{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.hN8cf35f/b1/pandas_2.2.3+dfsg-8_amd64.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.hN8cf35f/b2/pandas_2.2.3+dfsg-8_amd64.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,5 +1,5 @@\n \n- 119053e4dbd2ebf8845e73abee59689f 10794968 doc optional python-pandas-doc_2.2.3+dfsg-8_all.deb\n+ 44c692f6152084b83cd9468612ef29a6 10794604 doc optional python-pandas-doc_2.2.3+dfsg-8_all.deb\n f1f9f2170310b8b59540f1504ae4f513 35864748 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-8_amd64.deb\n 551836e9c52e65c9632807c82058672b 4515236 python optional python3-pandas-lib_2.2.3+dfsg-8_amd64.deb\n 3aeb8fc374254d23864c68b1017c67e2 3096900 python optional python3-pandas_2.2.3+dfsg-8_all.deb\n"}, {"source1": "python-pandas-doc_2.2.3+dfsg-8_all.deb", "source2": "python-pandas-doc_2.2.3+dfsg-8_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2025-02-01 18:39:17.000000 debian-binary\n--rw-r--r-- 0 0 0 147388 2025-02-01 18:39:17.000000 control.tar.xz\n--rw-r--r-- 0 0 0 10647388 2025-02-01 18:39:17.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 147404 2025-02-01 18:39:17.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 10647008 2025-02-01 18:39:17.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./control", "source2": "./control", "unified_diff": "@@ -1,13 +1,13 @@\n Package: python-pandas-doc\n Source: pandas\n Version: 2.2.3+dfsg-8\n Architecture: all\n Maintainer: Debian Science Team \n-Installed-Size: 209900\n+Installed-Size: 209896\n Depends: libjs-sphinxdoc (>= 8.1), libjs-mathjax\n Suggests: python3-pandas\n Section: doc\n Priority: optional\n Multi-Arch: foreign\n Homepage: https://pandas.pydata.org/\n Description: data structures for \"relational\" or \"labeled\" data - documentation\n"}, {"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -6256,84 +6256,84 @@\n -rw-r--r-- 0 root (0) root (0) 210184 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html\n -rw-r--r-- 0 root (0) root (0) 48665 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html\n -rw-r--r-- 0 root (0) root (0) 48657 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html\n -rw-r--r-- 0 root (0) root (0) 53295 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/release.html\n -rw-r--r-- 0 root (0) root (0) 269 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 17010 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/search.html\n--rw-r--r-- 0 root (0) root (0) 2358676 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 2358806 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n -rw-r--r-- 0 root (0) root (0) 259 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/style.html\n -rw-r--r-- 0 root (0) root (0) 255 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/text.html\n -rw-r--r-- 0 root (0) root (0) 256 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 277 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 272 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/\n -rw-r--r-- 0 root (0) root (0) 171380 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html\n--rw-r--r-- 0 root (0) root (0) 283834 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n+-rw-r--r-- 0 root (0) root (0) 283975 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n -rw-r--r-- 0 root (0) root (0) 436075 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html\n -rw-r--r-- 0 root (0) root (0) 36646 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html\n -rw-r--r-- 0 root (0) root (0) 217515 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html\n -rw-r--r-- 0 root (0) root (0) 18313 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html\n -rw-r--r-- 0 root (0) root (0) 66125 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html\n -rw-r--r-- 0 root (0) root (0) 160414 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html\n -rw-r--r-- 0 root (0) root (0) 81376 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html\n--rw-r--r-- 0 root (0) root (0) 115483 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n+-rw-r--r-- 0 root (0) root (0) 115461 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n -rw-r--r-- 0 root (0) root (0) 107882 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html\n -rw-r--r-- 0 root (0) root (0) 300850 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html\n -rw-r--r-- 0 root (0) root (0) 59715 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html\n -rw-r--r-- 0 root (0) root (0) 395484 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html\n -rw-r--r-- 0 root (0) root (0) 41778 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html\n -rw-r--r-- 0 root (0) root (0) 1145820 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html\n -rw-r--r-- 0 root (0) root (0) 208885 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html\n -rw-r--r-- 0 root (0) root (0) 178690 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html\n -rw-r--r-- 0 root (0) root (0) 112153 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html\n -rw-r--r-- 0 root (0) root (0) 147524 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html\n -rw-r--r-- 0 root (0) root (0) 162660 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 115581 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n -rw-r--r-- 0 root (0) root (0) 65546 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html\n -rw-r--r-- 0 root (0) root (0) 698240 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html\n--rw-r--r-- 0 root (0) root (0) 87862 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 87822 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 165302 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html\n -rw-r--r-- 0 root (0) root (0) 100947 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 486621 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 204341 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html\n -rw-r--r-- 0 root (0) root (0) 141947 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html\n -rw-r--r-- 0 root (0) root (0) 270 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/\n -rw-r--r-- 0 root (0) root (0) 107681 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html\n -rw-r--r-- 0 root (0) root (0) 10569 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz\n -rw-r--r-- 0 root (0) root (0) 83987 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html\n -rw-r--r-- 0 root (0) root (0) 66492 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html\n -rw-r--r-- 0 root (0) root (0) 82312 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html\n -rw-r--r-- 0 root (0) root (0) 104316 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html\n--rw-r--r-- 0 root (0) root (0) 222517 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n+-rw-r--r-- 0 root (0) root (0) 222660 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n -rw-r--r-- 0 root (0) root (0) 89385 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html\n -rw-r--r-- 0 root (0) root (0) 243730 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html\n -rw-r--r-- 0 root (0) root (0) 83262 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html\n -rw-r--r-- 0 root (0) root (0) 252303 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html\n -rw-r--r-- 0 root (0) root (0) 68280 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html\n -rw-r--r-- 0 root (0) root (0) 75115 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html\n -rw-r--r-- 0 root (0) root (0) 145199 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html\n -rw-r--r-- 0 root (0) root (0) 115518 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.1.html\n -rw-r--r-- 0 root (0) root (0) 64656 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.2.html\n -rw-r--r-- 0 root (0) root (0) 231394 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.0.html\n -rw-r--r-- 0 root (0) root (0) 95028 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.1.html\n -rw-r--r-- 0 root (0) root (0) 224091 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.0.html\n--rw-r--r-- 0 root (0) root (0) 171888 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.1.html\n--rw-r--r-- 0 root (0) root (0) 350916 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.0.html\n+-rw-r--r-- 0 root (0) root (0) 171419 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.1.html\n+-rw-r--r-- 0 root (0) root (0) 349360 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.0.html\n -rw-r--r-- 0 root (0) root (0) 45179 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.1.html\n -rw-r--r-- 0 root (0) root (0) 48525 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.2.html\n--rw-r--r-- 0 root (0) root (0) 407596 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.0.html\n+-rw-r--r-- 0 root (0) root (0) 406081 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.0.html\n -rw-r--r-- 0 root (0) root (0) 52898 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.2.html\n -rw-r--r-- 0 root (0) root (0) 43404 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.3.html\n--rw-r--r-- 0 root (0) root (0) 255811 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.21.0.html\n+-rw-r--r-- 0 root (0) root (0) 255116 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.21.0.html\n -rw-r--r-- 0 root (0) root (0) 61789 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.21.1.html\n--rw-r--r-- 0 root (0) root (0) 59896 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.22.0.html\n--rw-r--r-- 0 root (0) root (0) 402831 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.0.html\n+-rw-r--r-- 0 root (0) root (0) 59841 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.22.0.html\n+-rw-r--r-- 0 root (0) root (0) 401704 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.0.html\n -rw-r--r-- 0 root (0) root (0) 59871 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.1.html\n -rw-r--r-- 0 root (0) root (0) 52005 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.2.html\n -rw-r--r-- 0 root (0) root (0) 32373 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.3.html\n -rw-r--r-- 0 root (0) root (0) 35785 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.4.html\n -rw-r--r-- 0 root (0) root (0) 520683 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.24.0.html\n -rw-r--r-- 0 root (0) root (0) 44717 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.24.1.html\n -rw-r--r-- 0 root (0) root (0) 49347 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.24.2.html\n"}, {"source1": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "source2": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -21500,15 +21500,15 @@\n \"00180\": 2294,\n \"002\": [2193, 2264],\n \"002000\": 2232,\n \"002040\": 2235,\n \"002118\": [2230, 2231],\n \"002653\": 2207,\n \"002846\": 2229,\n- \"003\": [2185, 2193, 2235],\n+ \"003\": [2185, 2235],\n \"003144\": 2210,\n \"003337\": 2207,\n \"003494\": 15,\n \"003507\": [2209, 2218],\n \"003556\": 2207,\n \"00360\": 2294,\n \"003733\": 2207,\n@@ -21523,15 +21523,15 @@\n \"004194\": 2186,\n \"004201\": 2186,\n \"004229\": 2186,\n \"004474\": 2184,\n \"004580\": 2210,\n \"00486\": 30,\n \"004956\": 2207,\n- \"005\": 2209,\n+ \"005\": [2193, 2209],\n \"005000\": 2218,\n \"005361\": 2207,\n \"005383\": 2220,\n \"005446\": 2219,\n \"005462\": 2191,\n \"005977\": 2199,\n \"005979\": 2186,\n@@ -21542,41 +21542,44 @@\n \"006438\": 2215,\n \"006549\": [182, 760],\n \"006695\": 2186,\n \"006747\": [2185, 2197, 2199, 2202, 2204, 2215],\n \"006871\": 2212,\n \"006888\": 2220,\n \"006938\": 2207,\n+ \"007\": 2193,\n \"007200\": 2184,\n \"007207\": [2184, 2214],\n \"007717\": 2199,\n \"007824\": 15,\n \"007952\": 2207,\n \"007996\": 2186,\n \"007f\": 203,\n+ \"008\": 2193,\n \"008182\": 2204,\n \"008298\": 2186,\n \"008344\": 2207,\n \"008358\": 2207,\n \"008500\": 15,\n \"008543\": [102, 1158],\n \"008943\": [102, 1158],\n+ \"009\": 2193,\n \"009059\": 2191,\n \"009207\": 2207,\n \"009420\": 2195,\n \"009424\": 2207,\n \"009572\": 2207,\n \"009673\": 2195,\n \"009783\": 2207,\n \"009797\": 2186,\n \"009826\": [102, 1158, 2205],\n \"009920\": [2184, 2195, 2214],\n \"00am\": 2230,\n \"00index\": 2218,\n- \"01\": [3, 15, 16, 17, 19, 29, 30, 31, 36, 79, 80, 82, 88, 107, 121, 182, 187, 207, 213, 218, 219, 230, 242, 261, 270, 271, 276, 277, 278, 283, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 326, 329, 330, 331, 332, 333, 345, 362, 363, 423, 445, 510, 511, 513, 514, 515, 516, 517, 519, 521, 523, 525, 529, 531, 532, 533, 534, 535, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 566, 575, 591, 592, 593, 600, 629, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 684, 685, 686, 688, 689, 696, 760, 763, 781, 788, 793, 804, 817, 874, 893, 898, 899, 902, 903, 904, 905, 909, 910, 917, 919, 922, 929, 934, 939, 940, 943, 944, 945, 948, 949, 953, 954, 957, 959, 960, 969, 972, 982, 984, 997, 1000, 1001, 1003, 1004, 1005, 1011, 1014, 1016, 1017, 1020, 1021, 1024, 1051, 1075, 1078, 1106, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1164, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1221, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1344, 1345, 1367, 1391, 1392, 1393, 1436, 1447, 1452, 1475, 1488, 1490, 1498, 1500, 1501, 1506, 1524, 1542, 1560, 1620, 1699, 1720, 1741, 1793, 1815, 1857, 1930, 1947, 1982, 2036, 2054, 2090, 2108, 2127, 2163, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2261, 2264, 2265, 2271, 2283, 2289, 2294, 2298, 2302, 2307],\n+ \"01\": [3, 15, 16, 17, 19, 29, 30, 31, 36, 79, 80, 82, 88, 107, 121, 182, 187, 207, 213, 218, 219, 230, 242, 261, 270, 271, 276, 277, 278, 283, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 326, 329, 330, 331, 332, 333, 345, 362, 363, 423, 445, 510, 511, 513, 514, 515, 516, 517, 519, 521, 523, 525, 529, 531, 532, 533, 534, 535, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 566, 575, 591, 592, 593, 600, 629, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 684, 685, 686, 688, 689, 696, 760, 763, 781, 788, 793, 804, 817, 874, 893, 898, 899, 902, 903, 904, 905, 909, 910, 917, 919, 922, 929, 934, 939, 940, 943, 944, 945, 948, 949, 953, 954, 957, 959, 960, 969, 972, 982, 984, 997, 1000, 1001, 1003, 1004, 1005, 1011, 1014, 1016, 1017, 1020, 1021, 1024, 1051, 1075, 1078, 1106, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1164, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1221, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1344, 1345, 1367, 1391, 1392, 1393, 1436, 1447, 1452, 1475, 1488, 1490, 1498, 1500, 1501, 1506, 1524, 1542, 1560, 1620, 1699, 1720, 1741, 1793, 1815, 1857, 1930, 1947, 1982, 2036, 2054, 2090, 2108, 2127, 2163, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2261, 2264, 2265, 2271, 2283, 2289, 2294, 2298, 2302, 2307],\n \"0100\": [575, 893, 957, 970, 997, 1004, 1014, 1016, 1020, 1021, 1498, 2186, 2199, 2210, 2246, 2271],\n \"010000\": [954, 1894],\n \"010010012\": [923, 2209],\n \"010026\": 2191,\n \"010081\": 15,\n \"010165\": 2199,\n \"010589\": 2193,\n@@ -21638,25 +21641,25 @@\n \"017106\": 2207,\n \"017118\": 2199,\n \"017152\": 2186,\n \"017263\": 2207,\n \"017276\": 2191,\n \"017587\": [2184, 2195, 2214],\n \"017796\": 2207,\n- \"018\": [2193, 2199],\n+ \"018\": 2199,\n \"018007\": 2207,\n \"018117\": 2191,\n \"018193\": 2207,\n \"018409\": 2207,\n \"018601\": [2184, 2214],\n \"018808\": 2207,\n \"018904\": 2207,\n \"018941\": 2207,\n \"018993\": 2214,\n- \"019\": 2207,\n+ \"019\": [2193, 2207],\n \"019449\": 2207,\n \"019794\": 2197,\n \"01t00\": [2163, 2199, 2210, 2235, 2246, 2261],\n \"01t01\": 2210,\n \"01t03\": 2210,\n \"01t05\": [909, 2210, 2235],\n \"01t07\": 1280,\n@@ -21669,50 +21672,47 @@\n \"020208\": 2195,\n \"020376\": 2207,\n \"020399\": 2195,\n \"020485\": 2207,\n \"020544\": 2186,\n \"020762\": 2220,\n \"020940\": 2230,\n- \"021\": 2193,\n \"021244\": 2207,\n \"021255\": 2230,\n \"021292\": 2186,\n \"021377\": 2207,\n \"021382\": 2184,\n \"021499\": 2186,\n \"02155\": 30,\n- \"022\": 2193,\n \"022070\": 2184,\n \"022196\": 2207,\n \"022777\": 2207,\n \"023\": [1447, 2200, 2232],\n \"023100\": 2195,\n \"023167\": 15,\n \"023202\": 2199,\n \"023526\": 2191,\n \"023640\": 2230,\n \"023688\": [15, 2185, 2191, 2197],\n \"0237\": 2204,\n \"023721\": 2207,\n \"023888\": 2186,\n \"023898\": 2195,\n- \"024\": 2193,\n \"024121\": 2207,\n \"024180\": [2185, 2197, 2199, 2202, 2204, 2215],\n \"024320\": 2210,\n \"02458\": 2195,\n \"024580\": [2184, 2195, 2214],\n \"024738\": [102, 1158],\n \"024786\": 2207,\n \"024810\": 2207,\n \"0249\": [267, 896],\n \"024925\": 2195,\n \"024967\": 2207,\n- \"025\": [2186, 2193, 2222, 2227],\n+ \"025\": [2186, 2222, 2227],\n \"025054\": 2184,\n \"025270\": 2186,\n \"025363\": 2186,\n \"025367\": 2207,\n \"025747\": [2191, 2197, 2207],\n \"026036\": 2207,\n \"026158\": 2210,\n@@ -21728,26 +21728,26 @@\n \"028152\": 2207,\n \"028166\": 15,\n \"028182\": 2207,\n \"028578\": 2207,\n \"028603\": 2195,\n \"028662\": 28,\n \"028665\": 15,\n- \"029\": [2186, 2227],\n+ \"029\": [2186, 2193, 2227],\n \"029302\": 2191,\n \"029399\": 2184,\n \"029582\": 2207,\n \"029587\": 2193,\n \"029630\": 2195,\n \"029766\": 2197,\n \"02d\": 2205,\n \"02t00\": [2199, 2210, 2235, 2261],\n \"02t02\": 2235,\n \"02t05\": [909, 2210],\n- \"03\": [26, 27, 29, 31, 79, 80, 82, 121, 182, 207, 213, 218, 219, 230, 264, 278, 286, 287, 290, 291, 292, 294, 296, 298, 301, 302, 304, 305, 306, 307, 310, 313, 314, 318, 321, 322, 326, 330, 331, 332, 362, 420, 423, 512, 517, 518, 519, 522, 524, 530, 534, 536, 543, 544, 545, 546, 547, 548, 549, 551, 557, 558, 562, 563, 564, 565, 566, 591, 592, 593, 637, 640, 642, 643, 644, 646, 651, 652, 656, 657, 658, 659, 666, 667, 673, 675, 677, 680, 681, 685, 686, 688, 696, 760, 781, 788, 793, 799, 804, 904, 939, 941, 943, 944, 945, 948, 949, 953, 955, 956, 957, 958, 962, 970, 973, 983, 990, 992, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1013, 1014, 1018, 1051, 1075, 1145, 1169, 1192, 1226, 1253, 1269, 1270, 1276, 1280, 1289, 1344, 1393, 1447, 1452, 1489, 1498, 1500, 1506, 1542, 1699, 1741, 1793, 1815, 1982, 2000, 2108, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2271, 2283, 2298, 2302],\n+ \"03\": [26, 27, 29, 31, 79, 80, 82, 121, 182, 207, 213, 218, 219, 230, 264, 278, 286, 287, 290, 291, 292, 294, 296, 298, 301, 302, 304, 305, 306, 307, 310, 313, 314, 318, 321, 322, 326, 330, 331, 332, 362, 420, 423, 512, 517, 518, 519, 522, 524, 530, 534, 536, 543, 544, 545, 546, 547, 548, 549, 551, 557, 558, 562, 563, 564, 565, 566, 591, 592, 593, 637, 640, 642, 643, 644, 646, 651, 652, 656, 657, 658, 659, 666, 667, 673, 675, 677, 680, 681, 685, 686, 688, 696, 760, 781, 788, 793, 799, 804, 904, 939, 941, 943, 944, 945, 948, 949, 953, 955, 956, 957, 958, 962, 970, 973, 983, 990, 992, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1013, 1014, 1018, 1051, 1075, 1145, 1169, 1192, 1226, 1253, 1269, 1270, 1276, 1280, 1289, 1344, 1393, 1447, 1452, 1489, 1498, 1500, 1506, 1542, 1699, 1741, 1793, 1815, 1982, 2000, 2108, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2271, 2283, 2298, 2302],\n \"030\": [1447, 2200, 2232],\n \"0300\": 2271,\n \"030000\": 18,\n \"030015\": 2207,\n \"030045\": 2186,\n \"030178\": 2207,\n \"030388\": 2207,\n@@ -21803,18 +21803,19 @@\n \"036660\": 2199,\n \"036854\": 2199,\n \"037181\": 2191,\n \"037528\": 2235,\n \"037651\": 2207,\n \"037772\": 2214,\n \"037882\": [2184, 2214],\n- \"038\": [1447, 2193, 2200, 2232],\n+ \"038\": [1447, 2200, 2232],\n \"038031\": 2207,\n \"038402\": 2197,\n \"038981\": 2207,\n+ \"039\": 2193,\n \"039061\": 2207,\n \"039147\": 2207,\n \"039266\": 2215,\n \"039268\": [15, 2185, 2186, 2191, 2197, 2199, 2202, 2204, 2215, 2216, 2218, 2219, 2235, 2241, 2264],\n \"0393\": [2186, 2191],\n \"039575\": [15, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2210, 2214, 2215, 2218, 2225, 2226, 2241, 2260],\n \"0396\": [2184, 2186],\n@@ -21895,15 +21896,15 @@\n \"049695\": 2199,\n \"049748\": 2204,\n \"049783\": 2207,\n \"049798\": 2199,\n \"049851\": 2195,\n \"04d\": 2188,\n \"04t00\": 2261,\n- \"05\": [13, 26, 27, 29, 30, 31, 80, 148, 149, 177, 178, 183, 207, 213, 218, 230, 264, 273, 276, 292, 294, 298, 302, 316, 326, 330, 331, 332, 345, 363, 423, 551, 592, 597, 644, 646, 670, 680, 685, 686, 688, 725, 726, 755, 756, 761, 781, 788, 793, 804, 900, 902, 905, 944, 1075, 1145, 1274, 1289, 1344, 1441, 1442, 1447, 1449, 1450, 1452, 1465, 1495, 1498, 1500, 1506, 1524, 1542, 1560, 1677, 1699, 1758, 2163, 2184, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2235, 2241, 2246, 2249, 2261, 2264, 2271, 2283, 2298, 2302, 2307],\n+ \"05\": [13, 26, 27, 29, 30, 31, 80, 148, 149, 177, 178, 183, 207, 213, 218, 230, 264, 273, 276, 292, 294, 298, 302, 316, 326, 330, 331, 332, 345, 363, 423, 551, 592, 597, 644, 646, 670, 680, 685, 686, 688, 725, 726, 755, 756, 761, 781, 788, 793, 804, 900, 902, 905, 944, 1075, 1145, 1274, 1289, 1344, 1441, 1442, 1447, 1449, 1450, 1452, 1465, 1495, 1498, 1500, 1506, 1524, 1542, 1560, 1677, 1699, 1758, 2163, 2184, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2235, 2241, 2246, 2249, 2261, 2264, 2271, 2283, 2298, 2302, 2307],\n \"0500\": [24, 25, 28, 29, 32, 1498, 2210, 2235],\n \"050000\": [522, 524, 530],\n \"050038\": 2207,\n \"050046\": 2210,\n \"050390\": 2186,\n \"050498\": 2207,\n \"051514\": 2186,\n@@ -21978,14 +21979,15 @@\n \"061068\": 2210,\n \"061233\": 2207,\n \"061438\": 2199,\n \"061645\": 2193,\n \"061810\": 2204,\n \"061876\": [182, 760],\n \"061932\": 2186,\n+ \"062\": 2193,\n \"062191\": 2230,\n \"062320\": 2207,\n \"062433\": 2199,\n \"062993\": 2197,\n \"0630\": 2246,\n \"063038\": 2199,\n \"063123\": 2210,\n@@ -22161,15 +22163,15 @@\n \"089227\": 2207,\n \"089329\": [2184, 2195, 2214],\n \"089354\": 2235,\n \"089589\": 2207,\n \"089641\": 2207,\n \"089759\": 2186,\n \"08t00\": 2261,\n- \"09\": [29, 80, 84, 88, 107, 127, 157, 213, 218, 276, 277, 278, 322, 330, 331, 345, 562, 592, 595, 600, 629, 637, 677, 685, 686, 703, 732, 788, 793, 902, 903, 904, 987, 1008, 1075, 1164, 1221, 1344, 1452, 1489, 1501, 1506, 1524, 1578, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1839, 1876, 1894, 1912, 1964, 2018, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2218, 2220, 2221, 2222, 2226, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2249, 2250, 2261, 2271],\n+ \"09\": [29, 80, 84, 88, 107, 127, 157, 213, 218, 276, 277, 278, 322, 330, 331, 345, 562, 592, 595, 600, 629, 637, 677, 685, 686, 703, 732, 788, 793, 902, 903, 904, 987, 1008, 1075, 1164, 1221, 1344, 1452, 1489, 1501, 1506, 1524, 1578, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1839, 1876, 1894, 1912, 1964, 2018, 2184, 2185, 2186, 2191, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2218, 2220, 2221, 2222, 2226, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2249, 2250, 2261, 2271],\n \"0900\": [956, 1013],\n \"090118\": 2219,\n \"090255\": 2197,\n \"090310\": 2207,\n \"090711\": 2207,\n \"091\": [2186, 2227],\n \"091000\": 2207,\n@@ -22185,15 +22187,14 @@\n \"092759\": 2218,\n \"092888\": 1019,\n \"092903\": 2214,\n \"093110\": 2195,\n \"093128\": 2207,\n \"093158\": 2207,\n \"093650\": 2219,\n- \"094\": 2193,\n \"094055\": [2191, 2197],\n \"094104\": 2195,\n \"094112\": [182, 760],\n \"094209\": 2207,\n \"094269\": 2199,\n \"094517\": 2199,\n \"094536\": 2207,\n@@ -22252,20 +22253,20 @@\n \"0n\": [1489, 2298],\n \"0px\": 2207,\n \"0rc0\": 13,\n \"0th\": [26, 249, 882, 1202, 2185, 2197, 2199, 2235],\n \"0x00\": 2294,\n \"0x40\": 2294,\n \"0x7efd0c0b0690\": 3,\n- \"0x7f85940da7d0\": 2197,\n- \"0x7f85942cdef0\": 2199,\n- \"0x7f8595987410\": 2195,\n- \"0x7f85ac384c20\": 2246,\n- \"0x7f85ad2c63e0\": 2210,\n- \"0x7f85b50d23c0\": 2230,\n+ \"0x7fb1705da710\": 2199,\n+ \"0x7fb1758469e0\": 2197,\n+ \"0x7fb177559250\": 2195,\n+ \"0x7fb17e4c5260\": 2210,\n+ \"0x7fb19d4c59b0\": 2230,\n+ \"0x7fb19dbee210\": 2246,\n \"1\": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310],\n \"10\": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308],\n \"100\": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307],\n \"1000\": [9, 10, 15, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294],\n \"10000\": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266],\n \"100000\": [1354, 1372, 2199, 2201, 2210],\n \"1000000\": [144, 2199, 2228],\n@@ -22554,14 +22555,15 @@\n \"10690\": 2232,\n \"10692\": 2228,\n \"10696\": 2241,\n \"10697\": 2228,\n \"10698\": 2228,\n \"10699\": 2228,\n \"107\": [2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235],\n+ \"1070\": 2193,\n \"10704\": 2228,\n \"10709\": 2229,\n \"10711\": 2235,\n \"10713\": 2228,\n \"10713616\": 2238,\n \"10713648\": 2238,\n \"10713680\": 2238,\n@@ -22709,15 +22711,15 @@\n \"110877\": 2191,\n \"110891\": 2215,\n \"110895\": 2207,\n \"1109\": 30,\n \"11094\": 2228,\n \"110968\": 2185,\n \"11097\": 2228,\n- \"111\": [16, 17, 18, 19, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2230, 2232, 2235, 2246],\n+ \"111\": [16, 17, 18, 19, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2230, 2232, 2235, 2246],\n \"1110\": 30,\n \"11102\": 2228,\n \"111032\": 2204,\n \"1111\": [2197, 2218],\n \"111107\": 2207,\n \"11111\": 2228,\n \"111110\": 2186,\n@@ -23458,15 +23460,15 @@\n \"13078\": 2232,\n \"13082\": 2232,\n \"13083\": 2238,\n \"130932\": 2207,\n \"13097\": 2235,\n \"13098\": 2232,\n \"130980\": 2195,\n- \"131\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2232, 2249, 2283],\n+ \"131\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2232, 2249, 2283],\n \"1310\": 2199,\n \"13101\": 2239,\n \"13104\": 2232,\n \"13107\": 2232,\n \"13109\": 2232,\n \"13110\": 2232,\n \"13119\": 2232,\n@@ -23593,15 +23595,15 @@\n \"13382\": 2232,\n \"13383\": 2232,\n \"13386\": 2241,\n \"13389\": 2232,\n \"13393\": 2239,\n \"13395\": 2232,\n \"13398\": 2232,\n- \"134\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2208, 2210, 2211, 2232, 2235, 2249, 2259, 2283],\n+ \"134\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2208, 2210, 2211, 2232, 2235, 2249, 2259, 2283],\n \"13402\": 2232,\n \"13407\": 2241,\n \"13410\": 2235,\n \"134105\": 2207,\n \"13411\": 2232,\n \"13412\": 2234,\n \"134146\": 15,\n@@ -23841,17 +23843,18 @@\n \"14001\": 2238,\n \"140069\": 2229,\n \"14007\": 2241,\n \"14012\": 2232,\n \"14013\": 2241,\n \"14015\": 2235,\n \"14021\": 2232,\n- \"140212096832912\": 2246,\n \"140249\": 2207,\n \"14039\": 2232,\n+ \"140400324417488\": 2246,\n+ \"140400324419792\": 2246,\n \"14041\": 2232,\n \"140528\": 2207,\n \"14058\": 2232,\n \"14065\": 2232,\n \"14066\": 2232,\n \"14068\": [2232, 2233],\n \"1408\": [2197, 2231],\n@@ -24146,15 +24149,15 @@\n \"14982\": 2235,\n \"14983\": 2235,\n \"1499\": 2212,\n \"14992\": 2235,\n \"14998\": 2235,\n \"14t15\": [955, 956, 957, 962, 970, 983, 990, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1013, 1014],\n \"15\": [4, 15, 16, 17, 18, 19, 22, 25, 26, 29, 30, 31, 72, 73, 81, 88, 91, 108, 112, 116, 121, 127, 133, 137, 157, 186, 208, 213, 230, 258, 268, 271, 277, 278, 345, 586, 600, 696, 703, 708, 732, 762, 782, 788, 804, 889, 899, 903, 904, 953, 955, 956, 957, 958, 970, 973, 992, 995, 997, 999, 1005, 1008, 1009, 1013, 1014, 1018, 1103, 1147, 1157, 1170, 1171, 1173, 1176, 1180, 1185, 1188, 1195, 1197, 1198, 1202, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1249, 1256, 1258, 1263, 1265, 1268, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1321, 1334, 1458, 1485, 1498, 1500, 1506, 1524, 1542, 1560, 1578, 1598, 1657, 1677, 1758, 1839, 1876, 1894, 1912, 1964, 2018, 2036, 2054, 2090, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2235, 2238, 2240, 2243, 2246, 2249, 2257, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"150\": [15, 111, 118, 132, 135, 159, 161, 175, 213, 233, 788, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2204, 2210, 2211],\n+ \"150\": [15, 111, 118, 132, 135, 159, 161, 175, 213, 233, 788, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2210, 2211],\n \"1500\": [2212, 2241, 2246],\n \"15000\": [2185, 2220],\n \"15001\": 2238,\n \"150025\": 2207,\n \"150031\": 2207,\n \"150036\": [2220, 2230],\n \"15005\": 2235,\n@@ -24248,15 +24251,15 @@\n \"15272\": 2289,\n \"15277\": 2235,\n \"15289\": 2235,\n \"15296\": 2241,\n \"152963\": 2207,\n \"15297\": 2235,\n \"152996\": 2207,\n- \"153\": [2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2210, 2211, 2231],\n+ \"153\": [2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2210, 2211, 2231],\n \"15300\": 2235,\n \"153009\": 2207,\n \"15305\": 2238,\n \"15306\": 2249,\n \"15314\": 2246,\n \"153266\": 2207,\n \"15328\": 2235,\n@@ -25590,15 +25593,14 @@\n \"19900315\": 2230,\n \"19909\": 2241,\n \"1990q1\": 2210,\n \"1991\": [2210, 2249],\n \"19910905\": 2249,\n \"19917\": 2271,\n \"19920\": 2241,\n- \"1993\": 2193,\n \"19935\": 2241,\n \"199379\": 2207,\n \"19939\": 2241,\n \"1994\": 2246,\n \"19944\": 2246,\n \"19954\": 2246,\n \"19956\": 2277,\n@@ -25748,19 +25750,20 @@\n \"2021\": [288, 296, 318, 639, 652, 673, 940, 943, 948, 957, 970, 997, 1542, 2201, 2207, 2213, 2277, 2289, 2294],\n \"2022\": [5, 22, 523, 525, 528, 537, 982, 1185, 1246, 1288, 1491, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1542, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1560, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1578, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1598, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1620, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1637, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1657, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1677, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1699, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1720, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1758, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1776, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1793, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1815, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1839, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1857, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1876, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1894, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1912, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1930, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1947, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1964, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1982, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2018, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2036, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2054, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2108, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2127, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2145, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2186, 2203, 2213, 2227, 2298, 2302, 2307],\n \"2022a\": 2294,\n \"2023\": [34, 270, 298, 301, 320, 363, 511, 519, 526, 533, 543, 544, 545, 546, 547, 548, 549, 551, 554, 555, 556, 557, 558, 560, 563, 564, 565, 566, 567, 651, 894, 898, 954, 959, 960, 982, 984, 1000, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1024, 1122, 1141, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1501, 1620, 1930, 2090, 2127, 2145, 2213],\n \"202380\": 2207,\n \"20239\": [2241, 2265],\n \"2024\": [270, 544, 546, 555, 567, 894, 898, 2127, 2213],\n- \"2025\": [36, 544, 546, 555, 567, 894, 898, 2228],\n+ \"2025\": [36, 544, 546, 555, 567, 894, 898],\n \"20251\": 2307,\n \"2026\": 2228,\n \"202602\": 2205,\n \"202646\": 2230,\n+ \"2027\": 2228,\n \"20271\": 2241,\n \"202872\": [2184, 2214],\n \"202946\": 2207,\n \"203\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2253],\n \"2030\": 2265,\n \"20303\": 2265,\n \"20306\": 2302,\n@@ -25867,15 +25870,15 @@\n \"20675\": 2241,\n \"20678\": 2241,\n \"2068\": [30, 31],\n \"20690\": 2241,\n \"206900\": 2201,\n \"20698\": 2241,\n \"20699\": 2246,\n- \"207\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211],\n+ \"207\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211],\n \"20700\": 2246,\n \"2071\": 2210,\n \"207103\": 2191,\n \"20712\": 2307,\n \"20716\": 2241,\n \"2072\": 2210,\n \"20721\": 2265,\n@@ -25922,14 +25925,15 @@\n \"20859\": 2241,\n \"20868\": 2294,\n \"20869\": 2246,\n \"208707\": 2199,\n \"208843\": [2184, 2214],\n \"209\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2212, 2253],\n \"209013\": 15,\n+ \"209014\": 2228,\n \"20902\": 2241,\n \"209097\": 2207,\n \"20911\": 2246,\n \"209138\": 2185,\n \"20920\": 2241,\n \"20921\": 2241,\n \"20925\": 2242,\n@@ -25970,20 +25974,21 @@\n \"210427\": 2199,\n \"21052\": 2242,\n \"210526\": 2222,\n \"21055\": 2298,\n \"21063\": 2242,\n \"21071\": 2242,\n \"21078\": 2242,\n+ \"210783\": 2228,\n \"21083\": 2242,\n \"2109\": 2264,\n \"21090\": 2271,\n \"210945\": 2195,\n \"21097\": 2242,\n- \"211\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2203, 2210, 2211, 2212, 2254],\n+ \"211\": [2185, 2186, 2188, 2195, 2197, 2199, 2203, 2210, 2211, 2212, 2254],\n \"2110\": 2264,\n \"21101\": 2242,\n \"21103\": 2242,\n \"21104\": 2243,\n \"211056\": 2197,\n \"21106\": 2242,\n \"21107\": 2242,\n@@ -26547,15 +26552,15 @@\n \"23574\": 2265,\n \"23575\": 2246,\n \"23579\": 2246,\n \"235796\": 2204,\n \"235806\": 2207,\n \"23585\": [2246, 2265],\n \"23598\": 2298,\n- \"236\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2203, 2210, 2220, 2298],\n+ \"236\": [2185, 2186, 2188, 2195, 2197, 2199, 2203, 2210, 2220, 2298],\n \"236000\": [2185, 2220],\n \"23601\": [2246, 2265],\n \"23614\": 2246,\n \"236170\": 2207,\n \"23619\": 30,\n \"23621\": 2265,\n \"23623\": 2246,\n@@ -26745,15 +26750,15 @@\n \"243678\": 2210,\n \"2437\": 2216,\n \"24371\": 2246,\n \"24372\": 2246,\n \"24382\": 2271,\n \"2439\": [196, 771],\n \"24398\": 2246,\n- \"244\": [268, 745, 2185, 2186, 2188, 2195, 2197, 2199, 2203, 2205, 2210, 2220, 2222, 2224, 2246, 2254, 2298],\n+ \"244\": [268, 745, 2185, 2186, 2188, 2195, 2197, 2199, 2203, 2210, 2220, 2222, 2224, 2246, 2254, 2298],\n \"24405\": 2246,\n \"24408\": 2246,\n \"244140625\": 2298,\n \"24415\": 2246,\n \"24416\": 2249,\n \"24435\": [2283, 2298],\n \"244413\": 2199,\n@@ -27200,15 +27205,15 @@\n \"2658\": 2257,\n \"26581\": [2249, 2265],\n \"265879e\": 2191,\n \"265936\": 2229,\n \"26597\": [2249, 2265],\n \"26598\": 2257,\n \"26599\": [2271, 2283],\n- \"266\": [2185, 2186, 2188, 2195, 2197, 2199, 2210],\n+ \"266\": [2186, 2188, 2195, 2197, 2199, 2210],\n \"266046\": [2184, 2214],\n \"2661\": 2204,\n \"26610\": 2249,\n \"266143\": [2185, 2197],\n \"26615\": 2289,\n \"266152\": 2207,\n \"266154\": 31,\n@@ -27344,15 +27349,15 @@\n \"27250\": 2249,\n \"272593\": 2230,\n \"27261\": 2251,\n \"272673\": 2207,\n \"27283\": 2265,\n \"27292\": 2265,\n \"272968\": 2195,\n- \"273\": [2186, 2188, 2195, 2197, 2199, 2202, 2210, 2257],\n+ \"273\": [2186, 2188, 2193, 2195, 2197, 2199, 2202, 2210, 2257],\n \"2730\": 2199,\n \"27309\": 2249,\n \"27311\": 2265,\n \"27315\": 2277,\n \"27321\": 2249,\n \"273290\": 2207,\n \"273322\": 2207,\n@@ -27423,15 +27428,14 @@\n \"276183\": 2257,\n \"2762\": [2184, 2186, 2191],\n \"276232\": [15, 2184, 2185, 2186, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2225, 2231, 2241, 2264],\n \"27636\": 2250,\n \"276386\": 2207,\n \"27642\": 2250,\n \"276464\": 2230,\n- \"2765\": 2193,\n \"27656\": [2294, 2298],\n \"27660\": 2265,\n \"2766617129497566\": 2257,\n \"276662\": [2185, 2197, 2199, 2202, 2215, 2257],\n \"27668\": 2265,\n \"2767\": 2191,\n \"27676\": 2265,\n@@ -27571,15 +27575,15 @@\n \"283627\": 2229,\n \"28368\": 2265,\n \"2837\": 2216,\n \"28375\": 2271,\n \"28383\": 2265,\n \"28385\": 2298,\n \"28394\": 2277,\n- \"284\": [16, 17, 18, 19, 2185, 2186, 2197, 2199, 2210, 2235],\n+ \"284\": [16, 17, 18, 19, 2186, 2197, 2199, 2210, 2235],\n \"28406\": 2265,\n \"28410\": 2265,\n \"28425\": 2265,\n \"28426\": 2265,\n \"28427\": 2265,\n \"284319\": 2202,\n \"2846\": 2185,\n@@ -27622,15 +27626,15 @@\n \"28664\": 2265,\n \"28668\": 2265,\n \"28669\": 2265,\n \"28678\": 2251,\n \"286879\": 2218,\n \"28690\": 2283,\n \"28699\": 2265,\n- \"287\": [16, 17, 18, 19, 2186, 2197, 2199, 2210, 2235],\n+ \"287\": [16, 17, 18, 19, 2186, 2197, 2199, 2205, 2210, 2235],\n \"28735\": 2265,\n \"28741\": 2265,\n \"287456\": 2207,\n \"28759\": 2277,\n \"28766\": 2265,\n \"28769\": 2265,\n \"287725\": 2185,\n@@ -27800,15 +27804,15 @@\n \"29624\": 2265,\n \"296326\": 2207,\n \"29641\": 2265,\n \"29650\": 2265,\n \"29664\": 2265,\n \"29684\": 2271,\n \"29688\": 2294,\n- \"297\": [2186, 2197, 2199, 2210, 2255],\n+ \"297\": [2186, 2193, 2197, 2199, 2210, 2255],\n \"297019e\": 2191,\n \"29718\": 2265,\n \"29723\": [2265, 2271],\n \"29731\": 2298,\n \"29733\": 2265,\n \"29742\": 2265,\n \"297424\": 2207,\n@@ -28876,15 +28880,15 @@\n \"349825\": 2207,\n \"34986\": 2298,\n \"349893\": 2185,\n \"3499\": 2217,\n \"34994\": 2271,\n \"34998\": 2298,\n \"35\": [15, 17, 18, 19, 23, 25, 27, 133, 142, 160, 190, 193, 208, 213, 345, 708, 738, 766, 768, 782, 788, 823, 953, 957, 997, 1323, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2222, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2294, 2298],\n- \"350\": [134, 268, 271, 709, 899, 1259, 1264, 1485, 2186, 2197, 2199, 2210],\n+ \"350\": [134, 268, 271, 709, 899, 1259, 1264, 1485, 2185, 2186, 2197, 2199, 2210],\n \"35003\": 2298,\n \"35014\": 2277,\n \"35028\": 2277,\n \"35038\": 2271,\n \"35046\": 2277,\n \"35058\": 2277,\n \"350621\": 2207,\n@@ -28934,15 +28938,15 @@\n \"353713\": 2191,\n \"35374\": 2271,\n \"35376\": 2274,\n \"353795\": 2207,\n \"35382\": 2277,\n \"35392\": 2289,\n \"353925\": 2191,\n- \"354\": [2186, 2197, 2199, 2210, 2298],\n+ \"354\": [2186, 2193, 2197, 2199, 2210, 2298],\n \"35407\": [2289, 2298],\n \"35416\": 2283,\n \"3542\": [2186, 2227],\n \"354342\": 2207,\n \"354360\": 2207,\n \"35439\": 2272,\n \"35446\": 2272,\n@@ -29119,15 +29123,15 @@\n \"3616\": 2217,\n \"361719\": 2197,\n \"361733\": 2207,\n \"36176\": 2277,\n \"36179\": [2277, 2298],\n \"36189\": 2274,\n \"36197\": 2273,\n- \"362\": [1193, 1254, 2186, 2197, 2199, 2210, 2255, 2298],\n+ \"362\": [1193, 1254, 2186, 2193, 2197, 2199, 2210, 2255, 2298],\n \"36204\": 2277,\n \"36210\": 2277,\n \"36212\": 2277,\n \"362228\": 2210,\n \"36226\": 30,\n \"36240\": 2277,\n \"36241\": 2274,\n@@ -29417,15 +29421,15 @@\n \"37748\": 2277,\n \"37750\": 2289,\n \"377535\": 2186,\n \"37755\": 2276,\n \"37758\": 2277,\n \"377642\": 2210,\n \"37768\": 2277,\n- \"3777\": 2218,\n+ \"3777\": [2193, 2218],\n \"37782\": 2302,\n \"377887\": 2207,\n \"37799\": 2277,\n \"378\": [2186, 2197, 2199, 2207, 2210, 2231],\n \"3780\": 2222,\n \"37804\": 2283,\n \"378163\": 2207,\n@@ -29849,15 +29853,15 @@\n \"39650\": 2283,\n \"39660\": 2283,\n \"39664\": 2283,\n \"396774\": 2218,\n \"396780\": [2185, 2197, 2199, 2202],\n \"396823\": [2184, 2214],\n \"39695\": 2280,\n- \"397\": [2186, 2193, 2197, 2199, 2210, 2218],\n+ \"397\": [2186, 2197, 2199, 2210],\n \"39701\": 2283,\n \"39710\": 2283,\n \"39716\": 2283,\n \"397191\": 15,\n \"39720\": 2283,\n \"397203\": 2230,\n \"39725\": 2283,\n@@ -30035,15 +30039,15 @@\n \"40585\": 2283,\n \"40589\": 2294,\n \"405906\": 2207,\n \"405919\": 2195,\n \"406\": [2186, 2199, 2210],\n \"4060\": 2222,\n \"40606\": 2283,\n- \"4062\": 2217,\n+ \"4062\": [2193, 2217],\n \"40628\": [2283, 2298],\n \"4063\": 2217,\n \"406345\": 2207,\n \"40638\": 2298,\n \"4065\": 2218,\n \"40660\": 2283,\n \"40662\": 2281,\n@@ -30705,15 +30709,15 @@\n \"43464\": 2289,\n \"43469\": 2289,\n \"43476\": 2289,\n \"43480\": 2289,\n \"434813\": 2207,\n \"43485\": 2302,\n \"43495\": 2289,\n- \"435\": [2186, 2199, 2210, 2256, 2298],\n+ \"435\": [2185, 2186, 2199, 2210, 2256, 2298],\n \"43500\": 2289,\n \"43505\": 2289,\n \"43507\": 2289,\n \"4351\": 2218,\n \"43515\": 2289,\n \"435223\": 2207,\n \"43523\": 2298,\n@@ -31059,15 +31063,15 @@\n \"44965\": 2294,\n \"449695\": 2214,\n \"44977\": 2294,\n \"44978\": 2289,\n \"449784\": 2207,\n \"4498\": 2218,\n \"45\": [17, 18, 19, 26, 27, 31, 88, 91, 111, 213, 230, 259, 345, 600, 633, 788, 804, 890, 1154, 1272, 1275, 1286, 1433, 1458, 1498, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283],\n- \"450\": [2199, 2210, 2249],\n+ \"450\": [2193, 2199, 2210, 2249],\n \"4500\": 24,\n \"450000\": 2212,\n \"45018\": 2298,\n \"450185\": 2207,\n \"45032\": 2289,\n \"45033\": 2298,\n \"45034\": 2294,\n@@ -31636,15 +31640,15 @@\n \"47753\": 2294,\n \"47761\": 2298,\n \"47762\": 2293,\n \"47772\": 2307,\n \"477769\": 2197,\n \"47787\": 2294,\n \"477996\": 2207,\n- \"478\": [2184, 2193, 2199, 2205, 2210],\n+ \"478\": [2184, 2199, 2205, 2210],\n \"47809\": 2294,\n \"47812\": 2294,\n \"478155\": 2207,\n \"47819\": 2298,\n \"478240\": 2207,\n \"47834\": 2298,\n \"47836\": 2294,\n@@ -31897,15 +31901,14 @@\n \"49108\": 2298,\n \"49109\": 2298,\n \"49111\": 2298,\n \"49121\": 2298,\n \"49128\": 2298,\n \"49139\": 2229,\n \"49148\": 2298,\n- \"491572\": 2228,\n \"49159\": 2298,\n \"49162\": 2295,\n \"491708\": 29,\n \"49172\": 2298,\n \"49176\": 2298,\n \"49177\": 2298,\n \"49178\": 2298,\n@@ -31978,15 +31981,14 @@\n \"49519\": 2302,\n \"49521\": 2298,\n \"49523\": 2298,\n \"49525\": 2298,\n \"495291\": 15,\n \"4953\": 2202,\n \"4953086\": 2202,\n- \"495556\": 2228,\n \"49558\": 2298,\n \"4956\": 2218,\n \"495614\": 2199,\n \"49565\": 2298,\n \"49572\": 2298,\n \"495763\": 2201,\n \"495767\": [2184, 2195, 2214],\n@@ -32048,15 +32050,15 @@\n \"4987\": 2225,\n \"4988\": 2238,\n \"498861\": 2191,\n \"49888\": 2300,\n \"49889\": 2299,\n \"49890\": 2298,\n \"49897\": 2298,\n- \"499\": [2184, 2199, 2205, 2210, 2249],\n+ \"499\": [2184, 2185, 2199, 2205, 2210, 2249],\n \"49907\": 2297,\n \"499148\": 2207,\n \"49921\": 2298,\n \"49922\": 2298,\n \"49929\": 2298,\n \"4993\": 2218,\n \"49944\": 2302,\n@@ -32326,15 +32328,15 @@\n \"511763\": [2184, 2195, 2214],\n \"511806\": 2207,\n \"51182\": 2298,\n \"51183\": 2298,\n \"51186\": 2298,\n \"511885\": [1199, 1260],\n \"51197\": 2298,\n- \"512\": [28, 2184, 2199, 2205],\n+ \"512\": [28, 2184, 2193, 2199, 2205],\n \"51203\": 2302,\n \"512043\": 2207,\n \"51205\": 2298,\n \"51206\": 2298,\n \"5121\": 2218,\n \"51223\": 2298,\n \"51227\": 2298,\n@@ -32937,15 +32939,15 @@\n \"54341\": 2302,\n \"54346\": 2302,\n \"5436\": 2224,\n \"5437\": 2218,\n \"54371\": 2302,\n \"54379\": 2302,\n \"54383\": 2302,\n- \"544\": [2185, 2199],\n+ \"544\": 2199,\n \"5441\": 2218,\n \"5443\": 2219,\n \"54430\": 2302,\n \"54443\": 2302,\n \"54459\": 2307,\n \"54466\": 2308,\n \"54467\": 2307,\n@@ -33798,15 +33800,15 @@\n \"614264\": 2207,\n \"614266\": 2199,\n \"614523\": 2191,\n \"614533\": 2197,\n \"614581\": [2184, 2195],\n \"6148\": 2219,\n \"6149\": 2220,\n- \"615\": 2199,\n+ \"615\": [2193, 2199],\n \"6150\": 2219,\n \"6152\": 2219,\n \"615303\": 2191,\n \"615385\": [121, 696, 2212],\n \"615396\": 2230,\n \"6155\": 2219,\n \"615556\": 27,\n@@ -33824,15 +33826,15 @@\n \"6169\": 2219,\n \"617\": [16, 17, 18, 19, 2199, 2203, 2232, 2235, 2298],\n \"6171\": 2219,\n \"6175\": 2220,\n \"617509\": 2199,\n \"6177\": 2220,\n \"6178\": 2220,\n- \"618\": 2199,\n+ \"618\": [2193, 2199, 2205],\n \"618153\": 15,\n \"618321\": 2199,\n \"618372\": 2207,\n \"618553\": 2207,\n \"6186\": 2220,\n \"618673\": 2197,\n \"618697\": 2199,\n@@ -33881,15 +33883,15 @@\n \"6240\": 2220,\n \"624607\": 15,\n \"624615\": 2207,\n \"624699e\": 2191,\n \"624747\": 2199,\n \"624938\": 2191,\n \"624988\": 2230,\n- \"625\": [205, 778, 2199, 2203, 2205, 2298],\n+ \"625\": [205, 778, 2199, 2203, 2298],\n \"6252\": 2220,\n \"625210\": 2207,\n \"6254\": 2220,\n \"625415\": 2207,\n \"6255\": 2192,\n \"6256\": [2192, 2202],\n \"6257\": 2192,\n@@ -33905,15 +33907,15 @@\n \"626300\": 1323,\n \"6263001\": 1323,\n \"6264\": 2192,\n \"626404\": 2235,\n \"626444\": 15,\n \"6265\": 2220,\n \"626968\": 2217,\n- \"627\": 2199,\n+ \"627\": [2199, 2205],\n \"627068\": 2207,\n \"627081\": [2184, 2195, 2214],\n \"6273\": 2220,\n \"6274\": 2220,\n \"627712\": 2197,\n \"627796\": 2235,\n \"6279\": 2271,\n@@ -33960,15 +33962,15 @@\n \"633\": 2199,\n \"633165\": 2230,\n \"6332\": 2220,\n \"633372\": 2215,\n \"6335\": 2220,\n \"633678\": 2185,\n \"6337\": 2220,\n- \"634\": 2199,\n+ \"634\": [2193, 2199],\n \"6341\": 2220,\n \"6342\": 2220,\n \"634248\": 2199,\n \"6344\": 2220,\n \"6345\": 2220,\n \"634509\": 2191,\n \"634686\": 2207,\n@@ -34768,15 +34770,15 @@\n \"729\": [16, 17, 18, 19, 2197, 2199, 2231, 2235],\n \"729161\": 2199,\n \"7292\": 2241,\n \"7297\": 2221,\n \"7299\": 2221,\n \"729907\": 2186,\n \"72hr\": 234,\n- \"73\": [15, 17, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271],\n+ \"73\": [15, 17, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271],\n \"730\": [16, 17, 18, 19, 2199, 2235],\n \"7300\": 2221,\n \"730057\": 2195,\n \"7302\": 2221,\n \"7306\": 2221,\n \"7308\": 2294,\n \"730951\": 2257,\n@@ -34984,15 +34986,15 @@\n \"7575\": 2222,\n \"757508\": 2205,\n \"757555\": 2193,\n \"7576\": 2294,\n \"757698\": 2195,\n \"757745\": 2207,\n \"757772\": 2207,\n- \"758\": [27, 2185, 2193, 2298],\n+ \"758\": [27, 2185, 2298],\n \"758070\": 2207,\n \"758294\": 2191,\n \"7586\": 2221,\n \"758602\": 2207,\n \"7588\": 2231,\n \"759\": 32,\n \"759104\": 2185,\n@@ -35524,15 +35526,15 @@\n \"8285\": 2225,\n \"8287\": 2232,\n \"828904\": 2191,\n \"8292\": 2232,\n \"829645\": 2207,\n \"829678\": 2191,\n \"829721\": 2212,\n- \"83\": [15, 24, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"83\": [15, 24, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"8302\": 2224,\n \"8303\": 2222,\n \"830429\": 2207,\n \"8305\": 2222,\n \"830545\": 2199,\n \"8306\": [2243, 2246],\n \"830957\": 2207,\n@@ -35640,15 +35642,15 @@\n \"848974\": 2197,\n \"849\": [16, 17, 18, 19, 2199, 2235],\n \"8494\": 2223,\n \"8496\": 2241,\n \"84960\": 2210,\n \"849980\": 2195,\n \"85\": [182, 190, 193, 718, 760, 766, 768, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n- \"850\": [16, 17, 18, 19, 2199, 2235],\n+ \"850\": [16, 17, 18, 19, 2193, 2199, 2235],\n \"850083\": 2207,\n \"8501\": 2222,\n \"850229\": 2235,\n \"850287\": 2207,\n \"8504\": 2202,\n \"850458\": 2207,\n \"8505\": 2228,\n@@ -35804,15 +35806,14 @@\n \"8685\": 2228,\n \"868579\": 2207,\n \"868584\": 2197,\n \"8687\": 2223,\n \"8688\": 2225,\n \"8689\": 2223,\n \"868951\": 2207,\n- \"869\": 2205,\n \"869081\": 2199,\n \"869127\": 2230,\n \"869226\": 2186,\n \"869339\": 2207,\n \"869551\": 2191,\n \"8697\": 2224,\n \"87\": [15, 18, 133, 196, 208, 242, 283, 586, 708, 771, 782, 817, 910, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298],\n@@ -35873,15 +35874,14 @@\n \"877353\": 2207,\n \"877384e\": 2204,\n \"877657\": 2199,\n \"8778\": 2224,\n \"8781\": 2224,\n \"8783\": 2224,\n \"878575\": 2207,\n- \"879\": 2205,\n \"8790\": 2228,\n \"8791\": 2224,\n \"879103\": 2207,\n \"8794\": 2225,\n \"8795\": 2224,\n \"879536\": 2229,\n \"879758\": 2216,\n@@ -36024,15 +36024,15 @@\n \"8983\": 2224,\n \"8984\": 2202,\n \"8984347\": 2202,\n \"8986\": 2225,\n \"898725\": 2197,\n \"898872\": 2214,\n \"8989\": 2224,\n- \"899\": [2193, 2199],\n+ \"899\": 2199,\n \"8991\": 2289,\n \"899173761\": 2199,\n \"899260\": 15,\n \"8994\": 2224,\n \"899734\": 15,\n \"8999\": 2229,\n \"8a2e\": 2241,\n@@ -36393,15 +36393,14 @@\n \"9542\": 2226,\n \"9542078401\": 2199,\n \"954208\": [2185, 2197, 2199, 2202],\n \"9543\": 2227,\n \"954504\": 2230,\n \"954680\": 2184,\n \"954773\": 2207,\n- \"955\": 2218,\n \"9552\": 2226,\n \"955398\": 2191,\n \"9556635297215477\": 2206,\n \"955697\": 2214,\n \"9557\": 2206,\n \"955755\": 2207,\n \"9558\": 2228,\n@@ -36568,15 +36567,15 @@\n \"9792\": 2227,\n \"9794\": 2226,\n \"9795\": 2226,\n \"979542\": 2185,\n \"979573\": 2207,\n \"979600\": 2186,\n \"9798\": 2226,\n- \"98\": [15, 1447, 2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2230, 2232, 2235, 2238, 2246, 2294],\n+ \"98\": [15, 1447, 2184, 2185, 2186, 2188, 2191, 2192, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2230, 2232, 2235, 2238, 2246, 2294],\n \"980\": 2199,\n \"9804\": 2226,\n \"9805\": 2226,\n \"9807\": 2226,\n \"980796\": 2207,\n \"980950\": 2195,\n \"981\": [2199, 2207],\n@@ -37448,15 +37447,15 @@\n \"apply_func\": 2212,\n \"apply_if_cal\": [2185, 2197],\n \"apply_index\": [1395, 1400, 1413, 1414, 1415, 2207, 2271, 2289, 2298],\n \"apply_integrate_f\": 2193,\n \"apply_integrate_f_numba\": 2193,\n \"apply_integrate_f_wrap\": 2193,\n \"apply_raw\": 2194,\n- \"apply_series_gener\": 2194,\n+ \"apply_series_gener\": [2193, 2194],\n \"apply_series_numba\": 2194,\n \"apply_standard\": 2194,\n \"applymap\": [162, 1348, 2184, 2217, 2235, 2238, 2246, 2277, 2283, 2302],\n \"applymap_index\": [1396, 1414, 2289, 2302],\n \"applymark\": 2,\n \"applytypeerror\": 2221,\n \"approach\": [2, 4, 10, 15, 16, 17, 19, 21, 22, 28, 31, 1077, 1433, 2186, 2188, 2193, 2196, 2199, 2223, 2246, 2249, 2260],\n@@ -37728,15 +37727,15 @@\n \"barboursvil\": 2199,\n \"bare\": [2, 2199, 2222, 2241, 2277],\n \"barf\": 2217,\n \"barh\": [26, 186, 188, 762, 764, 1188, 1249, 2211, 2220, 2221, 2228, 2260, 2294],\n \"bark\": 1365,\n \"barplot\": 2222,\n \"barycentr\": [146, 720, 1280, 2201, 2218],\n- \"base\": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302],\n+ \"base\": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2193, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302],\n \"base_dtyp\": 2199,\n \"base_pars\": 2199,\n \"base_typ\": [2194, 2201, 2203, 2294, 2302, 2307],\n \"basebal\": [15, 2186, 2191, 2197, 2227, 2231],\n \"baseblockmanag\": [2197, 2199, 2298],\n \"basebooleanreducetest\": 2307,\n \"basebuff\": [16, 17, 18, 19, 2199, 2235],\n@@ -37798,15 +37797,15 @@\n \"begin\": [3, 5, 13, 16, 19, 121, 233, 234, 259, 267, 270, 425, 426, 427, 502, 513, 515, 533, 535, 541, 696, 807, 808, 866, 873, 890, 896, 898, 1044, 1345, 1391, 1403, 1404, 1433, 1469, 1476, 1483, 1486, 1488, 1490, 1498, 1499, 1699, 1930, 2127, 2186, 2199, 2202, 2208, 2210, 2212, 2220, 2221, 2225, 2228, 2229, 2271, 2277, 2289],\n \"behav\": [7, 63, 134, 205, 267, 341, 709, 778, 896, 1350, 1387, 2168, 2185, 2187, 2190, 2195, 2198, 2203, 2207, 2209, 2210, 2211, 2220, 2222, 2224, 2225, 2232, 2235, 2238, 2240, 2249, 2261, 2265, 2277, 2283, 2289, 2290, 2294, 2302, 2307],\n \"behavior\": [0, 2, 3, 10, 12, 13, 14, 34, 72, 73, 74, 77, 81, 82, 94, 98, 99, 143, 146, 160, 169, 200, 201, 207, 208, 209, 210, 212, 213, 225, 226, 227, 242, 245, 255, 258, 263, 264, 270, 273, 274, 276, 277, 278, 283, 288, 296, 318, 427, 575, 581, 582, 583, 586, 593, 621, 622, 639, 652, 673, 681, 719, 720, 738, 774, 775, 781, 782, 783, 784, 787, 788, 800, 801, 802, 817, 873, 879, 880, 889, 894, 898, 900, 902, 903, 904, 910, 940, 943, 948, 957, 970, 997, 999, 1014, 1018, 1031, 1068, 1118, 1148, 1149, 1152, 1155, 1168, 1202, 1203, 1207, 1208, 1211, 1213, 1225, 1263, 1264, 1269, 1270, 1304, 1321, 1345, 1391, 1446, 1469, 1470, 1475, 1477, 1478, 1486, 1487, 1488, 1490, 1497, 1498, 2177, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2201, 2202, 2206, 2207, 2210, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2224, 2225, 2226, 2231, 2232, 2235, 2238, 2240, 2241, 2242, 2246, 2247, 2249, 2257, 2260, 2265, 2266, 2271, 2277, 2283, 2289, 2294, 2297, 2298, 2302, 2308],\n \"behaviour\": [18, 75, 77, 97, 98, 169, 205, 242, 247, 584, 620, 621, 634, 778, 808, 817, 864, 880, 1123, 1345, 1391, 1419, 1446, 1468, 1469, 1470, 1471, 1472, 1475, 1476, 1477, 1478, 1481, 1482, 1483, 1484, 1486, 1487, 1488, 1490, 1498, 1499, 2186, 2188, 2199, 2201, 2202, 2206, 2221, 2222, 2223, 2224, 2225, 2226, 2231, 2235, 2241, 2243, 2246, 2249, 2265, 2271, 2277, 2278, 2289, 2294, 2298, 2302, 2307],\n \"behind\": [2197, 2207, 2218, 2302, 2307],\n \"behr\": 32,\n \"beij\": [1145, 2207],\n- \"being\": [1, 2, 3, 4, 10, 13, 17, 141, 150, 152, 160, 188, 189, 209, 212, 214, 223, 241, 253, 257, 259, 262, 263, 269, 276, 346, 352, 375, 376, 563, 617, 699, 717, 738, 764, 765, 783, 787, 798, 830, 835, 858, 859, 864, 886, 890, 902, 1035, 1076, 1117, 1192, 1253, 1387, 1388, 1431, 1433, 1469, 1472, 1475, 1486, 1487, 1493, 1494, 1495, 1496, 1498, 2186, 2188, 2191, 2194, 2195, 2197, 2199, 2201, 2204, 2206, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2233, 2234, 2235, 2237, 2238, 2239, 2241, 2242, 2246, 2249, 2250, 2261, 2265, 2266, 2267, 2271, 2275, 2277, 2278, 2283, 2286, 2287, 2289, 2294, 2296, 2298, 2302, 2304, 2307, 2308],\n+ \"being\": [1, 2, 3, 4, 10, 13, 17, 141, 150, 152, 160, 188, 189, 209, 212, 214, 223, 241, 253, 257, 259, 262, 263, 269, 276, 346, 352, 375, 376, 563, 617, 699, 717, 738, 764, 765, 783, 787, 798, 830, 835, 858, 859, 864, 886, 890, 902, 1035, 1076, 1117, 1192, 1253, 1387, 1388, 1431, 1433, 1469, 1472, 1475, 1486, 1487, 1493, 1494, 1495, 1496, 1498, 2185, 2186, 2188, 2191, 2194, 2195, 2197, 2199, 2201, 2204, 2206, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2233, 2234, 2235, 2237, 2238, 2239, 2241, 2242, 2246, 2249, 2250, 2261, 2265, 2266, 2267, 2271, 2275, 2277, 2278, 2283, 2286, 2287, 2289, 2294, 2296, 2298, 2302, 2304, 2307, 2308],\n \"belal01\": 30,\n \"belhb23\": 30,\n \"belld01\": 30,\n \"belld02\": 30,\n \"belong\": [2, 150, 303, 445, 555, 655, 2195, 2210, 2211, 2217, 2222, 2228, 2232],\n \"below\": [1, 3, 5, 6, 9, 10, 13, 15, 16, 17, 19, 22, 79, 92, 98, 102, 107, 117, 160, 196, 213, 252, 276, 378, 380, 465, 489, 591, 616, 621, 629, 693, 738, 771, 788, 902, 1121, 1146, 1148, 1149, 1152, 1158, 1164, 1203, 1207, 1208, 1211, 1221, 1264, 1309, 1323, 1326, 1328, 1343, 1344, 1345, 1354, 1391, 1397, 1403, 1421, 1430, 1433, 1488, 1490, 1498, 1657, 1677, 1699, 1720, 1793, 1815, 2167, 2175, 2184, 2185, 2186, 2188, 2194, 2195, 2197, 2199, 2202, 2206, 2207, 2208, 2210, 2211, 2212, 2218, 2221, 2228, 2231, 2232, 2235, 2241, 2249, 2265, 2271, 2275, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n \"belr833\": 30,\n@@ -38098,15 +38097,15 @@\n \"c_parser_wrapp\": [2199, 2203, 2298],\n \"c_sum\": [1148, 1149],\n \"ca\": [824, 2208],\n \"cab\": [2185, 2226],\n \"caba\": [824, 2184, 2186, 2208],\n \"cabin\": [24, 25, 28, 29, 32],\n \"cac\": [1185, 1246, 1288],\n- \"cach\": [10, 22, 1345, 1391, 1469, 1486, 1488, 1490, 1498, 2186, 2192, 2193, 2199, 2202, 2210, 2212, 2218, 2219, 2220, 2226, 2227, 2228, 2241, 2246, 2249, 2265, 2266, 2271, 2273, 2277, 2283, 2284, 2289, 2293, 2298, 2307],\n+ \"cach\": [10, 22, 1345, 1391, 1469, 1486, 1488, 1490, 1498, 2185, 2186, 2192, 2193, 2199, 2202, 2210, 2212, 2218, 2219, 2220, 2226, 2227, 2228, 2241, 2246, 2249, 2265, 2266, 2271, 2273, 2277, 2283, 2284, 2289, 2293, 2298, 2307],\n \"cache_arrai\": 2210,\n \"cache_d\": [16, 17, 18, 19, 1469, 1486, 2199, 2203, 2232, 2235, 2249, 2298],\n \"cache_readonli\": 2255,\n \"cacheableoffset\": [2218, 2241],\n \"cacher\": 2197,\n \"cacher_needs_upd\": 2197,\n \"caeen\": 864,\n@@ -38261,15 +38260,15 @@\n \"cheat\": [21, 2234],\n \"check\": [1, 2, 4, 5, 6, 8, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 30, 32, 36, 62, 75, 80, 81, 147, 153, 163, 169, 228, 256, 284, 346, 384, 386, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 420, 445, 447, 448, 453, 454, 455, 461, 469, 473, 478, 500, 501, 584, 592, 603, 615, 741, 799, 836, 837, 838, 839, 840, 841, 842, 843, 844, 888, 912, 976, 977, 978, 979, 1076, 1079, 1081, 1082, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1093, 1095, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1110, 1111, 1112, 1113, 1114, 1115, 1127, 1136, 1141, 1146, 1184, 1345, 1354, 1370, 1391, 1441, 1442, 1446, 1449, 1450, 1475, 1482, 1483, 1488, 1490, 1493, 1494, 1495, 1496, 1499, 1512, 1530, 1548, 1566, 1586, 1607, 1626, 1643, 1665, 1686, 1707, 1728, 1747, 1765, 1782, 1801, 1823, 1846, 1863, 1883, 1901, 1919, 1936, 1953, 1971, 1988, 2006, 2025, 2043, 2061, 2079, 2096, 2114, 2133, 2151, 2168, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2211, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2253, 2255, 2261, 2265, 2271, 2277, 2279, 2283, 2289, 2294, 2298, 2302, 2307, 2308],\n \"check_array_index\": 2172,\n \"check_categor\": [1494, 1495, 1496, 2242],\n \"check_category_ord\": 1496,\n \"check_column_typ\": 1494,\n \"check_datetimelike_compat\": [1494, 1496],\n- \"check_dict_or_set_index\": [2193, 2197],\n+ \"check_dict_or_set_index\": 2197,\n \"check_dtyp\": [1493, 1494, 1496, 2271, 2272, 2299],\n \"check_dtype_backend\": 2199,\n \"check_exact\": [1493, 1494, 1495, 1496, 2272, 2277, 2307, 2308],\n \"check_extens\": 2294,\n \"check_flag\": [1494, 1496, 2290],\n \"check_frame_typ\": 1494,\n \"check_freq\": [1494, 1496, 2278],\n@@ -39812,15 +39811,15 @@\n \"farmer\": 2199,\n \"farthest\": [91, 1458],\n \"fashion\": [34, 39, 46, 2221, 2246, 2283],\n \"fast\": [5, 15, 34, 83, 141, 256, 351, 594, 717, 888, 1203, 1264, 1469, 1470, 1476, 1486, 2184, 2186, 2192, 2193, 2195, 2196, 2199, 2210, 2222, 2226, 2235, 2246, 2249, 2253, 2254, 2255, 2256],\n \"fast_path\": 2199,\n \"fastavro\": [1473, 2249],\n \"faster\": [4, 5, 15, 16, 34, 62, 151, 162, 251, 258, 262, 263, 265, 268, 272, 390, 615, 754, 757, 815, 884, 889, 895, 1152, 1211, 1242, 1243, 1469, 1486, 1498, 2163, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2208, 2211, 2214, 2215, 2216, 2219, 2220, 2222, 2232, 2238, 2246, 2249, 2253, 2255, 2256, 2277, 2289, 2302, 2307],\n- \"fastest\": [2186, 2197, 2199],\n+ \"fastest\": [2185, 2186, 2197, 2199, 2218],\n \"fastparquet\": [22, 263, 1345, 1391, 1478, 1488, 1490, 2184, 2199, 2202, 2205, 2238, 2246, 2249, 2265, 2271, 2277, 2278, 2283, 2286, 2289, 2294, 2298, 2302, 2307],\n \"fastparquetimpl\": 2199,\n \"fastpath\": [39, 573, 2194, 2201, 2203, 2246, 2265, 2271, 2283, 2294, 2298, 2302, 2307],\n \"fatal\": 2229,\n \"fault\": [2228, 2235, 2239, 2246, 2249, 2271, 2275, 2289],\n \"faulti\": 2220,\n \"favor\": [34, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2239, 2241, 2246, 2249, 2265, 2266, 2283, 2289, 2294, 2298],\n@@ -40255,15 +40254,15 @@\n \"get_indexer_for\": [2283, 2289],\n \"get_indexer_non_uniqu\": [379, 2192, 2197, 2238, 2243, 2246, 2249, 2265, 2277, 2289],\n \"get_indexer_nonuniqu\": 2302,\n \"get_item\": [2191, 2194],\n \"get_jit_argu\": 2212,\n \"get_letter_typ\": 2195,\n \"get_level_valu\": [1416, 2185, 2218, 2220, 2228, 2232, 2241, 2246, 2253, 2256],\n- \"get_loc\": [2, 362, 383, 426, 492, 2185, 2191, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299],\n+ \"get_loc\": [2, 362, 383, 426, 492, 2185, 2191, 2193, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299],\n \"get_loc_level\": 2246,\n \"get_local\": 2265,\n \"get_method\": [16, 17, 18, 19, 2199, 2235],\n \"get_near_stock_pric\": [2216, 2223],\n \"get_offset\": [2265, 2298],\n \"get_offset_nam\": [2230, 2238],\n \"get_op_result_nam\": 2186,\n@@ -40892,15 +40891,15 @@\n \"interchang\": [66, 246, 916, 953, 2172, 2299, 2300, 2302, 2307, 2308],\n \"interchange_object\": [66, 1077],\n \"interest\": [1, 2, 3, 13, 23, 24, 25, 28, 29, 32, 34, 35, 789, 2186, 2193, 2197, 2199, 2207, 2210, 2212, 2217, 2219, 2307, 2308],\n \"interest_r\": 3,\n \"interf\": 2265,\n \"interfac\": [2, 10, 12, 13, 16, 17, 18, 19, 40, 77, 119, 695, 914, 1031, 1068, 1090, 2167, 2186, 2199, 2203, 2207, 2210, 2211, 2218, 2220, 2225, 2227, 2228, 2230, 2235, 2246, 2261, 2271, 2298, 2307],\n \"interleav\": 2199,\n- \"intermedi\": [7, 2172, 2195, 2205, 2210, 2212, 2253, 2307],\n+ \"intermedi\": [7, 2172, 2185, 2195, 2205, 2210, 2212, 2218, 2253, 2307],\n \"intermix\": 2186,\n \"intern\": [0, 7, 11, 22, 191, 194, 203, 268, 286, 364, 376, 430, 622, 624, 699, 767, 769, 873, 932, 938, 1031, 1044, 1123, 1124, 1140, 1148, 1149, 1203, 1207, 1208, 1213, 1215, 1264, 1280, 1345, 1361, 1364, 1388, 1391, 1422, 1423, 1433, 1469, 1486, 1488, 1490, 1493, 1494, 1495, 1496, 1499, 2186, 2188, 2193, 2194, 2195, 2197, 2202, 2207, 2210, 2213, 2216, 2217, 2219, 2220, 2230, 2232, 2235, 2238, 2246, 2249, 2253, 2261, 2263, 2265, 2267, 2271, 2274, 2277, 2280, 2289, 2293, 2298, 2307],\n \"internal_cach\": 10,\n \"internet\": 2,\n \"interoper\": [2167, 2186, 2201, 2203, 2302],\n \"interp1d\": [146, 720, 1280],\n \"interp_\": 2201,\n@@ -41509,15 +41508,15 @@\n \"logx\": [186, 762, 1188, 1249, 2211, 2215, 2249],\n \"lon\": [10, 1069, 1071, 1072],\n \"london\": [26, 27, 29, 30, 31, 586, 2210, 2221, 2271],\n \"london_mg_per_cub\": 27,\n \"long\": [0, 1, 2, 3, 21, 31, 119, 123, 167, 184, 185, 230, 241, 263, 695, 698, 804, 808, 873, 1345, 1391, 1444, 1445, 1453, 1454, 1469, 1486, 1487, 1488, 1490, 2163, 2166, 2185, 2188, 2190, 2199, 2202, 2204, 2205, 2208, 2210, 2214, 2216, 2218, 2220, 2222, 2225, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2239, 2240, 2241, 2243, 2246, 2249, 2277, 2278, 2289, 2302, 2307, 2308],\n \"long_seri\": 2186,\n \"longdoubl\": 2186,\n- \"longer\": [1, 2, 5, 98, 134, 522, 533, 563, 621, 709, 873, 874, 1118, 1178, 1179, 1180, 1181, 1189, 1200, 1237, 1238, 1239, 1240, 1250, 1261, 1284, 1290, 1295, 1469, 1486, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2217, 2218, 2219, 2220, 2221, 2222, 2224, 2225, 2226, 2228, 2230, 2231, 2233, 2235, 2238, 2242, 2243, 2246, 2247, 2257, 2261, 2263, 2264, 2265, 2266, 2271, 2275, 2277, 2278, 2292, 2294, 2295, 2298, 2302],\n+ \"longer\": [1, 2, 5, 98, 134, 522, 533, 563, 621, 709, 873, 874, 1118, 1178, 1179, 1180, 1181, 1189, 1200, 1237, 1238, 1239, 1240, 1250, 1261, 1284, 1290, 1295, 1469, 1486, 2185, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2217, 2218, 2219, 2220, 2221, 2222, 2224, 2225, 2226, 2228, 2230, 2231, 2233, 2235, 2238, 2242, 2243, 2246, 2247, 2257, 2261, 2263, 2264, 2265, 2266, 2271, 2275, 2277, 2278, 2292, 2294, 2295, 2298, 2302],\n \"longest\": [32, 923, 2217, 2272],\n \"longitud\": [10, 30, 197, 1069, 1071, 1072],\n \"longlong\": 2186,\n \"longpanel\": [2228, 2246, 2257],\n \"longtabl\": [259, 890, 1345, 1391, 1433, 1488, 1490, 2202, 2220, 2230, 2239, 2277, 2289, 2291, 2298],\n \"longtablebuild\": 2277,\n \"longtim\": 2228,\n@@ -41612,15 +41611,15 @@\n \"maldiv\": [176, 179, 754, 757, 1242, 1243],\n \"male\": [18, 23, 25, 28, 32, 1204, 2195, 2220],\n \"malform\": [1469, 1486, 2199, 2225, 2246, 2265, 2283, 2289],\n \"malfunct\": 2238,\n \"malta\": [176, 179, 754, 757, 1242, 1243, 2199],\n \"mamba\": [1, 13],\n \"mammal\": [172, 198, 210, 211, 214, 249, 271, 285, 494, 784, 882, 899, 913, 1198, 1202, 1263, 2195],\n- \"manag\": [2, 5, 22, 34, 341, 1345, 1391, 1451, 1488, 1490, 1793, 1815, 2186, 2193, 2197, 2199, 2202, 2218, 2222, 2224, 2232, 2238, 2246, 2277, 2298],\n+ \"manag\": [2, 5, 22, 34, 341, 1345, 1391, 1451, 1488, 1490, 1793, 1815, 2186, 2197, 2199, 2202, 2218, 2222, 2224, 2232, 2238, 2246, 2277, 2298],\n \"manchest\": 2199,\n \"mangl\": [2195, 2241, 2246, 2289],\n \"mangle_dupe_col\": [2283, 2294, 2298],\n \"mango\": [394, 399],\n \"mani\": [1, 2, 3, 5, 7, 8, 10, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 31, 34, 35, 85, 102, 114, 168, 342, 596, 754, 757, 1031, 1064, 1153, 1158, 1166, 1212, 1223, 1242, 1243, 1272, 1274, 1275, 1286, 1358, 1387, 1390, 1469, 1486, 1498, 2166, 2167, 2173, 2185, 2186, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2199, 2200, 2202, 2205, 2206, 2207, 2210, 2212, 2214, 2216, 2217, 2218, 2219, 2221, 2223, 2225, 2228, 2231, 2232, 2235, 2238, 2241, 2246, 2254, 2255, 2256, 2260, 2261, 2271, 2277, 2283, 2289, 2298, 2302, 2307, 2308],\n \"manifest\": [2223, 2224, 2241, 2273],\n \"manipul\": [10, 15, 21, 23, 33, 34, 35, 1423, 2172, 2185, 2186, 2195, 2204, 2207, 2210, 2218, 2222, 2257],\n@@ -43958,14 +43957,15 @@\n \"slight\": [3, 2195],\n \"slightli\": [3, 13, 203, 862, 866, 1387, 2185, 2197, 2199, 2217, 2228, 2277, 2294],\n \"slinear\": [146, 720, 1280, 2218],\n \"sln\": 2191,\n \"sloper\": 25,\n \"slow\": [2, 22, 1345, 1391, 1488, 1490, 1492, 1498, 2186, 2193, 2199, 2202, 2217, 2222, 2232, 2238, 2241, 2253, 2307],\n \"slower\": [1152, 1211, 2193, 2197, 2199, 2202, 2210, 2218, 2228],\n+ \"slowest\": [2185, 2218],\n \"slshape\": 1433,\n \"sm\": [1275, 2186, 2210, 2227, 2232, 2307],\n \"small\": [3, 13, 16, 17, 18, 19, 29, 111, 185, 190, 191, 194, 754, 757, 766, 767, 769, 1242, 1243, 1454, 2185, 2186, 2193, 2195, 2199, 2205, 2207, 2210, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2228, 2230, 2232, 2233, 2234, 2236, 2237, 2239, 2241, 2242, 2243, 2245, 2249, 2271, 2277, 2283, 2289, 2294, 2298, 2302],\n \"smaller\": [0, 94, 144, 268, 745, 1345, 1391, 1488, 1490, 1499, 2186, 2188, 2193, 2202, 2207, 2208, 2210, 2211, 2243, 2249],\n \"smallest\": [176, 179, 360, 588, 754, 757, 1191, 1194, 1242, 1243, 1252, 1255, 1499, 2199, 2205, 2235, 2246, 2264, 2294],\n \"smallint\": [2199, 2307],\n \"smart\": [22, 2186, 2277],\n@@ -44795,15 +44795,15 @@\n \"tolist\": [15, 432, 891, 2199, 2222, 2238, 2246, 2289, 2298, 2302],\n \"tolong\": 2241,\n \"tom\": [13, 35, 2199, 2247, 2248, 2294],\n \"tomaugsburg\": 2231,\n \"tomaugspurg\": [13, 35],\n \"toml\": [2, 22, 2238, 2265],\n \"too\": [2, 3, 233, 807, 831, 1196, 1257, 1358, 1469, 1470, 1486, 2197, 2199, 2205, 2207, 2211, 2215, 2217, 2220, 2231, 2241, 2249, 2257, 2274, 2277, 2283, 2289, 2293, 2294, 2298, 2308],\n- \"took\": [2199, 2223, 2241],\n+ \"took\": [2185, 2199, 2218, 2223, 2241],\n \"tool\": [2, 5, 6, 8, 10, 15, 21, 22, 34, 36, 1146, 1469, 1472, 1486, 2184, 2185, 2186, 2191, 2193, 2195, 2196, 2210, 2220, 2225, 2226, 2232, 2235, 2241, 2246, 2260, 2283, 2298, 2307],\n \"tooltip\": [1402, 1423, 2196, 2283],\n \"toordin\": 2302,\n \"top\": [22, 34, 91, 107, 148, 149, 177, 178, 185, 186, 203, 205, 212, 214, 241, 259, 341, 348, 376, 402, 413, 629, 699, 725, 726, 755, 756, 762, 778, 787, 890, 905, 1036, 1051, 1164, 1188, 1191, 1221, 1249, 1252, 1345, 1387, 1388, 1391, 1400, 1433, 1454, 1458, 1488, 1490, 2167, 2172, 2184, 2186, 2188, 2193, 2195, 2199, 2202, 2204, 2207, 2209, 2211, 2217, 2218, 2220, 2222, 2227, 2230, 2232, 2235, 2238, 2241, 2260, 2264, 2265, 2283, 2289, 2302],\n \"topic\": [0, 4, 13, 35, 2185, 2196],\n \"topmost\": 2204,\n \"toprul\": [259, 890, 1433, 2277],\n@@ -44962,15 +44962,15 @@\n \"tzfile\": [286, 329, 330, 331, 684, 685, 686, 953, 956, 972, 1013, 1014, 2210, 2221],\n \"tzinfo\": [277, 278, 286, 324, 329, 330, 331, 334, 575, 679, 684, 685, 686, 903, 904, 953, 983, 995, 1001, 1004, 1012, 1344, 2210, 2221, 2222, 2238, 2239, 2241, 2283, 2294, 2303],\n \"tzlocal\": [2232, 2246, 2298],\n \"tzname\": 2294,\n \"tzoffset\": 2222,\n \"tzser\": 575,\n \"tzutc\": [2210, 2246],\n- \"u\": [1, 3, 4, 5, 7, 13, 17, 18, 31, 203, 258, 287, 311, 330, 331, 532, 663, 664, 685, 686, 889, 905, 909, 916, 917, 918, 920, 921, 927, 930, 938, 939, 941, 946, 953, 954, 957, 995, 1017, 1085, 1087, 1088, 1204, 1476, 1482, 1483, 1484, 1498, 1500, 2163, 2184, 2185, 2186, 2193, 2194, 2195, 2199, 2203, 2205, 2207, 2208, 2209, 2210, 2218, 2222, 2226, 2228, 2230, 2235, 2238, 2241, 2246, 2249, 2294, 2298, 2302, 2307],\n+ \"u\": [1, 3, 4, 5, 7, 13, 17, 18, 31, 203, 258, 287, 311, 330, 331, 532, 663, 664, 685, 686, 889, 905, 909, 916, 917, 918, 920, 921, 927, 930, 938, 939, 941, 946, 953, 954, 957, 995, 1017, 1085, 1087, 1088, 1204, 1476, 1482, 1483, 1484, 1498, 1500, 2163, 2184, 2185, 2186, 2193, 2194, 2195, 2199, 2203, 2205, 2207, 2208, 2209, 2210, 2222, 2226, 2228, 2230, 2235, 2238, 2241, 2246, 2249, 2294, 2298, 2302, 2307],\n \"u1\": [131, 1118, 2185, 2186, 2199],\n \"u4\": 2197,\n \"u5\": 2197,\n \"u8\": 2186,\n \"ubuntu\": 5,\n \"udf\": [72, 73, 77, 273, 581, 582, 586, 900, 1148, 1149, 1152, 1168, 1203, 1207, 1208, 1211, 1225, 1264, 1269, 1270, 1304, 1321, 2195, 2196, 2294],\n \"ufunc\": [10, 586, 808, 1031, 2185, 2186, 2191, 2206, 2213, 2219, 2221, 2232, 2246, 2265, 2277, 2281, 2289, 2293, 2294, 2298, 2307],\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "unified_diff": "@@ -1847,25 +1847,26 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....: \n-544 us +- 49.3 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-122 us +- 6.36 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+350 us +- 169 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+106 us +- 19.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n \n \n
In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n    .....: %timeit ser.take(indexer)\n    .....: \n-284 us +- 22.1 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-266 us +- 16.8 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+251 us +- 69.4 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+The slowest run took 7.62 times longer than the fastest. This could mean that an intermediate result is being cached.\n+499 us +- 435 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n 
\n
\n \n
\n

Index types#

\n

We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown here,\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -1245,23 +1245,25 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....:\n-544 us +- 49.3 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-122 us +- 6.36 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+350 us +- 169 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+106 us +- 19.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n .....: %timeit ser.take(indexer)\n .....:\n-284 us +- 22.1 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-266 us +- 16.8 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+251 us +- 69.4 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+The slowest run took 7.62 times longer than the fastest. This could mean that\n+an intermediate result is being cached.\n+499 us +- 435 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n *\b**\b**\b**\b**\b* I\bIn\bnd\bde\bex\bx t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b**\b*\n We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown _\bh_\be_\br_\be, and\n documentation about TimedeltaIndex is found _\bh_\be_\br_\be.\n In the following sub-sections we will highlight some other index types.\n *\b**\b**\b**\b* C\bCa\bat\bte\beg\bgo\bor\bri\bic\bca\bal\blI\bIn\bnd\bde\bex\bx_\b#\b# *\b**\b**\b**\b*\n _\bC_\ba_\bt_\be_\bg_\bo_\br_\bi_\bc_\ba_\bl_\bI_\bn_\bd_\be_\bx is a type of index that is useful for supporting indexing with\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "unified_diff": "@@ -592,31 +592,31 @@\n ...: s += f(a + i * dx)\n ...: return s * dx\n ...: \n \n \n

We achieve our result by using DataFrame.apply() (row-wise):

\n
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)\n-211 ms +- 18.6 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+159 ms +- 68.7 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

Let\u2019s take a look and see where the time is spent during this operation\n using the prun ipython magic function:

\n
# most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 1.397 seconds\n+         605946 function calls (605928 primitive calls) in 0.618 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.758    0.001    1.236    0.001 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n-   552423    0.478    0.000    0.478    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n-     3000    0.025    0.000    0.111    0.000 series.py:1095(__getitem__)\n-    16098    0.018    0.000    0.024    0.000 {built-in method builtins.isinstance}\n+     1000    0.362    0.000    0.512    0.001 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n+   552423    0.150    0.000    0.150    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n+        1    0.015    0.015    0.615    0.615 apply.py:1070(apply_series_generator)\n+     3000    0.014    0.000    0.029    0.000 series.py:1220(_get_value)\n 
\n
\n

By far the majority of time is spend inside either integrate_f or f,\n hence we\u2019ll concentrate our efforts cythonizing these two functions.

\n
\n
\n

Plain Cython#

\n@@ -634,15 +634,15 @@\n ...: for i in range(N):\n ...: s += f_plain(a + i * dx)\n ...: return s * dx\n ...: \n \n \n
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)\n-135 ms +- 12.6 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+131 ms +- 42.2 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

This has improved the performance compared to the pure Python approach by one-third.

\n
\n
\n

Declaring C types#

\n

We can annotate the function variables and return types as well as use cdef\n@@ -658,36 +658,36 @@\n ....: for i in range(N):\n ....: s += f_typed(a + i * dx)\n ....: return s * dx\n ....: \n \n \n

In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-25.7 ms +- 899 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+18.6 ms +- 634 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

Annotating the functions with C types yields an over ten times performance improvement compared to\n the original Python implementation.

\n
\n
\n

Using ndarray#

\n

When re-profiling, time is spent creating a Series from each row, and calling __getitem__ from both\n the index and the series (three times for each row). These Python function calls are expensive and\n can be improved by passing an np.ndarray.

\n
In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.134 seconds\n+         52523 function calls (52505 primitive calls) in 0.062 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.022    0.000    0.094    0.000 series.py:1095(__getitem__)\n-    16098    0.015    0.000    0.021    0.000 {built-in method builtins.isinstance}\n-     3000    0.015    0.000    0.038    0.000 series.py:1220(_get_value)\n-     3000    0.014    0.000    0.024    0.000 indexing.py:2765(check_dict_or_set_indexers)\n+     3000    0.009    0.000    0.039    0.000 series.py:1095(__getitem__)\n+     3000    0.008    0.000    0.009    0.000 base.py:3777(get_loc)\n+     3000    0.007    0.000    0.019    0.000 series.py:1220(_get_value)\n+    16098    0.005    0.000    0.007    0.000 {built-in method builtins.isinstance}\n 
\n
\n
In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n@@ -722,34 +722,34 @@\n 
\n

This implementation creates an array of zeros and inserts the result\n of integrate_f_typed applied over each row. Looping over an ndarray is faster\n in Cython than looping over a Series object.

\n

Since apply_integrate_f is typed to accept an np.ndarray, Series.to_numpy()\n calls are needed to utilize this function.

\n
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-2.14 ms +- 23.7 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.69 ms +- 153 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

Performance has improved from the prior implementation by almost ten times.

\n
\n
\n

Disabling compiler directives#

\n

The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s boundscheck\n and wraparound checks can yield more performance.

\n
In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-         78 function calls in 0.003 seconds\n+         78 function calls in 0.002 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n         1    0.002    0.002    0.002    0.002 <string>:1(<module>)\n         1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}\n-        1    0.000    0.000    0.003    0.003 {built-in method builtins.exec}\n-        3    0.000    0.000    0.000    0.000 managers.py:1993(dtype)\n+        1    0.000    0.000    0.002    0.002 {built-in method builtins.exec}\n+        3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n 
\n
\n
In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:\n@@ -782,15 +782,15 @@\n                  from /build/reproducible-path/pandas-2.2.3+dfsg/buildtmp/.cache/ipython/cython/_cython_magic_883da8958ecc60be73b28b7124368f9c7cc2d174.c:1251:\n /usr/lib/x86_64-linux-gnu/python3-numpy/numpy/_core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]\n    17 | #warning "Using deprecated NumPy API, disable it with " \\\n       |  ^~~~~~~\n 
\n
\n
In [17]: %timeit apply_integrate_f_wrap(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-1.51 ms +- 14.9 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+1.14 ms +- 135 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n 
\n
\n

However, a loop indexer i accessing an invalid location in an array would cause a segfault because memory access isn\u2019t checked.\n For more about boundscheck and wraparound, see the Cython docs on\n compiler directives.

\n
\n \n@@ -1148,19 +1148,19 @@\n compared to standard Python syntax for large DataFrame. This engine requires the\n optional dependency numexpr to be installed.

\n

The 'python' engine is generally not useful except for testing\n other evaluation engines against it. You will achieve no performance\n benefits using eval() with engine='python' and may\n incur a performance hit.

\n
In [40]: %timeit df1 + df2 + df3 + df4\n-45.5 ms +- 3.47 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+10.2 ms +- 207 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")\n-48.9 ms +- 1.67 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+12.9 ms +- 850 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n \n
\n

The DataFrame.eval() method#

\n

In addition to the top level pandas.eval() function you can also\n evaluate an expression in the \u201ccontext\u201d of a DataFrame.

\n@@ -1275,39 +1275,39 @@\n
In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]\n 
\n
\n

DataFrame arithmetic:

\n
In [60]: %timeit df1 + df2 + df3 + df4\n-46.3 ms +- 3.78 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+10.5 ms +- 450 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")\n-14.4 ms +- 2.58 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+4.44 ms +- 297 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

DataFrame comparison:

\n
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-20.6 ms +- 1.6 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+6.98 ms +- 273 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")\n-24.9 ms +- 6.01 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+6.05 ms +- 354 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

DataFrame arithmetic with unaligned axes.

\n
In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-73.8 ms +- 2.03 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+18.8 ms +- 1.5 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")\n-15 ms +- 1.27 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+7.09 ms +- 2.83 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n
\n

Note

\n

Operations such as

\n
1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -110,33 +110,33 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f(a + i * dx)\n    ...:     return s * dx\n    ...:\n We achieve our result by using _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\ba_\bp_\bp_\bl_\by_\b(_\b) (row-wise):\n In [5]: %timeit df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]), axis=1)\n-211 ms +- 18.6 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+159 ms +- 68.7 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Let\u2019s take a look and see where the time is spent during this operation using\n the _\bp_\br_\bu_\bn_\b _\bi_\bp_\by_\bt_\bh_\bo_\bn_\b _\bm_\ba_\bg_\bi_\bc_\b _\bf_\bu_\bn_\bc_\bt_\bi_\bo_\bn:\n # most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 1.397 seconds\n+         605946 function calls (605928 primitive calls) in 0.618 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.758    0.001    1.236    0.001 :1\n+     1000    0.362    0.000    0.512    0.001 :1\n (integrate_f)\n-   552423    0.478    0.000    0.478    0.000 :1\n+   552423    0.150    0.000    0.150    0.000 :1\n (f)\n-     3000    0.025    0.000    0.111    0.000 series.py:1095(__getitem__)\n-    16098    0.018    0.000    0.024    0.000 {built-in method\n-builtins.isinstance}\n+        1    0.015    0.015    0.615    0.615 apply.py:1070\n+(apply_series_generator)\n+     3000    0.014    0.000    0.029    0.000 series.py:1220(_get_value)\n By far the majority of time is spend inside either integrate_f or f, hence\n we\u2019ll concentrate our efforts cythonizing these two functions.\n *\b**\b**\b**\b* P\bPl\bla\bai\bin\bn C\bCy\byt\bth\bho\bon\bn_\b#\b# *\b**\b**\b**\b*\n First we\u2019re going to need to import the Cython magic function to IPython:\n In [7]: %load_ext Cython\n Now, let\u2019s simply copy our functions over to Cython:\n In [8]: %%cython\n@@ -147,15 +147,15 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f_plain(a + i * dx)\n    ...:     return s * dx\n    ...:\n In [9]: %timeit df.apply(lambda x: integrate_f_plain(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-135 ms +- 12.6 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+131 ms +- 42.2 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n This has improved the performance compared to the pure Python approach by one-\n third.\n *\b**\b**\b**\b* D\bDe\bec\bcl\bla\bar\bri\bin\bng\bg C\bC t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b*\n We can annotate the function variables and return types as well as use cdef and\n cpdef to improve performance:\n In [10]: %%cython\n    ....: cdef double f_typed(double x) except? -2:\n@@ -167,36 +167,35 @@\n    ....:     dx = (b - a) / N\n    ....:     for i in range(N):\n    ....:         s += f_typed(a + i * dx)\n    ....:     return s * dx\n    ....:\n In [11]: %timeit df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-25.7 ms +- 899 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+18.6 ms +- 634 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Annotating the functions with C types yields an over ten times performance\n improvement compared to the original Python implementation.\n *\b**\b**\b**\b* U\bUs\bsi\bin\bng\bg n\bnd\bda\bar\brr\bra\bay\by_\b#\b# *\b**\b**\b**\b*\n When re-profiling, time is spent creating a _\bS_\be_\br_\bi_\be_\bs from each row, and calling\n __getitem__ from both the index and the series (three times for each row).\n These Python function calls are expensive and can be improved by passing an\n np.ndarray.\n In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x\n [\"N\"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.134 seconds\n+         52523 function calls (52505 primitive calls) in 0.062 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.022    0.000    0.094    0.000 series.py:1095(__getitem__)\n-    16098    0.015    0.000    0.021    0.000 {built-in method\n+     3000    0.009    0.000    0.039    0.000 series.py:1095(__getitem__)\n+     3000    0.008    0.000    0.009    0.000 base.py:3777(get_loc)\n+     3000    0.007    0.000    0.019    0.000 series.py:1220(_get_value)\n+    16098    0.005    0.000    0.007    0.000 {built-in method\n builtins.isinstance}\n-     3000    0.015    0.000    0.038    0.000 series.py:1220(_get_value)\n-     3000    0.014    0.000    0.024    0.000 indexing.py:2765\n-(check_dict_or_set_indexers)\n In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n    ....: cpdef double integrate_f_typed(double a, double b, int N):\n    ....:     cdef int i\n@@ -237,32 +236,32 @@\n This implementation creates an array of zeros and inserts the result of\n integrate_f_typed applied over each row. Looping over an ndarray is faster in\n Cython than looping over a _\bS_\be_\br_\bi_\be_\bs object.\n Since apply_integrate_f is typed to accept an np.ndarray, _\bS_\be_\br_\bi_\be_\bs_\b._\bt_\bo_\b__\bn_\bu_\bm_\bp_\by_\b(_\b)\n calls are needed to utilize this function.\n In [14]: %timeit apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(), df\n [\"N\"].to_numpy())\n-2.14 ms +- 23.7 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.69 ms +- 153 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n Performance has improved from the prior implementation by almost ten times.\n *\b**\b**\b**\b* D\bDi\bis\bsa\bab\bbl\bli\bin\bng\bg c\bco\bom\bmp\bpi\bil\ble\ber\br d\bdi\bir\bre\bec\bct\bti\biv\bve\bes\bs_\b#\b# *\b**\b**\b**\b*\n The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s\n boundscheck and wraparound checks can yield more performance.\n In [15]: %prun -l 4 apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n-         78 function calls in 0.003 seconds\n+         78 function calls in 0.002 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n         1    0.002    0.002    0.002    0.002 :1()\n         1    0.000    0.000    0.000    0.000 {method 'disable' of\n '_lsprof.Profiler' objects}\n-        1    0.000    0.000    0.003    0.003 {built-in method builtins.exec}\n-        3    0.000    0.000    0.000    0.000 managers.py:1993(dtype)\n+        1    0.000    0.000    0.002    0.002 {built-in method builtins.exec}\n+        3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:\n    ....:     return x * (x - 1)\n    ....: cpdef np.float64_t integrate_f_typed(np.float64_t a, np.float64_t b,\n@@ -300,15 +299,15 @@\n /usr/lib/x86_64-linux-gnu/python3-numpy/numpy/_core/include/numpy/\n npy_1_7_deprecated_api.h:17:2: warning: #warning \"Using deprecated NumPy API,\n disable it with \" \"#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION\" [-Wcpp]\n    17 | #warning \"Using deprecated NumPy API, disable it with \" \\\n       |  ^~~~~~~\n In [17]: %timeit apply_integrate_f_wrap(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n-1.51 ms +- 14.9 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+1.14 ms +- 135 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n However, a loop indexer i accessing an invalid location in an array would cause\n a segfault because memory access isn\u2019t checked. For more about boundscheck and\n wraparound, see the Cython docs on _\bc_\bo_\bm_\bp_\bi_\bl_\be_\br_\b _\bd_\bi_\br_\be_\bc_\bt_\bi_\bv_\be_\bs.\n *\b**\b**\b**\b**\b* N\bNu\bum\bmb\bba\ba (\b(J\bJI\bIT\bT c\bco\bom\bmp\bpi\bil\bla\bat\bti\bio\bon\bn)\b)_\b#\b# *\b**\b**\b**\b**\b*\n An alternative to statically compiling Cython code is to use a dynamic just-in-\n time (JIT) compiler with _\bN_\bu_\bm_\bb_\ba.\n Numba allows you to write a pure Python function which can be JIT compiled to\n@@ -611,17 +610,17 @@\n The 'numexpr' engine is the more performant engine that can yield performance\n improvements compared to standard Python syntax for large _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be. This\n engine requires the optional dependency numexpr to be installed.\n The 'python' engine is generally n\bno\bot\bt useful except for testing other evaluation\n engines against it. You will achieve n\bno\bo performance benefits using _\be_\bv_\ba_\bl_\b(_\b) with\n engine='python' and may incur a performance hit.\n In [40]: %timeit df1 + df2 + df3 + df4\n-45.5 ms +- 3.47 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+10.2 ms +- 207 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n In [41]: %timeit pd.eval(\"df1 + df2 + df3 + df4\", engine=\"python\")\n-48.9 ms +- 1.67 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+12.9 ms +- 850 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n *\b**\b**\b**\b* T\bTh\bhe\be _\bD\bD_\ba\ba_\bt\bt_\ba\ba_\bF\bF_\br\br_\ba\ba_\bm\bm_\be\be_\b.\b._\be\be_\bv\bv_\ba\ba_\bl\bl_\b(\b(_\b)\b) m\bme\bet\bth\bho\bod\bd_\b#\b# *\b**\b**\b**\b*\n In addition to the top level _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) function you can also evaluate an\n expression in the \u201ccontext\u201d of a _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be.\n In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=[\"a\", \"b\"])\n \n In [43]: df.eval(\"a + b\")\n Out[43]:\n@@ -718,29 +717,29 @@\n _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) works well with expressions containing large arrays.\n In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for\n _ in range(4)]\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic:\n In [60]: %timeit df1 + df2 + df3 + df4\n-46.3 ms +- 3.78 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+10.5 ms +- 450 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n In [61]: %timeit pd.eval(\"df1 + df2 + df3 + df4\")\n-14.4 ms +- 2.58 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+4.44 ms +- 297 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be comparison:\n In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-20.6 ms +- 1.6 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+6.98 ms +- 273 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n In [63]: %timeit pd.eval(\"(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\")\n-24.9 ms +- 6.01 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+6.05 ms +- 354 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic with unaligned axes.\n In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-73.8 ms +- 2.03 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+18.8 ms +- 1.5 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n In [66]: %timeit pd.eval(\"df1 + df2 + df3 + df4 + s\")\n-15 ms +- 1.27 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+7.09 ms +- 2.83 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n Note\n Operations such as\n 1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n ~1  # this is okay, but slower when using eval\n should be performed in Python. An exception will be raised if you try to\n perform any boolean/bitwise operations with scalar operands that are not of\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "unified_diff": "@@ -1086,16 +1086,16 @@\n    ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")\n    ....: counts = pd.Series(dtype=int)\n    ....: for path in files:\n    ....:     df = pd.read_parquet(path)\n    ....:     counts = counts.add(df["name"].value_counts(), fill_value=0)\n    ....: counts.astype(int)\n    ....: \n-CPU times: user 625 us, sys: 244 us, total: 869 us\n-Wall time: 879 us\n+CPU times: user 331 us, sys: 287 us, total: 618 us\n+Wall time: 627 us\n Out[32]: Series([], dtype: int64)\n 
\n
\n

Some readers, like pandas.read_csv(), offer parameters to control the\n chunksize when reading a single file.

\n

Manually chunking is an OK option for workflows that don\u2019t\n require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby(), are\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -644,16 +644,16 @@\n ....: files = pathlib.Path(\"data/timeseries/\").glob(\"ts*.parquet\")\n ....: counts = pd.Series(dtype=int)\n ....: for path in files:\n ....: df = pd.read_parquet(path)\n ....: counts = counts.add(df[\"name\"].value_counts(), fill_value=0)\n ....: counts.astype(int)\n ....:\n-CPU times: user 625 us, sys: 244 us, total: 869 us\n-Wall time: 879 us\n+CPU times: user 331 us, sys: 287 us, total: 618 us\n+Wall time: 627 us\n Out[32]: Series([], dtype: int64)\n Some readers, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\br_\be_\ba_\bd_\b__\bc_\bs_\bv_\b(_\b), offer parameters to control the chunksize\n when reading a single file.\n Manually chunking is an OK option for workflows that don\u2019t require too\n sophisticated of operations. Some operations, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\bg_\br_\bo_\bu_\bp_\bb_\by_\b(_\b),\n are much harder to do chunkwise. In these cases, you may be better switching to\n a different library that implements these out-of-core algorithms for you.\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "unified_diff": null, "details": [{"source1": "style.ipynb", "source2": "style.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9985610875706213%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2026-04-12T08:06:59.315130Z', \"", " \"'iopub.status.busy': '2026-04-12T08:06:59.314874Z', 'iopub.status.idle': \"", " \"'2026-04-12T08:06:59.674203Z', 'shell.execute_reply': \"", " \"'2026-04-12T08:06:59.673472Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2026-04-12T08:06:59.677437Z', 'iopub.status.busy': \"", " \"'2026-04-12T08:06:59.676672Z', 'iopub.status.idle': '2026-04-12T08:06:5 [\u2026]"], "unified_diff": "@@ -39,18 +39,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-03-10T00:14:26.077877Z\",\n- \"iopub.status.busy\": \"2025-03-10T00:14:26.077533Z\",\n- \"iopub.status.idle\": \"2025-03-10T00:14:26.722736Z\",\n- \"shell.execute_reply\": \"2025-03-10T00:14:26.721547Z\"\n+ \"iopub.execute_input\": \"2026-04-12T08:06:59.315130Z\",\n+ \"iopub.status.busy\": \"2026-04-12T08:06:59.314874Z\",\n+ \"iopub.status.idle\": \"2026-04-12T08:06:59.674203Z\",\n+ \"shell.execute_reply\": \"2026-04-12T08:06:59.673472Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot\\n\",\n \"# We have this here to trigger matplotlib's font cache stuff.\\n\",\n@@ -77,36 +77,36 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-03-10T00:14:26.726930Z\",\n- \"iopub.status.busy\": \"2025-03-10T00:14:26.726471Z\",\n- \"iopub.status.idle\": \"2025-03-10T00:14:27.107788Z\",\n- \"shell.execute_reply\": \"2025-03-10T00:14:27.106646Z\"\n+ \"iopub.execute_input\": \"2026-04-12T08:06:59.677437Z\",\n+ \"iopub.status.busy\": \"2026-04-12T08:06:59.676672Z\",\n+ \"iopub.status.idle\": \"2026-04-12T08:06:59.910277Z\",\n+ \"shell.execute_reply\": \"2026-04-12T08:06:59.909550Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import pandas as pd\\n\",\n \"import numpy as np\\n\",\n \"import matplotlib as mpl\\n\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-03-10T00:14:27.113754Z\",\n- \"iopub.status.busy\": \"2025-03-10T00:14:27.113258Z\",\n- \"iopub.status.idle\": \"2025-03-10T00:14:27.308722Z\",\n- \"shell.execute_reply\": \"2025-03-10T00:14:27.307617Z\"\n+ \"iopub.execute_input\": \"2026-04-12T08:06:59.912896Z\",\n+ \"iopub.status.busy\": \"2026-04-12T08:06:59.912501Z\",\n+ \"iopub.status.idle\": \"2026-04-12T08:07:00.031423Z\",\n+ \"shell.execute_reply\": \"2026-04-12T08:07:00.030723Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\\n\",\n \"from pandas.io.formats.style import Styler\\n\",\n@@ -123,18 +123,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-03-10T00:14:27.312900Z\",\n- \"iopub.status.busy\": \"2025-03-10T00:14:27.312389Z\",\n- \"iopub.status.idle\": \"2025-03-10T00:14:27.328547Z\",\n- \"shell.execute_reply\": \"2025-03-10T00:14:27.327436Z\"\n+ \"iopub.execute_input\": \"2026-04-12T08:07:00.033871Z\",\n+ \"iopub.status.busy\": \"2026-04-12T08:07:00.033551Z\",\n+ \"iopub.status.idle\": \"2026-04-12T08:07:00.043357Z\",\n+ \"shell.execute_reply\": \"2026-04-12T08:07:00.042793Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/html\": [\n \"