In [8]: print(zgroup.tree())\n"}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/searchindex.js", "source2": "./usr/share/doc/python-xarray-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -2420,61 +2420,54 @@\n \"4\": \"py:attribute\",\n \"5\": \"py:function\"\n },\n \"terms\": {\n \"\": [1, 3, 5, 6, 7, 8, 12, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"0\": [3, 6, 7, 8, 9, 11, 12, 13, 14, 16, 18, 19, 20, 22, 24, 25, 26, 27, 28, 30, 32, 34, 36, 37, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"00\": [32, 37, 38, 39, 46, 48, 52, 53, 54, 55],\n- \"000\": [32, 52],\n+ \"000\": 32,\n \"0000\": 32,\n \"000000\": [16, 32],\n \"000000000\": [38, 39, 53],\n \"000001\": 32,\n \"000001901\": 32,\n \"0001\": [32, 54, 55],\n \"00010101\": 54,\n \"00010201\": 54,\n \"00010301\": 54,\n \"0002\": [32, 54],\n \"00021001\": 54,\n \"00021101\": 54,\n \"00021201\": 54,\n \"000e\": [49, 52],\n- \"000j\": 52,\n- \"001\": [32, 52],\n+ \"001\": 32,\n \"001901901\": 32,\n \"001e\": 38,\n \"003000\": 32,\n \"005036\": 41,\n \"005e\": 38,\n- \"005j\": 52,\n \"00688889\": 37,\n \"006e\": 38,\n- \"007e\": 52,\n- \"008\": 52,\n \"00914929\": 37,\n \"00941742\": 37,\n \"00968205\": 37,\n \"00973567\": 37,\n- \"00e\": 52,\n \"00j\": 52,\n- \"01\": [14, 16, 20, 32, 38, 39, 42, 44, 45, 46, 48, 49, 53, 54],\n+ \"01\": [14, 16, 20, 32, 38, 39, 42, 44, 45, 46, 48, 49, 52, 53, 54],\n \"01082401\": 37,\n \"01183847\": 37,\n- \"015\": 52,\n \"01636376\": 37,\n \"01652688\": 37,\n \"01652764\": 37,\n \"0165891\": 37,\n \"01670071\": 37,\n \"01670121\": 37,\n \"01671269\": 37,\n \"01671847\": 37,\n \"01672\": 37,\n- \"016j\": 52,\n \"017\": 44,\n \"01806694\": 37,\n \"01814439\": 37,\n \"0182217\": 37,\n \"018e\": 38,\n \"019\": 41,\n \"01906\": 49,\n@@ -2485,15 +2478,15 @@\n \"01t03\": [32, 53],\n \"01t04\": 32,\n \"01t06\": 32,\n \"01t12\": [32, 53],\n \"01t18\": 32,\n \"02\": [11, 32, 37, 38, 39, 42, 44, 45, 46, 49, 53, 54],\n \"020e\": 38,\n- \"021e\": [38, 46, 52],\n+ \"021e\": [38, 46],\n \"023e\": 38,\n \"024e\": [38, 46],\n \"026e\": 38,\n \"02756784\": 19,\n \"029e\": 49,\n \"02t00\": [32, 38, 39],\n \"03\": [6, 26, 30, 32, 33, 38, 44, 45, 46, 49, 53, 54],\n@@ -2507,17 +2500,16 @@\n \"035e\": 38,\n \"03611368\": 37,\n \"03626848\": 37,\n \"03642301\": 37,\n \"036e\": 49,\n \"0379266750948\": 46,\n \"037e\": 38,\n- \"038\": [44, 52],\n+ \"038\": 44,\n \"03835\": 42,\n- \"038j\": 52,\n \"03957499\": 19,\n \"03t00\": [32, 38, 39],\n \"04\": [19, 32, 37, 38, 39, 42, 44, 48, 53],\n \"04096206\": 37,\n \"04097352\": 37,\n \"040e\": 49,\n \"0417827\": 46,\n@@ -2528,49 +2520,47 @@\n \"04569531\": 37,\n \"04703446\": 37,\n \"047e\": [38, 49],\n \"04835611\": 37,\n \"04862391\": 37,\n \"048e\": 38,\n \"04t00\": [38, 39],\n- \"05\": [32, 37, 39, 46, 49, 53, 54],\n+ \"05\": [32, 37, 39, 46, 49, 52, 53, 54],\n \"05405954\": 37,\n \"05556\": 45,\n \"056\": 45,\n \"057e\": 38,\n \"058e\": 38,\n \"05912615\": 37,\n \"05t00\": 38,\n \"06\": [28, 32, 37, 39, 46, 53],\n \"061\": 44,\n \"06141\": 42,\n \"062\": 42,\n \"063\": 39,\n- \"065\": 52,\n \"06683875\": 37,\n \"06683951\": 37,\n \"06683976\": 37,\n \"06689\": 37,\n \"066e\": [38, 49],\n \"06732\": 42,\n \"067e\": 49,\n \"069\": 45,\n \"06957\": 41,\n \"06t00\": 38,\n- \"07\": [32, 39, 52, 53, 54],\n+ \"07\": [32, 39, 53, 54],\n \"070e\": 38,\n \"07180381\": 19,\n \"071804\": 48,\n \"072\": 48,\n \"072e\": 49,\n \"074e\": 38,\n \"078\": 42,\n- \"07j\": 52,\n \"07t00\": 38,\n- \"08\": [32, 39, 53],\n+ \"08\": [32, 39, 52, 53],\n \"08002\": 41,\n \"08172729\": 37,\n \"08203696\": 37,\n \"08285275\": 37,\n \"08299933\": 37,\n \"08305695\": 37,\n \"08341016\": 37,\n@@ -2578,15 +2568,14 @@\n \"08347003\": 37,\n \"08349886\": 37,\n \"08361\": 37,\n \"083e\": 49,\n \"08444113\": 37,\n \"084e\": 49,\n \"0868139\": 37,\n- \"086b\": 46,\n \"08724442\": 37,\n \"08729468\": 37,\n \"088\": 39,\n \"089e\": 38,\n \"08t00\": 38,\n \"09\": [32, 37, 39, 53],\n \"09179\": 37,\n@@ -2596,118 +2585,120 @@\n \"096\": 44,\n \"096e\": 49,\n \"0970\": 32,\n \"09705329\": 37,\n \"097e\": 38,\n \"099\": 42,\n \"09t00\": 38,\n+ \"0a7f986d07e5\": 46,\n \"0alpha10\": 55,\n \"0d\": 55,\n \"0dev\": 55,\n \"0th\": [38, 44],\n \"0x0l\": 55,\n- \"0xe044d030\": 49,\n- \"0xe0457d40\": 49,\n- \"0xe0457df0\": 49,\n- \"0xe0457ea0\": 49,\n- \"0xe0457f50\": 49,\n- \"0xe046a870\": 49,\n- \"0xe046a920\": 49,\n- \"0xe046a9d0\": 49,\n- \"0xe0478f50\": 50,\n- \"0xe04f4d40\": 49,\n- \"0xe0500190\": 49,\n- \"0xe0500be0\": 49,\n- \"0xe0500c90\": 49,\n- \"0xe0500d40\": 49,\n- \"0xe05d9870\": 49,\n- \"0xe05d9920\": 49,\n- \"0xe05d99d0\": 49,\n- \"0xe05d9a80\": 49,\n- \"0xe05d9df0\": 49,\n- \"0xe07ee5b0\": 49,\n- \"0xe0d44660\": 49,\n- \"0xe0e71be0\": 49,\n- \"0xe0e85500\": 49,\n- \"0xe0f2f9d0\": 49,\n- \"0xe0fafc90\": 49,\n- \"0xe12ae190\": 49,\n- \"0xe13993a0\": 49,\n- \"0xe13cbea0\": 49,\n- \"0xe1409240\": 49,\n- \"0xe1586710\": 49,\n- \"0xe1595500\": 49,\n- \"0xe1755710\": 49,\n- \"0xe18c2030\": 55,\n- \"0xe18cc2f0\": 49,\n- \"0xe28480e0\": 49,\n- \"0xe2d1ecd0\": 46,\n- \"0xe2d255c8\": 46,\n- \"0xe2d33d20\": 49,\n- \"0xe2d87d60\": 46,\n- \"0xe2d91df0\": 46,\n- \"0xe2ee73a0\": 39,\n- \"0xe2ee7450\": 39,\n- \"0xe30ee030\": 46,\n- \"0xe31003d0\": 46,\n- \"0xe3100a00\": 46,\n- \"0xe31b0f50\": 46,\n- \"0xe3530618\": 49,\n- \"0xe3666480\": 49,\n- \"0xe36666a8\": 49,\n- \"0xe36774a8\": 46,\n- \"0xe3694810\": 49,\n- \"0xe36a89d0\": 44,\n- \"0xe36a8ea0\": 44,\n- \"0xe3742710\": 44,\n- \"0xe3742be0\": 42,\n- \"0xe4d28190\": 33,\n- \"0xe5b8ec90\": 30,\n- \"0xe5de0df0\": 30,\n- \"0xe62a0fa0\": 33,\n- \"0xe831ac68\": 49,\n- \"0xe831af48\": [19, 49],\n- \"0xe8322a80\": 45,\n- \"0xe83250e8\": 45,\n- \"0xe8345030\": 45,\n- \"0xe8345710\": 45,\n- \"0xe8345df0\": 45,\n+ \"0xe004f030\": 49,\n+ \"0xe0059d40\": 49,\n+ \"0xe0059df0\": 49,\n+ \"0xe0059ea0\": 49,\n+ \"0xe0059f50\": 49,\n+ \"0xe0063be0\": 49,\n+ \"0xe0063ea0\": 49,\n+ \"0xe0063f50\": 49,\n+ \"0xe0072f50\": 50,\n+ \"0xe00ec030\": 49,\n+ \"0xe00ecbe0\": 49,\n+ \"0xe00ecc90\": 49,\n+ \"0xe00ecd40\": 49,\n+ \"0xe00f17c0\": 49,\n+ \"0xe020b870\": 49,\n+ \"0xe020b920\": 49,\n+ \"0xe020b9d0\": 49,\n+ \"0xe020ba80\": 49,\n+ \"0xe020bdf0\": 49,\n+ \"0xe04225b0\": 49,\n+ \"0xe0979660\": 49,\n+ \"0xe0aa6be0\": 49,\n+ \"0xe0ab9500\": 49,\n+ \"0xe0b649d0\": 49,\n+ \"0xe0be4c90\": 49,\n+ \"0xe0eda190\": 49,\n+ \"0xe0fce500\": 49,\n+ \"0xe0fffea0\": 49,\n+ \"0xe1038240\": 49,\n+ \"0xe11b8710\": 49,\n+ \"0xe11cb500\": 49,\n+ \"0xe1376710\": 49,\n+ \"0xe15032f0\": 49,\n+ \"0xe247d0e0\": 49,\n+ \"0xe2715d50\": 49,\n+ \"0xe29529b8\": 46,\n+ \"0xe2959ad8\": 46,\n+ \"0xe2968d20\": 49,\n+ \"0xe29bbd60\": 46,\n+ \"0xe29c7970\": 46,\n+ \"0xe2b193a0\": 39,\n+ \"0xe2b19450\": 39,\n+ \"0xe2d20030\": 46,\n+ \"0xe2d36268\": 46,\n+ \"0xe2d36a00\": 46,\n+ \"0xe2dc59d0\": 55,\n+ \"0xe2de4f50\": 46,\n+ \"0xe3165618\": 49,\n+ \"0xe323fad8\": 46,\n+ \"0xe329e480\": 49,\n+ \"0xe329e6a8\": 49,\n+ \"0xe32da9d0\": 44,\n+ \"0xe32daea0\": 44,\n+ \"0xe334c710\": 44,\n+ \"0xe334cbe0\": 42,\n+ \"0xe495b190\": 33,\n+ \"0xe576cc90\": 30,\n+ \"0xe59bcdf0\": 30,\n+ \"0xe5f86fa0\": 33,\n+ \"0xe813cc68\": 49,\n+ \"0xe813cf48\": [19, 49],\n+ \"0xe8144a80\": 45,\n+ \"0xe81470e8\": 45,\n+ \"0xe8166030\": 45,\n+ \"0xe8166710\": 45,\n+ \"0xe8166df0\": 45,\n \"1\": [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54],\n \"10\": [3, 6, 7, 8, 12, 13, 14, 16, 18, 19, 24, 25, 26, 27, 28, 30, 32, 33, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"100\": [3, 7, 8, 27, 28, 32, 36, 37, 38, 39, 42, 44, 45, 46, 49, 50, 51, 55],\n \"1000\": [27, 32, 38, 55],\n \"10000\": [32, 37],\n \"100000\": 38,\n \"10000000\": 52,\n \"1000x1000\": 38,\n \"1003\": 37,\n+ \"100e\": 52,\n \"101\": [32, 37, 39, 42, 44, 49, 55],\n \"1016\": 30,\n \"1017\": 30,\n \"1018\": 30,\n \"101985\": 46,\n \"101e\": 38,\n \"102\": [32, 37, 39, 42, 44, 49, 55],\n \"1020\": 30,\n \"1022\": 30,\n \"1023\": 30,\n \"1025\": 42,\n \"102e\": 38,\n- \"103\": [32, 37, 39, 42, 44, 49, 52, 55],\n- \"104\": [32, 37, 39, 42, 44, 49, 55],\n+ \"103\": [32, 37, 39, 42, 44, 49, 55],\n+ \"104\": [32, 37, 39, 42, 44, 49, 52, 55],\n \"104569\": 48,\n \"10456922\": 19,\n+ \"104e\": 52,\n \"105\": [32, 36, 37, 39, 42, 44, 48, 49, 55],\n \"105e\": 38,\n \"106\": [32, 37, 39, 42, 44, 49],\n \"10614938\": 37,\n \"106751\": 32,\n \"106752\": 32,\n \"107\": [32, 37, 39, 42, 44, 49],\n- \"10712\": 52,\n \"107e\": 49,\n \"108\": [32, 37, 39, 42, 44, 49, 53],\n \"1080\": 26,\n \"1087\": 42,\n \"109\": [32, 37, 39, 42, 44, 49],\n \"1092\": [30, 33],\n \"1093\": [30, 33],\n@@ -2754,28 +2745,27 @@\n \"12428\": 54,\n \"124b\": 51,\n \"125\": [37, 44, 46, 49],\n \"126\": [37, 44, 49, 55],\n \"12696983303810094\": 55,\n \"127\": [37, 39, 41, 44, 49, 55],\n \"128\": [37, 44, 49, 55],\n- \"128b\": [41, 44],\n+ \"128b\": [41, 44, 52],\n \"129\": [37, 44, 49, 55],\n \"1294\": 44,\n \"12944067971751294\": 55,\n \"12b\": [19, 36, 37, 39, 41, 42, 44, 45, 48, 49, 50, 51, 55],\n \"12kb\": 53,\n \"12t00\": 38,\n \"13\": [8, 14, 19, 30, 32, 33, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"130\": [37, 44, 49],\n \"131\": [37, 44, 49],\n \"132\": [37, 49, 53],\n \"132e\": 38,\n \"133\": [37, 49],\n- \"13311\": 52,\n \"134\": [37, 44, 49],\n \"135\": [37, 49],\n \"135632\": [19, 48],\n \"13563237\": [19, 36],\n \"136\": [19, 36, 37, 48, 49, 50],\n \"137\": [37, 49],\n \"1375315200\": 46,\n@@ -2795,37 +2785,35 @@\n \"141e\": [38, 49],\n \"142\": [19, 37, 49],\n \"1422\": 46,\n \"143\": [37, 49],\n \"143e\": 38,\n \"144\": [37, 49],\n \"1443657600\": 46,\n- \"14440\": 52,\n \"144b\": [19, 39, 44],\n \"145\": [37, 49],\n+ \"14502\": 52,\n \"145224193\": 32,\n \"145e\": 38,\n \"146\": [37, 49],\n \"1460\": 53,\n- \"14601\": 52,\n \"14672529\": 37,\n \"147\": [37, 49],\n \"148\": [16, 37, 49],\n- \"14860\": 52,\n \"14874584\": 37,\n \"14880519\": 19,\n \"149\": 49,\n \"14974655\": 37,\n \"14975103\": 37,\n \"14985403\": 37,\n \"14990579\": 37,\n \"14kb\": 37,\n \"14t00\": 38,\n \"15\": [6, 7, 8, 9, 13, 14, 19, 32, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n- \"150\": [37, 49, 52],\n+ \"150\": [37, 49],\n \"1505\": 37,\n \"150e\": 49,\n \"151\": 49,\n \"151542\": 32,\n \"152\": [39, 49],\n \"152b\": 39,\n \"153\": 49,\n@@ -2837,43 +2825,40 @@\n \"1548\": 33,\n \"1549\": 33,\n \"154e\": 38,\n \"155\": 42,\n \"1550\": 33,\n \"1552\": 33,\n \"1553\": 33,\n- \"15549\": 52,\n \"156b\": 37,\n \"158\": [42, 45],\n \"1582\": [32, 53, 54],\n \"158e\": 38,\n \"15b\": 37,\n- \"15j\": 52,\n \"15t00\": 38,\n \"15t11\": 32,\n \"15th\": 51,\n \"16\": [8, 11, 19, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"160\": [13, 33],\n \"160b\": [25, 46, 55],\n \"162\": 33,\n \"162e\": 49,\n \"163\": 33,\n \"163e\": 38,\n \"164\": [30, 33],\n \"165\": 33,\n \"166\": [30, 33, 42],\n- \"16631\": 52,\n \"1667\": 45,\n \"167\": [7, 30, 33, 39],\n \"1677\": 32,\n \"1678\": [18, 53],\n \"168\": [30, 33],\n \"169\": [30, 33, 42],\n \"16959064\": 37,\n- \"16b\": [19, 32, 36, 37, 39, 41, 44, 45, 46, 48, 49, 50, 51, 54, 55],\n+ \"16b\": [19, 32, 36, 37, 39, 41, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55],\n \"16t00\": 38,\n \"17\": [8, 19, 32, 33, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"170\": [30, 33],\n \"1703814\": 46,\n \"171\": [30, 33, 44],\n \"171e\": [38, 49],\n \"17234978\": 19,\n@@ -2883,30 +2868,28 @@\n \"17321465\": [19, 36],\n \"173215\": [19, 48],\n \"173e\": 38,\n \"174\": [38, 39],\n \"175\": 38,\n \"17522856\": 32,\n \"17540423\": 32,\n- \"175e\": 52,\n \"176\": 38,\n \"177\": 38,\n \"1779\": 37,\n \"177e\": 38,\n \"178\": [33, 38],\n \"179\": [33, 38, 42],\n \"17t00\": 38,\n \"18\": [3, 8, 18, 19, 27, 32, 33, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"180\": [33, 38, 45],\n \"181\": 33,\n \"1815\": 33,\n \"1816\": 33,\n \"1817\": 33,\n \"1818\": 33,\n- \"181e\": 52,\n \"182\": [37, 39],\n \"1840\": 33,\n \"1841\": 33,\n \"1842\": 33,\n \"1843\": 33,\n \"1844\": 33,\n \"18446744073709551615\": 32,\n@@ -2915,19 +2898,18 @@\n \"18kb\": 53,\n \"18t00\": 38,\n \"19\": [8, 19, 32, 33, 36, 37, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"1900\": 46,\n \"1901901901901\": 32,\n \"191\": [41, 42],\n \"19101252\": 19,\n- \"19131\": 52,\n \"191e\": 49,\n \"1926\": 41,\n \"192b\": [37, 39, 54],\n- \"192e\": [38, 52],\n+ \"192e\": 38,\n \"193000\": 32,\n \"1969\": 32,\n \"197\": [30, 33],\n \"1970\": [27, 32, 55],\n \"1971\": 32,\n \"1972\": 32,\n \"198\": [30, 33],\n@@ -2968,54 +2950,46 @@\n \"203\": [30, 33],\n \"2030\": 32,\n \"204\": [30, 33],\n \"205\": [30, 33, 44],\n \"206\": [30, 33],\n \"206e\": 38,\n \"207\": [33, 46],\n- \"20748\": 52,\n \"208\": 33,\n \"208e\": 38,\n \"209\": 33,\n \"20995484\": 19,\n- \"20b\": [19, 36, 44, 45, 46, 52, 55],\n+ \"20b\": [19, 36, 44, 45, 46, 55],\n \"20t00\": 38,\n \"21\": [8, 19, 32, 33, 36, 37, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 52, 53, 54],\n \"210\": 33,\n \"210e\": 38,\n \"211\": 33,\n \"212\": [19, 36, 48, 50],\n+ \"2120\": 52,\n \"212112\": [19, 48],\n \"21211203\": [19, 36],\n \"213\": 33,\n \"214\": [33, 41],\n- \"2147421547\": 52,\n- \"2147481429\": 52,\n- \"2147483457\": 52,\n- \"2147483589\": 52,\n- \"2147483647\": 52,\n \"215\": 33,\n \"216\": 33,\n \"2174\": 37,\n \"218\": [30, 33],\n \"219\": [30, 33],\n \"21t00\": 38,\n \"22\": [19, 30, 32, 33, 34, 36, 37, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 52, 53, 54],\n \"220\": [30, 33, 44],\n \"22012753\": 32,\n- \"220e\": 52,\n \"221\": [30, 33],\n- \"22152\": 52,\n \"222\": [30, 33],\n \"22222222\": 37,\n \"224193\": 32,\n \"224b\": [19, 44],\n \"224e\": 38,\n \"22546326\": 37,\n- \"225e\": 52,\n \"2262\": [18, 32, 53],\n \"226e\": 49,\n \"2281\": 33,\n \"2282\": 33,\n \"2283\": 33,\n \"2284\": 33,\n \"2288873043216132\": 55,\n@@ -3036,15 +3010,15 @@\n \"239\": [30, 33],\n \"23991312\": 37,\n \"23kb\": 53,\n \"23t00\": 38,\n \"23t12\": 37,\n \"24\": [7, 19, 32, 36, 37, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"240\": [45, 49, 53],\n- \"240b\": [38, 46, 52],\n+ \"240b\": [38, 46],\n \"240e\": 49,\n \"241\": [30, 33],\n \"241e\": 38,\n \"242\": [30, 33],\n \"242e\": 38,\n \"243\": [30, 33],\n \"244\": [30, 33, 39],\n@@ -3067,15 +3041,14 @@\n \"2515\": 37,\n \"253\": 39,\n \"255\": [13, 44, 46],\n \"2554\": 41,\n \"258\": 44,\n \"25828142\": 37,\n \"259\": [42, 45],\n- \"25968\": 52,\n \"25t00\": 38,\n \"26\": [19, 32, 36, 37, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 52, 53, 54],\n \"260\": [13, 44],\n \"26047600586578334\": 55,\n \"2605\": [39, 41],\n \"261e\": 49,\n \"26297658\": 37,\n@@ -3096,15 +3069,15 @@\n \"27185989\": 19,\n \"2719\": 19,\n \"272b\": 39,\n \"273\": [6, 9, 13, 49],\n \"2733209\": 37,\n \"274\": 54,\n \"27483458\": 37,\n- \"274e\": [38, 49, 52],\n+ \"274e\": [38, 49],\n \"275\": [13, 44],\n \"2762\": 19,\n \"27623202\": 19,\n \"2778\": 45,\n \"277e\": 38,\n \"278\": 45,\n \"27861203\": 37,\n@@ -3116,14 +3089,15 @@\n \"280\": 13,\n \"28099849\": 37,\n \"280b\": 37,\n \"280e\": 38,\n \"282863\": [19, 48],\n \"28286334\": [19, 36],\n \"2829\": [19, 36, 48],\n+ \"2829333351820392581\": 52,\n \"283\": [42, 48, 50],\n \"285\": [13, 39],\n \"286e\": 37,\n \"288b\": [37, 54],\n \"2899444\": 37,\n \"28b\": 55,\n \"28t00\": 38,\n@@ -3138,22 +3112,22 @@\n \"292277022657\": 32,\n \"292277026596\": 32,\n \"292278994\": 32,\n \"2931\": 41,\n \"29393586\": 37,\n \"294247\": 32,\n \"29519584\": 37,\n- \"29530\": 52,\n \"29645358\": 37,\n \"296e\": 38,\n \"297e\": 49,\n \"29844148\": 37,\n \"2999\": 32,\n \"29t00\": 38,\n \"29t12\": 37,\n+ \"2b\": 52,\n \"2d\": [19, 39, 44, 48, 49, 51, 54, 55],\n \"2ecc71\": 49,\n \"2kb\": [37, 53],\n \"2m\": 6,\n \"2mt\": 6,\n \"2nd\": [44, 49],\n \"2x\": 55,\n@@ -3169,47 +3143,43 @@\n \"306\": 26,\n \"30682759\": 37,\n \"306e\": 38,\n \"307\": 26,\n \"307e\": 38,\n \"308\": 26,\n \"30852683\": 37,\n- \"308j\": 52,\n \"309\": 45,\n \"30b\": 37,\n \"30t00\": [38, 53],\n \"30t1\": 53,\n \"30t12\": 53,\n \"30t18\": 53,\n \"30t21\": 53,\n \"31\": [14, 19, 32, 36, 37, 38, 39, 41, 42, 44, 45, 46, 49, 50, 52, 53, 54],\n \"310\": 13,\n- \"311j\": 52,\n- \"313\": 52,\n \"315e\": 38,\n \"316\": 45,\n- \"31732\": 52,\n \"3179\": 42,\n+ \"31813\": 52,\n \"319e\": 38,\n \"31t00\": 32,\n \"31t18\": 53,\n \"31t23\": [32, 53],\n \"32\": [19, 32, 36, 37, 38, 39, 41, 42, 44, 45, 46, 49, 50, 52, 53, 54, 55],\n \"320b\": 46,\n \"320e\": 38,\n \"321\": 45,\n \"3226808\": 19,\n \"322e\": 38,\n- \"324j\": 52,\n+ \"32461\": 52,\n \"3261\": 41,\n \"32618\": 46,\n \"326e\": 38,\n- \"32767\": 52,\n \"3297\": 42,\n- \"32b\": [19, 32, 36, 37, 39, 41, 44, 45, 50, 51, 52, 53, 55],\n+ \"32b\": [19, 32, 36, 37, 39, 41, 44, 45, 50, 51, 53, 55],\n \"33\": [19, 32, 36, 37, 39, 41, 42, 44, 45, 46, 49, 50, 52, 53, 55],\n \"331e\": 38,\n \"333\": 50,\n \"33326004\": 19,\n \"333e\": [38, 52],\n \"33419587\": 37,\n \"335\": [41, 54],\n@@ -3226,33 +3196,34 @@\n \"341e\": [38, 49],\n \"342\": 44,\n \"342e\": 49,\n \"34301681\": 37,\n \"344\": 44,\n \"34495e\": 49,\n \"346\": 42,\n+ \"34798\": 52,\n \"348\": 45,\n \"3498db\": 49,\n \"35\": [7, 19, 32, 36, 37, 39, 42, 44, 45, 46, 49, 50, 51, 52, 53, 55],\n \"350e\": 49,\n+ \"3518005710\": 52,\n \"352\": 55,\n \"35205353914802473\": 55,\n \"3521\": 44,\n \"354\": 41,\n \"35677824\": 19,\n \"357\": 53,\n \"35793963\": 37,\n \"357e\": 38,\n \"358\": [37, 53],\n \"358e\": 38,\n \"359\": [39, 53],\n \"36\": [3, 19, 32, 36, 37, 39, 42, 44, 45, 46, 49, 50, 52, 53, 55],\n \"360\": [46, 53],\n \"360_dai\": [46, 54, 55],\n- \"360b\": 52,\n \"361\": 53,\n \"361e\": 38,\n \"362\": 53,\n \"362e\": 49,\n \"363\": 53,\n \"36303831\": 37,\n \"364\": [37, 53],\n@@ -3292,15 +3263,14 @@\n \"383\": 52,\n \"384e\": 38,\n \"3884\": [37, 53],\n \"3885\": 53,\n \"3886\": 53,\n \"3887\": 53,\n \"389e\": 46,\n- \"38j\": 52,\n \"39\": [6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 32, 36, 37, 39, 42, 44, 45, 46, 49, 50, 53, 55],\n \"391e\": 38,\n \"392e\": 46,\n \"395\": [42, 44],\n \"396\": 42,\n \"3963\": 37,\n \"3989\": 37,\n@@ -3315,65 +3285,65 @@\n \"400\": [49, 50],\n \"400e\": 49,\n \"401\": 44,\n \"401501\": 32,\n \"401501601\": 32,\n \"401501601701801901\": 32,\n \"40324704\": 37,\n- \"403e\": 52,\n \"404\": 44,\n \"405\": 44,\n \"406e\": 49,\n \"4074\": 42,\n \"407e\": 38,\n \"408\": 42,\n \"40824829\": 37,\n \"40880017\": 37,\n- \"40b\": [19, 36, 37, 39, 44, 45, 46, 52, 54, 55],\n+ \"40b\": [19, 36, 37, 39, 44, 45, 46, 54, 55],\n \"41\": [19, 32, 36, 37, 39, 42, 44, 45, 46, 49, 50, 55],\n \"410e\": 49,\n \"41155042\": 37,\n \"41156272\": 37,\n \"41184582\": 37,\n \"41198807\": 37,\n \"412\": 42,\n \"414\": 44,\n \"4152\": 37,\n \"415e\": 38,\n \"4167\": 46,\n \"416b\": 37,\n- \"418e\": 38,\n+ \"418e\": [38, 52],\n \"419\": 42,\n \"41954454\": 19,\n \"419e\": 38,\n- \"41e\": 52,\n+ \"41e1\": 46,\n \"42\": [19, 32, 36, 37, 39, 41, 42, 44, 45, 46, 49, 50, 51, 55],\n \"423\": 49,\n \"424\": 39,\n \"42497233\": 19,\n \"425\": [19, 42],\n \"427\": 45,\n \"428\": 49,\n \"4281\": 37,\n \"428e\": 37,\n+ \"42j\": 52,\n \"43\": [19, 32, 36, 37, 39, 42, 44, 45, 46, 49, 50, 55],\n \"4326\": 46,\n \"4333\": 45,\n \"439e\": 38,\n \"44\": [19, 32, 36, 37, 39, 42, 44, 45, 46, 49, 50, 55],\n \"440e\": 49,\n \"441e\": 38,\n \"443\": [30, 33, 42, 44, 45, 46, 49, 50],\n \"445e\": [38, 49],\n \"4479968246859435\": 55,\n \"448\": [39, 41, 44, 50, 55],\n \"448e\": 49,\n \"449\": 37,\n \"44b\": [36, 50],\n- \"45\": [3, 9, 13, 19, 32, 37, 39, 41, 42, 44, 45, 46, 49, 50, 52, 55],\n+ \"45\": [3, 9, 13, 19, 32, 37, 39, 41, 42, 44, 45, 46, 49, 50, 55],\n \"451\": [39, 44, 55],\n \"45137647047539964\": 55,\n \"4514\": 41,\n \"452\": 54,\n \"45209466\": 19,\n \"4521\": 38,\n \"453\": [41, 44],\n@@ -3391,68 +3361,63 @@\n \"46462434\": 19,\n \"464e\": 38,\n \"465\": [30, 33],\n \"465e\": 38,\n \"466\": [39, 45],\n \"467e\": [37, 38],\n \"46830462\": 37,\n- \"4684\": 52,\n+ \"468e\": 52,\n \"469\": [46, 48, 50],\n \"4691\": [19, 36, 38, 48],\n \"469112\": [19, 48],\n \"4691123\": [19, 36],\n \"47\": [7, 19, 32, 37, 39, 42, 44, 45, 46, 49, 50, 55],\n \"471\": 44,\n \"47145519\": 37,\n \"47146929\": 37,\n \"4715\": 46,\n \"47179359\": 37,\n \"47195655\": 37,\n \"472e\": 38,\n \"476e\": 49,\n- \"4799\": 52,\n \"48\": [19, 32, 37, 39, 42, 44, 45, 46, 49, 50, 55],\n \"4809\": 55,\n \"481\": 44,\n- \"4812\": 46,\n \"481e\": 38,\n- \"484e\": 52,\n \"48541500\": 46,\n \"485e\": 38,\n \"4867138\": 37,\n \"48671934\": 37,\n \"48672119\": 37,\n \"487\": [30, 33],\n \"4875\": 37,\n \"487e\": 38,\n \"488\": [30, 33],\n- \"48b\": [19, 36, 37, 39, 41, 44, 45, 48, 50, 51, 52, 54],\n+ \"48b\": [19, 36, 37, 39, 41, 44, 45, 48, 50, 51, 54],\n \"49\": [19, 32, 37, 39, 42, 44, 45, 46, 49, 50, 55],\n \"490\": [30, 33],\n \"4909415\": 19,\n \"491\": [30, 33],\n \"494929\": 48,\n \"49492927\": 19,\n \"49497537\": 19,\n \"495\": 48,\n \"495e\": 49,\n \"496b\": 53,\n \"497\": [44, 45],\n \"499e\": 38,\n- \"4b\": [16, 19, 36, 37, 39, 42, 44, 45, 48, 50, 52, 55],\n+ \"4b\": [16, 19, 36, 37, 39, 42, 44, 45, 48, 50, 55],\n \"4d\": 49,\n- \"4e\": 52,\n \"4kb\": [49, 53, 55],\n \"5\": [6, 7, 8, 9, 11, 12, 13, 14, 16, 19, 25, 27, 30, 32, 33, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"50\": [7, 19, 28, 32, 36, 37, 39, 41, 42, 44, 45, 46, 49, 50, 55],\n \"500\": [13, 46, 49, 55],\n \"500000\": 32,\n \"5001\": 32,\n \"500100\": 32,\n- \"500e\": 52,\n \"502\": 45,\n \"504\": 41,\n \"505\": 39,\n \"505e\": 49,\n \"508\": 45,\n \"5081\": 30,\n \"509\": [19, 36, 48, 50],\n@@ -3530,15 +3495,14 @@\n \"577e\": 38,\n \"578\": 42,\n \"58\": [19, 30, 32, 33, 37, 39, 42, 44, 45, 46, 49, 50, 55],\n \"584\": [30, 33],\n \"58479532\": 37,\n \"584e\": 38,\n \"585\": [30, 32, 33, 42],\n- \"58525\": 52,\n \"585e\": 38,\n \"586\": [30, 33],\n \"587\": [30, 33],\n \"588\": [30, 33],\n \"589\": [30, 33],\n \"589e\": 38,\n \"59\": [19, 30, 32, 33, 37, 38, 39, 42, 44, 45, 46, 49, 50, 55],\n@@ -3546,29 +3510,27 @@\n \"594\": 42,\n \"59475567\": 37,\n \"5948\": 44,\n \"59499\": 16,\n \"595e\": 38,\n \"596\": 44,\n \"596e\": 38,\n- \"59860749\": 46,\n \"598e\": 38,\n \"5b\": [37, 44],\n \"5d\": 54,\n- \"5e\": 52,\n \"5kb\": 55,\n \"5x\": 55,\n \"6\": [3, 6, 7, 8, 9, 11, 12, 13, 14, 19, 25, 27, 30, 32, 33, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"60\": [19, 30, 32, 33, 37, 39, 42, 44, 45, 46, 49, 50, 53, 54, 55],\n \"600e\": 49,\n \"601\": [37, 39, 45],\n \"604\": 45,\n \"607\": [41, 45],\n \"609\": 41,\n- \"60b\": [36, 39],\n+ \"60b\": [36, 39, 52],\n \"61\": [19, 30, 32, 33, 37, 39, 42, 44, 45, 46, 49, 55],\n \"611\": 44,\n \"611e\": [38, 49],\n \"612e\": 46,\n \"613\": [39, 44],\n \"616e\": 38,\n \"617e\": 49,\n@@ -3590,32 +3552,34 @@\n \"635000\": 32,\n \"63696169\": 37,\n \"638e\": 49,\n \"64\": [19, 30, 32, 33, 37, 39, 42, 44, 45, 46, 49, 55],\n \"642\": 44,\n \"645e\": 38,\n \"648b\": 39,\n- \"64b\": [36, 37, 41, 44, 53],\n+ \"64b\": [36, 37, 41, 44, 52, 53],\n \"65\": [19, 30, 32, 33, 37, 39, 42, 44, 46, 49, 55],\n \"650e\": 38,\n \"651e\": 38,\n+ \"651e2de7\": 46,\n \"6525\": 37,\n \"652e\": 38,\n \"653\": 39,\n \"65348932\": 37,\n \"65442351\": 19,\n \"6573\": 46,\n \"66\": [32, 37, 39, 42, 44, 45, 46, 49, 55],\n \"664b\": 39,\n \"666\": [30, 33],\n \"6667\": 46,\n \"667\": [30, 33],\n \"667e\": 49,\n \"668\": [30, 33],\n \"669\": [30, 33, 39],\n+ \"6691529558243785635\": 52,\n \"67\": [32, 37, 39, 41, 42, 44, 46, 49, 55],\n \"670\": [30, 33],\n \"671\": [30, 33],\n \"672\": [30, 33],\n \"673\": [30, 33],\n \"6732\": 42,\n \"674\": [30, 33, 41],\n@@ -3648,14 +3612,15 @@\n \"6h\": [53, 55],\n \"6kb\": 53,\n \"7\": [3, 7, 8, 9, 11, 12, 14, 19, 25, 27, 30, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"70\": [30, 32, 33, 37, 39, 42, 44, 45, 46, 49, 55],\n \"700\": [30, 33],\n \"701\": 45,\n \"702\": [30, 33, 44],\n+ \"702e\": 52,\n \"703\": [30, 33],\n \"703e\": 49,\n \"704\": [30, 33],\n \"705\": [30, 33],\n \"705e\": 38,\n \"706\": [30, 33],\n \"706771\": 48,\n@@ -3678,23 +3643,22 @@\n \"724\": 13,\n \"726\": [33, 41],\n \"72653812\": 37,\n \"726e\": 38,\n \"727\": 33,\n \"728\": [33, 53],\n \"729\": [33, 53],\n- \"72b\": [19, 36, 44, 45],\n- \"73\": [30, 32, 33, 37, 39, 42, 44, 46, 49, 55],\n+ \"72b\": [19, 36, 44, 45, 52],\n+ \"73\": [30, 32, 33, 37, 39, 42, 44, 46, 49, 52, 55],\n \"730\": [33, 53],\n \"730119\": 32,\n \"73021329\": 37,\n \"730851\": 32,\n \"731\": [33, 53],\n \"732\": 33,\n- \"7321\": 52,\n \"733\": [33, 44],\n \"733e\": 49,\n \"7341\": 42,\n \"734e\": 54,\n \"735\": [33, 44, 45],\n \"736\": 33,\n \"737\": 53,\n@@ -3736,14 +3700,15 @@\n \"774\": 46,\n \"775\": 46,\n \"775807\": 32,\n \"776\": 46,\n \"776e\": 38,\n \"777\": 46,\n \"778\": 46,\n+ \"7788\": 52,\n \"779\": 46,\n \"78\": [32, 37, 39, 42, 44, 49, 55],\n \"782\": 55,\n \"782e\": 38,\n \"7848\": 25,\n \"786\": [30, 33],\n \"787\": [30, 33, 45],\n@@ -3751,23 +3716,24 @@\n \"789\": [30, 33, 39, 45],\n \"79\": [32, 37, 39, 42, 44, 49, 55],\n \"790\": [30, 33],\n \"790e\": 49,\n \"791\": [30, 33, 46],\n \"79119196\": 37,\n \"7917\": 46,\n+ \"791e\": 52,\n \"792\": [30, 33, 46],\n \"793\": [30, 33],\n \"794\": [30, 33],\n \"795\": [30, 33],\n \"796\": [30, 33],\n \"797\": [30, 33],\n \"797e\": 54,\n \"798\": [30, 33],\n- \"798e\": [38, 52],\n+ \"798e\": 38,\n \"799\": [30, 33],\n \"8\": [3, 7, 8, 11, 12, 13, 14, 16, 18, 19, 25, 27, 30, 32, 33, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"80\": [32, 37, 39, 42, 44, 49, 50, 55],\n \"800\": [30, 33],\n \"800b\": [25, 37],\n \"800e\": 38,\n \"800mb\": 38,\n@@ -3829,15 +3795,14 @@\n \"851e\": 38,\n \"854775807\": 32,\n \"8548\": 37,\n \"8568\": 42,\n \"857e\": 38,\n \"858e\": 54,\n \"8599\": 44,\n- \"859e\": 52,\n \"86\": [32, 37, 38, 39, 42, 44, 49, 55],\n \"8601\": [54, 55],\n \"8602\": 42,\n \"8618\": 36,\n \"86184896\": 19,\n \"861849\": 48,\n \"862\": [44, 48],\n@@ -3874,51 +3839,60 @@\n \"89\": [32, 37, 38, 39, 42, 44, 49, 55],\n \"893\": 45,\n \"893e\": [38, 49],\n \"897\": [39, 44],\n \"8972\": 41,\n \"897e\": 49,\n \"8987\": 42,\n- \"8b\": [16, 19, 36, 37, 39, 41, 42, 44, 45, 48, 50, 53, 54, 55],\n+ \"8b\": [16, 19, 36, 37, 39, 41, 42, 44, 45, 48, 50, 52, 53, 54, 55],\n \"8mb\": 38,\n \"8x\": 55,\n+ \"8\\u017f\": 52,\n \"9\": [3, 7, 8, 12, 14, 19, 25, 27, 30, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54],\n \"90\": [3, 12, 32, 36, 37, 39, 42, 44, 49, 50, 55],\n- \"900e\": [49, 52],\n+ \"900e\": 49,\n \"901000\": 32,\n \"901901\": 32,\n \"901901901\": 32,\n \"904e\": 49,\n \"905e\": 49,\n \"90680094\": 19,\n+ \"9069\": 52,\n \"906e\": 49,\n \"91\": [12, 32, 37, 39, 42, 44, 49, 55],\n \"911\": 45,\n \"912\": 45,\n \"91275558\": 37,\n \"912e\": 38,\n \"913e\": 38,\n \"915\": 39,\n \"915e\": 49,\n \"916\": 37,\n \"9167\": 46,\n \"917\": 46,\n \"92\": [7, 32, 37, 39, 42, 44, 49, 55],\n \"921e\": 38,\n+ \"9223372036854748419\": 52,\n+ \"9223372036854754181\": 52,\n+ \"9223372036854762265\": 52,\n+ \"9223372036854767675\": 52,\n+ \"9223372036854772911\": 52,\n+ \"9223372036854775616\": 52,\n+ \"9223372036854775729\": 52,\n+ \"9223372036854775797\": 52,\n \"9223372036854775807\": 32,\n \"927\": 39,\n \"929e\": 38,\n \"93\": [32, 37, 39, 42, 44, 45, 49, 55],\n \"933\": 37,\n \"933e\": 49,\n \"9363595\": 19,\n \"937\": 41,\n \"9399\": 37,\n \"94\": [32, 37, 39, 42, 44, 49, 55],\n- \"941e\": 52,\n \"942\": 44,\n \"944e\": [49, 54],\n \"947726688477\": 46,\n \"95\": [9, 13, 32, 37, 39, 42, 44, 49, 55],\n \"953\": 39,\n \"9537291\": 37,\n \"953e\": 49,\n@@ -3966,17 +3940,15 @@\n \"9986\": 37,\n \"998e\": 38,\n \"999\": [37, 55],\n \"9999\": [32, 37, 46],\n \"999999999\": 32,\n \"99kb\": 54,\n \"9b59b6\": 49,\n- \"9c34\": 46,\n \"9kb\": [49, 53, 55],\n- \"9\\u017e\": 52,\n \"A\": [3, 5, 8, 19, 24, 27, 30, 32, 33, 34, 36, 37, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 55],\n \"AS\": 55,\n \"And\": [7, 19, 49, 54],\n \"As\": [12, 16, 24, 25, 32, 33, 37, 38, 39, 41, 42, 44, 46, 48, 49, 50, 51, 54, 55],\n \"At\": [3, 16, 32, 38, 39, 46, 55],\n \"Be\": 3,\n \"But\": [12, 26, 39, 42, 46, 50],\n@@ -4433,29 +4405,29 @@\n \"ax2\": [12, 13],\n \"ax3\": 13,\n \"ax4\": 13,\n \"axi\": [11, 16, 18, 19, 20, 22, 24, 30, 37, 38, 39, 40, 41, 42, 46, 48, 51, 52, 55],\n \"axisarrai\": 5,\n \"ayrton\": 55,\n \"azur\": 55,\n- \"a\\u017c\\u0169\\u00ea\\u0138\": 52,\n- \"b\": [3, 19, 25, 36, 37, 38, 39, 41, 42, 44, 45, 48, 49, 50, 51, 53, 55],\n+ \"b\": [3, 19, 25, 36, 37, 38, 39, 41, 42, 44, 45, 48, 49, 50, 51, 52, 53, 55],\n \"b2\": [37, 55],\n \"ba\": 55,\n \"back\": [1, 8, 16, 19, 20, 26, 30, 31, 33, 37, 38, 39, 40, 41, 42, 44, 46, 49, 50, 52, 55],\n \"backend\": [1, 5, 16, 24, 29, 30, 31, 33, 34, 38, 39, 44, 46, 54, 55],\n \"backend_arrai\": 27,\n \"backend_kwarg\": [27, 46, 55],\n \"backendentrypoint\": [1, 16, 31, 55],\n \"backfil\": 44,\n \"background\": [23, 34, 39],\n \"backoff\": 55,\n \"backward\": [16, 37],\n \"bad\": [32, 49, 55],\n \"bad_air2d\": 49,\n+ \"bae8\": 46,\n \"bagrecha\": 55,\n \"band\": [39, 46, 50],\n \"bandwidth\": 38,\n \"bane\": 55,\n \"banihirw\": [35, 55],\n \"bar\": [19, 36, 39, 42, 44, 46, 49, 50, 55],\n \"barataria\": 7,\n@@ -4638,16 +4610,17 @@\n \"button\": 3,\n \"by_coord\": [36, 55],\n \"byte\": [24, 46, 55],\n \"bytes_\": 55,\n \"bytesbytescodec\": 46,\n \"bytestr\": 55,\n \"bzip2\": 46,\n+ \"b\\u017f\\u00e9\\u017e\": 52,\n \"c\": [3, 5, 7, 13, 16, 18, 19, 24, 29, 36, 37, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 54, 55],\n- \"c67352ecf847\": 46,\n+ \"c8\": 52,\n \"ca\": [44, 46],\n \"cabl\": 55,\n \"cach\": [26, 27, 30, 33, 34, 55],\n \"cache_dir\": [30, 33],\n \"cachedir\": 3,\n \"cachingfilemanag\": [27, 55],\n \"calcul\": [5, 9, 12, 15, 16, 37, 38, 42, 49, 51, 53, 55],\n@@ -5065,15 +5038,16 @@\n \"customari\": 19,\n \"customis\": 52,\n \"customiz\": 19,\n \"cut\": [32, 41, 55],\n \"cycl\": [3, 14, 39, 55],\n \"cyordereddict\": 55,\n \"cython\": 29,\n- \"d\": [3, 6, 7, 9, 10, 11, 12, 13, 14, 16, 19, 20, 26, 27, 28, 30, 32, 33, 34, 36, 37, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 53, 54, 55],\n+ \"c\\u017c\\u0103\\u017c\": 52,\n+ \"d\": [3, 6, 7, 9, 10, 11, 12, 13, 14, 16, 19, 20, 26, 27, 28, 30, 32, 33, 34, 36, 37, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 52, 53, 54, 55],\n \"d2\": 7,\n \"d8990\": 55,\n \"d_ylog\": 49,\n \"da\": [10, 25, 28, 30, 36, 37, 38, 41, 44, 45, 46, 49, 50, 51, 54, 55],\n \"da_cub\": 46,\n \"da_dt64\": 45,\n \"da_nl\": 54,\n@@ -5629,15 +5603,16 @@\n \"extra\": [6, 8, 18, 24, 28, 52, 55],\n \"extract\": [22, 32, 38, 39, 42, 44, 46, 50, 55],\n \"extractal\": 55,\n \"extrapol\": [45, 55],\n \"extrem\": [31, 44, 46, 49, 52],\n \"ey\": [25, 40],\n \"ezequiel\": 55,\n- \"f\": [3, 8, 9, 13, 19, 26, 30, 32, 33, 37, 39, 42, 46, 49, 55],\n+ \"f\": [3, 8, 9, 13, 19, 26, 30, 32, 33, 37, 39, 42, 46, 49, 52, 55],\n+ \"f473\": 46,\n \"fabian\": 55,\n \"fabien\": 55,\n \"face\": [20, 30, 34],\n \"facecolor\": [7, 49, 55],\n \"facet\": [50, 55],\n \"facetgrid\": 55,\n \"facilit\": [3, 8, 16, 20, 34, 37, 41, 46, 54, 55],\n@@ -7289,20 +7264,20 @@\n \"instanti\": [27, 55],\n \"instead\": [3, 8, 12, 19, 20, 24, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 51, 52, 55],\n \"institut\": 35,\n \"instruct\": [3, 46, 55],\n \"instrument\": 39,\n \"insuffici\": 37,\n \"int\": [24, 33, 37, 51, 52, 55],\n- \"int16\": [3, 46, 52],\n+ \"int16\": [3, 46],\n \"int32\": [3, 19, 32, 36, 37, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55],\n- \"int64\": [3, 19, 32, 36, 39, 41, 44, 46, 48, 50, 53, 54, 55],\n+ \"int64\": [3, 19, 32, 36, 39, 41, 44, 46, 48, 50, 52, 53, 54, 55],\n \"int64_max\": 32,\n \"int64_min\": 32,\n- \"int8\": [3, 52],\n+ \"int8\": 3,\n \"intact\": 55,\n \"intarr\": 37,\n \"integ\": [19, 20, 24, 27, 30, 32, 37, 39, 44, 46, 52, 55],\n \"integr\": [5, 16, 18, 20, 27, 34, 37, 38, 40, 46, 49, 51, 53, 55],\n \"intend\": [3, 19, 25, 29, 30, 39, 42, 55],\n \"intens\": 46,\n \"intent\": [26, 40, 42],\n@@ -7382,14 +7357,15 @@\n \"iter_cont\": [30, 33],\n \"itertool\": [27, 54],\n \"its\": [3, 9, 16, 18, 19, 20, 27, 30, 33, 34, 37, 39, 41, 42, 44, 46, 48, 50, 51, 53, 55],\n \"itself\": [3, 18, 19, 20, 24, 28, 30, 37, 39, 44, 46, 48, 55],\n \"iv\": 42,\n \"ix\": 44,\n \"ix_\": 44,\n+ \"i\\u017e\": 52,\n \"j\": [16, 24, 40, 42, 44, 52, 55],\n \"jack\": 55,\n \"jacob\": 55,\n \"jaeschk\": 55,\n \"jahren\": 55,\n \"jame\": 55,\n \"jan\": [53, 54],\n@@ -7962,15 +7938,15 @@\n \"nanosecond\": [32, 54, 55],\n \"nanquantil\": 55,\n \"nansum\": 37,\n \"narr\": 55,\n \"narrai\": 16,\n \"nasa\": 46,\n \"nascent\": [50, 55],\n- \"nat\": [32, 55],\n+ \"nat\": [32, 52, 55],\n \"nathan\": 55,\n \"nation\": 38,\n \"nativ\": [16, 26, 32, 37, 46, 49, 53, 55],\n \"nattino\": 55,\n \"natur\": [16, 20, 24, 30, 38, 39, 44, 50, 55],\n \"naturalearthfeatur\": 7,\n \"navig\": [1, 3, 21, 55],\n@@ -8106,15 +8082,14 @@\n \"numfocu\": 55,\n \"numpi\": [1, 3, 7, 8, 9, 10, 11, 12, 14, 16, 18, 19, 20, 22, 24, 25, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 44, 45, 46, 48, 49, 50, 51, 52, 53, 55],\n \"numpy_experimental_array_funct\": 55,\n \"numpyindexingadapt\": 55,\n \"nx\": 41,\n \"nxarrai\": 5,\n \"ny\": 41,\n- \"n\\u0177\": 52,\n \"o\": [18, 24, 27, 33, 45, 48, 49, 55],\n \"obei\": 25,\n \"obj\": [22, 24, 33, 38],\n \"object\": [3, 5, 8, 14, 16, 18, 19, 20, 22, 24, 25, 26, 27, 28, 31, 32, 33, 34, 36, 37, 38, 39, 42, 44, 45, 46, 48, 50, 51, 52, 53, 54, 55],\n \"oblivi\": 55,\n \"observ\": [5, 14, 31, 34, 37, 42, 48, 49, 55],\n \"obsolet\": 55,\n@@ -9294,15 +9269,14 @@\n \"purepath\": 1,\n \"purpl\": 49,\n \"purpos\": [16, 20, 26, 30, 32, 38, 42, 44, 46],\n \"pursu\": 34,\n \"push\": [29, 55],\n \"pushkar\": 55,\n \"put\": [3, 19, 37, 38, 39, 42, 48, 51],\n- \"pv\\u0105\\u00bd\": 52,\n \"pwd\": 3,\n \"py\": [3, 8, 16, 18, 26, 27, 30, 33, 38, 55],\n \"py38\": 55,\n \"pyarrow\": 55,\n \"pycalphad\": 5,\n \"pycharm\": 55,\n \"pycompat\": 55,\n@@ -9332,17 +9306,17 @@\n \"pythonpath\": 3,\n \"pytorch\": 34,\n \"pytz\": 18,\n \"pyupgrad\": 55,\n \"pyvista\": 5,\n \"pyxpcm\": 5,\n \"pyyaml\": 18,\n- \"p\\u014b\\u0165s\\u0137\": 52,\n \"q\": [37, 55],\n \"qe\": 55,\n+ \"qh\\u00ed\\u010f\\u017e\": 52,\n \"quack\": 40,\n \"quadmesh\": [19, 49, 55],\n \"quadrat\": [45, 55],\n \"qualifi\": 42,\n \"qualiti\": 3,\n \"quantil\": [37, 55],\n \"quantiti\": [39, 40, 55],\n@@ -9358,16 +9332,16 @@\n \"quickbird\": 5,\n \"quicker\": 46,\n \"quickli\": [16, 17, 38, 42, 52, 53],\n \"quickstart\": 34,\n \"quit\": [3, 46, 52, 55],\n \"quiver\": 55,\n \"quoc\": 55,\n- \"q\\u0144\\u00fa\\u00b5\": 52,\n- \"r\": [26, 30, 32, 33, 37, 38, 39, 46, 55],\n+ \"q\\u017e\\u015f\\u017f\": 52,\n+ \"r\": [26, 30, 32, 33, 37, 38, 39, 46, 52, 55],\n \"rabbit\": 42,\n \"race\": 55,\n \"rachel\": 55,\n \"radar\": 5,\n \"rafael\": 55,\n \"rag\": 44,\n \"rahe\": 55,\n@@ -10425,27 +10399,30 @@\n \"typeerror\": [27, 46, 55],\n \"typehint\": 55,\n \"typic\": [3, 7, 14, 16, 30, 34, 38, 46, 51],\n \"typing_extens\": 55,\n \"typo\": [3, 23, 55],\n \"tyre\": 55,\n \"u\": [3, 8, 12, 19, 21, 24, 26, 31, 32, 33, 34, 42, 44, 45, 46, 49, 50, 53, 54, 55],\n+ \"u0006dd3c\\u00f3\\u00f1\": 52,\n+ \"u000cf117m\": 52,\n+ \"u000f63d1\": 52,\n \"u1\": [19, 36, 37, 39, 41, 44, 45, 46, 48, 50, 55],\n \"u2\": [37, 39, 44],\n- \"u3\": [53, 54, 55],\n+ \"u3\": [52, 53, 54, 55],\n \"u4\": 55,\n \"u5\": [19, 49],\n \"u6\": [39, 42],\n \"u7\": [37, 39],\n \"u8\": [37, 39],\n \"ubiqu\": 16,\n \"ufunc\": [1, 8, 24, 37, 38, 40, 55],\n \"uint32\": 52,\n \"uint64_max\": 32,\n- \"uint8\": [40, 46],\n+ \"uint8\": [40, 46, 52],\n \"uk\": [6, 16, 46],\n \"ulrich\": 55,\n \"ultim\": 24,\n \"unabl\": [16, 38],\n \"unaddress\": 55,\n \"unalign\": [19, 42],\n \"unambigu\": [39, 55],\n@@ -10650,15 +10627,16 @@\n \"voltag\": 42,\n \"volum\": [5, 16, 55],\n \"volunt\": 20,\n \"voluntari\": 55,\n \"vrt\": 55,\n \"vtk\": 5,\n \"vtransform\": 7,\n- \"w\": [7, 32, 33, 42, 46, 49, 50, 52],\n+ \"w\": [7, 32, 33, 42, 46, 49, 50],\n+ \"w1\": 52,\n \"wa\": [3, 7, 8, 16, 20, 24, 30, 31, 33, 34, 36, 39, 40, 42, 46, 48, 49, 52, 53, 54, 55],\n \"wai\": [3, 7, 8, 12, 16, 18, 19, 21, 24, 26, 30, 31, 34, 38, 39, 40, 42, 44, 45, 46, 48, 51, 52, 55],\n \"wait\": 3,\n \"wale\": 55,\n \"walk\": 40,\n \"wall\": 38,\n \"wang\": 55,\n@@ -10771,54 +10749,62 @@\n \"write_inherited_coord\": 55,\n \"written\": [3, 18, 24, 29, 37, 38, 39, 46, 52, 55],\n \"wrong\": [3, 32, 55],\n \"wrongli\": 55,\n \"wrote\": 36,\n \"www\": [7, 18],\n \"x\": [3, 5, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 27, 28, 30, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55],\n+ \"x00\": 52,\n+ \"x06\": 52,\n \"x0pahjgysxk\": 18,\n \"x1\": 36,\n- \"x16t\": 52,\n \"x2\": [36, 40],\n \"x64\": 55,\n- \"x82\": 52,\n- \"x84\": 52,\n- \"x85\": 52,\n- \"x88\": 52,\n+ \"x8d1\": 52,\n+ \"x918\": 52,\n+ \"x93\": 52,\n+ \"x98t\": 52,\n+ \"x9b\": 52,\n \"x_and_i\": 37,\n \"x_bin\": 41,\n \"x_bin_label\": 41,\n \"x_chunk\": 24,\n \"x_coars\": 50,\n \"x_fine\": 50,\n \"x_matrix_rank\": 37,\n \"x_onli\": 37,\n \"x_rank\": 38,\n \"x_singular_valu\": 37,\n \"x_win\": 37,\n+ \"xa5\": 52,\n+ \"xaf\": 52,\n \"xalpha\": 37,\n \"xalpha1\": 37,\n \"xarrai\": [1, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 24, 25, 27, 28, 30, 32, 33, 34, 35, 36, 37, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55],\n \"xarray_einstat\": 5,\n \"xarray_extra\": [5, 46],\n \"xarray_obj\": 26,\n \"xarray_object\": 8,\n \"xarray_v0_8_0\": 16,\n+ \"xb7\": 52,\n+ \"xb78v\": 52,\n+ \"xb8\": 52,\n \"xbatcher\": 5,\n \"xbpch\": 5,\n \"xc\": [12, 37, 46],\n \"xc0\": 37,\n \"xcdat\": [5, 55],\n \"xclim\": 5,\n \"xd\": 38,\n \"xdev\": 35,\n \"xdist\": [3, 18, 55],\n \"xenomorph\": 42,\n \"xeof\": 5,\n \"xesmf\": [5, 12],\n+ \"xf3\": 52,\n \"xfail\": [3, 55],\n \"xframe\": 5,\n \"xgcm\": [5, 7],\n \"xi\": 8,\n \"xi_rho\": 7,\n \"xianxiang\": 55,\n \"xin\": 55,\n@@ -10844,15 +10830,14 @@\n \"xtick\": [49, 55],\n \"xtrude\": 5,\n \"xx\": 37,\n \"xxxx\": 3,\n \"xy_index\": 28,\n \"xyz\": 39,\n \"xyzpi\": 5,\n- \"x\\u013a\": 52,\n \"y\": [7, 11, 12, 18, 19, 20, 24, 25, 28, 32, 36, 37, 38, 39, 41, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55],\n \"y_coars\": 50,\n \"y_fine\": 50,\n \"y_rank\": 38,\n \"y_win\": 37,\n \"yai\": 8,\n \"yalpha\": 37,\n@@ -10920,56 +10905,41 @@\n \"zo_rho\": 7,\n \"zonal\": [5, 38, 49],\n \"zone\": 32,\n \"zoom\": 4,\n \"zstd\": 46,\n \"zuckerberg\": 55,\n \"z\\u00fchlke\": 55,\n- \"\\u00e0\": 52,\n- \"\\u00e3\\u010d\": 52,\n- \"\\u00e4\": 52,\n+ \"\\u00b2\\u0121\\u0161\\u017f\\u00f5\": 52,\n+ \"\\u00b3\\u017ec\": 52,\n+ \"\\u00b9e\\u017c\\u0101\\u014f\": 52,\n+ \"\\u00e1\": 52,\n+ \"\\u00e2\\u00fb\": 52,\n \"\\u00eb\": 52,\n- \"\\u00ec\\u0137\": 52,\n- \"\\u00ec\\u017ch\\u00fa\": 52,\n- \"\\u00ed\\u00f3\": 52,\n- \"\\u00ee\": 52,\n- \"\\u00f3\\u010b\\u00e8\\u00b2\": 52,\n- \"\\u00f5\": 52,\n- \"\\u00fdt\": 52,\n- \"\\u0105\\u017f\\u00eep\\u014d\": 52,\n- \"\\u0109\": 52,\n- \"\\u010b\\u0151\\u0105\\u017c\": 52,\n- \"\\u010d0\": 52,\n- \"\\u0111\\u00fcn\": 52,\n- \"\\u011b\\u00f1\\u00fe\": 52,\n- \"\\u011d\\u00ff\\u00fd\": 52,\n- \"\\u011f\\u017f\\u0144\": 52,\n- \"\\u012dk\": 52,\n- \"\\u012f\\u0140\\u00eenu\": 52,\n- \"\\u0142\": 52,\n- \"\\u0142\\u00e6\\u00f3\\u00fa\\u00e2\": 52,\n- \"\\u014b\\u017e\\u0163\": 52,\n- \"\\u014f\\u00f4\": 52,\n- \"\\u0153\": 52,\n- \"\\u0153\\u017cu\\u0137\": 52,\n- \"\\u0155\\u00b9\\u017f\\u00e5\\u0113\": 52,\n- \"\\u015d8\": 52,\n- \"\\u015d\\u00efl\": 52,\n- \"\\u0169z\\u010d\": 52,\n- \"\\u016dgz\": 52,\n- \"\\u0173\\u0148\": 52,\n- \"\\u017a\\u017fp\": 52,\n- \"\\u017c\": 52,\n- \"\\u017e\": 52,\n- \"\\u017e\\u0113\\u0155\": 52,\n- \"\\u017e\\u012b\": 52,\n- \"\\u017e\\u0173\": 52,\n- \"\\u017e\\u017c\": 52,\n- \"\\u017f\\u00e8z\": 52,\n- \"\\u2c65\": 52\n+ \"\\u00f6\\u013e\\u0148m\": 52,\n+ \"\\u0101\\u017c\\u0171\\u010f\\u00f0\": 52,\n+ \"\\u0103\\u017f\\u0137w\\u017e\": 52,\n+ \"\\u0113\\u017c\\u017f6\": 52,\n+ \"\\u0119\\u0111\\u00e9\\u017e\": 52,\n+ \"\\u011f\\u00aa\\u0127\": 52,\n+ \"\\u0129\\u0117c\\u017c\": 52,\n+ \"\\u013e\\u00f6\\u00f3\": 52,\n+ \"\\u0146\\u0146m\\u0105\\u010f\": 52,\n+ \"\\u014b\\u00ec\\u017c\\u0111\": 52,\n+ \"\\u0159\": 52,\n+ \"\\u015d\\u017c\\u017e\": 52,\n+ \"\\u0175\\u00ff\\u00fdi\\u0307\\u00bd\": 52,\n+ \"\\u0175\\u010f\\u00e6\\u0135t\": 52,\n+ \"\\u017a\\u0157\\u0146k\\u00fd\": 52,\n+ \"\\u017c\\u016b\\u011dd\\u00e1\": 52,\n+ \"\\u017c\\u017f\\u016b\\u00f9\\u012f\": 52,\n+ \"\\u017e\\u00e2\\u017c\\u010f\\u0135\": 52,\n+ \"\\u017f\\u012b\\u00f5\\u00fd\\u012b\": 52,\n+ \"\\u017f\\u017c\": 52,\n+ \"\\ud877\\udcbb\": 52\n },\n \"titles\": [\"xarray\", \"API reference\", \"<no title>\", \"Contributing to xarray\", \"Developers meeting\", \"Xarray related projects\", \"GRIB Data Example\", \"ROMS Ocean Model Example\", \"Applying unvectorized functions with apply_ufunc\", \"Compare weighted and unweighted mean temperature\", \"Blank template\", \"Calculating Seasonal Averages from Time Series of Monthly Means\", \"Working with Multidimensional Coordinates\", \"Visualization Gallery\", \"Toy weather data\", \"Gallery\", \"Frequently Asked Questions\", \"Getting Started\", \"Installation\", \"Quick overview\", \"Overview: Why xarray?\", \"Getting Help\", \"How do I \\u2026\", \"Xarray documentation\", \"Alternative chunked array types\", \"Integrating with duck arrays\", \"Extending xarray using accessors\", \"How to add a new backend\", \"How to create a custom index\", \"Xarray Internals\", \"Internal Design\", \"Interoperability of Xarray\", \"Time Coding\", \"Zarr Encoding Specification\", \"Development roadmap\", \"Tutorials and Videos\", \"Combining data\", \"Computation\", \"Parallel Computing with Dask\", \"Data Structures\", \"Working with numpy-like arrays\", \"GroupBy: Group and Bin Data\", \"Hierarchical data\", \"User Guide\", \"Indexing and selecting data\", \"Interpolating data\", \"Reading and writing files\", \"Configuration\", \"Working with pandas\", \"Plotting\", \"Reshaping and reorganizing data\", \"Terminology\", \"Testing your code\", \"Time series data\", \"Weather and climate data\", \"What\\u2019s New\"],\n \"titleterms\": {\n \"\": [13, 16, 55],\n \"0\": 55,\n \"01\": 55,\n \"02\": 55,\n"}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/user-guide/data-structures.html", "source2": "./usr/share/doc/python-xarray-doc/html/user-guide/data-structures.html", "unified_diff": "@@ -731,18 +731,18 @@\n a method call with an external function (e.g., ds.pipe(func)) instead of\n simply calling it (e.g., func(ds)). This allows you to write pipelines for\n transforming your data (using \u201cmethod chaining\u201d) instead of writing hard to\n follow nested function calls:

\n
# these lines are equivalent, but with pipe we can make the logic flow\n # entirely from left to right\n In [64]: plt.plot((2 * ds.temperature.sel(loc=0)).mean("instrument"))\n-Out[64]: [<matplotlib.lines.Line2D at 0xe2ee7450>]\n+Out[64]: [<matplotlib.lines.Line2D at 0xe2b19450>]\n \n In [65]: (ds.temperature.sel(loc=0).pipe(lambda x: 2 * x).mean("instrument").pipe(plt.plot))\n-Out[65]: [<matplotlib.lines.Line2D at 0xe2ee73a0>]\n+Out[65]: [<matplotlib.lines.Line2D at 0xe2b193a0>]\n 
\n
\n

Both pipe and assign replicate the pandas methods of the same names\n (DataFrame.pipe and\n DataFrame.assign).

\n

With xarray, there is no performance penalty for creating new datasets, even if\n variables are lazily loaded from a file on disk. Creating new objects instead\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -585,19 +585,19 @@\n There is also the pipe() method that allows you to use a method call with an\n external function (e.g., ds.pipe(func)) instead of simply calling it (e.g.,\n func(ds)). This allows you to write pipelines for transforming your data (using\n \u201cmethod chaining\u201d) instead of writing hard to follow nested function calls:\n # these lines are equivalent, but with pipe we can make the logic flow\n # entirely from left to right\n In [64]: plt.plot((2 * ds.temperature.sel(loc=0)).mean(\"instrument\"))\n-Out[64]: []\n+Out[64]: []\n \n In [65]: (ds.temperature.sel(loc=0).pipe(lambda x: 2 * x).mean\n (\"instrument\").pipe(plt.plot))\n-Out[65]: []\n+Out[65]: []\n Both pipe and assign replicate the pandas methods of the same names\n (_\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\bp_\bi_\bp_\be and _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\ba_\bs_\bs_\bi_\bg_\bn).\n With xarray, there is no performance penalty for creating new datasets, even if\n variables are lazily loaded from a file on disk. Creating new objects instead\n of mutating existing objects often results in easier to understand code, so we\n encourage using this approach.\n *\b**\b**\b**\b* R\bRe\ben\bna\bam\bmi\bin\bng\bg v\bva\bar\bri\bia\bab\bbl\ble\bes\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n"}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/user-guide/hierarchical-data.html", "source2": "./usr/share/doc/python-xarray-doc/html/user-guide/hierarchical-data.html", "unified_diff": "@@ -983,15 +983,15 @@\n

If you were a previous user of the prototype xarray-contrib/datatree package, this is different from what you\u2019re used to!\n In that package the data model was that the data stored in each node actually was completely unrelated. The data model is now slightly stricter.\n This allows us to provide features like Coordinate Inheritance.

\n \n

To demonstrate, let\u2019s first generate some example datasets which are not aligned with one another:

\n
# (drop the attributes just to make the printed representation shorter)\n In [89]: ds = xr.tutorial.open_dataset("air_temperature").drop_attrs()\n-ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe3742be0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe334cbe0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n \n In [90]: ds_daily = ds.resample(time="D").mean("time")\n KeyError: "No variable named 'time'. Variables on the dataset include ['foo', 'x', 'letters']"\n \n \n In [91]: ds_weekly = ds.resample(time="W").mean("time")\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -870,15 +870,15 @@\n _\bC_\bo_\bo_\br_\bd_\bi_\bn_\ba_\bt_\be_\b _\bI_\bn_\bh_\be_\br_\bi_\bt_\ba_\bn_\bc_\be.\n To demonstrate, let\u2019s first generate some example datasets which are not\n aligned with one another:\n # (drop the attributes just to make the printed representation shorter)\n In [89]: ds = xr.tutorial.open_dataset(\"air_temperature\").drop_attrs()\n ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n \n In [90]: ds_daily = ds.resample(time=\"D\").mean(\"time\")\n KeyError: \"No variable named 'time'. Variables on the dataset include ['foo',\n 'x', 'letters']\"\n"}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/user-guide/indexing.html", "source2": "./usr/share/doc/python-xarray-doc/html/user-guide/indexing.html", "unified_diff": "@@ -653,15 +653,15 @@\n to a collection specified weather station latitudes and longitudes.\n To trigger vectorized indexing behavior\n you will need to provide the selection dimensions with a new\n shared output dimension name. In the example below, the selections\n of the closest latitude and longitude are renamed to an output\n dimension named \u201cpoints\u201d:

\n
In [52]: ds = xr.tutorial.open_dataset("air_temperature")\n-ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe3742710>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe334c710>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n \n # Define target latitude and longitude (where weather stations might be)\n In [53]: target_lon = xr.DataArray([200, 201, 202, 205], dims="points")\n \n In [54]: target_lat = xr.DataArray([31, 41, 42, 42], dims="points")\n \n@@ -697,15 +697,15 @@\n 
\n
\n
\n

Assigning values with indexing\u00b6

\n

To select and assign values to a portion of a DataArray() you\n can use indexing with .loc :

\n
In [57]: ds = xr.tutorial.open_dataset("air_temperature")\n-ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe36a89d0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe32da9d0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n \n # add an empty 2D dataarray\n In [58]: ds["empty"] = xr.full_like(ds.air.mean("time"), fill_value=0)\n AttributeError: 'Dataset' object has no attribute 'air'\n \n \n@@ -869,15 +869,15 @@\n 
\n
\n

You can also assign values to all variables of a Dataset at once:

\n
In [83]: ds_org = xr.tutorial.open_dataset("eraint_uvz").isel(\n    ....:     latitude=slice(56, 59), longitude=slice(255, 258), level=0\n    ....: )\n    ....: \n-ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/eraint_uvz.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe36a8ea0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/eraint_uvz.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe32daea0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n \n # set all values to 0\n In [84]: ds = xr.zeros_like(ds_org)\n NameError: name 'ds_org' is not defined\n \n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -475,15 +475,15 @@\n vectorized indexing behavior you will need to provide the selection dimensions\n with a new shared output dimension name. In the example below, the selections\n of the closest latitude and longitude are renamed to an output dimension named\n \u201cpoints\u201d:\n In [52]: ds = xr.tutorial.open_dataset(\"air_temperature\")\n ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n \n # Define target latitude and longitude (where weather stations might be)\n In [53]: target_lon = xr.DataArray([200, 201, 202, 205], dims=\"points\")\n \n@@ -515,15 +515,15 @@\n dimensions with .loc/.sel). Otherwise, IndexError will be raised.\n *\b**\b**\b**\b**\b* A\bAs\bss\bsi\big\bgn\bni\bin\bng\bg v\bva\bal\blu\bue\bes\bs w\bwi\bit\bth\bh i\bin\bnd\bde\bex\bxi\bin\bng\bg_\b?\b\u00b6 *\b**\b**\b**\b**\b*\n To select and assign values to a portion of a DataArray() you can use indexing\n with .loc :\n In [57]: ds = xr.tutorial.open_dataset(\"air_temperature\")\n ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n \n # add an empty 2D dataarray\n In [58]: ds[\"empty\"] = xr.full_like(ds.air.mean(\"time\"), fill_value=0)\n AttributeError: 'Dataset' object has no attribute 'air'\n@@ -677,15 +677,15 @@\n You can also assign values to all variables of a Dataset at once:\n In [83]: ds_org = xr.tutorial.open_dataset(\"eraint_uvz\").isel(\n    ....:     latitude=slice(56, 59), longitude=slice(255, 258), level=0\n    ....: )\n    ....:\n ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/eraint_uvz.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n \n # set all values to 0\n In [84]: ds = xr.zeros_like(ds_org)\n NameError: name 'ds_org' is not defined\n"}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/user-guide/interpolation.html", "source2": "./usr/share/doc/python-xarray-doc/html/user-guide/interpolation.html", "unified_diff": "@@ -237,24 +237,24 @@\n    ....:     np.sin(np.linspace(0, 2 * np.pi, 10)),\n    ....:     dims="x",\n    ....:     coords={"x": np.linspace(0, 1, 10)},\n    ....: )\n    ....: \n \n In [17]: da.plot.line("o", label="original")\n-Out[17]: [<matplotlib.lines.Line2D at 0xe8345030>]\n+Out[17]: [<matplotlib.lines.Line2D at 0xe8166030>]\n \n In [18]: da.interp(x=np.linspace(0, 1, 100)).plot.line(label="linear (default)")\n-Out[18]: [<matplotlib.lines.Line2D at 0xe8345710>]\n+Out[18]: [<matplotlib.lines.Line2D at 0xe8166710>]\n \n In [19]: da.interp(x=np.linspace(0, 1, 100), method="cubic").plot.line(label="cubic")\n-Out[19]: [<matplotlib.lines.Line2D at 0xe8345df0>]\n+Out[19]: [<matplotlib.lines.Line2D at 0xe8166df0>]\n \n In [20]: plt.legend()\n-Out[20]: <matplotlib.legend.Legend at 0xe83250e8>\n+Out[20]: <matplotlib.legend.Legend at 0xe81470e8>\n 
\n
\n \"../_images/interpolation_sample1.png\"\n \n

Additional keyword arguments can be passed to scipy\u2019s functions.

\n
# fill 0 for the outside of the original coordinates.\n In [21]: da.interp(x=np.linspace(-0.5, 1.5, 10), kwargs={"fill_value": 0.0})\n@@ -439,15 +439,15 @@\n see Missing values.

\n
\n
\n

Example\u00b6

\n

Let\u2019s see how interp() works on real data.

\n
# Raw data\n In [44]: ds = xr.tutorial.open_dataset("air_temperature").isel(time=0)\n-ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe8322a80>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe8144a80>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n \n In [45]: fig, axes = plt.subplots(ncols=2, figsize=(10, 4))\n \n In [46]: ds.air.plot(ax=axes[0])\n AttributeError: 'Dataset' object has no attribute 'air'\n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -153,26 +153,26 @@\n    ....:     np.sin(np.linspace(0, 2 * np.pi, 10)),\n    ....:     dims=\"x\",\n    ....:     coords={\"x\": np.linspace(0, 1, 10)},\n    ....: )\n    ....:\n \n In [17]: da.plot.line(\"o\", label=\"original\")\n-Out[17]: []\n+Out[17]: []\n \n In [18]: da.interp(x=np.linspace(0, 1, 100)).plot.line(label=\"linear\n (default)\")\n-Out[18]: []\n+Out[18]: []\n \n In [19]: da.interp(x=np.linspace(0, 1, 100), method=\"cubic\").plot.line\n (label=\"cubic\")\n-Out[19]: []\n+Out[19]: []\n \n In [20]: plt.legend()\n-Out[20]: \n+Out[20]: \n _\b[_\b._\b._\b/_\b__\bi_\bm_\ba_\bg_\be_\bs_\b/_\bi_\bn_\bt_\be_\br_\bp_\bo_\bl_\ba_\bt_\bi_\bo_\bn_\b__\bs_\ba_\bm_\bp_\bl_\be_\b1_\b._\bp_\bn_\bg_\b]\n Additional keyword arguments can be passed to scipy\u2019s functions.\n # fill 0 for the outside of the original coordinates.\n In [21]: da.interp(x=np.linspace(-0.5, 1.5, 10), kwargs={\"fill_value\": 0.0})\n Out[21]:\n  Size: 80B\n array([ 0.   ,  0.   ,  0.   ,  0.814,  0.604, -0.604, -0.814,  0.   ,  0.   ,\n@@ -337,15 +337,15 @@\n For the details of interpolate_na(), see _\bM_\bi_\bs_\bs_\bi_\bn_\bg_\b _\bv_\ba_\bl_\bu_\be_\bs.\n *\b**\b**\b**\b**\b* E\bEx\bxa\bam\bmp\bpl\ble\be_\b?\b\u00b6 *\b**\b**\b**\b**\b*\n Let\u2019s see how interp() works on real data.\n # Raw data\n In [44]: ds = xr.tutorial.open_dataset(\"air_temperature\").isel(time=0)\n ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n \n In [45]: fig, axes = plt.subplots(ncols=2, figsize=(10, 4))\n \n In [46]: ds.air.plot(ax=axes[0])\n"}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/user-guide/io.html", "source2": "./usr/share/doc/python-xarray-doc/html/user-guide/io.html", "unified_diff": "@@ -630,15 +630,15 @@\n    ....:         "y": pd.date_range("2000-01-01", periods=5),\n    ....:         "z": ("x", list("abcd")),\n    ....:     },\n    ....: )\n    ....: \n \n In [13]: ds.to_zarr("path/to/directory.zarr")\n-Out[13]: <xarray.backends.zarr.ZarrStore at 0xe2d87d60>\n+Out[13]: <xarray.backends.zarr.ZarrStore at 0xe29bbd60>\n 
\n
\n

(The suffix .zarr is optional\u2013just a reminder that a zarr store lives\n there.) If the directory does not exist, it will be created. If a zarr\n store is already present at that path, an error will be raised, preventing it\n from being overwritten. To override this behavior and overwrite an existing\n store, add mode='w' when invoking to_zarr().

\n@@ -658,19 +658,19 @@\n

To read back a zarr dataset that has been created this way, we use the\n open_zarr() method:

\n
In [14]: ds_zarr = xr.open_zarr("path/to/directory.zarr")\n \n In [15]: ds_zarr\n Out[15]: \n <xarray.Dataset> Size: 232B\n-Dimensions:  (x: 4, y: 5)\n+Dimensions:  (y: 5, x: 4)\n Coordinates:\n-    z        (x) object 16B dask.array<chunksize=(4,), meta=np.ndarray>\n-  * x        (x) int32 16B 10 20 30 40\n   * y        (y) datetime64[ns] 40B 2000-01-01 2000-01-02 ... 2000-01-05\n+  * x        (x) int32 16B 10 20 30 40\n+    z        (x) object 16B dask.array<chunksize=(4,), meta=np.ndarray>\n Data variables:\n     foo      (x, y) float64 160B dask.array<chunksize=(4, 5), meta=np.ndarray>\n 
\n
\n
\n

Cloud Storage Buckets\u00b6

\n

It is possible to read and write xarray datasets directly from / to cloud\n@@ -724,36 +724,36 @@\n \n In [18]: ds = xr.Dataset({"foo": ("x", dummies)}, coords={"x": np.arange(30)})\n \n In [19]: path = "path/to/directory.zarr"\n \n # Now we write the metadata without computing any array values\n In [20]: ds.to_zarr(path, compute=False)\n-Out[20]: Delayed('_finalize_store-59860749-086b-4812-9c34-c67352ecf847')\n+Out[20]: Delayed('_finalize_store-651e2de7-f473-41e1-bae8-0a7f986d07e5')\n \n \n

Now, a Zarr store with the correct variable shapes and attributes exists that\n can be filled out by subsequent calls to to_zarr.\n Setting region="auto" will open the existing store and determine the\n correct alignment of the new data with the existing dimensions, or as an\n explicit mapping from dimension names to Python slice objects indicating\n where the data should be written (in index space, not label space), e.g.,

\n
# For convenience, we'll slice a single dataset, but in the real use-case\n # we would create them separately possibly even from separate processes.\n In [21]: ds = xr.Dataset({"foo": ("x", np.arange(30))}, coords={"x": np.arange(30)})\n \n # Any of the following region specifications are valid\n In [22]: ds.isel(x=slice(0, 10)).to_zarr(path, region="auto")\n-Out[22]: <xarray.backends.zarr.ZarrStore at 0xe3100a00>\n+Out[22]: <xarray.backends.zarr.ZarrStore at 0xe2d36a00>\n \n In [23]: ds.isel(x=slice(10, 20)).to_zarr(path, region={"x": "auto"})\n-Out[23]: <xarray.backends.zarr.ZarrStore at 0xe31003d0>\n+Out[23]: <xarray.backends.zarr.ZarrStore at 0xe2d36268>\n \n In [24]: ds.isel(x=slice(20, 30)).to_zarr(path, region={"x": slice(20, 30)})\n-Out[24]: <xarray.backends.zarr.ZarrStore at 0xe36774a8>\n+Out[24]: <xarray.backends.zarr.ZarrStore at 0xe323fad8>\n 
\n
\n

Concurrent writes with region are safe as long as they modify distinct\n chunks in the underlying Zarr arrays (or use an appropriate lock).

\n

As a safety check to make it harder to inadvertently override existing values,\n if you set region then all variables included in a Dataset must have\n dimensions included in region. Other variables (typically coordinates)\n@@ -816,28 +816,28 @@\n ....: "y": [1, 2, 3, 4, 5],\n ....: "t": pd.date_range("2001-01-01", periods=2),\n ....: },\n ....: )\n ....: \n \n In [30]: ds1.to_zarr("path/to/directory.zarr")\n-Out[30]: <xarray.backends.zarr.ZarrStore at 0xe2d91df0>\n+Out[30]: <xarray.backends.zarr.ZarrStore at 0xe29c7970>\n \n In [31]: ds2 = xr.Dataset(\n ....: {"foo": (("x", "y", "t"), np.random.rand(4, 5, 2))},\n ....: coords={\n ....: "x": [10, 20, 30, 40],\n ....: "y": [1, 2, 3, 4, 5],\n ....: "t": pd.date_range("2001-01-03", periods=2),\n ....: },\n ....: )\n ....: \n \n In [32]: ds2.to_zarr("path/to/directory.zarr", append_dim="t")\n-Out[32]: <xarray.backends.zarr.ZarrStore at 0xe2d255c8>\n+Out[32]: <xarray.backends.zarr.ZarrStore at 0xe2959ad8>\n \n \n

\n
\n

Specifying chunks in a zarr store\u00b6

\n

Chunk sizes may be specified in one of three ways when writing to a zarr store:

\n
    \n@@ -861,15 +861,15 @@\n positional ordering of the dimensions in each array. Watch out for arrays with\n differently-ordered dimensions within a single Dataset.

    \n \n

    For example, let\u2019s say we\u2019re working with a dataset with dimensions\n ('time', 'x', 'y'), a variable Tair which is chunked in x and y,\n and two multi-dimensional coordinates xc and yc:

    \n
    In [33]: ds = xr.tutorial.open_dataset("rasm")\n-ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/rasm.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe31b0f50>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/rasm.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe2de4f50>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n \n In [34]: ds["Tair"] = ds["Tair"].chunk({"x": 100, "y": 100})\n KeyError: "No variable named 'Tair'. Variables on the dataset include ['foo', 'x']"\n \n \n In [35]: ds\n@@ -882,15 +882,15 @@\n     foo      (x) int32 120B 0 1 2 3 4 5 6 7 8 9 ... 21 22 23 24 25 26 27 28 29\n 
    \n
    \n

    These multi-dimensional coordinates are only two-dimensional and take up very little\n space on disk or in memory, yet when writing to disk the default zarr behavior is to\n split them into chunks:

    \n
    In [36]: ds.to_zarr("path/to/directory.zarr", mode="w")\n-Out[36]: <xarray.backends.zarr.ZarrStore at 0xe2d1ecd0>\n+Out[36]: <xarray.backends.zarr.ZarrStore at 0xe29529b8>\n \n In [37]: ! ls -R path/to/directory.zarr\n path/to/directory.zarr:\n foo  x\tzarr.json\n \n path/to/directory.zarr/foo:\n c  zarr.json\n@@ -1081,15 +1081,15 @@\n 

    Ncdata\u00b6

    \n

    Ncdata provides more sophisticated means of transferring data, including entire\n datasets. It uses the file saving and loading functions in both projects to provide a\n more \u201ccorrect\u201d translation between them, but still with very low overhead and not\n using actual disk files.

    \n

    For example:

    \n
    In [48]: ds = xr.tutorial.open_dataset("air_temperature_gradient")\n-ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature_gradient.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe30ee030>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature_gradient.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe2d20030>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n \n In [49]: cubes = ncdata.iris_xarray.cubes_from_xarray(ds)\n NameError: name 'ncdata' is not defined\n \n \n In [50]: print(cubes)\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -481,15 +481,15 @@\n    ....:         \"y\": pd.date_range(\"2000-01-01\", periods=5),\n    ....:         \"z\": (\"x\", list(\"abcd\")),\n    ....:     },\n    ....: )\n    ....:\n \n In [13]: ds.to_zarr(\"path/to/directory.zarr\")\n-Out[13]: \n+Out[13]: \n (The suffix .zarr is optional\u2013just a reminder that a zarr store lives there.)\n If the directory does not exist, it will be created. If a zarr store is already\n present at that path, an error will be raised, preventing it from being\n overwritten. To override this behavior and overwrite an existing store, add\n mode='w' when invoking to_zarr().\n DataArrays can also be saved to disk using the DataArray.to_zarr() method, and\n loaded from disk using the open_dataarray() function with engine='zarr'.\n@@ -505,19 +505,19 @@\n To read back a zarr dataset that has been created this way, we use the\n open_zarr() method:\n In [14]: ds_zarr = xr.open_zarr(\"path/to/directory.zarr\")\n \n In [15]: ds_zarr\n Out[15]:\n  Size: 232B\n-Dimensions:  (x: 4, y: 5)\n+Dimensions:  (y: 5, x: 4)\n Coordinates:\n-    z        (x) object 16B dask.array\n-  * x        (x) int32 16B 10 20 30 40\n   * y        (y) datetime64[ns] 40B 2000-01-01 2000-01-02 ... 2000-01-05\n+  * x        (x) int32 16B 10 20 30 40\n+    z        (x) object 16B dask.array\n Data variables:\n     foo      (x, y) float64 160B dask.array\n *\b**\b**\b**\b* C\bCl\blo\bou\bud\bd S\bSt\bto\bor\bra\bag\bge\be B\bBu\buc\bck\bke\bet\bts\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n It is possible to read and write xarray datasets directly from / to cloud\n storage buckets using zarr. This example uses the _\bg_\bc_\bs_\bf_\bs package to provide an\n interface to _\bG_\bo_\bo_\bg_\bl_\be_\b _\bC_\bl_\bo_\bu_\bd_\b _\bS_\bt_\bo_\br_\ba_\bg_\be.\n General _\bf_\bs_\bs_\bp_\be_\bc URLs, those that begin with s3:// or gcs:// for example, are\n@@ -562,35 +562,35 @@\n \n In [18]: ds = xr.Dataset({\"foo\": (\"x\", dummies)}, coords={\"x\": np.arange(30)})\n \n In [19]: path = \"path/to/directory.zarr\"\n \n # Now we write the metadata without computing any array values\n In [20]: ds.to_zarr(path, compute=False)\n-Out[20]: Delayed('_finalize_store-59860749-086b-4812-9c34-c67352ecf847')\n+Out[20]: Delayed('_finalize_store-651e2de7-f473-41e1-bae8-0a7f986d07e5')\n Now, a Zarr store with the correct variable shapes and attributes exists that\n can be filled out by subsequent calls to to_zarr. Setting region=\"auto\" will\n open the existing store and determine the correct alignment of the new data\n with the existing dimensions, or as an explicit mapping from dimension names to\n Python slice objects indicating where the data should be written (in index\n space, not label space), e.g.,\n # For convenience, we'll slice a single dataset, but in the real use-case\n # we would create them separately possibly even from separate processes.\n In [21]: ds = xr.Dataset({\"foo\": (\"x\", np.arange(30))}, coords={\"x\": np.arange\n (30)})\n \n # Any of the following region specifications are valid\n In [22]: ds.isel(x=slice(0, 10)).to_zarr(path, region=\"auto\")\n-Out[22]: \n+Out[22]: \n \n In [23]: ds.isel(x=slice(10, 20)).to_zarr(path, region={\"x\": \"auto\"})\n-Out[23]: \n+Out[23]: \n \n In [24]: ds.isel(x=slice(20, 30)).to_zarr(path, region={\"x\": slice(20, 30)})\n-Out[24]: \n+Out[24]: \n Concurrent writes with region are safe as long as they modify distinct chunks\n in the underlying Zarr arrays (or use an appropriate lock).\n As a safety check to make it harder to inadvertently override existing values,\n if you set region then a\bal\bll\bl variables included in a Dataset must have dimensions\n included in region. Other variables (typically coordinates) need to be\n explicitly dropped and/or written in a separate calls to to_zarr with mode='a'.\n *\b**\b**\b**\b* Z\bZa\bar\brr\br C\bCo\bom\bmp\bpr\bre\bes\bss\bso\bor\brs\bs a\ban\bnd\bd F\bFi\bil\blt\bte\ber\brs\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n@@ -636,28 +636,28 @@\n    ....:         \"y\": [1, 2, 3, 4, 5],\n    ....:         \"t\": pd.date_range(\"2001-01-01\", periods=2),\n    ....:     },\n    ....: )\n    ....:\n \n In [30]: ds1.to_zarr(\"path/to/directory.zarr\")\n-Out[30]: \n+Out[30]: \n \n In [31]: ds2 = xr.Dataset(\n    ....:     {\"foo\": ((\"x\", \"y\", \"t\"), np.random.rand(4, 5, 2))},\n    ....:     coords={\n    ....:         \"x\": [10, 20, 30, 40],\n    ....:         \"y\": [1, 2, 3, 4, 5],\n    ....:         \"t\": pd.date_range(\"2001-01-03\", periods=2),\n    ....:     },\n    ....: )\n    ....:\n \n In [32]: ds2.to_zarr(\"path/to/directory.zarr\", append_dim=\"t\")\n-Out[32]: \n+Out[32]: \n *\b**\b**\b**\b* S\bSp\bpe\bec\bci\bif\bfy\byi\bin\bng\bg c\bch\bhu\bun\bnk\bks\bs i\bin\bn a\ba z\bza\bar\brr\br s\bst\bto\bor\bre\be_\b?\b\u00b6 *\b**\b**\b**\b*\n Chunk sizes may be specified in one of three ways when writing to a zarr store:\n    1. Manual chunk sizing through the use of the encoding argument in\n       Dataset.to_zarr():\n    2. Automatic chunking based on chunks in dask arrays\n    3. Default chunk behavior determined by the zarr library\n The resulting chunks will be determined based on the order of the above list;\n@@ -677,15 +677,15 @@\n differently-ordered dimensions within a single Dataset.\n For example, let\u2019s say we\u2019re working with a dataset with dimensions ('time',\n 'x', 'y'), a variable Tair which is chunked in x and y, and two multi-\n dimensional coordinates xc and yc:\n In [33]: ds = xr.tutorial.open_dataset(\"rasm\")\n ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/rasm.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n \n In [34]: ds[\"Tair\"] = ds[\"Tair\"].chunk({\"x\": 100, \"y\": 100})\n KeyError: \"No variable named 'Tair'. Variables on the dataset include ['foo',\n 'x']\"\n@@ -699,15 +699,15 @@\n   * x        (x) int32 120B 0 1 2 3 4 5 6 7 8 9 ... 21 22 23 24 25 26 27 28 29\n Data variables:\n     foo      (x) int32 120B 0 1 2 3 4 5 6 7 8 9 ... 21 22 23 24 25 26 27 28 29\n These multi-dimensional coordinates are only two-dimensional and take up very\n little space on disk or in memory, yet when writing to disk the default zarr\n behavior is to split them into chunks:\n In [36]: ds.to_zarr(\"path/to/directory.zarr\", mode=\"w\")\n-Out[36]: \n+Out[36]: \n \n In [37]: ! ls -R path/to/directory.zarr\n path/to/directory.zarr:\n foo  x\tzarr.json\n \n path/to/directory.zarr/foo:\n c  zarr.json\n@@ -874,15 +874,15 @@\n provide a more \u201ccorrect\u201d translation between them, but still with very low\n overhead and not using actual disk files.\n For example:\n In [48]: ds = xr.tutorial.open_dataset(\"air_temperature_gradient\")\n ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/air_temperature_gradient.nc\n (Caused by NameResolutionError(\": Failed to resolve 'github.com' ([Errno -3] Temporary failure in\n+0xe2d20030>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in\n name resolution)\"))\n \n \n In [49]: cubes = ncdata.iris_xarray.cubes_from_xarray(ds)\n NameError: name 'ncdata' is not defined\n \n \n"}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/user-guide/plotting.html", "source2": "./usr/share/doc/python-xarray-doc/html/user-guide/plotting.html", "unified_diff": "@@ -100,15 +100,15 @@\n In [3]: import matplotlib.pyplot as plt\n \n In [4]: import xarray as xr\n 
    \n
    \n

    For these examples we\u2019ll use the North American air temperature dataset.

    \n
    In [5]: airtemps = xr.tutorial.open_dataset("air_temperature")\n-ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe28480e0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe247d0e0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n \n In [6]: airtemps\n NameError: name 'airtemps' is not defined\n \n \n # Convert to celsius\n@@ -445,15 +445,15 @@\n \n # Apply a nonlinear transformation to one of the coords\n In [50]: b.coords["lat"] = np.log(b.coords["lat"])\n KeyError: 'lat'\n \n \n In [51]: b.plot()\n-Out[51]: [<matplotlib.lines.Line2D at 0xe1755710>]\n+Out[51]: [<matplotlib.lines.Line2D at 0xe1376710>]\n 
    \n
    \n \"../_images/plotting_nonuniform_coords.png\"\n \n
\n
\n

Other types of plot\u00b6

\n@@ -857,117 +857,117 @@\n * y (y) float64 88B 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n * z (z) int32 16B 0 1 2 3\n * w (w) <U5 80B 'one' 'two' 'three' 'five'\n Attributes:\n units: Aunits\n \n In [99]: ds.A.plot.scatter(x="y")\n-Out[99]: <matplotlib.collections.PathCollection at 0xe36666a8>\n+Out[99]: <matplotlib.collections.PathCollection at 0xe329e6a8>\n \n \n \"../_images/da_A_y.png\"\n

Same plot can be displayed using the dataset:

\n
In [100]: ds.plot.scatter(x="y", y="A")\n-Out[100]: <matplotlib.collections.PathCollection at 0xe1595500>\n+Out[100]: <matplotlib.collections.PathCollection at 0xe11cb500>\n 
\n
\n \"../_images/ds_A_y.png\"\n

Now suppose we want to scatter the A DataArray against the B DataArray

\n
In [101]: ds.plot.scatter(x="A", y="B")\n-Out[101]: <matplotlib.collections.PathCollection at 0xe18cc2f0>\n+Out[101]: <matplotlib.collections.PathCollection at 0xe15032f0>\n 
\n
\n \"../_images/ds_simple_scatter.png\"\n

The hue kwarg lets you vary the color by variable value

\n
In [102]: ds.plot.scatter(x="A", y="B", hue="w")\n-Out[102]: <matplotlib.collections.PathCollection at 0xe1586710>\n+Out[102]: <matplotlib.collections.PathCollection at 0xe11b8710>\n 
\n
\n \"../_images/ds_hue_scatter.png\"\n

You can force a legend instead of a colorbar by setting add_legend=True, add_colorbar=False.

\n
In [103]: ds.plot.scatter(x="A", y="B", hue="w", add_legend=True, add_colorbar=False)\n-Out[103]: <matplotlib.collections.PathCollection at 0xe1409240>\n+Out[103]: <matplotlib.collections.PathCollection at 0xe1038240>\n 
\n
\n \"../_images/ds_discrete_legend_hue_scatter.png\"\n
In [104]: ds.plot.scatter(x="A", y="B", hue="w", add_legend=False, add_colorbar=True)\n-Out[104]: <matplotlib.collections.PathCollection at 0xe13993a0>\n+Out[104]: <matplotlib.collections.PathCollection at 0xe0fce500>\n 
\n
\n \"../_images/ds_discrete_colorbar_hue_scatter.png\"\n

The markersize kwarg lets you vary the point\u2019s size by variable value.\n You can additionally pass size_norm to control how the variable\u2019s values are mapped to point sizes.

\n
In [105]: ds.plot.scatter(x="A", y="B", hue="y", markersize="z")\n-Out[105]: <matplotlib.collections.PathCollection at 0xe13cbea0>\n+Out[105]: <matplotlib.collections.PathCollection at 0xe0fffea0>\n 
\n
\n \"../_images/ds_hue_size_scatter.png\"\n

The z kwarg lets you plot the data along the z-axis as well.

\n
In [106]: ds.plot.scatter(x="A", y="B", z="z", hue="y", markersize="x")\n-Out[106]: <mpl_toolkits.mplot3d.art3d.Path3DCollection at 0xe12ae190>\n+Out[106]: <mpl_toolkits.mplot3d.art3d.Path3DCollection at 0xe0eda190>\n 
\n
\n \"../_images/ds_hue_size_scatter_z.png\"\n

Faceting is also possible

\n
In [107]: ds.plot.scatter(x="A", y="B", hue="y", markersize="x", row="x", col="w")\n-Out[107]: <xarray.plot.facetgrid.FacetGrid at 0xe2d33d20>\n+Out[107]: <xarray.plot.facetgrid.FacetGrid at 0xe2968d20>\n 
\n
\n \"../_images/ds_facet_scatter.png\"\n

And adding the z-axis

\n
In [108]: ds.plot.scatter(x="A", y="B", z="z", hue="y", markersize="x", row="x", col="w")\n-Out[108]: <xarray.plot.facetgrid.FacetGrid at 0xe0d44660>\n+Out[108]: <xarray.plot.facetgrid.FacetGrid at 0xe0979660>\n 
\n
\n \"../_images/ds_facet_scatter_z.png\"\n

For more advanced scatter plots, we recommend converting the relevant data variables\n to a pandas DataFrame and using the extensive plotting capabilities of seaborn.

\n
\n
\n

Quiver\u00b6

\n

Visualizing vector fields is supported with quiver plots:

\n
In [109]: ds.isel(w=1, z=1).plot.quiver(x="x", y="y", u="A", v="B")\n-Out[109]: <matplotlib.quiver.Quiver at 0xe3666480>\n+Out[109]: <matplotlib.quiver.Quiver at 0xe329e480>\n 
\n
\n \"../_images/ds_simple_quiver.png\"\n

where u and v denote the x and y direction components of the arrow vectors. Again, faceting is also possible:

\n
In [110]: ds.plot.quiver(x="x", y="y", u="A", v="B", col="w", row="z", scale=4)\n-Out[110]: <xarray.plot.facetgrid.FacetGrid at 0xe3694810>\n+Out[110]: <xarray.plot.facetgrid.FacetGrid at 0xe3165618>\n 
\n
\n \"../_images/ds_facet_quiver.png\"\n

scale is required for faceted quiver plots.\n The scale determines the number of data units per arrow length unit, i.e. a smaller scale parameter makes the arrow longer.

\n
\n
\n

Streamplot\u00b6

\n

Visualizing vector fields is also supported with streamline plots:

\n
In [111]: ds.isel(w=1, z=1).plot.streamplot(x="x", y="y", u="A", v="B")\n-Out[111]: <matplotlib.collections.LineCollection at 0xe0f2f9d0>\n+Out[111]: <matplotlib.collections.LineCollection at 0xe0b649d0>\n 
\n
\n \"../_images/ds_simple_streamplot.png\"\n

where u and v denote the x and y direction components of the vectors tangent to the streamlines.\n Again, faceting is also possible:

\n
In [112]: ds.plot.streamplot(x="x", y="y", u="A", v="B", col="w", row="z")\n-Out[112]: <xarray.plot.facetgrid.FacetGrid at 0xe3530618>\n+Out[112]: <xarray.plot.facetgrid.FacetGrid at 0xe2715d50>\n 
\n
\n \"../_images/ds_facet_streamplot.png\"\n
\n
\n
\n

Maps\u00b6

\n

To follow this section you\u2019ll need to have Cartopy installed and working.

\n

This script will plot the air temperature on a map.

\n
In [113]: import cartopy.crs as ccrs\n \n In [114]: air = xr.tutorial.open_dataset("air_temperature").air\n-ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe0e71be0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe0aa6be0>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n \n In [115]: p = air.isel(time=0).plot(\n    .....:     subplot_kws=dict(projection=ccrs.Orthographic(-80, 35), facecolor="gray"),\n    .....:     transform=ccrs.PlateCarree(),\n    .....: )\n    .....: \n@@ -1024,24 +1024,24 @@\n 
In [121]: import xarray.plot as xplt\n \n In [122]: da = xr.DataArray(range(5))\n \n In [123]: fig, axs = plt.subplots(ncols=2, nrows=2)\n \n In [124]: da.plot(ax=axs[0, 0])\n-Out[124]: [<matplotlib.lines.Line2D at 0xe05d9870>]\n+Out[124]: [<matplotlib.lines.Line2D at 0xe020b870>]\n \n In [125]: da.plot.line(ax=axs[0, 1])\n-Out[125]: [<matplotlib.lines.Line2D at 0xe05d9920>]\n+Out[125]: [<matplotlib.lines.Line2D at 0xe020b920>]\n \n In [126]: xplt.plot(da, ax=axs[1, 0])\n-Out[126]: [<matplotlib.lines.Line2D at 0xe05d99d0>]\n+Out[126]: [<matplotlib.lines.Line2D at 0xe020b9d0>]\n \n In [127]: xplt.line(da, ax=axs[1, 1])\n-Out[127]: [<matplotlib.lines.Line2D at 0xe05d9a80>]\n+Out[127]: [<matplotlib.lines.Line2D at 0xe020ba80>]\n \n In [128]: plt.tight_layout()\n \n In [129]: plt.draw()\n 
\n
\n \"../_images/plotting_ways_to_use.png\"\n@@ -1091,15 +1091,15 @@\n
\n

The plot will produce an image corresponding to the values of the array.\n Hence the top left pixel will be a different color than the others.\n Before reading on, you may want to look at the coordinates and\n think carefully about what the limits, labels, and orientation for\n each of the axes should be.

\n
In [134]: a.plot()\n-Out[134]: <matplotlib.collections.QuadMesh at 0xe0e85500>\n+Out[134]: <matplotlib.collections.QuadMesh at 0xe0ab9500>\n 
\n
\n
\"../_images/plotting_example_2d_simple.png\"\n \n

It may seem strange that\n the values on the y axis are decreasing with -0.5 on the top. This is because\n the pixels are centered over their coordinates, and the\n@@ -1122,57 +1122,57 @@\n .....: np.arange(20).reshape(4, 5),\n .....: dims=["y", "x"],\n .....: coords={"lat": (("y", "x"), lat), "lon": (("y", "x"), lon)},\n .....: )\n .....: \n \n In [139]: da.plot.pcolormesh(x="lon", y="lat")\n-Out[139]: <matplotlib.collections.QuadMesh at 0xe0fafc90>\n+Out[139]: <matplotlib.collections.QuadMesh at 0xe0be4c90>\n

\n \n \"../_images/plotting_example_2d_irreg.png\"\n \n

Note that in this case, xarray still follows the pixel centered convention.\n This might be undesirable in some cases, for example when your data is defined\n on a polar projection (GH781). This is why the default is to not follow\n this convention when plotting on a map:

\n
In [140]: import cartopy.crs as ccrs\n \n In [141]: ax = plt.subplot(projection=ccrs.PlateCarree())\n \n In [142]: da.plot.pcolormesh(x="lon", y="lat", ax=ax)\n-Out[142]: <cartopy.mpl.geocollection.GeoQuadMesh at 0xe05d9df0>\n+Out[142]: <cartopy.mpl.geocollection.GeoQuadMesh at 0xe020bdf0>\n \n In [143]: ax.scatter(lon, lat, transform=ccrs.PlateCarree())\n-Out[143]: <matplotlib.collections.PathCollection at 0xe07ee5b0>\n+Out[143]: <matplotlib.collections.PathCollection at 0xe04225b0>\n \n In [144]: ax.coastlines()\n-Out[144]: <cartopy.mpl.feature_artist.FeatureArtist at 0xe831ac68>\n+Out[144]: <cartopy.mpl.feature_artist.FeatureArtist at 0xe813cc68>\n \n In [145]: ax.gridlines(draw_labels=True)\n-Out[145]: <cartopy.mpl.gridliner.Gridliner at 0xe831af48>\n+Out[145]: <cartopy.mpl.gridliner.Gridliner at 0xe813cf48>\n 
\n
\n \"_build/html/_static/plotting_example_2d_irreg_map.png\"\n \n

You can however decide to infer the cell boundaries and use the\n infer_intervals keyword:

\n
In [146]: ax = plt.subplot(projection=ccrs.PlateCarree())\n \n In [147]: da.plot.pcolormesh(x="lon", y="lat", ax=ax, infer_intervals=True)\n-Out[147]: <cartopy.mpl.geocollection.GeoQuadMesh at 0xe04f4d40>\n+Out[147]: <cartopy.mpl.geocollection.GeoQuadMesh at 0xe00f17c0>\n \n In [148]: ax.scatter(lon, lat, transform=ccrs.PlateCarree())\n-Out[148]: <matplotlib.collections.PathCollection at 0xe0500d40>\n+Out[148]: <matplotlib.collections.PathCollection at 0xe00ecbe0>\n \n In [149]: ax.coastlines()\n-Out[149]: <cartopy.mpl.feature_artist.FeatureArtist at 0xe0500c90>\n+Out[149]: <cartopy.mpl.feature_artist.FeatureArtist at 0xe00ecc90>\n \n In [150]: ax.gridlines(draw_labels=True)\n-Out[150]: <cartopy.mpl.gridliner.Gridliner at 0xe0500be0>\n+Out[150]: <cartopy.mpl.gridliner.Gridliner at 0xe00ecd40>\n 
\n
\n \"_build/html/_static/plotting_example_2d_irreg_map_infer.png\"\n \n
\n

Note

\n

The data model of xarray does not support datasets with cell boundaries\n@@ -1180,26 +1180,26 @@\n outside the xarray framework.

\n
\n

One can also make line plots with multidimensional coordinates. In this case, hue must be a dimension name, not a coordinate name.

\n
In [151]: f, ax = plt.subplots(2, 1)\n \n In [152]: da.plot.line(x="lon", hue="y", ax=ax[0])\n Out[152]: \n-[<matplotlib.lines.Line2D at 0xe0500190>,\n- <matplotlib.lines.Line2D at 0xe046a870>,\n- <matplotlib.lines.Line2D at 0xe046a920>,\n- <matplotlib.lines.Line2D at 0xe046a9d0>]\n+[<matplotlib.lines.Line2D at 0xe00ec030>,\n+ <matplotlib.lines.Line2D at 0xe0063be0>,\n+ <matplotlib.lines.Line2D at 0xe0063f50>,\n+ <matplotlib.lines.Line2D at 0xe0063ea0>]\n \n In [153]: da.plot.line(x="lon", hue="x", ax=ax[1])\n Out[153]: \n-[<matplotlib.lines.Line2D at 0xe0457d40>,\n- <matplotlib.lines.Line2D at 0xe0457df0>,\n- <matplotlib.lines.Line2D at 0xe0457ea0>,\n- <matplotlib.lines.Line2D at 0xe0457f50>,\n- <matplotlib.lines.Line2D at 0xe044d030>]\n+[<matplotlib.lines.Line2D at 0xe0059d40>,\n+ <matplotlib.lines.Line2D at 0xe0059df0>,\n+ <matplotlib.lines.Line2D at 0xe0059ea0>,\n+ <matplotlib.lines.Line2D at 0xe0059f50>,\n+ <matplotlib.lines.Line2D at 0xe004f030>]\n 
\n
\n \"../_images/plotting_example_2d_hue_xy.png\"\n
\n \n \n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -31,15 +31,15 @@\n In [3]: import matplotlib.pyplot as plt\n \n In [4]: import xarray as xr\n For these examples we\u2019ll use the North American air temperature dataset.\n In [5]: airtemps = xr.tutorial.open_dataset(\"air_temperature\")\n ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n \n In [6]: airtemps\n NameError: name 'airtemps' is not defined\n \n@@ -294,15 +294,15 @@\n \n # Apply a nonlinear transformation to one of the coords\n In [50]: b.coords[\"lat\"] = np.log(b.coords[\"lat\"])\n KeyError: 'lat'\n \n \n In [51]: b.plot()\n-Out[51]: []\n+Out[51]: []\n _\b[_\b._\b._\b/_\b__\bi_\bm_\ba_\bg_\be_\bs_\b/_\bp_\bl_\bo_\bt_\bt_\bi_\bn_\bg_\b__\bn_\bo_\bn_\bu_\bn_\bi_\bf_\bo_\br_\bm_\b__\bc_\bo_\bo_\br_\bd_\bs_\b._\bp_\bn_\bg_\b]\n *\b**\b**\b* O\bOt\bth\bhe\ber\br t\bty\byp\bpe\bes\bs o\bof\bf p\bpl\blo\bot\bt_\b?\b\u00b6 *\b**\b**\b*\n There are several other options for plotting 2D data.\n Contour plot using DataArray.plot.contour()\n In [52]: air2d.plot.contour()\n NameError: name 'air2d' is not defined\n _\b[_\b._\b._\b/_\b__\bi_\bm_\ba_\bg_\be_\bs_\b/_\bp_\bl_\bo_\bt_\bt_\bi_\bn_\bg_\b__\bc_\bo_\bn_\bt_\bo_\bu_\br_\b._\bp_\bn_\bg_\b]\n@@ -615,93 +615,93 @@\n * y (y) float64 88B 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0\n * z (z) int32 16B 0 1 2 3\n * w (w) \n+Out[99]: \n [../_images/da_A_y.png]\n Same plot can be displayed using the dataset:\n In [100]: ds.plot.scatter(x=\"y\", y=\"A\")\n-Out[100]: \n+Out[100]: \n [../_images/ds_A_y.png]\n Now suppose we want to scatter the A DataArray against the B DataArray\n In [101]: ds.plot.scatter(x=\"A\", y=\"B\")\n-Out[101]: \n+Out[101]: \n [../_images/ds_simple_scatter.png]\n The hue kwarg lets you vary the color by variable value\n In [102]: ds.plot.scatter(x=\"A\", y=\"B\", hue=\"w\")\n-Out[102]: \n+Out[102]: \n [../_images/ds_hue_scatter.png]\n You can force a legend instead of a colorbar by setting add_legend=True,\n add_colorbar=False.\n In [103]: ds.plot.scatter(x=\"A\", y=\"B\", hue=\"w\", add_legend=True,\n add_colorbar=False)\n-Out[103]: \n+Out[103]: \n [../_images/ds_discrete_legend_hue_scatter.png]\n In [104]: ds.plot.scatter(x=\"A\", y=\"B\", hue=\"w\", add_legend=False,\n add_colorbar=True)\n-Out[104]: \n+Out[104]: \n [../_images/ds_discrete_colorbar_hue_scatter.png]\n The markersize kwarg lets you vary the point\u2019s size by variable value. You can\n additionally pass size_norm to control how the variable\u2019s values are mapped to\n point sizes.\n In [105]: ds.plot.scatter(x=\"A\", y=\"B\", hue=\"y\", markersize=\"z\")\n-Out[105]: \n+Out[105]: \n [../_images/ds_hue_size_scatter.png]\n The z kwarg lets you plot the data along the z-axis as well.\n In [106]: ds.plot.scatter(x=\"A\", y=\"B\", z=\"z\", hue=\"y\", markersize=\"x\")\n-Out[106]: \n+Out[106]: \n [../_images/ds_hue_size_scatter_z.png]\n Faceting is also possible\n In [107]: ds.plot.scatter(x=\"A\", y=\"B\", hue=\"y\", markersize=\"x\", row=\"x\",\n col=\"w\")\n-Out[107]: \n+Out[107]: \n [../_images/ds_facet_scatter.png]\n And adding the z-axis\n In [108]: ds.plot.scatter(x=\"A\", y=\"B\", z=\"z\", hue=\"y\", markersize=\"x\",\n row=\"x\", col=\"w\")\n-Out[108]: \n+Out[108]: \n [../_images/ds_facet_scatter_z.png]\n For more advanced scatter plots, we recommend converting the relevant data\n variables to a pandas DataFrame and using the extensive plotting capabilities\n of seaborn.\n *\b**\b**\b**\b* Q\bQu\bui\biv\bve\ber\br_\b?\b\u00b6 *\b**\b**\b**\b*\n Visualizing vector fields is supported with quiver plots:\n In [109]: ds.isel(w=1, z=1).plot.quiver(x=\"x\", y=\"y\", u=\"A\", v=\"B\")\n-Out[109]: \n+Out[109]: \n [../_images/ds_simple_quiver.png]\n where u and v denote the x and y direction components of the arrow vectors.\n Again, faceting is also possible:\n In [110]: ds.plot.quiver(x=\"x\", y=\"y\", u=\"A\", v=\"B\", col=\"w\", row=\"z\", scale=4)\n-Out[110]: \n+Out[110]: \n [../_images/ds_facet_quiver.png]\n scale is required for faceted quiver plots. The scale determines the number of\n data units per arrow length unit, i.e. a smaller scale parameter makes the\n arrow longer.\n *\b**\b**\b**\b* S\bSt\btr\bre\bea\bam\bmp\bpl\blo\bot\bt_\b?\b\u00b6 *\b**\b**\b**\b*\n Visualizing vector fields is also supported with streamline plots:\n In [111]: ds.isel(w=1, z=1).plot.streamplot(x=\"x\", y=\"y\", u=\"A\", v=\"B\")\n-Out[111]: \n+Out[111]: \n [../_images/ds_simple_streamplot.png]\n where u and v denote the x and y direction components of the vectors tangent to\n the streamlines. Again, faceting is also possible:\n In [112]: ds.plot.streamplot(x=\"x\", y=\"y\", u=\"A\", v=\"B\", col=\"w\", row=\"z\")\n-Out[112]: \n+Out[112]: \n [../_images/ds_facet_streamplot.png]\n *\b**\b**\b**\b**\b* M\bMa\bap\bps\bs_\b?\b\u00b6 *\b**\b**\b**\b**\b*\n To follow this section you\u2019ll need to have Cartopy installed and working.\n This script will plot the air temperature on a map.\n In [113]: import cartopy.crs as ccrs\n \n In [114]: air = xr.tutorial.open_dataset(\"air_temperature\").air\n ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n \n In [115]: p = air.isel(time=0).plot(\n .....: subplot_kws=dict(projection=ccrs.Orthographic(-80, 35),\n facecolor=\"gray\"),\n@@ -749,24 +749,24 @@\n In [121]: import xarray.plot as xplt\n \n In [122]: da = xr.DataArray(range(5))\n \n In [123]: fig, axs = plt.subplots(ncols=2, nrows=2)\n \n In [124]: da.plot(ax=axs[0, 0])\n-Out[124]: []\n+Out[124]: []\n \n In [125]: da.plot.line(ax=axs[0, 1])\n-Out[125]: []\n+Out[125]: []\n \n In [126]: xplt.plot(da, ax=axs[1, 0])\n-Out[126]: []\n+Out[126]: []\n \n In [127]: xplt.line(da, ax=axs[1, 1])\n-Out[127]: []\n+Out[127]: []\n \n In [128]: plt.tight_layout()\n \n In [129]: plt.draw()\n _\b[_\b._\b._\b/_\b__\bi_\bm_\ba_\bg_\be_\bs_\b/_\bp_\bl_\bo_\bt_\bt_\bi_\bn_\bg_\b__\bw_\ba_\by_\bs_\b__\bt_\bo_\b__\bu_\bs_\be_\b._\bp_\bn_\bg_\b]\n Here the output is the same. Since the data is 1 dimensional the line plot was\n used.\n@@ -797,15 +797,15 @@\n [0., 0., 0.]], shape=(4, 3))\n Dimensions without coordinates: y, x\n The plot will produce an image corresponding to the values of the array. Hence\n the top left pixel will be a different color than the others. Before reading\n on, you may want to look at the coordinates and think carefully about what the\n limits, labels, and orientation for each of the axes should be.\n In [134]: a.plot()\n-Out[134]: \n+Out[134]: \n _\b[_\b._\b._\b/_\b__\bi_\bm_\ba_\bg_\be_\bs_\b/_\bp_\bl_\bo_\bt_\bt_\bi_\bn_\bg_\b__\be_\bx_\ba_\bm_\bp_\bl_\be_\b__\b2_\bd_\b__\bs_\bi_\bm_\bp_\bl_\be_\b._\bp_\bn_\bg_\b]\n It may seem strange that the values on the y axis are decreasing with -0.5 on\n the top. This is because the pixels are centered over their coordinates, and\n the axis labels and ranges correspond to the values of the coordinates.\n *\b**\b**\b**\b* M\bMu\bul\blt\bti\bid\bdi\bim\bme\ben\bns\bsi\bio\bon\bna\bal\bl c\bco\boo\bor\brd\bdi\bin\bna\bat\bte\bes\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n See also: _\bW_\bo_\br_\bk_\bi_\bn_\bg_\b _\bw_\bi_\bt_\bh_\b _\bM_\bu_\bl_\bt_\bi_\bd_\bi_\bm_\be_\bn_\bs_\bi_\bo_\bn_\ba_\bl_\b _\bC_\bo_\bo_\br_\bd_\bi_\bn_\ba_\bt_\be_\bs.\n You can plot irregular grids defined by multidimensional coordinates with\n@@ -822,74 +822,74 @@\n .....: np.arange(20).reshape(4, 5),\n .....: dims=[\"y\", \"x\"],\n .....: coords={\"lat\": ((\"y\", \"x\"), lat), \"lon\": ((\"y\", \"x\"), lon)},\n .....: )\n .....:\n \n In [139]: da.plot.pcolormesh(x=\"lon\", y=\"lat\")\n-Out[139]: \n+Out[139]: \n _\b[_\b._\b._\b/_\b__\bi_\bm_\ba_\bg_\be_\bs_\b/_\bp_\bl_\bo_\bt_\bt_\bi_\bn_\bg_\b__\be_\bx_\ba_\bm_\bp_\bl_\be_\b__\b2_\bd_\b__\bi_\br_\br_\be_\bg_\b._\bp_\bn_\bg_\b]\n Note that in this case, xarray still follows the pixel centered convention.\n This might be undesirable in some cases, for example when your data is defined\n on a polar projection (_\bG_\bH_\b7_\b8_\b1). This is why the default is to not follow this\n convention when plotting on a map:\n In [140]: import cartopy.crs as ccrs\n \n In [141]: ax = plt.subplot(projection=ccrs.PlateCarree())\n \n In [142]: da.plot.pcolormesh(x=\"lon\", y=\"lat\", ax=ax)\n-Out[142]: \n+Out[142]: \n \n In [143]: ax.scatter(lon, lat, transform=ccrs.PlateCarree())\n-Out[143]: \n+Out[143]: \n \n In [144]: ax.coastlines()\n-Out[144]: \n+Out[144]: \n \n In [145]: ax.gridlines(draw_labels=True)\n-Out[145]: \n+Out[145]: \n _\b[_\b__\bb_\bu_\bi_\bl_\bd_\b/_\bh_\bt_\bm_\bl_\b/_\b__\bs_\bt_\ba_\bt_\bi_\bc_\b/_\bp_\bl_\bo_\bt_\bt_\bi_\bn_\bg_\b__\be_\bx_\ba_\bm_\bp_\bl_\be_\b__\b2_\bd_\b__\bi_\br_\br_\be_\bg_\b__\bm_\ba_\bp_\b._\bp_\bn_\bg_\b]\n You can however decide to infer the cell boundaries and use the infer_intervals\n keyword:\n In [146]: ax = plt.subplot(projection=ccrs.PlateCarree())\n \n In [147]: da.plot.pcolormesh(x=\"lon\", y=\"lat\", ax=ax, infer_intervals=True)\n-Out[147]: \n+Out[147]: \n \n In [148]: ax.scatter(lon, lat, transform=ccrs.PlateCarree())\n-Out[148]: \n+Out[148]: \n \n In [149]: ax.coastlines()\n-Out[149]: \n+Out[149]: \n \n In [150]: ax.gridlines(draw_labels=True)\n-Out[150]: \n+Out[150]: \n _\b[_\b__\bb_\bu_\bi_\bl_\bd_\b/_\bh_\bt_\bm_\bl_\b/_\b__\bs_\bt_\ba_\bt_\bi_\bc_\b/_\bp_\bl_\bo_\bt_\bt_\bi_\bn_\bg_\b__\be_\bx_\ba_\bm_\bp_\bl_\be_\b__\b2_\bd_\b__\bi_\br_\br_\be_\bg_\b__\bm_\ba_\bp_\b__\bi_\bn_\bf_\be_\br_\b._\bp_\bn_\bg_\b]\n Note\n The data model of xarray does not support datasets with _\bc_\be_\bl_\bl_\b _\bb_\bo_\bu_\bn_\bd_\ba_\br_\bi_\be_\bs yet. If\n you want to use these coordinates, you\u2019ll have to make the plots outside the\n xarray framework.\n One can also make line plots with multidimensional coordinates. In this case,\n hue must be a dimension name, not a coordinate name.\n In [151]: f, ax = plt.subplots(2, 1)\n \n In [152]: da.plot.line(x=\"lon\", hue=\"y\", ax=ax[0])\n Out[152]:\n-[,\n- ,\n- ,\n- ]\n+[,\n+ ,\n+ ,\n+ ]\n \n In [153]: da.plot.line(x=\"lon\", hue=\"x\", ax=ax[1])\n Out[153]:\n-[,\n- ,\n- ,\n- ,\n- ]\n+[,\n+ ,\n+ ,\n+ ,\n+ ]\n [../_images/plotting_example_2d_hue_xy.png]\n _\b[_\bL_\bo_\bg_\bo_\b _\bo_\bf_\b _\bx_\ba_\br_\br_\ba_\by_\b]\n *\b**\b**\b**\b**\b**\b* _\bx\bx_\ba\ba_\br\br_\br\br_\ba\ba_\by\by *\b**\b**\b**\b**\b**\b*\n *\b**\b**\b**\b* N\bNa\bav\bvi\big\bga\bat\bti\bio\bon\bn *\b**\b**\b**\b*\n For users\n * _\bG_\be_\bt_\bt_\bi_\bn_\bg_\b _\bS_\bt_\ba_\br_\bt_\be_\bd\n * _\bU_\bs_\be_\br_\b _\bG_\bu_\bi_\bd_\be\n"}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/user-guide/reshaping.html", "source2": "./usr/share/doc/python-xarray-doc/html/user-guide/reshaping.html", "unified_diff": "@@ -554,15 +554,15 @@\n
\n

Reshaping via coarsen\u00b6

\n

Whilst coarsen is normally used for reducing your data\u2019s resolution by applying a reduction function\n (see the page on computation),\n it can also be used to reorganise your data without applying a computation via construct().

\n

Taking our example tutorial air temperature dataset over the Northern US

\n
In [56]: air = xr.tutorial.open_dataset("air_temperature")["air"]\n-ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe0478f50>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n+ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0xe0072f50>: Failed to resolve 'github.com' ([Errno -3] Temporary failure in name resolution)"))\n \n \n In [57]: air.isel(time=0).plot(x="lon", y="lat")\n NameError: name 'air' is not defined\n 
\n
\n \"../_images/pre_coarsening.png\"\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -441,15 +441,15 @@\n Whilst coarsen is normally used for reducing your data\u2019s resolution by applying\n a reduction function (see the _\bp_\ba_\bg_\be_\b _\bo_\bn_\b _\bc_\bo_\bm_\bp_\bu_\bt_\ba_\bt_\bi_\bo_\bn), it can also be used to\n reorganise your data without applying a computation via construct().\n Taking our example tutorial air temperature dataset over the Northern US\n In [56]: air = xr.tutorial.open_dataset(\"air_temperature\")[\"air\"]\n ConnectionError: HTTPSConnectionPool(host='github.com', port=443): Max retries\n exceeded with url: /pydata/xarray-data/raw/master/air_temperature.nc (Caused by\n-NameResolutionError(\":\n+NameResolutionError(\":\n Failed to resolve 'github.com' ([Errno -3] Temporary failure in name\n resolution)\"))\n \n \n In [57]: air.isel(time=0).plot(x=\"lon\", y=\"lat\")\n NameError: name 'air' is not defined\n [../_images/pre_coarsening.png]\n"}]}, {"source1": "./usr/share/doc/python-xarray-doc/html/user-guide/testing.html", "source2": "./usr/share/doc/python-xarray-doc/html/user-guide/testing.html", "unified_diff": "@@ -84,70 +84,40 @@\n

Generating Examples\u00b6

\n

To see an example of what each of these strategies might produce, you can call one followed by the .example() method,\n which is a general hypothesis method valid for all strategies.

\n
In [2]: import xarray.testing.strategies as xrst\n \n In [3]: xrst.variables().example()\n Out[3]: \n-<xarray.Variable (\u015c\u00cfL: 5, a\u017b\u0168\u00ea\u0138: 6, \u011a\u00d1\u00fe: 6)> Size: 360B\n-array([[[  4799,  29530,  29530,  29530,  22152,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  20748,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,   4684,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530, -13311],\n-        [ 29530,  29530,  29530,  29530,  29530,  25968]],\n-\n-       [[ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530, -32767,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [-10712,  29530,  29530,  29530,  29530,  29530]],\n-\n-       [[ 29530,  29530,  29530,  29530,  15549,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  16631,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  14860,  29530,  29530,  29530]],\n-\n-       [[ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530, -31732,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530]],\n-\n-       [[ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530, -19131,  29530,  29530,  29530],\n-        [ 14440,  29530,  29530,  29530,  29530,  29530]]], shape=(5, 6, 6), dtype=int16)\n+<xarray.Variable (D: 2)> Size: 16B\n+array([-2.791e+16, -2.791e+16])\n Attributes:\n-    \u017f\u00e8Z:      {'': False}\n+    \u017b\u017f\u016b\u00d9\u012e:    [               'NaT' -6691529558243785635]\n+    c\u017b\u0103\u017b:     \n \n In [4]: xrst.variables().example()\n Out[4]: \n-<xarray.Variable (\u0168z\u010c: 1)> Size: 4B\n-array([1.], dtype=float32)\n+<xarray.Variable (\u00b3\u017ec: 5, \u0179\u0156\u0145K\u00dd: 3)> Size: 60B\n+array([[31813, 31813, 31813],\n+       [31813, 31813, 31813],\n+       [31813,   104, 34798],\n+       [31813, 31813, 31813],\n+       [31813, 31813,    73]], shape=(5, 3), dtype=uint32)\n Attributes:\n-    :         True\n-    \u00e0:        False\n-    \u00ec\u017cH\u00da:     \n-    \u016dGZ:      False\n+    :         [[-9223372036854772911 -9223372036854754181]]\n+    B:        False\n+    \u015d\u017b\u017d:      W1\n+    \u0174\u00ff\u00dd\u0130\u00bd:    False\n+    q\u017e\u015f\u017f:     \n+    \u0119\u0111\u00c9\u017e:     ['\\x98t\\U0006dd3c\u00f3\u00d1' '\ud877\udcbb\\U000cf117M\\r']\n \n In [5]: xrst.variables().example()\n Out[5]: \n-<xarray.Variable (\u0111\u00dcN: 5, \u0153\u017bu\u0136: 1)> Size: 40B\n-array([[-7.41e-35-3.333e-01j],\n-       [      nan-2.000e+00j],\n-       [-7.41e-35-3.333e-01j],\n-       [     -inf-1.900e+00j],\n-       [ 0.00e+00-1.192e-07j]], dtype=complex64)\n+<xarray.Variable (0: 1)> Size: 2B\n+array([0.], dtype=float16)\n 
\n
\n

You can see that calling .example() multiple times will generate different examples, giving you an idea of the wide\n range of data that the xarray strategies can generate.

\n

In your tests however you should not use .example() - instead you should parameterize your tests with the\n hypothesis.given() decorator:

\n
In [6]: from hypothesis import given\n@@ -165,69 +135,71 @@\n 

Xarray\u2019s strategies can accept other strategies as arguments, allowing you to customise the contents of the generated\n examples.

\n
# generate a Variable containing an array with a complex number dtype, but all other details still arbitrary\n In [8]: from hypothesis.extra.numpy import complex_number_dtypes\n \n In [9]: xrst.variables(dtype=complex_number_dtypes()).example()\n Out[9]: \n-<xarray.Variable (Pv\u0105\u00bd: 2)> Size: 32B\n-array([1.9-10000000.j, nan      +nanj])\n+<xarray.Variable (\u0102\u017f\u0137W\u017d: 4, b\u017f\u00e9\u017e: 2)> Size: 64B\n+array([[-0.000e+00-0.000e+00j, -5.960e-08      +nanj],\n+       [-0.000e+00+1.100e+00j,        inf-5.000e-01j],\n+       [ 5.960e-08      +nanj,        nan      -infj],\n+       [-3.333e-01-1.100e+00j,        inf+2.702e-42j]], dtype='>c8')\n+Attributes:\n+    s:        False\n+    \u00c2\u00fb:       [[b'\\xf3\\xa5\\xb78V' b'\\x06']\\n [b']1\\xb7\\x93\\xaf\\xb8\\x8d1=' b'F...\n+    \u0101\u017c\u0170\u010e\u00f0:    \u0113\u017c\u017f6\n+    :         8\u017f\n+    \u0158:        False\n+    \u00b2\u0121\u0160\u017f\u00d5:    \u014a\u00ec\u017b\u0110\n+    \u0145\u0146m\u0105\u010e:    Qh\u00ed\u010e\u017d\n+    \u017c\u016a\u011cD\u00e1:    None\n 
\n
\n

This also works with custom strategies, or strategies defined in other packages.\n For example you could imagine creating a chunks strategy to specify particular chunking patterns for a dask-backed array.

\n
\n
\n

Fixing Arguments\u00b6

\n

If you want to fix one aspect of the data structure, whilst allowing variation in the generated examples\n over all other aspects, then use hypothesis.strategies.just().

\n
In [10]: import hypothesis.strategies as st\n \n # Generates only variable objects with dimensions ["x", "y"]\n In [11]: xrst.variables(dims=st.just(["x", "y"])).example()\n Out[11]: \n-<xarray.Variable (x: 5, y: 3)> Size: 240B\n-array([[-9.007e+015       +infj, -1.000e+000+2.225e-308j,  4.021e+150+6.181e+016j],\n-       [-2.225e-313-1.175e-038j,  9.484e-065-1.798e+308j,        -inf       +nanj],\n-       [-1.500e+000+2.225e-311j, -5.960e-008       +nanj, -9.007e+015       +infj],\n-       [ 3.333e-001+2.220e-016j, -9.007e+015       +infj,         inf-2.000e+000j],\n-       [-9.007e+015       +infj, -1.175e-038+1.000e-005j, -1.500e+000+4.941e-324j]], shape=(5, 3))\n+<xarray.Variable (x: 3, y: 6)> Size: 72B\n+array([[ 0.000e+00,  0.000e+00,  0.000e+00, -6.104e-05,  0.000e+00,  0.000e+00],\n+       [       nan,  0.000e+00, -6.468e+16,  3.333e-01,  0.000e+00,  0.000e+00],\n+       [-6.104e-05, -9.418e+15,  0.000e+00,        nan,  0.000e+00,        nan]],\n+      shape=(3, 6), dtype=float32)\n Attributes:\n-    \u0155\u00b9\u017f\u00c5\u0113:    True\n-    \u0142:        None\n-    n\u0176:       \u011f\u017f\u0143\n-    \u017d\u017c:       [[nan+nanj]\\n [-2.+infj]]\n-    \u012e\u0140\u00eenu:    True\n-    :         True\n-    \u010b\u0150\u0104\u017c:     True\n-    \u017c:        ['' '\u00e4']\n-    \u014f\u00d4:       \u0105\u017f\u00ceP\u014d\n+    i\u017d:       None\n 
\n
\n

(This is technically another example of chaining strategies - hypothesis.strategies.just() is simply a\n special strategy that just contains a single example.)

\n

To fix the length of dimensions you can instead pass dims as a mapping of dimension names to lengths\n (i.e. following xarray objects\u2019 .sizes() property), e.g.

\n
# Generates only variables with dimensions ["x", "y"], of lengths 2 & 3 respectively\n In [12]: xrst.variables(dims=st.just({"x": 2, "y": 3})).example()\n Out[12]: \n <xarray.Variable (x: 2, y: 3)> Size: 24B\n-array([[-2147483589, -2147481429, -2147483457],\n-       [ 2147483647,  2147483647, -2147421547]])\n+array([[      7788,      32461, 3518005710],\n+       [      9069,       2120,      14502]], dtype=uint32)\n Attributes:\n-    Q\u0144\u00da\u00b5:     False\n-    :         False\n+    \u017f\u012a\u00d5\u00dd\u012a:    {'\u017e\u00c2\u017c\u010e\u0134': None}\n 
\n
\n

You can also use this to specify that you want examples which are missing some part of the data structure, for instance

\n
# Generates a Variable with no attributes\n In [13]: xrst.variables(attrs=st.just({})).example()\n Out[13]: \n <xarray.Variable (0: 1)> Size: 1B\n-array([0], dtype=int8)\n+array([0], dtype=uint8)\n 
\n
\n

Through a combination of chaining strategies and fixing arguments, you can specify quite complicated requirements on the\n objects your chained strategy will generate.

\n
In [14]: fixed_x_variable_y_maybe_z = st.fixed_dictionaries(\n    ....:     {"x": st.just(2), "y": st.integers(3, 4)}, optional={"z": st.just(2)}\n    ....: )\n@@ -236,37 +208,41 @@\n In [15]: fixed_x_variable_y_maybe_z.example()\n Out[15]: {'x': 2, 'y': 3}\n \n In [16]: special_variables = xrst.variables(dims=fixed_x_variable_y_maybe_z)\n \n In [17]: special_variables.example()\n Out[17]: \n-<xarray.Variable (x: 2, y: 3)> Size: 24B\n-array([[14601,   103,   103],\n-       [ 7321, 58525,   103]], dtype=uint32)\n-Attributes: (12/15)\n-    \u017d:        None\n-    \u0153:        None\n-    \u00c3\u010d:       \n-    \u011c\u00ff\u00dd:      7\n-    \u0173\u0148:       [['\u023a' '\\x84\\x82']\\n ['' '']]\n-    \u015d8:       \u0141\u00e6\u00f3\u00fa\u00c2\n-    ...       ...\n-    P\u014a\u0165s\u0137:    9\u017e\n-    False:    None\n-    \u0179\u017fP:      True\n-    \u017e\u012a:       w\n-    \u00d3\u010a\u00c8\u00b2:     Inf\n-    \u014a\u017d\u0163:      False\n+<xarray.Variable (x: 2, y: 4, z: 2)> Size: 64B\n+array([[[0., 0.],\n+        [0., 0.],\n+        [0., 0.],\n+        [0., 0.]],\n+\n+       [[0., 0.],\n+        [0., 0.],\n+        [0., 0.],\n+        [0., 0.]]], shape=(2, 4, 2), dtype=float32)\n \n In [18]: special_variables.example()\n Out[18]: \n-<xarray.Variable (x: 2, y: 3)> Size: 48B\n-array([[-5.859e+15+3.403e+38j, -1.192e-07-9.007e+15j,        inf      +nanj],\n-       [      -inf      -infj,  2.274e+16-0.000e+00j,       -inf      +infj]], dtype=complex64)\n+<xarray.Variable (x: 2, y: 4, z: 2)> Size: 128B\n+array([[[-9223372036854775797, -2829333351820392581],\n+        [-2829333351820392581, -2829333351820392581],\n+        [-9223372036854775729, -9223372036854767675],\n+        [-9223372036854748419, -2829333351820392581]],\n+\n+       [[-2829333351820392581, -9223372036854775616],\n+        [-2829333351820392581, -9223372036854762265],\n+        [-9223372036854775797, -2829333351820392581],\n+        [-2829333351820392581, -2829333351820392581]]], shape=(2, 4, 2), dtype=int64)\n+Attributes:\n+    \u00b9E\u017b\u0101\u014e:    \n+    \u013d\u00d6\u00f3:      False\n+    :         ['\u00cb\\U000f63d1\\x918']\n 
\n
\n

Here we have used one of hypothesis\u2019 built-in strategies hypothesis.strategies.fixed_dictionaries() to create a\n strategy which generates mappings of dimension names to lengths (i.e. the size of the xarray object we want).\n This particular strategy will always generate an x dimension of length 2, and a y dimension of\n length either 3 or 4, and will sometimes also generate a z dimension of length 2.\n By feeding this strategy for dictionaries into the dims argument of xarray\u2019s variables() strategy,\n@@ -367,50 +343,47 @@\n ....: array_strategy_fn=xps.arrays,\n ....: dtype=xps.scalar_dtypes(),\n ....: )\n ....: \n \n In [32]: xp_variables.example()\n Out[32]: \n-<xarray.Variable (x\u0139: 5, \u017d\u0112\u0155: 1)> Size: 20B\n-array([[ nan],\n- [-1.5e+00],\n- [ nan],\n- [ -inf],\n- [ 1.4e-45]], dtype=float32)\n+<xarray.Variable (\u0175\u010e\u00e6\u0134T: 1)> Size: 8B\n+array([-inf-10000000.j], dtype=complex64)\n Attributes:\n- \u00f5: {'': '', '\u00cb': False, '\u012cK': None, '\u00cd\u00d3': None, '\u017d\u0173': None, '\u0108': '...\n- \u00cc\u0136: {'\u010c0': None, '\u00ddT': array([['\u00af\\x16T', '\\x88\\x85'],\\n ['\u00ee',...\n+ \u011f\u00aa\u0126: {}\n+ : {'\u00d6\u013d\u0147m': {'': ''}}\n+ \u017f\u017c: {'\u0129\u0117C\u017c': array([['\u00a1\\x00\u00a6'],\\n ['\\x9b']], dtype='<U3'), '\u00c1...\n \n \n

Another array API-compliant duck array library would replace the import, e.g. import cupy as cp instead.

\n
\n
\n

Testing over Subsets of Dimensions\u00b6

\n

A common task when testing xarray user code is checking that your function works for all valid input dimensions.\n We can chain strategies to achieve this, for which the helper strategy unique_subset_of()\n is useful.

\n

It works for lists of dimension names

\n
In [33]: dims = ["x", "y", "z"]\n \n In [34]: xrst.unique_subset_of(dims).example()\n-Out[34]: ['x']\n+Out[34]: ['z', 'y', 'x']\n \n In [35]: xrst.unique_subset_of(dims).example()\n-Out[35]: ['x', 'y']\n+Out[35]: ['x', 'z', 'y']\n 
\n
\n

as well as for mappings of dimension names to sizes

\n
In [36]: dim_sizes = {"x": 2, "y": 3, "z": 4}\n \n In [37]: xrst.unique_subset_of(dim_sizes).example()\n-Out[37]: {'x': 2, 'y': 3}\n+Out[37]: {'x': 2}\n \n In [38]: xrst.unique_subset_of(dim_sizes).example()\n-Out[38]: {'x': 2}\n+Out[38]: {'x': 2, 'z': 4, 'y': 3}\n 
\n
\n

This is useful because operations like reductions can be performed over any subset of the xarray object\u2019s dimensions.\n For example we can write a pytest test that tests that a reduction gives the expected result when applying that reduction\n along any possible valid subset of the Variable\u2019s dimensions.

\n
import numpy.testing as npt\n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -28,71 +28,40 @@\n To see an example of what each of these strategies might produce, you can call\n one followed by the .example() method, which is a general hypothesis method\n valid for all strategies.\n In [2]: import xarray.testing.strategies as xrst\n \n In [3]: xrst.variables().example()\n Out[3]:\n- Size: 360B\n-array([[[  4799,  29530,  29530,  29530,  22152,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  20748,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,   4684,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530, -13311],\n-        [ 29530,  29530,  29530,  29530,  29530,  25968]],\n-\n-       [[ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530, -32767,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [-10712,  29530,  29530,  29530,  29530,  29530]],\n-\n-       [[ 29530,  29530,  29530,  29530,  15549,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  16631,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  14860,  29530,  29530,  29530]],\n-\n-       [[ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530, -31732,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530]],\n-\n-       [[ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530,  29530,  29530,  29530,  29530],\n-        [ 29530,  29530, -19131,  29530,  29530,  29530],\n-        [ 14440,  29530,  29530,  29530,  29530,  29530]]], shape=(5, 6, 6),\n-dtype=int16)\n+ Size: 16B\n+array([-2.791e+16, -2.791e+16])\n Attributes:\n-    \u017f\u00e8Z:      {'': False}\n+    \u017b\u017f\u016b\u00d9\u012e:    [               'NaT' -6691529558243785635]\n+    c\u017b\u0103\u017b:\n \n In [4]: xrst.variables().example()\n Out[4]:\n- Size: 4B\n-array([1.], dtype=float32)\n+ Size: 60B\n+array([[31813, 31813, 31813],\n+       [31813, 31813, 31813],\n+       [31813,   104, 34798],\n+       [31813, 31813, 31813],\n+       [31813, 31813,    73]], shape=(5, 3), dtype=uint32)\n Attributes:\n-    :         True\n-    \u00e0:        False\n-    \u00ec\u017cH\u00da:\n-    \u016dGZ:      False\n+    :         [[-9223372036854772911 -9223372036854754181]]\n+    B:        False\n+    \u015d\u017b\u017d:      W1\n+    \u0174\u00ff\u00dd\u0130\u00bd:    False\n+    q\u017e\u015f\u017f:\n+    \u0119\u0111\u00c9\u017e:     ['\\x98t\\U0006dd3c\u00f3\u00d1' '\ud877\udcbb\\U000cf117M\\r']\n \n In [5]: xrst.variables().example()\n Out[5]:\n- Size: 40B\n-array([[-7.41e-35-3.333e-01j],\n-       [      nan-2.000e+00j],\n-       [-7.41e-35-3.333e-01j],\n-       [     -inf-1.900e+00j],\n-       [ 0.00e+00-1.192e-07j]], dtype=complex64)\n+ Size: 2B\n+array([0.], dtype=float16)\n You can see that calling .example() multiple times will generate different\n examples, giving you an idea of the wide range of data that the xarray\n strategies can generate.\n In your tests however you should not use .example() - instead you should\n parameterize your tests with the hypothesis.given() decorator:\n In [6]: from hypothesis import given\n In [7]: @given(xrst.variables())\n@@ -104,72 +73,73 @@\n customise the contents of the generated examples.\n # generate a Variable containing an array with a complex number dtype, but all\n other details still arbitrary\n In [8]: from hypothesis.extra.numpy import complex_number_dtypes\n \n In [9]: xrst.variables(dtype=complex_number_dtypes()).example()\n Out[9]:\n- Size: 32B\n-array([1.9-10000000.j, nan      +nanj])\n+ Size: 64B\n+array([[-0.000e+00-0.000e+00j, -5.960e-08      +nanj],\n+       [-0.000e+00+1.100e+00j,        inf-5.000e-01j],\n+       [ 5.960e-08      +nanj,        nan      -infj],\n+       [-3.333e-01-1.100e+00j,        inf+2.702e-42j]], dtype='>c8')\n+Attributes:\n+    s:        False\n+    \u00c2\u00fb:       [[b'\\xf3\\xa5\\xb78V' b'\\x06']\\n [b']1\\xb7\\x93\\xaf\\xb8\\x8d1='\n+b'F...\n+    \u0101\u017c\u0170\u010e\u00f0:    \u0113\u017c\u017f6\n+    :         8\u017f\n+    \u0158:        False\n+    \u00b2\u0121\u0160\u017f\u00d5:    \u014a\u00ec\u017b\u0110\n+    \u0145\u0146m\u0105\u010e:    Qh\u00ed\u010e\u017d\n+    \u017c\u016a\u011cD\u00e1:    None\n This also works with custom strategies, or strategies defined in other\n packages. For example you could imagine creating a chunks strategy to specify\n particular chunking patterns for a dask-backed array.\n *\b**\b**\b**\b* F\bFi\bix\bxi\bin\bng\bg A\bAr\brg\bgu\bum\bme\ben\bnt\bts\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n If you want to fix one aspect of the data structure, whilst allowing variation\n in the generated examples over all other aspects, then use\n hypothesis.strategies.just().\n In [10]: import hypothesis.strategies as st\n \n # Generates only variable objects with dimensions [\"x\", \"y\"]\n In [11]: xrst.variables(dims=st.just([\"x\", \"y\"])).example()\n Out[11]:\n- Size: 240B\n-array([[-9.007e+015       +infj, -1.000e+000+2.225e-308j,\n-4.021e+150+6.181e+016j],\n-       [-2.225e-313-1.175e-038j,  9.484e-065-1.798e+308j,        -inf\n-+nanj],\n-       [-1.500e+000+2.225e-311j, -5.960e-008       +nanj, -9.007e+015\n-+infj],\n-       [ 3.333e-001+2.220e-016j, -9.007e+015       +infj,         inf-\n-2.000e+000j],\n-       [-9.007e+015       +infj, -1.175e-038+1.000e-005j, -1.500e+000+4.941e-\n-324j]], shape=(5, 3))\n+ Size: 72B\n+array([[ 0.000e+00,  0.000e+00,  0.000e+00, -6.104e-05,  0.000e+00,\n+0.000e+00],\n+       [       nan,  0.000e+00, -6.468e+16,  3.333e-01,  0.000e+00,\n+0.000e+00],\n+       [-6.104e-05, -9.418e+15,  0.000e+00,        nan,  0.000e+00,\n+nan]],\n+      shape=(3, 6), dtype=float32)\n Attributes:\n-    \u0155\u00b9\u017f\u00c5\u0113:    True\n-    \u0142:        None\n-    n\u0176:       \u011f\u017f\u0143\n-    \u017d\u017c:       [[nan+nanj]\\n [-2.+infj]]\n-    \u012e\u0140\u00eenu:    True\n-    :         True\n-    \u010b\u0150\u0104\u017c:     True\n-    \u017c:        ['' '\u00e4']\n-    \u014f\u00d4:       \u0105\u017f\u00ceP\u014d\n+    i\u017d:       None\n (This is technically another example of chaining strategies -\n hypothesis.strategies.just() is simply a special strategy that just contains a\n single example.)\n To fix the length of dimensions you can instead pass dims as a mapping of\n dimension names to lengths (i.e. following xarray objects\u2019 .sizes() property),\n e.g.\n # Generates only variables with dimensions [\"x\", \"y\"], of lengths 2 & 3\n respectively\n In [12]: xrst.variables(dims=st.just({\"x\": 2, \"y\": 3})).example()\n Out[12]:\n  Size: 24B\n-array([[-2147483589, -2147481429, -2147483457],\n-       [ 2147483647,  2147483647, -2147421547]])\n+array([[      7788,      32461, 3518005710],\n+       [      9069,       2120,      14502]], dtype=uint32)\n Attributes:\n-    Q\u0144\u00da\u00b5:     False\n-    :         False\n+    \u017f\u012a\u00d5\u00dd\u012a:    {'\u017e\u00c2\u017c\u010e\u0134': None}\n You can also use this to specify that you want examples which are missing some\n part of the data structure, for instance\n # Generates a Variable with no attributes\n In [13]: xrst.variables(attrs=st.just({})).example()\n Out[13]:\n  Size: 1B\n-array([0], dtype=int8)\n+array([0], dtype=uint8)\n Through a combination of chaining strategies and fixing arguments, you can\n specify quite complicated requirements on the objects your chained strategy\n will generate.\n In [14]: fixed_x_variable_y_maybe_z = st.fixed_dictionaries(\n    ....:     {\"x\": st.just(2), \"y\": st.integers(3, 4)}, optional={\"z\": st.just\n (2)}\n    ....: )\n@@ -178,38 +148,42 @@\n In [15]: fixed_x_variable_y_maybe_z.example()\n Out[15]: {'x': 2, 'y': 3}\n \n In [16]: special_variables = xrst.variables(dims=fixed_x_variable_y_maybe_z)\n \n In [17]: special_variables.example()\n Out[17]:\n- Size: 24B\n-array([[14601,   103,   103],\n-       [ 7321, 58525,   103]], dtype=uint32)\n-Attributes: (12/15)\n-    \u017d:        None\n-    \u0153:        None\n-    \u00c3\u010d:\n-    \u011c\u00ff\u00dd:      7\n-    \u0173\u0148:       [['\u023a' '\\x84\\x82']\\n ['' '']]\n-    \u015d8:       \u0141\u00e6\u00f3\u00fa\u00c2\n-    ...       ...\n-    P\u014a\u0165s\u0137:    9\u017e\n-    False:    None\n-    \u0179\u017fP:      True\n-    \u017e\u012a:       w\n-    \u00d3\u010a\u00c8\u00b2:     Inf\n-    \u014a\u017d\u0163:      False\n+ Size: 64B\n+array([[[0., 0.],\n+        [0., 0.],\n+        [0., 0.],\n+        [0., 0.]],\n+\n+       [[0., 0.],\n+        [0., 0.],\n+        [0., 0.],\n+        [0., 0.]]], shape=(2, 4, 2), dtype=float32)\n \n In [18]: special_variables.example()\n Out[18]:\n- Size: 48B\n-array([[-5.859e+15+3.403e+38j, -1.192e-07-9.007e+15j,        inf      +nanj],\n-       [      -inf      -infj,  2.274e+16-0.000e+00j,       -inf      +infj]],\n-dtype=complex64)\n+ Size: 128B\n+array([[[-9223372036854775797, -2829333351820392581],\n+        [-2829333351820392581, -2829333351820392581],\n+        [-9223372036854775729, -9223372036854767675],\n+        [-9223372036854748419, -2829333351820392581]],\n+\n+       [[-2829333351820392581, -9223372036854775616],\n+        [-2829333351820392581, -9223372036854762265],\n+        [-9223372036854775797, -2829333351820392581],\n+        [-2829333351820392581, -2829333351820392581]]], shape=(2, 4, 2),\n+dtype=int64)\n+Attributes:\n+    \u00b9E\u017b\u0101\u014e:\n+    \u013d\u00d6\u00f3:      False\n+    :         ['\u00cb\\U000f63d1\\x918']\n Here we have used one of hypothesis\u2019 built-in strategies\n hypothesis.strategies.fixed_dictionaries() to create a strategy which generates\n mappings of dimension names to lengths (i.e. the size of the xarray object we\n want). This particular strategy will always generate an x dimension of length\n 2, and a y dimension of length either 3 or 4, and will sometimes also generate\n a z dimension of length 2. By feeding this strategy for dictionaries into the\n dims argument of xarray\u2019s variables() strategy, we can generate arbitrary\n@@ -303,47 +277,43 @@\n    ....:     array_strategy_fn=xps.arrays,\n    ....:     dtype=xps.scalar_dtypes(),\n    ....: )\n    ....:\n \n In [32]: xp_variables.example()\n Out[32]:\n- Size: 20B\n-array([[     nan],\n-       [-1.5e+00],\n-       [     nan],\n-       [    -inf],\n-       [ 1.4e-45]], dtype=float32)\n+ Size: 8B\n+array([-inf-10000000.j], dtype=complex64)\n Attributes:\n-    \u00f5:        {'': '', '\u00cb': False, '\u012cK': None, '\u00cd\u00d3': None, '\u017d\u0173': None, '\u0108':\n-'...\n-    \u00cc\u0136:       {'\u010c0': None, '\u00ddT': array([['\u00af\\x16T', '\\x88\\x85'],\\n\n-['\u00ee',...\n+    \u011f\u00aa\u0126:      {}\n+    :         {'\u00d6\u013d\u0147m': {'': ''}}\n+    \u017f\u017c:       {'\u0129\u0117C\u017c': array([['\u00a1\\x00\u00a6'],\\n       ['\\x9b']], dtype='

New xray.Dataset.where method for masking xray objects according\n to some criteria. This works particularly well with multi-dimensional data:

\n
In [45]: ds = xray.Dataset(coords={"x": range(100), "y": range(100)})\n \n In [46]: ds["distance"] = np.sqrt(ds.x**2 + ds.y**2)\n \n In [47]: ds.distance.where(ds.distance < 100).plot()\n-Out[47]: <matplotlib.collections.QuadMesh at 0xe18c2030>\n+Out[47]: <matplotlib.collections.QuadMesh at 0xe2dc59d0>\n 
\n
\n \"_images/where_example.png\"\n \n \n
  • Added new methods xray.DataArray.diff and xray.Dataset.diff\n for finite difference calculations along a given axis.

  • \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -5286,15 +5286,15 @@\n * New xray.Dataset.where method for masking xray objects according to some\n criteria. This works particularly well with multi-dimensional data:\n In [45]: ds = xray.Dataset(coords={\"x\": range(100), \"y\": range(100)})\n \n In [46]: ds[\"distance\"] = np.sqrt(ds.x**2 + ds.y**2)\n \n In [47]: ds.distance.where(ds.distance < 100).plot()\n- Out[47]: \n+ Out[47]: \n _\b[_\b__\bi_\bm_\ba_\bg_\be_\bs_\b/_\bw_\bh_\be_\br_\be_\b__\be_\bx_\ba_\bm_\bp_\bl_\be_\b._\bp_\bn_\bg_\b]\n * Added new methods xray.DataArray.diff and xray.Dataset.diff for finite\n difference calculations along a given axis.\n * New xray.DataArray.to_masked_array convenience method for returning a\n numpy.ma.MaskedArray.\n In [48]: da = xray.DataArray(np.random.random_sample(size=(5, 4)))\n \n"}]}]}]}]}]}