{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.eJLyLKwP/b1/nbsphinx_0.9.5+ds-1_i386.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.eJLyLKwP/b2/nbsphinx_0.9.5+ds-1_i386.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,3 +1,3 @@\n \n- 132f8c1062e0b805e097af065ea3dabd 1285704 doc optional python-nbsphinx-doc_0.9.5+ds-1_all.deb\n+ 5c3386bc91b73312eaa78708ceb1e0d3 1285988 doc optional python-nbsphinx-doc_0.9.5+ds-1_all.deb\n 31c69e090c3db3335b79a80177921eb0 39904 python optional python3-nbsphinx_0.9.5+ds-1_all.deb\n"}, {"source1": "python-nbsphinx-doc_0.9.5+ds-1_all.deb", "source2": "python-nbsphinx-doc_0.9.5+ds-1_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2024-11-24 17:52:14.000000 debian-binary\n -rw-r--r-- 0 0 0 4600 2024-11-24 17:52:14.000000 control.tar.xz\n--rw-r--r-- 0 0 0 1280912 2024-11-24 17:52:14.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 1281196 2024-11-24 17:52:14.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -55,45 +55,45 @@\n -rw-r--r-- 0 root (0) root (0) 2871 2024-08-13 16:57:38.000000 ./usr/share/doc/python-nbsphinx/html/_static/nbsphinx-no-thumbnail.svg\n -rw-r--r-- 0 root (0) root (0) 90 2024-10-25 18:53:47.000000 ./usr/share/doc/python-nbsphinx/html/_static/plus.png\n -rw-r--r-- 0 root (0) root (0) 5359 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/_static/pygments.css\n -rw-r--r-- 0 root (0) root (0) 27880 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/a-normal-rst-file.html\n -rw-r--r-- 0 root (0) root (0) 11062 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/allow-errors-per-cell.html\n -rw-r--r-- 0 root (0) root (0) 3955 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/allow-errors-per-cell.ipynb\n -rw-r--r-- 0 root (0) root (0) 12309 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/allow-errors.html\n--rw-r--r-- 0 root (0) root (0) 1390 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/allow-errors.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 1393 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/allow-errors.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 170010 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/code-cells.html\n--rw-r--r-- 0 root (0) root (0) 122175 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/code-cells.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 122295 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/code-cells.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 3032 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/conf.py.gz\n -rw-r--r-- 0 root (0) root (0) 32500 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/configuration.html\n -rw-r--r-- 0 root (0) root (0) 3369 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/configuration.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 13406 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/configuring-kernels.html\n -rw-r--r-- 0 root (0) root (0) 3758 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/configuring-kernels.ipynb\n -rw-r--r-- 0 root (0) root (0) 14867 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/contributing.html\n -rw-r--r-- 0 root (0) root (0) 12913 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/custom-css.html\n -rw-r--r-- 0 root (0) root (0) 4066 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/custom-css.ipynb\n -rw-r--r-- 0 root (0) root (0) 9562 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/executing-notebooks.html\n -rw-r--r-- 0 root (0) root (0) 1556 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/executing-notebooks.ipynb\n drwxr-xr-x 0 root (0) root (0) 0 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/\n -rw-r--r-- 0 root (0) root (0) 15555 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/a-local-file.png\n -rw-r--r-- 0 root (0) root (0) 14940 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/cell-metadata.html\n--rw-r--r-- 0 root (0) root (0) 18322 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/cell-metadata.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 18331 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/cell-metadata.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 13601 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/cell-tag.html\n--rw-r--r-- 0 root (0) root (0) 13669 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/cell-tag.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 13671 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/cell-tag.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 13538 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/default-thumbnail.html\n--rw-r--r-- 0 root (0) root (0) 14939 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/default-thumbnail.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 14944 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/default-thumbnail.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 10232 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/gallery-with-links.html\n -rw-r--r-- 0 root (0) root (0) 2566 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/gallery-with-links.ipynb\n -rw-r--r-- 0 root (0) root (0) 11778 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/gallery-with-nested-documents.html\n -rw-r--r-- 0 root (0) root (0) 3480 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/gallery-with-nested-documents.ipynb\n -rw-r--r-- 0 root (0) root (0) 45230 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/multiple-outputs.html\n--rw-r--r-- 0 root (0) root (0) 12561 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/multiple-outputs.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 12560 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/multiple-outputs.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 8569 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/no-thumbnail.html\n -rw-r--r-- 0 root (0) root (0) 979 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/no-thumbnail.ipynb\n -rw-r--r-- 0 root (0) root (0) 15061 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/thumbnail-from-conf-py.html\n--rw-r--r-- 0 root (0) root (0) 9963 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/thumbnail-from-conf-py.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 9959 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/thumbnail-from-conf-py.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 8543 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/uno-rst.html\n -rw-r--r-- 0 root (0) root (0) 971 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/gallery/uno-rst.ipynb\n -rw-r--r-- 0 root (0) root (0) 5203 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/genindex.html\n -rw-r--r-- 0 root (0) root (0) 8172 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/hidden-cells.html\n -rw-r--r-- 0 root (0) root (0) 2791 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/hidden-cells.ipynb\n -rw-r--r-- 0 root (0) root (0) 30515 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/index.html\n -rw-r--r-- 0 root (0) root (0) 18017 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/installation.html\n@@ -116,15 +116,15 @@\n -rw-r--r-- 0 root (0) root (0) 2098 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/raw-cells.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 7361 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/references.html\n -rw-r--r-- 0 root (0) root (0) 270 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/requirements.txt\n -rw-r--r-- 0 root (0) root (0) 4786 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/search.html\n -rw-r--r-- 0 root (0) root (0) 58233 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/searchindex.js\n drwxr-xr-x 0 root (0) root (0) 0 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/subdir/\n -rw-r--r-- 0 root (0) root (0) 9996 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/subdir/a-notebook-in-a-subdir.html\n--rw-r--r-- 0 root (0) root (0) 9478 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/subdir/a-notebook-in-a-subdir.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 9484 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/subdir/a-notebook-in-a-subdir.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 9945 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/subdir/gallery.html\n -rw-r--r-- 0 root (0) root (0) 2294 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/subdir/gallery.ipynb\n -rw-r--r-- 0 root (0) root (0) 14083 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/subdir/toctree.html\n -rw-r--r-- 0 root (0) root (0) 1692 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/subdir/toctree.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 8782 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/timeout.html\n -rw-r--r-- 0 root (0) root (0) 1729 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/timeout.ipynb\n -rw-r--r-- 0 root (0) root (0) 44308 2024-11-24 17:52:14.000000 ./usr/share/doc/python-nbsphinx/html/usage.html\n"}, {"source1": "./usr/share/doc/python-nbsphinx/html/_images/code-cells_36_0.svg", "source2": "./usr/share/doc/python-nbsphinx/html/_images/code-cells_36_0.svg", "has_internal_linenos": true, "unified_diff": "@@ -77,24 +77,24 @@\n 000004c0: 3a20 2366 6666 6666 6622 2f3e 0a20 2020 : #ffffff\"/>. \n 000004d0: 3c2f 673e 0a20 2020 3c67 2069 643d 226d . . . . \n 00000520: 2020 2020 203c 6465 6673 3e0a 2020 2020 . \n-00000530: 2020 203c 7061 7468 2069 643d 226d 6239 . \n 00000590: 2020 3c2f 6465 6673 3e0a 2020 2020 2020 . \n 000005a0: 3c67 3e0a 2020 2020 2020 203c 7573 6520 . .\n 00000610: 2020 2020 2020 3c2f 673e 0a20 2020 2020 . \n 00000620: 3c2f 673e 0a20 2020 2020 3c67 2069 643d . . \n@@ -138,16 +138,16 @@\n 00000890: 5361 6e73 2d33 3022 2f3e 0a20 2020 2020 Sans-30\"/>. \n 000008a0: 203c 2f67 3e0a 2020 2020 203c 2f67 3e0a . .\n 000008b0: 2020 2020 3c2f 673e 0a20 2020 203c 6720 . . \n 000008d0: 2020 203c 6720 6964 3d22 6c69 6e65 3264 . . \n 000008f0: 2020 2020 2020 3c75 7365 2078 6c69 6e6b . \n 00000960: 2020 3c2f 673e 0a20 2020 2020 3c2f 673e . \n 00000970: 0a20 2020 2020 3c67 2069 643d 2274 6578 . . \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -1208,15 +1208,15 @@\n \"L 163.888636 160.746207 \\n\",\n \"L 194.325 90.36 \\n\",\n \"L 224.761364 142.497931 \\n\",\n \"L 255.197727 116.428966 \\n\",\n \"L 285.634091 134.677241 \\n\",\n \"L 316.070455 14.76 \\n\",\n \"L 346.506818 155.532414 \\n\",\n- \"\\\" clip-path=\\\"url(#pbf60ad3e77)\\\" style=\\\"fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: square\\\"/>\\n\",\n+ \"\\\" clip-path=\\\"url(#p388dab3c0b)\\\" style=\\\"fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: square\\\"/>\\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -1233,15 +1233,15 @@\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \"\\n\"\n ],\n \"text/plain\": [\n \"\"\n@@ -1265,34 +1265,34 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 18,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:12.677330Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:12.676833Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:12.686780Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:12.686080Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:38.366749Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:38.366058Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:38.395156Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:38.386300Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"%config InlineBackend.figure_formats = ['png']\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 19,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:12.689070Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:12.688583Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:12.778892Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:12.778345Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:38.404649Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:38.404180Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:38.659226Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:38.651756Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"image/png\": \"iVBORw0KGgoAAAANSUhEUgAAAesAAAEICAYAAAB/I9yNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAA9tklEQVR4nO3deXiU5bk/8O9sSWaSyT5JICSEsIQdQkjCYhWICxVFagVBUTbbqK2/VtvTWjkUscV6WpFWPAexbQAVOW1PVVCMFlmrhCQQCMgWWbKwJDPZl5kkk5n398dkJgkQyCQz874z+X6uay5hlnduB8g9z/Pcz/3IBEEQQERERJIlFzsAIiIiujUmayIiIoljsiYiIpI4JmsiIiKJY7ImIiKSOCZrIiIiiWOyJiIikjil2AF0ZrVaUVtbi4CAAMhkMrHDISIicitBENDc3IzQ0FDI5d2PnyWVrGtraxERESF2GERERB5VVVWF8PDwbh+XVLIOCAgAYAtarVaLHA0REZF7mUwmREREOPJfdySVrO1T32q1msmaiIj6jdst/bLAjIiISOKYrImIiCSOyZqIiEjimKyJiIgkjsmaiIhI4pisiYiIJI7JmoiIJEHf0Ix1/zqHOpNZ7FAkR1L7rImIqP9av/tbbM8rhVwmw/P3jBA7HEnhyJqIiCQh50IlAKCgtEbkSKSHyZqIiER3rc6E4iojAKCwrBZWqyByRNLidLIuKChARkYGNBoNwsLCsGDBAsdjRUVFmDlzJtRqNRISEpCVleXSYImIyDflXKhy/Lq+uQ0XK5tEjEZ6nErWZ86cwaxZs3DHHXcgPz8fhw4dwsKFCwEAZrMZc+bMQWRkJPLz87Fq1SpkZmZiz549bgmciIh8hz1Zy9tbZB8vqxUvGAmSCYLQ47mG73//+wgODsbmzZtveGznzp1YsGABDAYDtFotAODJJ59EfX09Pv744x5d32QyQaPRwGg08iAPIqJ+5I7/2ovLNSY8OGEgPim8isfT47H2e+PEDsvtepr3ejyytlgs+PzzzzFkyBDMmDED0dHRuOeee3DixAkAQF5eHlJTUx2JGgAyMjKQm5vb7TXNZjNMJlOXGxER9S9l1UZcrjEhOECJRWlxADiyvl6Pk7XBYIDRaMQf/vAHLFq0CNnZ2YiLi0NGRgbq6uqg1+sRFRXV5TU6nQ4Gg6Hba65duxYajcZxi4iI6P3/CREReaWci7Yp8PTECEyMC4VCLsPZ8gaYWi0iRyYdPU7WVqsVAPDII48gMzMTkyZNwqZNmyCTybBz5044MZvusHLlShiNRsetqqrq9i8iIiKfcrh9vXpqYgQ0fkqMiNbCYhVw8kqdyJFJR4+TdWRkJBQKBZKSkhz3qVQqJCYmoqysDNHR0dDr9V1eYzAYoNPpur2mSqWCWq3uciMiov5DEATHyHrqUNvsanJ8KADgeBn3W9v1OFn7+fkhOTkZ58+fd9zX1taG4uJixMfHIy0tDUeOHEFjY6Pj8b179yI9Pd21ERMRkc8oqTLiWl0zwjQqJEXbap4mxoUC4Lp1Z061G33++eexYsUKzJw5E6mpqXjzzTcBAHPnzkVAQABiY2OxfPlyrF69Grm5udi+fTuys7PdEjgREXk/+6h6SmIE5O37tpLbk/Wx0lqRopIep5L1Y489BoPBgF/96leoqanB5MmT8eWXXyI4OBgAsGvXLmRmZiIlJQXR0dHYuHEjMjIy3BI4ERF5P/v+avsUOAAM1QVB66/EtbpmVNQ3Izo4QKzwJMOpfdbuxn3WRET9hyAISHt1DwwNLdj9/J0YHt2x9XfxX3Lx1flKvL04BbPHxogYpXu5fJ81ERGRK10wNMHQ0ILIIH8Miwrq8ph93foYi8wAMFkTEZFIOtarwyGTybo85qgI57o1ACZrIiISyeGbrFfb2UfWJ6/Uoc1i9WRYksRkTUREHicIAg5f7GiGcr2IIH/EhathbLWgqKLxhsf7GyZrIiLyuKKKRlQ1tSI62B9DIgNv+pzkuDAA3G8NMFkTEZEIci5UArCNqq9fr7braI7CIjMmayIi8rjrW4zejL3IjM1RmKyJiMjDrFYBuZeqAQBTEyO7fd7ogcHwU8hx3tCIhmazp8KTJCZrIiLyqDPl9ag1mhEbqkZcePeNQPyVCowaGAxBAE5c7t8ncDFZExGRR9lbjE65xXq1XUef8P69bs1kTUREHnW4B+vVdh3HZda6MSLpY7ImIiKPsXRer+5Bsp7Y6QQuCR1l4XFM1kRE5DGnrtahobkN8eEaxIbe/sCm+HANwgP9UNXUiss1Jg9EKE1M1kRE5DGOIzFv0rXsZmQyWadDPWrdFJX0MVkTEZHH9GR/9fUmssiMyZqIiDzDbLEi34n1ajsWmTFZExGRh5y8UoemVgsSIwMRHRzQ49eNHxQKADh1tR4tbRY3RSdtTNZEROQRjv3VToyqASBErcJQXSBa26w4c63BHaFJHpM1ERF5xK2OxLyd5Pj2E7j66bo1kzUREblda5sVR4ptiXZKL5J1xwlctS6MynswWRMRkdsVXq6FyWzB8Kgg6LT+Tr++v2/fYrImIiK3c+yvdnK92m5kjBYBKjlKqoyobmp1ZWhegcmaiIjcrvPhHb2hVMgxPjYUAFDYD0fXTNZERORWzWYLjpb2fr3abmL7fuv+2BzFqWT98ssvQyaTdbnNmzfP8XhRURFmzpwJtVqNhIQEZGVluTpeIiLyMsdKa9HaZsXIGC3CA/16fZ3kfrxurXT2BWlpadixY4fj9wEBto3tZrMZc+bMwcSJE5Gfn4/c3FxkZmZi8ODByMjIcF3ERETkVewtRvsyqgY6RtaFZbWwWgXI5bc+C9uXOJ2sVSoVYmJibrg/OzsbZWVlKCgogFarxdixY3HgwAFs2LCByZqIqB873MfiMrsBIWrEBAegvL4ZFyubMCwqyBXheQWn16wLCwsRExODESNG4Ec/+hFqamxrB3l5eUhNTYVWq3U8NyMjA7m5ud1ey2w2w2QydbkREZHvMLVacKysBjIZMGVI35I10H/3WzuVrKdMmYJ3330Xu3fvxrp163DgwAE89NBDEAQBer0eUVFRXZ6v0+lgMBi6vd7atWuh0Wgct4iIvv9BEhGRdBwtqYHZImD0gGCEaFR9vt5Ex6Ee/avIzKlp8NmzZzt+PW7cOIwePRrDhg3D0aNHIQiC02++cuVK/PKXv3T83mQyMWETEfmQnIuVAHrXYvRmHEVmpbUuuZ63cHrNurOhQ4ciNDQUly5dQnR0NM6ePdvlcYPBAJ1O1+3rVSoVVKq+f9MiIiJpOnzR+SMxb2XcoBAo5DKcLW+AqdUCtZ/CJdeVuj7tsy4tLUVtbS0SEhKQlpaGI0eOoLGx0fH43r17kZ6e3ucgiYjI+zS1tKGwrBZyGZA6JNwl19T4KTEiWguLVcDJK3UuuaY3cCpZ/+IXv8BXX32F4uJi7Nu3Dw8//DCmTp2KlJQUzJ49G7GxsVi+fDlOnTqFrKwsbN++Hc8995y7YiciIgk7UlKDNquAcbEhCA5w3Sxqcj9ct3YqWZeUlGD+/PkYMWIEli1bhpSUFOzYsQNyuRx+fn7YtWsX9Ho9UlJSsGbNGmzcuJHbtoiI+qnenl99O/2xItypNeu//e1vt3w8KSkJ+/fv70s8RETkI3L6cH71rfTHIjP2BiciIpdraDbjmyt1UMplSE1wzXq13VBdELT+Slyra0ZFfbNLry1VTNZERORy+cXVsFgFjB8UgkD/Pm08uoFcLsOEfja6ZrImIiKX6+v51bcz0XGoR/8oMmOyJiIil+tYr450y/UdFeEcWRMRETmvzmjGqav1UClkSBkc5pb3sI+sT16pQ5vF6pb3kBImayIicqncS1UQBCA5LsxtHcYigvwRF66GsdWCoorG27/AyzFZExGRSznOr3bTerVdcpxt1N4f9lszWRMRkUs5istcvL/6eh3NUXy/yIzJmoiIXKa6qRVnyxvgp5Q7isDcxX5cZn/YvsVkTURELpPbPgWeEh+GAJV7T8QaMzAYfgo5zhsa0dBsdut7iY3JmoiIXMaxZcvN69UA4K9UYNTAYAgCcOKyb5/AxWRNREQu4+5mKNfr6BPu2+vWTNZEROQShoYWfKtvhFqlwIRBoR55z47jMms98n5iYbImIiKXONw+BT45IQx+Ss+kl87HZQqC4JH3FAOTNRERuYRjf7Wbt2x1Fh+uQXigHyobW3G5xuSx9/U0JmsiInKJwx5erwYAmUzW6VCPWo+9r6cxWRMRUZ9V1DfjYmUTAv0UGBcb4tH3ntgPisyYrImIqM/sVeCpQ8KhUng2tfSHIjMmayIi6jNPtRi9mfHtleenrtajpc3i8ff3BCZrIiLqM082Q7leiFqFobpAtLZZceZag8ff3xOYrImIqE+u1JpQWm2ENkCJMQM9u15tlxzffgKXj65bM1kTEVGf2KfA04eEQyGXiRJD5/3WvojJmoiI+sSerD25v/p6vr59i8maiIh6TRAER+cyMdar7UbGaBGgkqOkyojqplbR4nCXXifrefPmQSaT4csvv3TcV1RUhJkzZ0KtViMhIQFZWVkuCZKIiKSprNqEK7UmhGpUGBUTLFocSoUc42NDAQCFPji67lWy3rx5M0ymrm3dzGYz5syZg8jISOTn52PVqlXIzMzEnj17XBIoERFJT87FSgC29Wq5SOvVdhPb91v7YnMUpbMvKCkpwerVq3Ho0CHExcU57s/OzkZZWRkKCgqg1WoxduxYHDhwABs2bEBGRoZLgyYiImkQc3/19ZJ9eN3aqZG11WrFkiVLsGbNGgwaNKjLY3l5eUhNTYVWq3Xcl5GRgdzc3G6vZzabYTKZutyIiMg7CILQaX91pMjRdIysC8tqYbX61glcTiXr9evXIygoCMuWLbvhMb1ej6ioqC736XQ6GAyGbq+3du1aaDQaxy0iQvxvZkRE1DOXKptQUd+C8EA/DI8KEjscDAhRIzrYH/XNbbhY2SR2OC7V42R95swZrFu3Du+8885NH+/NOaIrV66E0Wh03Kqqqpy+BhERiaPjSEzx16vtkuPam6P42FR4j5N1bm4uysvLER8fD6VSCaXSttx933334fHHH0d0dDT0en2X1xgMBuh0um6vqVKpoFaru9yIiMg7SGm92m6i41AP3yoy63GB2bx58zB58uQu940bNw6bNm3C7NmzUVBQgHXr1qGxsRFBQbbpkL179yI9Pd21ERMRkehs+6urAYi7v/p6jiKz0lpR43C1Hifr0NBQhIaG3nB/QkICBg0ahKioKMTGxmL58uVYvXo1cnNzsX37dmRnZ7syXiIikoDz+kZUNrZAp/XHUJ3469V24waFQCGX4Wx5A0ytFqj9FGKH5BIu62Dm5+eHXbt2Qa/XIyUlBWvWrMHGjRu5bYuIyAd1rFdHQCaTxno1AGj8lBgRrYXFKuCbq3Vih+MyTu+z7uz6orKkpCTs37+/L5ckIiIvIMX1arvk+FCcuVaPY6U1SE0IFzscl2BvcCIicorVKo1+4N3xxRO4mKyJiMgp5yoaUGM0IyY4AAkRGrHDuYEvFpkxWRMRkVMcU+BDpbVebTdUFwStvxLX6ppRUd8sdjguwWRNREROcbQYleB6NQDI5TJM8LHRNZM1ERH1mMUqIFfC69V2Ex2HevhGcxQmayIi6rEz1+pR39yG2FA14sKlt15tl2zvZMaRNRER9Ted16ulzD6yPnmlDm0Wq7jBuACTNRER9ZjU16vtIoL8EReuhrHVgqKKRrHD6TMmayIi6pE2ixV5l6TXD7w7vnQCF5M1ERH1yDdX69HY0obBERoMDJX+KYkdzVG8v8iMyZqIiHpEyi1Gb8Z+XKYvbN9isiYioh6RcovRmxkzMBh+CjnOGxrR0GwWO5w+YbImIqLbMlusyC9uX6/2kpG1v1KBUQODIQjAicvefQIXkzUREd3Wict1MLZakKgLRFRwgNjh9FhHn3DvXrdmsiYiots67CVbtq7naI7i5RXhTNZERHRb3tIM5Xqdj8sUBEHcYPqAyZqI8M7BC3j+b8fRbLaIHQpJUEubBUdKbOvVU7xsZB0frkF4oB8qG1txucYkdji9xmRN1M9drTXhvz4/h4+OXcFfv7okdjgkQYVldWg2WzEiOgiRQf5ih+MUmUzW6VCPWlFj6Qsma6J+7r3DJbBYbdOD/73vPMrrfOP8X3Idb9tffT3HVLgX77dmsibqx0ytFmzPKwUAjIzRwthqwWvZZ0SOiqQm52IlAO9br7azF5l583GZTNZE/djHx6+g1mjGhEEh+POTk+GnlOPj41dxpH0/LVGz2YKC0lrIZED6EO9M1uMHhQIATl2tR0ubd9ZlMFkT9VOCIGDL18UAgGXThyAuXIPMOxMBAC9/csoxNU79W0FpDVrbrBgZE4ywQD+xw+mVELUKQ3WBaG2z4sy1BrHD6RUma6J+KudCFc5VNECn9cf94wYAAJ6ZMRQDQgLwzZV6/ONImcgRkhQc9vL1arvk+PYTuLy0OYpTyfq1117DyJEjodFoEBERgblz56KoqMjxeFFREWbOnAm1Wo2EhARkZWW5PGAico2s9lH14vTB8FPafhRo/JT41f2jAAC//+Ic6kze3U+Z+i7Hy/qBd6fzfmtv5FSyHjp0KN566y2cOnUKe/fuhUKhwJw5cwAAZrMZc+bMQWRkJPLz87Fq1SpkZmZiz549bgmciHqvtMqIPWcr4KeQ47H0+C6PPTh+ANISwlHd1Io/ffmtSBGSFJhaLTheVgu5DEgbEi52OH3i7du3lM48ef78+V1+/8orr2D8+PGoqKhAbm4uysrKUFBQAK1Wi7Fjx+LAgQPYsGEDMjIyXBo0EfXN1pxiCALw4ISB0Gm77puVyWRYPXc0HtzwFd7NKcaitDgMj9aKFCmJ6UhJNcwWAeNiQxCiVokdTp+MjNEiQCVHSZUR1U2tCPey9fder1mbTCZs2bIFSUlJ0Ol0yMvLQ2pqKrTajn/UGRkZyM3NdUmgROQajS1t+Hu+bT162fSEmz5nzMAQLEqLR5tVwCufnvbqNo3Ue97aYvRmlAo5xseGAgAKvXB07XSy/vTTTxEUFITAwEDs2rUL2dnZkMvl0Ov1iIqK6vJcnU4Hg8HQ7bXMZjNMJlOXGxG51z+PXkZDSxtSE8IwNjak2+f97N4kBAco8e9vK7H7dIUHIySpyPHSwzu6M9G+39oLi8ycTtYzZ87E8ePHcfDgQYwaNQqLFi2C2Wzu1TfvtWvXQqPROG4REb7xF4JIqqxWAVsPFQOwbde6lfBAP7xwzwgAwG92nWbf8H6msaUNJy7XQSGXIdXL16vtkr143drpZB0YGIhhw4bhjjvuwN/+9jecPHkS2dnZiI6Ohl6v7/Jcg8EAnU7X7bVWrlwJo9HouFVVVTn/f0BEPXbgWwMuVjZhYEgA7h0dfdvnL54yGCOig1BWbWLf8H4mv7gaFqttvTrI36nyJsmyj6wLy2ph9bI+An3eZy0IApRKJdLS0nDkyBE0NjY6Htu7dy/S09O7fa1KpYJare5yIyL32dy+XeuJqQlQKm7/z1+pkOPlB8cAAN7aex7X6rhU1V8c9qH1arsBIWpEB/ujvrkNFyubxA7HKU4l61/+8pfIyclBSUkJ8vLysHDhQkRGRmL69OmYPXs2YmNjsXz5cpw6dQpZWVnYvn07nnvuOXfFTkROOK9vxMEiAwJUcixKi+vx66YNi8R3x8bAZLbgteyzboyQpMTX1qvtkuPam6N42VS4U8m6tLQU8+fPx4gRI/Dwww/D398fe/bsQUhICPz8/LBr1y7o9XqkpKRgzZo12LhxI7dtEUmEfa36e8mxCNU4t23lpftHwV8px47jV5HPvuE+r77ZjG+u1EGlkGFyQpjY4biUfSr8uJcd6uHUQsT27dtv+XhSUhL279/fl3iIyA3qTGb8s+AyAGDptFsXlt1MXLgGmXcNxZt7vsXLO09h54/vgEIuc3WYJBF5F6thFYBJg0Kh8fON9Wo7R3MULzsuk73BifqBfxwpg7HVgunDIpAU07sGJ8/cNRQDQwJw6mo9/pbPvuG+zFdajN7M+EEhkMuAs+UNMLV6zw4HJmsiH2exCthi367Vi1G1ndpPgZfm2PqGv/6vc6gzsm+4r7I3Q5niY+vVgK3/fVJMMCxWAd9crRM7nB5jsibycV+eqcDlGhPiwzWYOTLq9i+4hTnjBiB9iK1v+Povi27/AvI6tcZWnCmvh59CjpTBvrVebZfshc1RmKyJfNzmr237o5dMS+jzOrNMJsPqB8dALgPeO1yCogrvPBuYunf4YjUEwVaIFaBSiB2OW3jjCVxM1kQ+7My1ehy+WI1APwXmTx7kkmuOHhiMx9LjYbEKWPPJKfYN9zGHfXTLVmf2TmbHvajIjMmayIdtaW+C8kjKIAQHuO7UpJ/dk4QQtQpfn6/CF6fYN9yX+NLhHd0ZqguC1l+Jq3XNqKhvFjucHmGyJvJR1U2t+Pj4FQC2KXBXCgv0w8/utfUN/y37hvuMqsYWnKtogL9S7ljX9UVyuQwTvGwLF5M1kY/anleKljYrZibpkKgLcvn1H0uLx8gYLS7XmPDngxddfn3yvMMXbQ1vUgaHwV/pm+vVdo791l7SHIXJmsgHmS1WvJdTAgBYepvTtXpLqZDj1w+OBgD8z/4LuFrLvuHeLudiJQDfXq+2s88ceMu6NZM1kQ/6/JtylNc3Y6guEHcOj3Tb+0wbGon7x9n6hv+OfcO9Xn9Yr7azj6xPXqlDm8UqbjA9wGRN5IPs27WWTh8Cmcy9bUHtfcM/KbyKvEvsG+6t9PXNuGBoglqlwPhBoWKH43YRQf6IC1fD2GpBUUXj7V8gMiZrIh9TWFaLgtJaaAOU+P6kWLe/36AwDZ6+aygAYPXOU7B42TnBZGNvMTo5IQx+yv6RGrzpBK7+8SdC1I/YW4suTI3z2CEMT981FLGhapy5Vo//zS/1yHuSax324X7g3elojiL9IjMmayIfoq9vxqcnrkIuA56cmuCx91X7KfDS/e19w79g33Bv5Fiv7gfFZXYTHW1Ha0WNoyeYrIl8yLbcUpgtAu4ZHY24cI1H3/v+cTFIHxKOGqOZfcO9zLU6E4qrjAjyV2JcbIjY4XjMmIHB8FPIcd7QiIZmaX/BZLIm8hEtbRZsy23frtWH07V6SyaT4eW5HX3Dz5Wzb7i3sI+qUxPCoFT0n7Tgr1Rg1MBgCAJw4rK0T+DqP38qRD7u08JrqGxsxcgYLaYkhosSw6gBwXg8fXC/7RvurcV1/WnL1vWSHZ3MpL1uzWRN5AMEoePM6uUe2K51Ky/cMwKhGhUOXajCF6fKRYvDk4ytbfjRtgKMXf0F3thd5HXtV3Mch3e4b0++VDmao0i8IpzJmsgHHC2pwckrdQjTqDB34kBRYwkL9MPP7rH1Df/Np2e8LnE5S1/fjEc3Hcauk9dgMlvw5p5vcfcbB7D7dIVXzCyUVRtxucaE4AAlRg8MFjscj+t8XKaU/7yYrIl8wOb207UeS4+XxBnEi9r7hl+pNeEdH+4bfuZaPeb999c4eaUO8eEa/GnhREe/9B+8ewTLt+SjpKpJ7DBvyT6qThsS0efzzr1RfLgG4YF+qGxsxeUa6bbMZbIm8nJXa034/FQ5FHIZnpiSIHY4AGx9w1+eOwYA8D/7z+OKD/YN339Oj/lv5+BqXTNSBofho2en4aGJsfj0uTuw+sHR0Porse+cAfesP4g3/nUOplZpzjAc7sfr1YCtMLLjUI9aUWO5FSZrIi/33uESWKwCvjs2BjEhAWKH4zAlMQJzxg9As9mK3312RuxwXOq9wyVYviUfjS1teHDCQGx7Kh0RQf4AbF9Ulk0fgj0/vwsPT4pFa5sVb+49j3vWS29qXBCETuvV/TNZA52mwiW835rJmsiLmVot2J5n6xi2zE2na/XFS/ePQoBKjk9PXHN0yPJmFquA33x6Gqs+/gZWAXhu1jD86dGJN116iNIG4I0FE/GPp6dKdmq8pMqIa3XNCNOoMDJGK3Y4orEXmUn5uEwmayIv9vHxK6g1mjFhUAgmtf/AkZLYUDWeuWsYAODlnae84nSj7hhb25D53lH89atLUClkeH3+BPzs3iTIb7POm5oQjk+fuwMvS3Bq3D6qTh8Scdv/D19mP7jk1NV6tLZJ8++oU8n61VdfxaRJkxAUFIQBAwZg2bJlMBgMXZ5TVFSEmTNnQq1WIyEhAVlZWS4NmIhsBEHAlvbCsmUib9e6lcy7EhEbqsbZ8gZszy8TO5xeqahvxoJNOfjyTAWCA5R4d3k6HkkZ1OPXKxVyLJ0+BHt/PgPfnzSoy9T4v06VizY13p/3V3cWolZhqC4QrW1WnLlWL3Y4N+VUsv7qq6/wwgsv4MiRI9ixYwdOnz6NRx991PG42WzGnDlzEBkZifz8fKxatQqZmZnYs2ePywMn6u9yLlThXEUDdFp/3D9ugNjhdCtApcDKOba+4ev+dQ61xlaRI3KOveL7myv1iA/X4KMfTe91ctNp/bFuwQT839NTMWpAMC7XmPDD945i+ZZ8FFd6dmq8y3p1P0/WAJAcbzuBS6rNUZw6kuezzz7r8vs//vGPmDZtGurq6hASEoLs7GyUlZWhoKAAWq0WY8eOxYEDB7BhwwZkZGS4NHCi/i6rfVS9OH2w5I80/O7YGExNjEDOxSq8sbsIrzw0VuyQemTfOT1+vK0ATa0WpAwOwztPpDgKyfpickI4PvnxdLx/uATrdhdh3zkDvj5/EE/flYhnZgyD2s/92+8uGJpgaGhBZJAfhkcFuf39pG5iXCj+7+hlyTZH6dO/8MrKSgQEBCAwMBAAkJeXh9TUVGi1HYUKGRkZyM3NvenrzWYzTCZTlxuRMwRBwLbcEnxYcFnsUDyqtMqIPWcr4KeQ47H0eLHDuS2ZTIbVc0dDLgPeP1yCs+XSnGrs7L2cYqzYko+mVgvmXlfx7QqOqfGftU+NW2xT43e/4Zmpccd6dWKEZJdQPEnq27d6naxbWlrwyiuvYMmSJVAqbQN0vV6PqKioLs/T6XQ3rGvbrV27FhqNxnGLiOBUDDnnzT3nsfKjb/DC3wvxdy9dD+2NrTnFEATggQkDoNO6LoG408iYYDwxZTCsArBm52lJbWHqzGIV8Monp7FqxylYBeD/zRqGPy28ecW3K1w/NX6l1jY1vszNU+OH++GRmLcyMkaLAJUcJVVGVDdJb6mmV8naYrFg8eLFAIDXX3/dcb+z//hWrlwJo9HouFVVef/WDvKc7XmlWP9lEeyDgpUfn0SuD2wPup3GljbHF5PlEtyudSvP3zMCYRoVci5WIfsb6fUNb2qxVXxnfW2r+F43fwJeuDfJIyNP+9T4mrljoA1QYv85A+5dfxDr3FA1LgiCYysd16ttlAo5xseGAgAKJTi6djpZW61WLF26FGfPnsUXX3yBoKCOtY7o6Gjo9fouzzcYDNDpdDe9lkqlglqt7nIj6ondpyuw8qOTAIDfPDQWy6YnwGwR8My2ApRVG0WOzr3+efQyGlrakJoQhrFedvZwqMYPP7s3CQCwdtcZ0bcudda54jtErcJ7K9LxfScqvl1BqZBjybQE7P3ZDDySYpsa39A+Nf6FC6fGv9U3oqqpFVFafyRGBrrkmr5gon2/tQSLzJxK1oIg4KmnnsLhw4exe/duhId3PYYvLS0NR44cQWNjo+O+vXv3Ij093TXREgE4WlKNH39QYJuizBiOxVMGY+X9o3DnCB2qm1qxYmu+5A+S7y2rVcDW9tO1xDiz2hUWpcU7pns3HbwgdjgAgNNXbRXfp67WY3CEBh8+Ow1TRJwe1mn98fr8rlPjmS6cGu+8ZYvr1R2SJbxu7VSyfvrpp/HJJ59g27ZtAIDy8nKUl5fDYrF9O549ezZiY2OxfPlynDp1CllZWdi+fTuee+4510dO/dJ5fQNWbD2CljYrFqbG4fm7hwOwjUjeeiwZw6KCUFTRiP+3/ZjXni18Kwe+NeBiZRMGhgTgvjHRYofTKwq5DC8/OBoAsHH/BVyuEXcmZN9ZPea/fQjX6poxeXAYPnp2OobqpFEd7a6p8RyuV9+UfWRdWFYLq8R+fjiVrN955x1UVlYiPT0dAwYMcNzKymzrZ35+fti1axf0ej1SUlKwZs0abNy4kdu2yCXK65qxJCsftUYz7h4Vhd/OG9tlVBAcoMJfl0xGqEaFfecMeC3bt/pRAx2naz0xNQFKhbS3a91KemIEHhg/AC1tVvzus7OixfFuTjFWbLVVfD80cSDefyod4YF+osVzM66eGrdaBRy+xPXqmxkQokZ0sD/qm9tw0cP73m/H6Wnwm90SEhIcz0lKSsL+/fvR3NyMkpISrFixwtUxUz9UZzJj6eY8XKk1YVJ8KDYsmnTTZDU4IhAbH0+BUi7Dn/99CX/LLxUhWvc4r2/EwSIDAlRyLEqLEzucPrP3Dd918ppjpOcpFquANZ+cwq/tFd8Zw/HHbnp8S4V9avyfz0zF6E5T40s35+OSE4nlbHkDao1mDAwJQHy4xo0Re6fkOFtzFKntt/ber+bUbzSbLfjhu0dwtrwBQ3WB+OuS1Fs2jZg6NAK/mWdruvGfH3/jMxXi9rXq7yXHIlQjrdFfbwwMVePZGba+4Ws+8VzfcFvF9xFs/rq4o+L7nhFes3abMjgcOztNjR8oMuC+9Qfx+hc9mxq376+ewvXqm7JPhR+X2KEeTNYkaRargBf+fhy5l6oRpfXH1uVpCOvBNOWitHgsnz4EZouAp98/itIq764QrzOZ8c/2xi/eWlh2Mz+8MxGDwtr7hue5fxakvM5e8a0XreLbFexT4/t+3jE1/tY+29T459/cemqc69W35miOIrHjMpmsSbIEwTZV+dnJcmj9ldi6PA2Dwno+bffS/SNx1wgdaoxmr68Q/8eRMhhbLZg+LAJJPnSUYYBKgf9s7xv++r+KUOPGZhSnrtY5Kr4TIjT4SOSKb1eIDLpxavzp97ufGrdYBeRyvfqWxg8KgVxmWy6Q0tZCJmuSrP/ZfwHv5pTATyHHO09OxqgBwU69XqmQY0N7hfi3eu+tELdYBWzx8u1at3LfmBhMGxqBOpMZb+wucst77D1bgflv56C8vhmpCWH48NnpSJRIxbcrpAwOxyfP3YFXHrr11Pjpq/VoaG5DXLjaqS++/YnGT4mkmGBYrAK+uVondjgOTNYkSf84UoY/fHEOMhmw/tGJvR4FXF8h/rvPvK9C/MszFbhcY0J8uAazRkbd/gVeRiaTYfWDY6CQy7Att8TlRxRu+foSntp6BEYJV3y7gkIuw5NTbVPj87uZGs+5WAmAU+C3kyzB5ihM1iQ5+87q8eKHtu5kqx8YjTnj+3b84+CIQLy92FYh/pevvK9CfPPXlwAAS6YlQCH3zYKgpBito2/4yztPuaRTl8Uq4OWdp/DyJ6dhFYCftFd8+yulW/HtCpFB/vjD/An45zPTukyNL9mcj89O2lq8cgr81uzr1lKqCGeyJkk5VlqDZ7cVwGIV8OyMoVjqot7XUxIj8NtOFeKHvaRC/My1ehy+WI1APwXmT/a+QihnPH+3rW947qVqR1LpraaWNvzw3SPYcshW8f3Gggl43osqvl0hZXAYPnnuDvzmoTEIDlDiYJHBkXy8fa3e3eydzI5LqMiMyZok46KhEcu35MNktuD7kwbhP+5Lcun1F6bFY8UdtgrxZ7ykQnxLexOUR1IGIThAJW4wbhaiUeHn99n7hp/udXFPeV0z5r+dgz1n9QjVqPD+inQ8PMm3v+h0RyGX4YmpCdj78xlY0P5lb0JcKAaE8ByGWxmqC4LWX4mrdc2oqG8WOxwATNYkEfqGZjyZlYcaoxkzknR47fvj3DIKeun+UZiR1FEhXi/hCvHqplZ8fPwKANsUeH+wMDUeowcE42pdM94+4HzfcHvF9+lr9orv6UjnKBKRQf74/SMT8PWLs7B1WarY4UieXC7DBIlt4WKyJtE1NJuxNCsfl2tMmDAoBP/z+CSo3NRKUyGX4c1FyRjuBRXi2/NK0dJmxcwknU9VLt+KQi7Dy3PHAADePuBc3/A9ZzoqvtMSwvHRs9MxhCdKdREbqvaJhjqeILV1ayZrElVLmwVPv38Up6/VY0hkILKWpkLjp3Tre9oqxFMRplFh/zkDXpVghbjZYsV7OSUA4LJ1e2+RNiQcD04YiJY2a4//bDZ/fQk/eNdW8f295Fi891TPmucQdUdqFeFM1iQaq1XAz/9xAl+fr4JO6493l6chIsjfI+8dH6HB24tToFLI8NevLuF/PdA9yxmff1OO8vpmDNUF4s7hkWKH43G/+u5IqFUKfHayHIcuVHb7PHvF95r2iu+f3j0cbyyY4PMV3+R+9pH1ySt1HmuFeytM1iQKQRDw211n8EnhVQT5K7F5aSriPHyoQPp1FeKePkziVuzbtZZOH9KvKpjtbH3DhwIA1uw8fdMflo0tbfhBe8W3n0KO9Y9OwE/v7l8V3+Q+EUH+iAtXw9hqQVFFo9jhMFmTOP7874vI+voSVAoZNj2RgrGxIaLE8WhqPJ66YwjarAKe2XYUJVXiH4tXWFaLgtJaaAOUeDg5VuxwRPODOxMRF67GuYoGbMvtOvNxrc6E+W/nYK+94vupdHwvuX9WfJP7SOkELiZr8riPjl3Gq+1nGL8+fwKmDxN3mvdX94/CzCQdao1mrNh6RPQKcXtr0YWpcQj0d+/6vZQFqBRYef9oAMAbu4tQ3d43/JsrtorvM+11Dh89Ox1pQ8LFDJV8VEeRmfjr1kzW5FEHiwz4j3+cAAD855xReGii+CNHe4X4iOggnNc34rkPjom2RqWvb8anJ65CLgOenJogSgxSct+YaNwxLBJ1JjPW/escvjxdgQWbclBR34K0IeH48JlprPgmt5noKDKrFTUOgMmaPOjE5Vo8/f5RtFkF/PDORDz1nUSxQ3LQBqjwlydTER7ohwNFBsfI39O25ZbCbBFw96hoj6/hS5Gtb/hoKOQyfJBXih++16niewUrvsm9xgwMhp9CjvOGRtFP7WOyJo8ormzCss35MLZaMG/iQLw4e6TYId2gc4V41teXPHK+cmctbRZsy7Vt11rWz7Zr3crwaC2enDoYggBYBVtbUlZ8kyf4KxUYNTAYggCcuCzuCVxM1uR2hoYWLNmch6qmVnxneCR+/8gEyCV6IEXakHCsnTcOALDKwxXinxZeQ2VjK0bGaDElkWuwnb1wzwgsnz4Eby9OwU/uHs6Kb/KYZEcnM3HXrZmsya2aWtqwfEs+SqqMGBsbjI2LU+CnlPZfuwWpcfjBdzoqxIsr3V8hLggdZ1Yvm57AZHQdbYAKv35wNGaPjRE7FOpn7M1RxK4Il/ZPTfJqrW1WPP3+UZy8Uof4cA02L01DkJdUN7/43VGYNTKqvULc/T3Ej5bU4OSVOoRpVJIouiMim85tR11xdGtvMVmTW1itAn75zxP497eViAj0w7vL06DTeqY7mSso5DL8aeFEjIgOwgVDE37s5grxze2naz2WHo8AFddiiaQiPlyD8EA/VDa24nKNSbQ4mKzJLf7ri7P46NgVaPwU2LwsFQleuL1G295DPDzQDweLDFjrph7iV2tN+PxUue04wykJbnkPIuodmUzmGF0fE3EqnMmaXO6vX13CpgMXoZTLsHFxCsYPChU7pF6LC9dg0xO2CvHNXxfjg1zXV4i/d7gEFquA746NQUxIgMuvT0R945gKF3G/tVPJ+sMPP0RGRgZCQkIgk8nQ1tbW5fGioiLMnDkTarUaCQkJyMrKcmmwJH07C6/iN5+eBgD8/pHxuGuETuSI+i41IRyvfs9WIf7rHd/c8mAJZ5laLY4tYtyuRSRNjhO4ROxk5lSyNhqNmDVrFl588cUbHjObzZgzZw4iIyORn5+PVatWITMzE3v27HFZsCRth85X4md/Pw4AePG7I/HwJN/p1Tx/chx+eGci2qwCnt1W4LIK8Y+PX0Gt0YwJg0Iwqf0HAhFJi3128NTVerS2idPd0KnS3MWLFwMA9u/ff8Nj2dnZKCsrQ0FBAbRaLcaOHYsDBw5gw4YNyMjIcEmwJF2nrtbhh+8dhdkiYNn0BGTeKZ3uZK7yy9kjcUHfiD1n9VixNR8fPjsdIWpVr68nCAK2tBeWLeV2LSLJClGrMFQXiAuGJpy5Vo8J7dPinuSyNeu8vDykpqZCq9U67svIyEBubm63rzGbzTCZTF1u5H3Kqo1YujkfjS1tmDN+AFbNGe2TiUchl+FPi5KRFK3FBUMTntvetwrxnAtVOFfRAJ3WH3PGDXRhpETkasnxthO4xGqO4rJkrdfrERUV1eU+nU4Hg8HQ7WvWrl0LjUbjuEVERLgqHPKQqsYWPJmVB0NDC6YmRuCNBdLtTuYKQf5K/GXJZES0V4j/dlfvK8Sz2kfVi9MHS75RDFF/13m/tRhc9hOiN5vFV65cCaPR6LhVVXmutSP1nbG1Dcu3HsGlyiaMGhCMTU+m9It+zXHhGrzdXiG+5VCxo5+3M0qrjNhztgJ+CjkeS493Q5RE5Eo+k6yjo6Oh1+u73GcwGKDTdV8NrFKpoFaru9z6k9Y2K/acqcDesxW4XGMUtTuOs8wWK360rQCFZbWIDVVj67JUBAf0fv3W23SuEF+945TTFeJbc4ohCMADEwZ4VbMYov5qZIwWASo5iquMjrPVPcllvR/T0tKwbt06NDY2IigoCACwd+9epKenu+otfIa+oRkf5JZiW24pDA0tjvuD/JUYHh2EpGgtRkRrkRSjxfDoIOiC/CW1BiwIAn714UnsO2dAmEaFd1ekISq4/+0Pnj85Duf1jdh08CKeeb8AH/9oeo/OVm5sacPf88sAAMu5XYvIKygVcoyPDUVecTUKy2oxc2TU7V/kyvd35snV1dUoLS3F+fPnAQCFhYVQKBQYNmwYZs+ejdjYWCxfvhyrV69Gbm4utm/fjuzsbLcE7o2Ol9Viy9eXsOvkNZgttlH0iOggRAT641t9AyobW3GstPaGg87DNCpH8nb8N0qLEI04I9l1/yrC/x29DLVKgaylqRiqCxIlDin4xeyRuGBoxJdnbBXiH/WgQvyfRy+joaUNqQlhGBsb4qFIiaivJsbbkvWx0hppJ+udO3di2bJljt9PnjwZALBv3z7MmDEDu3btQmZmJlJSUhAdHY2NGzf2+21brW1WfHbyGjYfKkZh+1qHXAbcOzoaS6cnYGpihGPUXNnYgqKKBhSVN+BcRaPj1zVGM3IvVSP3UnWXa8cEB3SMxGO0SIq2jcQ1fu47LOPdnGK8te88FHIZ/vvxZEeFZH+lkMvwx4XJeGTjIZwtb8CPPyjA5qWpUCpuvsJktQrY2n661tJpHFUTeZNkEduOygQJLZSaTCZoNBoYjUavX7/W1zdjW24pPsjrmOoOUauwMDUOi6cMRly4pkfXEQQB5fXNOFfegKKKBpwrtyXxb/UNaDbffNtQfLgGI6K1GBEd5BiNJ+oC+1z89dnJa/jRBwUQBFt3sgWT4/p0PV9SVm3EvP/+GlVNrVg6LQEvzx1z0+ftO6fHss35GBgSgIO/mNltUici6blWZ8LU3+1FcIASx399r0t2vvQ073nHeYVe5FhpDbYeKu4y1Z0UrcXS6QmYNzEWaj/nEqZMJsOAEDUGhKgxI6lj2sViFXC5xtiRxCsaUVTegIuVjSitNqK02ogvz1Q4nq+QyzAkMrDTengQhkdrMThc06OEcfhiFX76v8chCMB/3JfERH0dew/xx/6ciy2HijEsKgiLpwy+4Xn207WemJrARE3kZQaEqBEd7I/qplZcqTX1eNDlChxZu0B3U933jI7Gkmldp7rdzWyxoriyCecc0+kNKKpoRHFVE272J+2nlGOYLqjTengQhkdpERuqdnxrPFtej/lv56ChuQ1PTh2MNXPHSKrgTUr+7+hl/PwfhVDIZXhveRqmDYt0PHZe34i73ziAAJUcOS9mICzQT8RIiag3LhoaMTBU7bKjbDmy9gD7VPe23FJUNvZ+qtuVVAo5hkdrMTxaC4zvuL/ZbMF5fWP7KNyWyIsqGnGl1oTT1+px+lp9l+sE+ikwPNq2Dr6/SI+G5jZ8d2wMVj/IRH0rj6QMwrf6Bmw6cBHPbOtaIW5fq/5eciwTNZGXShSpoJYj6144VlqDLYeK8Vmnqe6RMVosmda7qW4xNTSb8a2+sdMo3LYubv/yYZc2JBzvLk9z2bdJX2axCsh87yi+PFOBRF0gPnp2OgBg6u/2wNhqwRc/vRNJMdrbXIWI+gOOrF2spc2Cz05ew5avi1F4uQ6Abar7vjHRWDptCKYkhnvliFMboMKk+DBMuq6qu7qp1VaNXtGAmiYzlk5PYKLuIVuF+MQuFeLTh0XC2GrBtKERTNRE5DSOrG9DX9+M93NL8UFuCSobbV1rQtQqLEyLwxNTBmNQmOenusk7XK6xVYhXNrZCLgOsAvDnJyfjntHRYodGRBLBkXUfCIKAY2W12PK1baq7zdox1b10WgIe8rKpbhLHoDBbhfiid3LRarEiPlyDWR5upEBEvoHJupOWNgt2nbiGrYe6TnXPHhODpdMTkD7EO6e6STwpg8Pxh/nj8dKHJ/HTu4dD4cMnkhGR+3AaHEBFfTO2HS7BB3mljqnuUI0KC1PjsXhKPKe6qc8EQeAXPSK6AafBb0MQBBSU1mLroRunupdNT8DcCZzqJtdhoiaivuh3ydo+1b3lUDFOdJrq/u7YGCyZxqluIiKSnn6TrDnVTURE3sqnk7V9qnvLoWJk32Sq+6GJsdw7TEREkuezydpiFbBgUw6OltQA6JjqXjotAWmc6iYiIi/is8laIZchNlSNC4ZGLEqLx+IpgxEbKo1GK0RERM7w6a1b+oZmBAeoONVNRESSxK1bAKK0AWKHQERE1GdysQMgIiKiW2OyJiIikjgmayIiIoljsiYiIpI4JmsiIiKJY7ImIiKSOElt3bJv+TaZTCJHQkRE5H72fHe7lieSStbNzc0AgIiICJEjISIi8pzm5mZoNN0fKCWpDmZWqxW1tbUICAhwSe9uk8mEiIgIVFVVuaQjWn/Ez9A1+Dn2HT/DvuNn2Heu/gwFQUBzczNCQ0Mhl3e/Mi2pkbVcLkd4eLjLr6tWq/kXs4/4GboGP8e+42fYd/wM+86Vn+GtRtR2LDAjIiKSOCZrIiIiifPpZK1UKrF69WoolZKa7fcq/Axdg59j3/Ez7Dt+hn0n1mcoqQIzIiIiupFPj6yJiIh8AZM1ERGRxDFZExERSRyTNRERkcT5dLJ+7bXXMHDgQGg0GsydOxfl5eVih+Q1Xn31VUyaNAlBQUEYMGAAli1bBoPBIHZYXm3evHmQyWT48ssvxQ7F6xQUFCAjIwMajQZhYWFYsGCB2CF5ndraWqxYsQIxMTEICgrCtGnTcPDgQbHDkqwPP/wQGRkZCAkJgUwmQ1tbW5fHi4qKMHPmTKjVaiQkJCArK8ut8fhsst68eTN++9vf4q233sKhQ4dQX1+PRx99VOywvMZXX32FF154AUeOHMGOHTtw+vRpfn59sHnzZh5Q00tnzpzBrFmzcMcddyA/Px+HDh3CwoULxQ7L67zwwgvIz8/Hxx9/jMLCQqSlpeGBBx5ATU2N2KFJktFoxKxZs/Diiy/e8JjZbMacOXMQGRmJ/Px8rFq1CpmZmdizZ4/7AhJ8VHJysvDSSy85fn/hwgUBgHDs2DHxgvJihw4dEgAItbW1YofidYqLi4W4uDihrKxMACDs3r1b7JC8ysMPPywsXbpU7DC83ujRo4X169c7fl9fXy8AEHJycsQLygvs27dPACCYzWbHfTt27BD8/f2F+vp6x31PPPGE8NBDD7ktDp8cWbe0tKCwsBCzZs1y3JeYmIiEhATk5uaKGJn3qqysREBAAAIDA8UOxatYrVYsWbIEa9aswaBBg8QOx+tYLBZ8/vnnGDJkCGbMmIHo6Gjcc889OHHihNiheZ2pU6dix44dqKyshMViQVZWFgYOHIixY8eKHZrXycvLQ2pqKrRareO+jIwMt+YXn0zWVVVVsFqtiIqK6nK/TqeDXq8XKSrv1dLSgldeeQVLlixh5yMnrV+/HkFBQVi2bJnYoXglg8EAo9GIP/zhD1i0aBGys7MRFxeHjIwM1NXViR2eV9mwYQMiIyOh0+ng7++P3/3ud9i1axeCgoLEDs3r6PX6m+YXd9b1+GSyFtiUzWUsFgsWL14MAHj99ddFjsa7nDlzBuvWrcM777wjdihey2q1AgAeeeQRZGZmYtKkSdi0aRNkMhl27twpcnTe5U9/+hO+/fZb7N69G/n5+Vi0aBHmzp2LqqoqsUPzOmLkGJ9M1pGRkZDL5TeMog0Gww3fhqh7VqsVS5cuxdmzZ/HFF1/wG7iTcnNzUV5ejvj4eCiVSsesxH333YfHH39c5Oi8Q2RkJBQKBZKSkhz3qVQqJCYmoqysTMTIvIvJZMKvf/1rvPnmm7j77ruRnJyM9evXIyAgAB988IHY4Xmd6Ojom+YXnU7ntvf0yTlNf39/TJgwAfv27UNGRgYA4NKlSyguLkZ6errI0XkHQRDw1FNP4fDhw/j3v//tlnPGfd28efMwefLkLveNGzcOmzZtwuzZs0WKyrv4+fkhOTkZ58+fd9zX1taG4uJixMfHixiZdzGbzTCbzVAoFF3ul8vljtkL6rm0tDSsW7cOjY2NjkHM3r173ZpffDJZA8CPf/xj/OQnP0FKSgoSExPx/PPP4zvf+Q4mTpwodmhe4emnn8Ynn3yCXbt2AYBjj7pOp7vhHzzdXGhoKEJDQ2+4PyEhgcVmTnj++eexYsUKzJw5E6mpqXjzzTcBAHPnzhU5Mu8RHByM6dOn44UXXsCbb76JiIgIbNmyBZcuXcK9994rdniSVF1djdLSUscXxcLCQigUCgwbNgyzZ89GbGwsli9fjtWrVyM3Nxfbt29Hdna2+wJyW525BLz66qtCTEyMEBAQIDzwwAPCtWvXxA7JawC46e3SpUtih+bVwK1bvfLHP/5RiIuLE4KCgoQZM2YIJ0+eFDskr3P58mVh4cKFQlRUlBAYGChMnjxZ2LVrl9hhSdbmzZtv+jNw3759giAIwtmzZ4W77rpL8Pf3F+Lj44W//OUvbo2HR2QSERFJnE8WmBEREfkSJmsiIiKJY7ImIiKSOCZrIiIiiWOyJiIikjgmayIiIoljsiYiIpI4JmsiIiKJY7ImIiKSOCZrIiIiiWOyJiIikrj/D1Iq0GFhWliyAAAAAElFTkSuQmCC\",\n \"text/plain\": [\n@@ -1316,34 +1316,34 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 20,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:12.781174Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:12.780673Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:12.785948Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:12.785422Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:38.672116Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:38.671652Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:38.718818Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:38.702779Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"%config InlineBackend.figure_formats = ['png2x']\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 21,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:12.787925Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:12.787455Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:12.906800Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:12.906284Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:38.728292Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:38.727797Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:39.286836Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:39.270785Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"image/png\": \"iVBORw0KGgoAAAANSUhEUgAAA9cAAAIOCAYAAACyMf56AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAB2HAAAdhwGP5fFlAACKLUlEQVR4nO3dd3zV9dn/8fc52XsQwgohhA2KhCEgWpzFihJnrVoZ7taq/am09q4tiL1tcbbYWq2DocWu20EpggNXZUNA9jAJmwxC9j7n/P7AnOR7ThISkpPvGa/n45HHne/nfL8nF3cj5Mrnuq6PxeFwOAQAAAAAAM6a1ewAAAAAAADwdSTXAAAAAAB0EMk1AAAAAAAdRHINAAAAAEAHkVwDAAAAANBBJNcAAAAAAHQQyTUAAAAAAB1Ecg0AAAAAQAeRXAMAAAAA0EEk1wAAAAAAdBDJNQAAAAAAHURyDQAAAABAB5FcAwAAAADQQSTXAAAAAAB0EMk1AAAAAAAdRHINAAAAAEAHBZsdgLeqr6/X4cOHJUmxsbGyWvk9BAAAAAD4C7vdrtLSUklS3759FRzcsfSY5LoFhw8fVnp6utlhAAAAAAA8LDs7W/379+/Qe7AdCwAAAABAB7Fz3YLY2Fjn59nZ2YqPjzcvGAAAAABApyouLnZWKzfN/84WyXULmvZYx8fHKyEhwcRoAAAAAACe0hkztigLBwAAAACgg0iuAQAAAADoIJJrAAAAAAA6iOQaAAAAAIAOIrkGAAAAAKCDSK4BAAAAAOggkmsAAAAAADqI5BoAAAAAgA4iuQYAAAAAoINIrgEAAAAA6CCSawAAAAAAOojkGgAAAACADiK5BgAAAACgg0iuAQAAAADoIJJrAAAAAHBRUFajkqo6s8OADwk2OwAAAAAA8CZ/+vSAnv1wr0KCrHrupvN0zXm9zQ4JPoCdawAAAAD4VlFFrV74aJ8cDqm23q7frtgth8NhdljwASTXAAAAAPCtddknVW9vTKaPlVTraHGViRHBV5BcAwAAAMC31n5z0m0t61Bx1wcCn0NyDQAAAADfWpvtnlxvPVzc9YHA55BcAwAAAICk/LJqHcgvd1snuUZbdFly/dVXX+muu+7SoEGDFBUVpbi4OA0dOlQ/+MEP9Morr7T67KpVq5SZmanevXsrPDxcqampuu2227R+/fouih4AAACAv1uXXdTs+vajJaqtt3dxNPA1FoeHR9/V1NTo3nvv1eLFi1u9r6UwHnroIS1YsKDZ14KCgvS73/1Ojz76aIfjdHXq1CklJiZKkoqKipSQkNDpXwMAAACA9/jFO9v19oZDzb627CeTNDIlvmsDgkd1ds7n0Z1rm82m66+/3plY33rrrVq9erWOHTumgoICrV+/XnPnztWAAQOaff755593JtZTp07Vhg0bVFBQoM8++0wTJkyQzWbT7Nmz9c4773jyjwEAAAAgAKxrpt+6AaXhOBOP7lw/88wz+tnPfiZJeu2113TnnXe2+dnCwkKlp6errKxMl1xyiT7++GNZrY2/C6iqqlJGRob27t2rtLQ07d27V6GhoZ0WOzvXAAAAQOA4UVKtCb/9pMXXr8vooxduHtV1AcHjfGbnuri4WHPnzpUk3XLLLe1KrCVpyZIlKisrkyTNnz/fkFhLUkREhObNmydJys3N1YoVKzoeNAAAAICAtDa70HAdHRZsuGbnGmfiseT6rbfeUmVlpSRp9uzZ7X5+2bJlkqT+/ftr3Lhxzd6TmZmp8PBwSdL7779/lpECAAAACHSu51vfPK6vgqwW53VOYYVOVdR2dVjwIR5Lrht2kvv27auMjAznus1mk91+5kl7W7ZskSRNnDixxXvCwsKc77158+aOhAsAAAAggLmeb33p0GQN6RFjWNt6pLgLI4Kv8VhyvXHjRknSuHHjVFdXp2eeeUYjRoxQeHi4QkJC1K9fP91zzz3av3+/27NHjx51loSnp6e3+nUaXt+3b1+LE8cBAAAAoCVHTlXqcFGV8zo0yKox/RI0KjXecN/WQ8VdGxh8SvCZb2m/qqoqFRae7llITEzURRdd5HYm9aFDh/Tqq6/qzTff1Jtvvqkbb7zR+VrDs5LUo0ePVr9WcnKypNNHfpWXlysmJqbV+5s6depUi68VFxe3+X0AAAAA+C7XkvBRqfEKDwlSRt94LV3feDRXFn3XaIVHdq5LSkqcny9ZskTr16/XxRdfrLVr16qqqkoFBQV69dVXFR8fr+rqav3whz/U1q1bnc9UVFQ4P2/oqW5JRESE8/Py8vJ2xZmYmNjix5l2zAEAAAD4B9eS8Inp3SRJGS4719sOF1MtixZ5JLlu2lNdW1ur8ePH68MPP9SECRMUHh6upKQk3XXXXVqxYoWsVqtqamo0Z84c5zNNv2EtFosAAAAAwBMcDofWuexcTxxwOrlOT4pWTHhjsW9JVZ1yCisENMcjyXV0dLThes6cOQoJCXG7b+LEiZo6daokadWqVaqurnZ7vqqqyu25ppq+7vp1z6SoqKjFj+zs7Ha9FwAAAADfc6ioUsdKqp3XYcFW54611WrRqL7xhvuz6LtGCzySXMfExCgsLMx5fdFFF7V4b8NrNTU1OnDggCQpKSnJ+XpeXl6rXys/P1/S6cnh7U2uExISWvyIj49v13sBAAAA8D2u/dZj+iUoLDjIee2aXHPeNVrikeTaYrFo6NChkqTg4OBWk96EhATn56WlpZKkPn36OAeTnWkHOScnR5I0ePBgSsgBAAAAtEtL/dYNSK7RVh47imvcuHGSpPr6emfS3JyTJxu/mZvuFo8ePVqStG7duhaframpcZ6HPWbMmI6ECwAAACDAOBwOt53rhn7rBq7J9e7jpaqus3k6NPggjyXX1113nfPzzz77rMX7Gl6LiorSoEGDnOvTpk2TdHrnetOmTc0+u2zZMmefdmZmZgcjBgAAABBIsgsrlF9W47yOCAnSyJR4wz3dosOUmhjpvK63O7TjaIkAVx5Lrr/73e86S8Pnzp3rTIKb+vTTT7Vq1SpJ0o033mgYejZ9+nRnafhjjz1mmEAuSdXV1c4J42lpabrqqqs88ucAAAAA4J9cd63HpiUoNNg9RaI0HG3hseQ6ODhYCxYsUFBQkLKysnTJJZfo448/1smTJ3Xw4EH94Q9/0LRp0+RwOJSYmKgnnnjC8HxSUpLmzp0rSfrkk0+UmZmpTZs2qbCwUF988YUuvfRS7d69W5L03HPPKTQ01FN/FAAAAAB+yK3f2qUkvIHreddMDEdzgs98y9m74oor9Oqrr+pHP/qR1q1bpyuuuMLtnh49eui9995Tv3793F57+OGHlZubqxdffFHLly/X8uXLDa9brVbNnz9f119/vcf+DAAAAAD8j8Ph0PozDDNrwM412sJjO9cNZs2apaysLN13331KT09XeHi4YmJiNHr0aM2dO1e7du3ShAkTWnx+wYIFWrlypaZNm6aePXsqNDRUKSkpuuWWW7RmzRo9+uijnv4jAAAAAPAz+/PLVVhe67yODgvWuX3imr13eO9YhQY1pk5Hi6uUX+re9orA5tGd6wbDhg3Tn//857N+fsqUKZoyZUonRgQAAAAgkLn2W49LS1BwUPN7j2HBQRreO9awY511uFhTRvT0ZIjwMR7fuQYAAAAAb3OmI7hcURqOMyG5BgAAABBQ7HaH1uW49lsntfqM61CzrQw1gwuSawAAAAABZc+JMhVX1jmvY8ODNbx3bKvPZPRNMFx/faRYNrvDI/HBN5FcAwAAAAgorkdwnd+/m4Ksllaf6ZsYocSoxuN/K2pt2p9f5pH44JtIrgEAAAAElPb2W0uSxWJRhkvfNeddoymSawAAAAABw2Z3aL1Lv/WE9MQ2Pes21IzkGk2QXAMAAAAIGLuPl6qsut55HR8ZomE9W++3bjDKdagZE8PRBMk1AAAAgIDhWhI+vn+irGfot25wXt94WZrcui+/TGXVdS0/gIBCcg0AAAAgYLgOM5uYfuZ+6wax4SEa0D3aee1wSNuPlHRabPBtJNcAAAAAAkK9za4NOUWGtYkDWj/f2pVr33UWpeH4Fsk1AAAAgICw41ipymsa+627RYVqcI/oVp5wl+HSd83EcDQguQYAAAAQEFz7rSekd5PF0rZ+6wZuE8MPF8vhcHQ0NPgBkmsAAAAAAcG133pCG863djWkR4wiQoKc14XlNTpaXNXh2OD7SK4BAAAA+L06m12bcl36rdsxzKxBcJBV56bEGdYoDYdEcg0AAAAgAHx9pFiVtTbndfeYMA3oHnVW75XRTGk4QHINAAAAwO+59ltPPIt+6wbN9V0DJNcAAAAA/J7b+dZn0W/dICM1wXC9/WiJauvtZ/1+8A8k1wAAAAD8Wk29TZtyTxnWzqbfukHPuHD1jA13XtfW27XnROlZvx/8A8k1AAAAAL+29VCxaprsLPeKC1e/bpEdek9Kw+GK5BoAAACAX3MrCe9Av3WDjNR4wzUTw0FyDQAAAMCvuQ4zO5vzrV2xcw1XJNcAAAAA/FZ1nc1tV7kj/dYNzk2JU5C1cfc7p7BCpypqO/y+8F0k1wAAAAD81paDp1Rra+y3TkmIUN/EjvVbS1JkaLCG9IgxrG09Utzh94XvIrkGAAAA4Lea67fuLKNc+q630ncd0EiuAQAAAPgt137rjpxv7SrDpe86i77rgEZyDQAAAMAvVdbWa5tLqXanJtcuO9fbDhfL4XB02vvDt5BcAwAAAPBLm3JPqc7WmOymdYtUr7iITnv/9KRoxYQHO69LquqUU1jRae8P30JyDQAAAMAvufVbd+KutSRZrRa3I7k47zpwkVwDAAAA8Etu51t34jCzBpx3jQYk1wAAAAD8TnlNvbYfLTGsdeak8AYk12hAcg0AAADA72zMKZLN3thvPaB7lJJjwzv967gm17uPl6q6ztbpXwfej+QaAAAAgN/xdL91g27RYUpNjHRe19sd2uGyY47AQHINAAAAwO+4nW+dnuSxr0VpOCSSawAAAAB+pqSqTjuPGXePJ6QneuzruZ53zcTwwERyDQAAAMCvbMgpUpN2aw3pEaNu0WEe+3rsXEMiuQYAAADgZ9xKwj3Ub91geO9YhQY1plZHi6uUX1rt0a8J70NyDQAAAMCvuA4z88T51k2FBQdpeO9Yw1oWu9cBh+QaAAAAgN84VVGr3cdLndcWi2f7rRtQGg6SawAAAAB+Y32Ocdd6WM9YxUeGevzrug4128pQs4BDcg0AAADAb3R1v3WDjL4JhuuvjxTL1nSqGvweyTUAAAAAv+Habz3Rw/3WDfomRigxqnGHvKLWpv35ZV3yteEdSK4BAAAA+IXC8hrtyyt3Xlst0vld0G8tSRaLRRmufdeUhgcUkmsAAAAAfmGdy671OX3iFBse0mVf33WoWRbJdUAhuQYAAADgF9z6rbuoJLzBKNehZkwMDygk1wAAAAD8gtv51l00zKzBeX3jZbE0Xu/LL1NZdV2XxgDzkFwDAAAA8Hl5pdXKLqhwXgdZLRqX1jX91g1iw0M0oHu089rhkLYfKenSGGAekmsAAAAAPs+133pkSpyiw4K7PA63vmtKwwMGyTUAAAAAn2d2v3WDDJe+a4aaBQ6SawAAAAA+z63f2qTk2nXneuvhYjkcDlNiQdfySHKdm5sri8XSpo9Nmza1+l6rVq1SZmamevfurfDwcKWmpuq2227T+vXrPRE6AAAAAB9zrLhKB09WOq9Dgiwam5ZgSixDesQoIiTIeV1YXqOjxVWmxIKu5dU71w899JCuvPJKLVu2TMePH1dNTY0OHz6spUuXatKkSXr22WfNDhEAAACAyVz7rc9LiVdkaNf3W0tScJBV56bEGdYoDQ8MHk+uV6xYobKyshY/Ro8e3exzzz//vBYsWCBJmjp1qjZs2KCCggJ99tlnmjBhgmw2m2bPnq133nnH038EAAAAAF7Mrd+6i4/gcpXRTGk4/J/Hf50TERGh6OjoM9/YRGFhoebOnStJuuSSS7Rs2TJZrad/DzB58mStXr1aGRkZ2rt3rx555BFdffXVCg0N7ezQAQAAAPgA135rs4aZNWiu7xr+zyvLwpcsWaKysjJJ0vz5852JdYOIiAjNmzdP0un+7hUrVnR5jAAAAADMd7ioUkdONfY0hwZZNbqfOf3WDTJSjV9/+9ES1dbbTYoGXcUrk+tly5ZJkvr3769x48Y1e09mZqbCw8MlSe+//36XxQYAAADAe7juWmekxiu8yUAxM/SMC1fP2HDndW29XXtOlJoYEbpClyXXtbW1bb53y5YtkqSJEye2eE9YWJgyMjIkSZs3b+5YcAAAAAB80jov67duQGl44PF4cv2Tn/xEMTExCgsLU1hYmEaMGKGHHnpIBw4caPb+o0ePOkvC09PTW33vhtf37dt3VmfHnTp1qsWP4uLidr8fAAAAgK7jcDi8rt+6QUZqvOGaieH+z+MDzXbu3On8vLa2Vrt27dKuXbv08ssv69lnn9UDDzxguL+wsND5eY8ePVp97+TkZElSTU2NysvLFRMT067YEhMT23U/AAAAAO9x8GSljpdUO6/Dgq0a5ZLUmoWd68DjkZ1rq9WqK664Qq+//rq2bdumkydPqrq6Wnv27NFvf/tbxcbGqra2Vg8++KAWLlxoeLaiosL5eUNPdUsiIiKcn5eXl3fuHwIAAACAV3PdtR6blqCwYHP7rRucmxKnIKvFeZ1TWKFTFW1vlYXv8cjOdWpqqj788EO39SFDhuixxx7TtddeqwsvvFAnT57Uo48+qhtuuEGxsbGSZCjvtlgsbu/RmYqKilp8rbi4+Ixl6QAAAADM43a+tZeUhEtSZGiwhvSI0a7jjYPMth4p1iVDkk2MCp5kyrTwoUOH6oknnpB0OsFtepRW0zOxq6qq3J5tqunr7T1LW5ISEhJa/IiPj2/3+wEAAADoGs32W3vJMLMGriXqW+m79mumHcV17bXXOj9vmA4uSUlJSc7P8/LyWn2P/Px8Sacnh59Ncg0AAADAN31TUKGCshrndWRokEamxJsXUDPouw4spiXXDcPIJBkmc/fp08c5mCw7O7vV98jJyZEkDR482OMl5AAAAAC8h3u/daJCgkxLb5o12nXn+nDxWZ1yBN9g2nffiRMnnJ8nJCQYXhs9erQkad26dS0+X1NT49zxHjNmjAciBAAAAOCt3M639qJ+6wbpSdGKCW8cc1VSVaecwopWnoAvMy25fuedd5yfNyTTDaZNmybp9M71pk2bmn1+2bJlqq4+PXY/MzPTQ1ECAAAA8DYOh0PrvLzfWpKsVgul4QHEI8n1kSNHWn19+/btmjt3rqTTZ01/73vfM7w+ffp0Z2n4Y489Jrvdbni9urpac+bMkSSlpaXpqquu6qTIAQAAAHi7fXnlOtnkWKvosGCd0zvWxIha5ppcZzHUzG95JLkeNWqUrr/+ei1evFjbt29XYWGhioqKtGXLFv3617/WxIkTnX3WL7zwgvMYrgZJSUnO5PuTTz5RZmamNm3apMLCQn3xxRe69NJLtXv3bknSc889p9DQUE/8MQAAAAB4obXfFBquz++fqGAv67duwM514PDIOdf19fV699139e6777Z4T2RkpH7/+99r+vTpzb7+8MMPKzc3Vy+++KKWL1+u5cuXG163Wq2aP3++rr/++k6NHQAAAIB3czuCywv7rRu4Jte7j5equs6m8JAgcwKCx3gkuV64cKH++9//av369Tpy5IhOnjypmpoaxcfHa9iwYbr88st11113qVevXq2+z4IFCzR16lS99NJL2rBhg4qKipScnKyLLrpIDz30kMaPH++J8AEAAAB4KbvdofU5RYY1b+y3btAtOkypiZE6VFQpSaq3O7TjaInGpiWaHBk6m0eS6+uuu07XXXddp7zXlClTNGXKlE55LwAAAAC+bfeJUhVX1jmvY8ODNayXd/ZbNxjVN96ZXEunS8NJrv2PdzYmAAAAAEAz1rocwTU+vZuCrBaTommbDJfzrhlq5p9IrgEAAAD4DLcjuLy437oBQ80CA8k1AAAAAJ9g87F+6wbDe8cqtMk086PFVcovrTYxIngCyTUAAAAAn7DzWInKquud1wmRIRrSI8bEiNomLDhIw13O4c5i99rvkFwDAAAA8Amu/dYT0rvJ6uX91g0oDfd/JNcAAAAAfILb+dY+UBLewHWo2VaGmvkdkmsAAAAAXq/OZtdG135rHxhm1iCjb4Lh+usjxbLZHSZFA08guQYAAADg9bYfLVFFrc15nRQdpoHJ0SZG1D59EyOUGBXqvK6otWl/fpmJEaGzkVwDAAAA8Hru/daJslh8o99akiwWi3vfNaXhfoXkGgAAAIDXczvf2of6rRtkuCTXWSTXfoXkGgAAAIBXq623a1PuKcOaL/VbNxjlOtSMieF+heQaAAAAgFfbdqRYVXWN/dY9YsPUPynKxIjOzsiUeMP1vvwyldfUN38zfA7JNQAAAACv5tpvPTG9m0/1WzeIiwgxDGFzOKSv2b32GyTXAAAAALyaW3Ltg/3WDVyHmmWRXPsNkmsAAAAAXqu6zqbNh1z7rZNMiqbj3CaGk1z7DZJrAAAAAF4r61Cxauvtzus+8RHqmxhhYkQdk+Ey1CzrULEcDoc5waBTkVwDAAAA8Fprs13Pt/bNfusGQ3rEKCIkyHldWF6jo8VVJkaEzkJyDQAAAMBrrfOjfmtJCg6y6tyUOMMa5137B5JrAAAAAF6pqtamrMMu/dY+nlxLUgZ9136J5BoAAACAV9p88JTqbI39yKmJkeoT77v91g0YauafSK4BAAAAeKW12YWG6wnpiSZF0rkyUhMM19uPlhiGtsE3kVwDAAAA8Er+dL51Uz3jwtUzNtx5XVtv154TpSZGhM5Acg0AAADA61TU1OvrIyWGNV8+39oVpeH+h+QaAAAAgNfZmFukentjv3X/pCj1jAtv5Qnf0tx51/BtJNcAAAAAvM667CLD9YR0/ygJb8DOtf8huQYAAADgddZm+2e/dYNzU+IUZLU4r3MKK3SqotbEiNBRJNcAAAAAvEpZdZ12HDX2W/vLpPAGkaHBGtIjxrC29UixOcGgU5BcAwAAAPAqG3OLZGvSbz0wOVrJMf7Tb91glEvf9Vb6rn0ayTUAAAAAr+J2BJef9Vs3oO/av5BcAwAAAPAq/t5v3WC068714WI5HI7mb4bXI7kGAAAA4DVKKuu081ipYc3fJoU3SE+KVkx4sPO6pKpOOYUVJkaEjiC5BgAAAOA11uecVNPN26E9Y5QYFWpeQB5ktVp0Xkq8YY3ScN9Fcg0AAADAa7iWhPvrrnWDDJfS8CyGmvkskmsAAAAAXsNtmJmf9ls3YKiZ/yC5BgAAAOAViipqtedEmfPaYpEm9A+s5Hr38VJV19nMCQYdQnINAAAAwCusdykJH94rVnGRISZF0zW6RYcpNTHSeV1vd2jH0RITI8LZIrkGAAAA4BXcjuDy837rBpSG+weSawAAAABeIdD6rRu4JtcMNfNNJNcAAAAATFdQVqP9+eXOa6tFGtc/0cSIuo7rxHB2rn0TyTUAAAAA061zKQk/t0+cYsP9u9+6wfDesQoNakzNjhZXKb+02sSIcDZIrgEAAACYzu186wApCZeksOAgDe8da1jLYvfa55BcAwAAADDdOtd+6wAZZtaAoWa+j+QaAAAAgKnySquVXVjhvA62WjQuLTD6rRu49V0z1MznkFwDAAAAMJXrlPCRKXGKCgs2KRpzZPRNMFx/faRYNrvDpGhwNkiuAQAAAJgqUI/gaqpvYoQSo0Kd1xW1Nu3PLzMxIrQXyTUAAAAAU7kOM5uYnmRSJOaxWCzufdeUhvsUkmsAAAAApjlaXKVDRZXO65Agi8b0S2jlCf+V4ZJcZ5Fc+xSSawAAAACmcS0Jz+iboIjQIJOiMdco16FmTAz3KV2aXBcUFCgpKUkWi0UWi0UzZ8484zOrVq1SZmamevfurfDwcKWmpuq2227T+vXrPR8wAAAAAI9yTa4D6XxrVyNT4g3X+/LLVF5Tb04waLcuTa5/+tOf6uTJk2e+8VsPPfSQrrzySi1btkzHjx9XTU2NDh8+rKVLl2rSpEl69tlnPRgtAAAAAE9yOBxa59ZvHbjJdVxEiAYmRzuvHQ7pa3avfUaXJdcrV67U0qVLlZ6e3qb7n3/+eS1YsECSNHXqVG3YsEEFBQX67LPPNGHCBNlsNs2ePVvvvPOOJ8MGAAAA4CGHi6p0tLjKeR0abHU77znQuA41yyK59hldklxXVFToRz/6kSTppZdeOuP9hYWFmjt3riTpkksu0bJlyzRu3DglJSVp8uTJWr16tYYMGSJJeuSRR1RbW+ux2AEAAAB4xtrsQsP1mNQEhYcEZr91A7eJ4STXPqNLkuvHH39cubm5uvnmmzVlypQz3r9kyRKVlZ0+023+/PmyWo1hRkREaN68eZKk3NxcrVixovODBgAAAOBRnG/tznXnPutQsRwOhznBoF08nlxv3LhRL774ouLi4vTCCy+06Zlly5ZJkvr3769x48Y1e09mZqbCw8MlSe+//37nBAsAAACgSzgcDvfzrUmuNaRHjCKa7N4XltcYSufhvTyaXNfX1+vuu++WzWbTU089pV69erXpuS1btkiSJk6c2OI9YWFhysjIkCRt3ry548ECAAAA6DI5hRXKK61xXkeEBOk8l2nZgSg4yKpz+8QZ1igN9w0eTa6feeYZbdu2TePHj9d9993XpmeOHj3qLAk/0/Czhtf37dtHqQQAAADgQ1x3rcemJSg0uEsPM/JazZWGw/sFe+qNDxw4oHnz5ikoKEgvv/yyW990SwoLG4ca9OjRo9V7k5OTJUk1NTUqLy9XTExMu2I8depUi68VFxe3670AAAAAtJ3b+dYBfASXK4aa+SaPJdf33HOPqqur9cgjj2jUqFFtfq6iosL5eUNPdUsiIiKcn59Ncp2YmNiu+wEAAAB03OnzrYsMa/RbNxrlsnO9/WiJauvt7Ox7OY/8r/P666/r008/VWpqqp544ol2Pdu0vNtisXR2aAAAAABMdiC/XIXljf3WUaFBbn3GgaxXXIR6xjZuNNbW27XnRKmJEaEtOn3nOi8vT7Nnz5Ykvfjii4qKimrX89HR0c7Pq6pan4rX9PWmz7VVUVFRi68VFxefsecbAAAAQPu59luP65+okCB2ZZsa1TdeK3eecF5vPVyskQx882qdnlz/4he/0KlTp3Tttddq2rRp7X4+KSnJ+XleXl6r9+bn50s6PTn8bJLrhISEdj8DAAAAoGPczrem39rNqFRjcp11qFjTWz5MCV6g0389lJ2dLUl67733ZLFYmv1osHjxYufaokWLJEl9+vRx9k43vFdLcnJyJEmDBw+mhBwAAADwAXa7Q+s43/qMMhhq5nO8svZi9OjRkqR169a1eE9NTY3zPOwxY8Z0SVwAAAAAOmZvXplOVdY5r2PCgjWiN/3Wrs5NiVOQtXEDMaewQqcqak2MCGfS6WXhr732msrLy1u9JyMjQ5J0zTXXaN68eZKk1NRU5+vTpk3T559/ruzsbG3atEljx451e49ly5apurpakpSZmdlZ4QMAAADwINeS8PP7JxqSSJwWGRqsIT1itOt44yCzrUeKdcmQZBOjQms6PbkeOHBgm+9NTExs9piu6dOna+7cuSorK9Njjz2mDz/80HBOdnV1tebMmSNJSktL01VXXdXhuAEAAAB4nuswM0rCWzYqNd6YXB8iufZmXlkWnpSUpLlz50qSPvnkE2VmZmrTpk0qLCzUF198oUsvvVS7d++WJD333HMKDQ01MVoAAAAAbWGzO7TeJbmewDCzFo2i79qndPrOdWd5+OGHlZubqxdffFHLly/X8uXLDa9brVbNnz9f119/vUkRAgAAAGiP3cdLVVpd77yOiwjR8F6xJkbk3Uanxhuutx4ulsPhYJizl/LKnesGCxYs0MqVKzVt2jT17NlToaGhSklJ0S233KI1a9bo0UcfNTtEAAAAAG3k2m89vn+irPRbtyg9KVox4Y37oSVVdcoprDAxIrTGlJ1rh8PR5nunTJmiKVOmeDAaAAAAAF2BI7jax2q16LyUeP33QKFzbevhYqV3jzYxKrTEq3euAQAAAPiHeptdG3KKDGsk12eW4VIannWo2JQ4cGYk1wAAAAA8buexUpXVNPZbJ0aFanByjIkR+QaGmvkOkmsAAAAAHud6BNeEdPqt28I1ud59vFTVdTZzgkGrSK4BAAAAeJzrMLOJHMHVJt2iw5SaGOm8rrc7tONoiYkRoSUk1wAAAAA8qs5m18Zc+q3PFqXhvoHkGgAAAIBHfX2kRJW1jaXM3WPCNICJ123mmlxnkVx7JZJrAAAAAB7legTXhPRusljot24r14nhW5kY7pVIrgEAAAB4FP3WHTO8d6xCgxpTt6PFVcovrTYxIjSH5BoAAACAx9TU27TpIP3WHREWHKRhvWMNa5SGex+SawAAAAAes+1wiarr7M7rnrHhSusW2coTaE4GQ828Hsk1AAAAAI9xKwkfQL/12aDv2vuRXAMAAADwmLXZhYZr+q3PjuvE8K+PFMtmd5gTDJpFcg0AAADAI6rrbNrissNKv/XZSU2MVGJUqPO6otam/fllJkYEVyTXAAAAADxiy6FTqq1v7LfuEx+hvon0W58Ni8XitntNabh3IbkGAAAA4BHrmum3xtlzHWqWRXLtVUiuAQAAAHjE2mzOt+5Mo1yHmjEx3KuQXAMAAADodFW1Nrfkj53rjhmZEm+43pdfpvKaenOCgRuSawAAAACdbtPBItXZGqdZ9+sWqd7xESZG5PviIkI0MDnaee1wSF+ze+01SK4BAAAAdDq3860pCe8UrkPNskiuvQbJNQAAAIBO59ZvTUl4p3CbGE5y7TVIrgEAAAB0qvKaen19pMSwxs5158hwGWqWdahYDoej+ZvRpUiuAQAAAHSqjblFstkbE7707lFKjg03MSL/MaRHjCJCgpzXheU1OlpcZWJEaEByDQAAAKBTuZ1vza51pwkOsurcPnGGNUrDvQPJNQAAAIBORb+1ZzVXGg7zkVwDAAAA6DSl1XXacdTYbz2BnetOxVAz70RyDQAAAKDTbMguUpN2aw3uEa2k6DDzAvJDo1x2rnccLVFtvd2cYOBEcg0AAACg07iVhLNr3el6xUWoZ5MBcTX1du05UWpiRJBIrgEAAAB0orWuw8zot/YISsO9D8k1AAAAgE5RXFmr3U12UC0WaXx/kmtPcC0N38pQM9ORXAMAAADoFOuyi+Ro0m89tGesEqJCzQvIj2W47FxnsXNtOpJrAAAAAJ1iHf3WXebclDgFWS3O65zCCp2qqDUxIpBcAwAAAOgU9Ft3ncjQYA3uEWNY23qk2JxgIInkGgAAAEAnOFleo715Zc5rq0U6v3+iiRH5vwz6rr0KyTUAAACADluXXWS4HtE7TnERISZFExiYGO5dSK4BAAAAdNja7ELDNSXhnuc61Gzr4WI5mk6UQ5ciuQYAALLbHVq6/pCeWrFb+5qUdQJAW7n1WzPMzOMGdI9WTFiw87qkqk45hRUmRhTYSK4BAID+/Pk3+p93t+svX2TrppfX6mhxldkhAfAh+aXV+qagMakLslo0Ni3BxIgCg9Vq0XmUhnsNkmsAAAJcZW29Xvn8G+d1SVWdfrtit4kRAfA1a12O4DqnT5xiwum37gquQ82yGGpmGpJrAAAC3Dtbjqq0ut6wtvzr41rv8sMyALSE863Nw1Az70FyDQBAAHM4HFq0JrfZ1+b+e5dsdgbjADgzzrc2j2tyvft4qarrbOYEE+BIrgEACGD/PVCoA/nlzb62+3ip3t5wqIsjAuBrjpdUKfdkpfM62GrR2H70W3eVbtFhSk2MdF7X2x3acbTExIgCF8k1AAABbOFXuYbrYKvFcP3ch3tVXFnbhREB8DWuu9bn9Y1XVJMJ1vA8SsO9A8k1AAABKqewQqv35BvW/vCDDEWEBDmvT1XW6YWP9nV1aAB8CEdwmc81uc4iuTYFyTUAAAFqsUuv9ciUOF11bk/95NKBhvW31h/SnhOlXRgZAF+yLod+a7O5TgzfysRwU5BcAwAQgMqq6/SvzUcMazMvSJPFYtGdF/Y39O/Z7A49sWyXHA6GmwEwOnKqUoeLqpzXoUFWjaHfussN7x2r0KDG1O5ocZXyy6pNjCgwkVwDABCA/rX5iMprGo/fSooO09SRvSRJ4SFBenzqMMP9a7NPauWOE10aIwDv51oSPio1XuFNWkvQNcKCgzSsd6xhjd3rrkdyDQBAgLHbHW4l4T+ckKqw4MYfiK8Y3kMXDUoy3POb/+zmeBcABms539prZNB3bTqSawAAAsyne/MNx+aEBFl06/hUwz0Wi0VzrhlumB5+tLhKr3ye3WVxAvBuDodD6zjf2mvQd20+kmsAAAKM6/Fb14zsreSYcLf7BibHaPrENMPanz8/oKPFVW73Agg8h4oqdayksa83LNjqluCh67hODP/6SLFsdmZldCWPJNdHjhzRn//8Z915550aN26cUlNTFRERocjISA0YMEC33HKLPvjggza/36pVq5SZmanevXsrPDxcqampuu2227R+/XpPhA8AgN/an1em/x4oNKzNmtS/xfsfunyQukWFOq+r6+x6asVuj8UHwHe49luP6ZdgaC9B10pNjFRik7+vK2pt2p9fZmJEgccjyfXy5cv14x//WG+88YY2bdqkw4cPq7q6WlVVVcrOztbf/vY3XXXVVcrMzFRlZWWr7/XQQw/pyiuv1LJly3T8+HHV1NTo8OHDWrp0qSZNmqRnn33WE38EAAD80kKXXuux/RJ0bkpci/fHRYRo9pQhhrX/fH1c61z6LAEEHvqtvYvFYnHbvaY0vGt5JLkODw/XlClT9PTTT+ujjz7Szp07VVhYqH379umdd97RRRddJElatmyZ7rrrrhbf5/nnn9eCBQskSVOnTtWGDRtUUFCgzz77TBMmTJDNZtPs2bP1zjvveOKPAQCAXymurNU7W1yO35qUdsbnbhrbV+f0MU6hnbtsp+pt9s4MD4APcTgcbjvX9FubzzW5ziK57lIWhwmHVjocDl199dVasWKFJCknJ0dpaWmGewoLC5Wenq6ysjJdcskl+vjjj2W1Nv4uoKqqShkZGdq7d6/S0tK0d+9ehYaGqrOcOnVKiYmJkqSioiIlJHBeHwDAt73y+Tf67Qd7nNe94sL1xc8uUUjQmX/Xvim3SDe+vNaw9uS15+j2Cf06PU4A3u+bgnJd9tznzuuIkCBtm/NdhQYz0slMX+4v0O2vb3BeD+kRo1X/7zsmRuTdOjvnM+W732Kx6M4773Reb9682e2eJUuWqKzsdI/A/PnzDYm1JEVERGjevHmSpNzcXGeiDgAA3NXb7Fqy9qBh7faJ/dqUWEvS2LREXTuqt2HtuQ/3qriyttNiBOA7XHetx6YlkFh7gZEp8YbrffllKq+pNyeYAGTafwEhISHOz8PD3SeULlu2TJLUv39/jRs3rtn3yMzMdD77/vvveyBKAAD8w0e78gxTvsOCrbplXGorT7h77HvDFBnaOKyouLJOz3+0r9NiBOA73PqtKQn3CnERIRrQPcp57XBIX3PedZcxLbn+29/+Jul0kp2RkeH2+pYtWyRJEydObPE9wsLCnM82t/sNAABOcx1kdl1GHyVEta+dqmdcuO6/ZKBh7a11B7X7eGlHwwPgQxwOh9YzzMxrZaQaS5uzSK67TJcm1wUFBfryyy910003aenSpZKkn/70p+rd21hmdvToUWdJeHp6eqvv2fD6vn371N728VOnTrX4UVxc3K73AgDAW+08VqINOUWGtbYMMmvOnRf2V79ukc5ru0N64t872/1vMADftT+/XIXljS0h0WHBOrdPy6cOoGu5TQwnue4ywZ7+AjNnztTixYvd1uPj4zV79mz94he/cHutsLDx/M0ePXq0+v7JycmSpJqaGpWXlysmJqbNsTU0rwMA4M8WfpVruJ6Y3k1De8Y2f/MZhIcE6fGpw3X3kk3OtXXZRVqx/YSmjuzVkTAB+AjXfutxaQkKbuP8BnhecxPDHQ6HLBaLOQEFEFP+K7Barbrjjjt08803N/s/ckVFhfPz5vqxm4qIiHB+Xl5e3nlBAgDgBwrLa7Rs6zHD2qyz3LVucPmwZF00KMmw9tSK3aqqtXXofQH4Bo7g8m5De8YoPKQxzSssrzHM3IDneDy5fuWVV1RWVqbS0lIdPnxY77//vi699FI9//zzGjlypP7xj3+4PdO0tMyTv2EpKipq8SM7O9tjXxcAgK7y9vpDqm1yHnXfxAhdNqz1qrAzsVgsmnPNcAVbG/+NPlpcpVe++KZD7wvA+9ntDq3Lce23TmrhbpghOMiqkX3iDWuUhncNjyfXYWFhio6OVkxMjFJSUjRt2jR99NFHuu+++1RZWalbb71VmzZtMjwTHR3t/LyqqvXfsjR9velzbZGQkNDiR3x8fLveCwAAb1Nbb9eb64zHb82YmKYga8d/cT0wOUYzLkgzrP35s2905FRlh98bgPfac6JMxZV1zuvY8GAN7312bSbwnIzUeMN11qFiU+IINKY1RzzzzDOKjIyUzWbTH/7wB8NrSUmNv/3Ky8tr9X3y8/MlNSbxAADgtA92HFd+WY3zOjI0SDeN7dtp7//Q5YOUFN04cbym3q7frtjTae8PwPu4HsF1fv9unfILO3QuhpqZw7TkOjo6WiNGjJAkZWVlGV7r06ePczDZmcqzc3JyJEmDBw+mSR8AgCZcB5ndOCZFcREhnfb+seEhmj1liGHtP9uPa803hS08AcDX0W/tG0a57FzvOFqi2np78zej05g61q++vr7F10aPHi1JWrduXYv31NTUOM/DHjNmTOcGBwCAD8s6dMptp8K1jLsz3DSmr0amGI/gmffvXaq38UMc4G9sdofWu/Vbk1x7o15xEeoZ2zgYuqberj0nSk2MKDCYllyfPHlSO3bskCQNGDDA7fVp06ZJOr1z7dqT3WDZsmWqrq6WJGVmZnooUgAAfI/rrvXkwd01oHvnt09ZrRbNuWaEYW3PiTIt3XCo078WAHPtOlaqsurGzbGEyBAN7dn2Y3DRtSgN73oeSa53797d6us2m03333+/6upOD0O46aab3O6ZPn26szT8sccek91u/A14dXW15syZI0lKS0vTVVdd1RmhAwDg8/JKq7Vi+3HDWkeP32rNmH4Juj6jj2HtuQ/36VRFrce+JoCutzbb2PIxvn83Wem39lqupeFbGWrmcR5Jrs855xxdc801euONN7Rt2zbl5+eruLhY+/bt0+LFizV+/Hj9/e9/lyRNnjxZt956q9t7JCUlae7cuZKkTz75RJmZmdq0aZMKCwv1xRdf6NJLL3Um8c8995xCQ0Pd3gMAgED01rqDqrc3HmuZ3j1K3xnU3aNf8+ffG6rI0CDndUlVnZ77aK9HvyaArkW/tW/JcNm5zmLn2uOCPfGmdrtdy5cv1/Lly1u978Ybb9TChQtltTaf4z/88MPKzc3Viy++2Oz7Wa1WzZ8/X9dff32nxQ4AgC+rrrNp6XpjSfbMC9I8vrvUIzZcP7l0oJ5e2ZhQL11/SLee349jegA/UG+za2PuKcMaybV3OzclTkFWi2zf/rI1p7BCxZW1io9kU9JTPLJz/eWXX2revHm64oorNGjQIMXFxSk4OFiJiYkaM2aM7r//fq1du1b//Oc/z3h81oIFC7Ry5UpNmzZNPXv2VGhoqFJSUnTLLbdozZo1evTRRz3xRwAAwCf9e9sxnWxSjh0THqwbRqd0yde+88L+6tct0nltd0hz/71TDoejlacA+ILtR0tUXtPYb50UHapByRyD680iQ4M1uIexJ56+a8/yyM71hRdeqAsvvLDT3m/KlCmaMmVKp70fAAD+yOFwuA0yu3lsX0WFeeSfezdhwUH61dThumtJ4yDSDTlF+s/247p6ZO8uiQGAZ7iebz0+vRvH4PqAjNR47T7eOCU861CxLh6SbGJE/s3Uo7gAAEDn2ZBTpF1NfoiyWDxz/FZrLhuWrMmDjf3dT/1nt6pqbV0aB4DO5dZvzRFcPoGJ4V2L5BoAAD/humt9+bAe6psY2fzNHmKxWPSrq4cruEmP97GSav3582+6NA4Anae23q5N9Fv7JNehZlsPF9Oq40Ek1wAA+IEjpyr14a4ThjVPHr/VmoHJ0W5f+5XPv9HhokpT4gHQMV8fKVZVXWP1SXJMmNKTokyMCG01oHu0Ypq0BpVU1SmnsMLEiPwbyTUAAH7gzbUH1eT0LQ3tGWNq2eYDlw1SUnTjRNqaerueWrHbtHgAnL3mjuCi39o3WK0WnUdpeJchuQYAwMdV1tbr7Q3ux2+Z+cNvbHiIfnblUMPaBztOaM2BQpMiAnC2XIeZ0W/tW1z7rrMOFZsSRyAguQYAwMe9m3VUpdWNR+QkRIbo2ow+JkZ02o2jU3ReSpxh7Yl/71K9zW5SRADaq6beps0H6bf2ZRmp8YZrdq49h+QaAAAf5nA4tMhlkNkt56cqPCTInICasFotmjNthGFtb16Z/rr+UAtPAPA2WYeKVVPf+Aux3nHhSu3iQYnoGNed693HS1VdxwkOnkByDQCAD/vvgULtzy93XgdZLfrhhH4mRmQ0OjVB14827qI/9+FeFVXUmhQRgPZw7beeQL+1z+kWHaa+iRHO63q7QzuOlpgYkf8iuQYAwIe57lpfeU5P9Y6PaP5mkzx25VBFhTbupJdW1+u5D/eaGBGAtqLf2j9k9E0wXFMa7hkk1wAA+Kjcwgqt3ptvWLvDpOO3WpMcG64HLhtkWHt7wyHtPMbOCeDNquts2uoy/GoCybVPchtqRnLtESTXAAD4qEVrcuVocvzWyJQ4jU5NaPkBE82alKa0bo19mnaH9MSyXXI0/QMA8CqbD55SbZMBhCkJEepLv7VPGuU61IyJ4R5Bcg0AgA8qq67TvzYfMayZffxWa8KCg/Tra4Yb1jbkFmn518dNigjAmbidb82utc8a0TtWoUGNqd/R4irll1WbGJF/IrkGAMAH/WvzEZXXNB6/lRQdpqkje5kY0ZldOrSHLh7S3bD21Irdqqytb+EJAGZy67fmCC6fFRYcpGG9Yw1r7F53PpJrAAB8jN3u0OI1uYa1H05IVViw+cdvncmvrh6ukKDG3fXjJdV6+bNvTIwIQHMqauq1zaUvl+Tat2XQd+1xJNcAAPiYT/fmK/dkpfM6JMiiW8enmhhR2w3oHq1Zk/ob1l7+IluHiypbeAKAGTYdPKV6e+NMhLRukeoV510nEaB9Mui79jiSawAAfMwil13ra0b2VnJMuDnBnIUHLh2opOgw53VtvV3/+5/dJkYEwJVbvzW71j7PdWL410eKZbMzVLIzkVwDAOBD9ueV6cv9hYY1151gbxcTHqKfXznEsLZy5wl9daCwhScAdDXXfmuO4PJ9qYmRSowKdV5X1Nq0P7/MxIj8D8k1AAA+ZKHLrvWYfgk6NyXOnGA64IbRKTrPZRfliX/vVH2TY38AmKOsuk47jhrPoWdSuO+zWCxuu9eUhncukmsAAHxESWWd3tliPH5r1qQ0c4LpIKvVorkuR3PtyyvXW+sOmhQRgAabck8ZyoUHdI9ScqzvtJ6gZW7JNUPNOhXJNQAAPuJvGw+puq5xZ7dXXLimjOhpYkQdk5GaoBtGpxjWnv9on06W15gUEQCJI7j8metQsyx2rjsVyTUAAD6g3mbXkrXGXd3bJ/ZTSJBv/1P+8yuHKDos2HldWl2v5z7aZ2JEANyGmaUnmRQJOtvIlHjD9b78MpXX1JsTjB/y7X+RAQAIEB/vztPR4irndViwVbeM843jt1qTHBuuBy4daFh7e8Mht35PAF2jpKpOO48Z//ubkJ5oUjTobHERIRrQPcp57XBIX1Ma3mlIrgEA8AFvfJVruL4uo48Smkx99WWzJvVXepLxh70n/r1TDgdHxABdbUNOkZqezjSkR4y6NTk6D74vIzXBcJ1Fct1pSK4BAPByO4+VaENOkWFtpo8OMmtOaLBVv7raONxsY+4pLdt2zKSIgMDF+db+j6FmnkNyDQCAl1vosms9Mb2bhvaMNScYD7lkaLIuGdLdsPbbFXtUWUsvINCVON/a/7km11mHiqkU6iQk1wAAeLHC8hot22rcwfXV47fO5FdXD1dIkMV5faK0Wi99+o2JEQGB5VRFrXYfL3VeWyz0W/ujoT1jFB7SmAYWltcYZnrg7JFcAwDgxd5ef0i1tsbjt/omRuiyYT1MjMhz0rtH645J/Q1rf/kyW4dOVpoUERBY1ucYd62H9YxVfKR/zHZAo+Agq0b2iTesURreOUiuAQDwUrX1dr25znj81oyJaQqyWlp4wvf95NKB6h7TODyptt6u/12xy8SIgMBBv3XgGMV51x5Bcg0AgJf6YMdx5ZfVOK8jQ4N009i+JkbkeTHhIfr5lUMNa6t25um/+wtNiggIHK791hPpt/ZbGQw18wiSawAAvJTrILMbx6QoLiLEnGC60PUZfdwG7jzx752qa1IeD6BzFZbXaF9eufPaapHOp9/ab7nuXO84WqLaev6O7SiSawAAvFDWoVNuOwkzLkgzJZauZrVaNHfaCMPa/vxyvbn2YAtPAOiodS671uf0iVNsuP//Mi9Q9YqLUI/Yxhacmnq79pwobeUJtAXJNQAAXmjRmlzD9eTB3TWge7Q5wZhgVN943TQmxbD2wsf7dLK8poUnAHSEW781JeF+L6NvguGa0vCOI7kGAMDL5JVW6z9fHzes+evxW62ZfeUQRYcFO6/Lquv17Id7TYwI8F9u51szzMzvuZaGb2WoWYeRXAMA4GXeWndQ9XaH8zq9e5S+M6i7iRGZIzkmXA9eNtCw9reNh7XjaIlJEQH+Ka+0WtkFFc7rIKtF49Lot/Z3rrMtsti57jCSawAAvEh1nU1L1x8yrM28IE1WPz5+qzUzL+iv9KQo57XDIc1dtlMOh6OVp+DrqutsZocQUFz7rUemxBmqRuCfRqbEqek/LTmFFSqurDUvID9Acg0AgBf597ZjOlnR+MNNTHiwbhid0soT/i002KpfXTPcsLbp4Ckt23bMpIjgSYXlNbpz0UYN+/VKffeFz/XJ7jyzQwoI9FsHpsjQYA3pGWtYo++6Y0iuAQDwEg6Hw+34rZvH9lVUgO8gXTIkWZcNTTasPbVitypq6k2KCJ5wIL9M1730lT7Zky+HQ9qXV647F2/SnYs26tDJSrPD82tu51vTbx0wMlz6rrPou+4QkmsAALzEhpwi7TreeBSKxSJNn5hmXkBe5PGrhyskqLF+Ma+0Ri99dsDEiNCZvjpQqOteWqPDRVVur32yJ1+Xv/C5XvhoH+XiHnCsuEoHm/zyIiTIorH96LcOFK591+xcdwzJNQAAXsL1+K3Lh/VQardIc4LxMv2TonTnhemGtVe/yNHBkxUtPAFf8feNhzTjjQ0qq265EqG23q4/fLJfV7zwuT7eRal4Z3ItCR/VN14RoUEmRYOultFMcs1Mi7NHcg0AgBc4cqpSq3aeMKwF4vFbrfnJpQOVHBPmvK612fWb/+w2MSJ0hN3u0PyVe/Tz/9tumI4vSddl9NHYfgluzxwuqtJdSzbpjkUb+cVKJ3ErCaffOqAM6B6tmCatRyVVdcop5L+ts0VyDQCAF3hz7UE1zS+G9ozhh1wX0WHBeux7Qw1rH+3K0xf7CkyKCGerus6mB97O0p8/+8bttce+N1TPf/88/fO+iXrupvOUFB3qds/qPfm64oUv9Dyl4h3munPN+daBxWq16DxKwzsNyTUAACarrK3X2xvcj9+yWALz+K3WXDuqj9sAnnnLd6nOZjcnILRbQVmNfvCXdfrP9uOG9bBgq/5822jdN3mALBaLLBaLbhiTok8eufj0cXQu/znU1tu14JP9uvz5z/XRrjxKWc/C4aJKHS1u7HMPDbZqdKp7xQD8m9t51ww1O2sk1wAAmOzdrKMqbdJvmhAZomsz+pgYkfeyWi2ae80INf29w4H8ci1Ze9C8oNBm+/NOTwR33RlLig7V3+6ZoO+d28vtmbiIEM2dNkLLH7hI49LcE78jp6p0N6XiZ8V113p0arzCQ+i3DjSuv7Bk5/rskVwDAGAih8OhRS7Hb91yfio/4LbivL7xummM8ezv33+0T4XlNSZFhLb47/5CXf/SGh05ZZwIPig5Wu/+eJIyzrBjOrx3rP5x70Q9//3zlBQd5vb6p3sLTpeKf7hXVbWUireFe791kkmRwEyuO9e7j5fSbnGWSK4BADDRVwdOan9+ufM6yGrRDyf0MzEi3zB7ylDDEJ6ymno9u2qviRGhNX/bcEgzF25QmcvZ5BcNStL//fgC9U1s21R8i8Wi60enaPWjkzVrUgul4qsP6IoXPteHO09QKt4Kh8PhtnPN+daBqVt0mPomRjiv6+0O7ThaYmJEvovkGgAAEy38KsdwfeU5PdU7PqKFu9Gge0yYHrp8kGHt75sOa/sRfiD0Jna7Q7/7YI8ee8d9Ivgt56fqjZnjFBse0u73jQ0P0ZxrRug/D7ZcKn7Pm5t1x6KNymXycbNyT1bqRGm18zo8xKrz+saZGBHMlNHX+N8RpeFnh+QaAACT5BZWaPXefMPaHRy/1WbTJ6YpvXuU89rhkOb+eye7lV6ius6mn7y9RS9/bpwIbrFI/3PVUD113TkKCerYj6LDep25VPy7lIo3y3XXemy/RIUF044SqNyGmpFcnxWSawAATLJ4ba6a5oHn9oljUm87hAZb9eurhxvWNh88pfe3HjMpIjQoKKvRzX9ZpxXbjWe3h4ecngh+z3cGdNo0fNdS8SCXWvFa2+lS8cufp1S8Kbd+a0rCA9oo16FmTAw/Kx5Jruvr6/XRRx/p0Ucf1YUXXqju3bsrJCRE8fHxGjNmjB577DEdPNj2qZ6rVq1SZmamevfurfDwcKWmpuq2227T+vXrPRE+AAAeV1Zdp39uOmJYmzWJ47fa6+Ihybp8WLJh7bcf7FaFS28vus6+vDJd+6evtM1tIniY/n7PRF15jvtE8M7QUCq+/IELmy0VP1p8ulR8FqXizfZbT0gnuQ5kI3rHKrRJJcnR4irll1W38gSa45HkevTo0frud7+r5557Tl999ZUKCwtVX1+vkpISbdmyRfPnz9fw4cO1ePHiM77XQw89pCuvvFLLli3T8ePHVVNTo8OHD2vp0qWaNGmSnn32WU/8EQAA8Kh/bT6i8iYJYFJ0mKaO9EzS4e8enzrc8ENhXmmN/vTpARMjClxf7i/QDS+tMZydLEmDe0Trvfsv0Hkupaee0FAq/sLNzZeKf/ZtqfhzAVwq/k1BuWG6fmRokEam0G8dyMKCgzSsd6xhjd3r9vNIcl1aWiqr1aorrrhCf/nLX7Rjxw6dPHlS2dnZ+tOf/qRu3bqpsrJSs2bN0ooVK1p8n+eff14LFiyQJE2dOlUbNmxQQUGBPvvsM02YMEE2m02zZ8/WO++844k/BgAAHmG3O7R4Ta5h7YcTUul3PEtpSVG686L+hrXXvswJ+N3Jrvb2hkOauXBjsxPB//WjC5SS0LaJ4J3BYrHouozTpeJ3TOrfbKn4i9+Wiq8KwFJx113rcWmJHe5/h+/LoO+6wzzyX9H3v/997d69Wx9++KHuvvtujRgxQomJierfv79+/OMf67///a+ioqLkcDg0e/bsZt+jsLBQc+fOlSRdcsklWrZsmcaNG6ekpCRNnjxZq1ev1pAhQyRJjzzyiGpraz3xRwEAoNN9ti9fuScrndchQRbdOj7VxIh8308uGagesY27lLU2u37zn90mRhQ47HaHfrtit37xznbZXCaC3zr+7CeCd4bY8BD9+prh+s+DF+r8tES3148WV+neACwVp98azcmg77rDPJJcP/300xo8eHCLrw8dOlSzZs2SJO3atavZ/uslS5aorKxMkjR//nxZrcZQIyIiNG/ePElSbm5uqzvgAAB4k4Vf5RqurxnZW8kx4eYE4yeiwoL12PeGGtY+3p2nz/cVmBRRYKiqtenHf92iV77INqxbLNIvrxqm/7224xPBO8PQnrH6+70T9PubR6l7TGCXitvtDq3LLjKsTaTfGnKfGP71kWK3X5ihdab9bXfOOec4Pz92zH2q57JlyyRJ/fv317hx45p9j8zMTIWHn/5h5P333/dAlAAAdK79eWX6cn+hYW3WpP4t3I32uHZUH4122Xl54t87VVtvNycgP5dfVq0f/GWtVu5sbiL4GN39nXSvGtBnsVh0bUYfrX5ksu68MHBLxffll6moorHiMzosWCNcem0RmFITI5UYFeq8rqi1aX9+mYkR+R7Tkuu8vDzn53Fx7gMUtmzZIkmaOHFii+8RFhamjIwMSdLmzZs7OUIAADrfIpde6zH9EnQug4Q6hcVi0dxpI9Q0n8suqNCStbmmxeSv9p4o03V/WqNtR0oM691jGiaC9zQpsjOLCQ/Rr67+tlS8f8ul4jMXblSOH5aKu/Zbn98/UcFeUF0A81ksFrfda0rD28e0/5IahpAlJiY6e6cbHD161FkSnp6e3ur7NLy+b98+v/0NIwD/d/BkhY65TNeF/ymprNM7W44a1mZNSjMnGD81MiVe3x/T17D2h4/3q6CspoUn0F5f7i/QjX92nwg+pEeM3rt/UpdMBO8MQ3vG6u/3tFwq/vm+Ak154Qs9u8q/SsVdk2tKwtGUW3LNULN2MSW5XrhwobZt2yZJuvfeexUUZJyOWljYWC7Xo0ePVt8rOfn02ZY1NTUqLy9vVxynTp1q8aO4uLhd7wUAZ8PhcGjusp2a/MxnuujpT/WXL74xOyR40N82HlJVXeMP6b3iwjVlhPfu8Pmq2VcOUUxYsPO6rKZez67aa2JE/mPp+uYngn9ncHf960cT1Sc+wqTIzk5bSsX/+OnpUvGVO3y/VNxud2h9jku/NcPM0ITrULMsdq7bpcuT6127dunBBx+UJPXr108///nP3e6pqGgswWnoqW5JRETjX+LtTa4TExNb/DjTjjkAdIanV+11lgnb7A49tWKPlm1zn0MB31dvs2vJWuMAzx9O6OcVw578TVJ0mB66fJBh7R+bD+vrI8XmBOQH7HaHnlqxW//zrvtE8NvGp+qNGWMVY9JE8M7QUCq+4sGLWiwVv++tzZrh46Xiu46XqqSqznkdGx6sYb3ot0ajkSnxhut9+WUqd/llGlrWpf+i5+fna9q0aSovL1doaKiWLl3abL91098KetMgDADoTAu/ytGfP3PfqZ79z22UYfmhj3fnGcpow4KtuvV8jt/ylBkXpGlgcrTz2uGQ5i7bKTuTb9utqtamH/11s/7SzETwx6cO02+uPcdvenaH9IzR3++ZoD/8oPlS8S++LRV/ZtUeVdb6XsKxzuUIrvHp3dx26xHY4iJCNKB7lPPa4RC/mGyHLvubsKSkRFOmTNE333yjoKAgLV26VBdccEGz90ZHN/5jWFXVeg9i09ebPtcWRUVFLX5kZ2ef+Q0A4Cwt//qY5i3f1exrNfV23b1kk46X0IPtT95wOX7ruow+SmgylRWdKyTIql9fPdywtuVQsd7berSFJ9Cchongq3bmGdbDQ6x6+YdjdNdF3jURvDNYLBZljjpdKn5XC6Xif/r0G13x/BdaueO4T5WK02+NtshITTBcUxredl2SXFdUVOiqq67S1q1bZbFY9Oqrr+qGG25o8f6kpCTn502nijcnPz9f0unJ4e1NrhMSElr8iI+Pb9d7AUBbrfmmUA//fZua/jwWGmz867igrEZ3L9nkkzsjcLfzWIk2uPQ5zmSQmcd9Z3B3XTHcOLvldx/socSxjVqbCP6Peyf6/byAmPAQPf5tqfj4FkvFt2jGwo3KLmhfa6IZ6m12t7+H6LdGcxhqdvY8nlxXV1dr2rRpWrNmjSRpwYIFmjVrVqvP9OnTRzExMZJ0xh3knJwcSdLgwYP97jenAPzPrmOlunfJZtXaGs/dDbZa9Or0sbp3snHWw46jpXrkH9soY/UDi1x2rSemd9PQnvQ5doXHpw5TaJOS5fyyGv1x9QETI/INn+8r0A3NTAQf2vP0RHDXvkx/NqRnjP72bal4cgul4lf+/kuvLxXfeazUMIguITJEQ3rEmBgRvFVzybUvVWiYyaPJdV1dnW644QatXr1akvTb3/5WP/nJT9r07OjRoyVJ69ata/Gempoa53nYY8aM6WC0AOBZh4sqNXPhBrcpu0/fOFKTB3fXz6YM1eXDkg2vfbDjhH7/8b6uDBOd7GR5jd53GVLH8Vtdp1+3KN11UX/D2hv/zfHpoVSe9ta6g7pj0Ua3Hf7Jg7vrn/f53kTwztBQKv7JGUrFL3/uc68tFXftt56Q3k1W+q3RjKE9YxQe0pgmFpTVuP2iDc3zWHJts9l06623asWKFZKkxx9/XI899libn582bZqk0zvXmzZtavaeZcuWqbq6WpKUmZnZwYgBwHOKKmo1Y+EG5buctfuL7w3V9aNTJElBVot+/4MMDe1p3ElYsPqA3qdP1GctXX9ItfWNlQp9EyN02bDWj5lE57r/koHqEdu441hrs+s3Lcw8CGQ2u0P/+59devy9HW4TwX84IVWv+/hE8M5wplLxYyXVuu+tLZr+xgavKxVf65JcUxKOlgQHWTWyT7xhjdLwtvFIcu1wOHTnnXfqX//6lyTppz/9qZ588sl2vcf06dOdpeGPPfaY7Ha74fXq6mrNmTNHkpSWlqarrrqqEyIHgM5XWVuvOxZtVHaBcafsjkn9dc93jKXg0WHBenX6WHVzGXQ1+19fK+vQKY/His5VZ7PrzXXG47dmTExjOm8XiwoL1i++N8yw9smefH22N9+kiLxPZW29fvTWZr36ZY5hvWEi+JOZ/jMRvDOcqVT8y/2FmvL7L/T0Su8oFa+z2bXRtd+aYWZoxSjOuz4rHvlb8sEHH9TixYslSbfddpuefPJJlZeXt/hRX+/+l05SUpLmzp0rSfrkk0+UmZmpTZs2qbCwUF988YUuvfRS7d69W5L03HPPKTSUiasAvE+9za4Hlma5/cb36pG99PjUYc3OiuibGKlXbh9j6BOtrbfrnjc36xhlWT5lxfbjhmqFyNAg3TS2r4kRBa7MUb01pp9xAu685bsMVQWBKr+0Wj/4yzp9uMs4RDYiJEiv+OlE8M7QtFT87ovcS8XrbA699NnpUvEPtptbKr79aIkqam3O66ToMMNRdYCrDIaanRWPJNd//OMfnZ//9a9/VUxMTKsfb731VrPv8/DDD+uBBx6QJC1fvlzjxo1T9+7dNXnyZK1du1ZWq1XPPPOMrr/+ek/8MQCgQxwOh3757g59sse4O3bBgG567vvntdrrNjYtUU9df65hjQnivmehyyCzG8ekKC4isMtqzWKxWPTEtBFqmiNmF1Ro8Zpc02LyBntOlOraP32lr10mgid/OxH8u34+EbwzxISH6JdTh+uDhy7ShPTmS8V/9FdzS8Vdj+CakJ7IL0zQKted6x1HS/hlZBt4fX3PggULtHLlSk2bNk09e/ZUaGioUlJSdMstt2jNmjV69NFHzQ4RAJr1wkf79PdNhw1rw3rF6pXbxygsOOiMz984JsVtgvjOY6V6+O9MEPcFWYdOuf2mf8YFaabEgtPO6ROnH4wzVg784ZP9yi+rNikic322N183/nmtjpUY//wNE8HPTYkzKTLfNLhHjN6+e4IW3JLhdaXirsPM6LfGmfSKizDMqqipt2vPiVITI/INHuu5bs/HzJkzW32/KVOm6P3339fx48dVU1Ojw4cPa+nSpRo/frwnwgeADntz3UEtcDnuJyUhQotnjWvXQKDTE8SNw69W7jyhF5gg7vUWueyITh7cXQO6U4Zptke/O0Qx4cHO6/Kaej2zcq+JEZnjzXUHdefiTW4TwS8e0l3/+tEF6h2AE8E7g8Vi0bTzemv1oxfrnu+kK9gLSsVr6+3alGuc2UG/Ndoio6+xlYbS8DPz+p1rAPA1K3cc16/f32FYS4gM0ZI7zldybHi73uv0BPFRbhPEX2SCuFfLK63Wf74+bljj+C3v0C06TP/v8sGGtX9uPhIwPzTa7A79Zvku/aqZieC3T+in16aPVXRYcAtPo62iw4L1P1cN0wcPXdRsItu0VPwbD5eKbztSrKq6xn7rHrFh6p8U5dGvCf/gWhq+laFmZ0RyDQCdaENOkR7821Y13YyICAnSGzPHKf0sdy2jw4L12oyxSopmgriv+Ou6g6pvkrikd4/SdwZ1NzEiNHX7xH4a5DLMae6ynX7fblFZW6/73tqs1/7rPhH8V1cP17zMEUwE72SDesRo6d3jteCWDEOJbYMv9xfqyt9/ofkeLBV37beemN6Nfmu0ySiXoWZZAfJLyI7gb1AA6CR7T5TprsUbDQM/gqwW/em2DGWkJrTy5JmlJDQ/QfzuJUwQ9zbVdTb9df0hw9rMC9JaHWCHrhUSZNWvrxluWNt6uFjvZvlvNUheabVufmWdPmpmIvhfbh+rOy/sT8LlIQ2l4p880nKp+J8/+0aXPfe5VnigVNwtuabfGm00MiVOTb9dcworVFxZa15APoDkGgA6wbHiKs14Y4NKq407D7+9/lxdOrRHC0+1z5h+ifqtywTxwvIa3bWYCeLe5N/bjulkReMPHzHhwbphdIqJEaE5Fw3qru8ON/63+buVe9x6kP3B7uOnJ4JvP9r8RPArhnfO31Fo3ZlKxY+XVOvHf92i21/foAP5nVMqXl1n0+ZDrv3WSZ3y3vB/kaHBGtIz1rAWKC00Z4vkGgA6qLiyVtPf2KATpcaJu7OnDNH3O/lM4xvGpOi+yQMMa7uOl+r//X2r35e0+gKHw+F2/NbNY/sqih5Wr/T41OEKDW78UaigrEYvrt5vYkSd7/RE8DU6zkRwr9FQKv5iC6Xi/z1QqO/94Qv97oM9qujgL3uyDhUbqqn6xEeobyLD6tB2bqXh9F23iuQaADqgus6muxZvcttlmD6xn3588YAWnuqYn00Z4rbTtGpnnp7/iAniZtuYe0q7jjceVWKxSNMnppkXEFqV2i1S91xkPO7ujf/mKKewwqSIOteb6w7qjkUbVVFrM6xfwkRw01ksFl3zban4vS2Uir/8+Te6/PnP9Z+vz75UfG226/nW9FujfTJch5qxc90qkmsAOEv1NrseeDtLmw4aS+6+d05PzblmhMd+gLFaLfr9ze4TxP/46QG958c9o75g4VfGQVGXD+uh1G6RJkWDtvjxJQPUs8kU/zqbQ08u32ViRB1ns5/+M/zqvR1yLWiZMbGfXmUiuNeIDgvWL74tFb+gmV7o4yXVun/p2ZeKr6PfGh2U4bJzvfVwcZccIeerSK4B4Cw4HA796v2dbsOBzu+fqBduHqUgDw+vimphgvjP/u9rbWGCuCmOnKrUqp0nDGscv+X9IkOD9YurhhrWVu/J16d78k2KqGMqa+t175ub9XozE8HnXDNcT2Sew0RwLzSoR4z+elfnlopX1dqUddil35rkGu00oHu0Ypr8Mq6kqs5vqns8gb9dAeAsLPjkgN7eYJwIPaRHjF6dPlbhIUFdEsPpCeJj3SaI37Nks44yQbzLvbnuoGGXcEiPmGaHFsH7TDuvt8alGSf6P7l8l6FX1RfklVbr+6+s1ce7jb/0iwwN0qu3j9WsSf1Nigxt0dml4psPnlKdrfGe1MRI9aEVAO1ktVp0XjO712geyTUAtNPbGw7phY+N/c2948K1+I7zFRcR0qWxjOmXoN/d0PwE8Y4OwkHbVdbW628bDhvWZk1Ko7fRR1gslm9bORrXsgsrtGhNTssPeZldx05PBN9xtNSw3iP29ETwy5kI7jMaSsVX/rT1UvEfvr6+1VLxtdmFhmt+2Yez5TrUjOS6ZSTXANAOH+3K0y/f3W5Yi4sI0ZI7z1fPuPAWnvKs60en6Ecuw9N2M0G8S72bdVQlVXXO6/jIEF2b0cfEiNBe5/SJ0w/GpRrWFnxyQPll1S084T0+3ZOvm152nwg+rFes3rt/ks7pw0RwXzQw+XSp+B9vzTDMBWjw1YGT+t4fvtBvP9jd7C9TOd8ancV1qBkTw1tGcg0AbbT5YJF+snSLofQ3LNiqN2aO1cDkmJYf7AKzvzvE7czeD3fl6bmP9poUUeBwOBxa5HL81i3np3ZZewA6z6PfHayY8MbewvKaej290rv/G1qyNld3LnafCH7p0GT9876J6hVHGbAvs1gsunpkb33yyGTdO7n5UvFXPs/WZc99ruVfH3OWilfU1OvrI8ZzzUmucbZcd653Hy9VdZ2t+ZsDHMk1ALTBgfwy3bl4k2qa9GBaLdKLt2RoTL9EEyP7NharRS/cPErDesUa1v/06Td6N+uISVEFhq8OnNT+JqWZQVaLbp/Qz8SIcLa6RYfp4SsGG9b+tfmIsrxwSKDN7tAT/96pX7+/020i+MwL0vSX28cwEdyPRIUF6xffa7lU/ERptX6yNOvbUvEybcwtUn2Tb4z0pCj1aGb3G2iLbtFhhvPR6+0O7TxW0soTgYvkGgDO4ERJtWa8sVHFlXWG9d9ce66+O6KnSVG5a2mC+M//b7s2H/S+5MBfuB6/deU5PTk/2If9cEI/DUqONqzN/fcur2qxqKip171vbtJCl4oJ67cTwedOG8FEcD/VllLxK3//pZ5asduwPoFda3RQRl/j0EdKw5vH37wA0IqSqjrNXLjBbfr2Ty8fpFvHp7bwlHn6xEc0O0H83jc3MUHcA3ILK7R6r/HIpjs4fsunhQRZNeeaEYa1bYeL9X9bvKMCpHEiuPH7LjI0SK9OZyJ4IDhTqXi93aF9ecZBZwwzQ0e5loZnMdSsWSTXANCC6jqb7lmySXtOlBnWbzk/VQ9dNsikqM5sTL8Ezb/RdYJ4LRPEPWDx2lw1PQ3n3D5xGp2a0PID8AkXDkrSlBHGGQbzV+5VWXVdC090jYaJ4DuPNT8R/LJhTAQPJE1LxScNbD15nkByjQ4a5TLUbCs7180iuQaAZtjsDj38j61an1NkWL9ieA89mTnC649Yui4jRT9mgrhHlVXX6Z+bjLuZHL/lPx6fOlyhwY0/JhWW1+iPqw+YFk9LE8GH94rV+/dfyETwADYwOUZv3Tlef7p1dLOl4oOSo9U9JsyEyOBPRvSONVTFHS2u8onTFLoayTUAuHA4Tg8KWrH9hGF9TL8EvXhLhs/0Mj7awgTxZz/07unHvuJfm4+ovEklQFJ0mKaO7GViROhMfRMjde930g1rb3yVo+yCls8V9pTFa5qfCH7ZtxPBzToGEN7DYrFo6she+uSRybpv8gBDqfj0C9LMCwx+Iyw4SMN6G4emsnvtzjd+QgSALvTSZ99oydqDhrWBydF6fcZYnzpeqaUJ4i99xgTxjrLbHVq8Jtewdtv4VIUF+873B87sRxcPUK8miWudzaEnl+/qsq9vszs0d9lOzVnWwkTw6WMVxURwNBEVFqzHvjdUHz08Wb+8aphenT5Wt53vffNB4Jsy6Ls+I5JrAGjin5sO65lVxp3dnrHhWnzH+YqPDG3hKe/VOEHcWBL4838xQbwjPtuXr9yTlc7rkCCLbpvAD7D+JjI0WL+4aphh7dO9BVq9J8/jX7uipl73LNmkRS6/xLFapCemjdDcaSMUZKUFAc3rnxSlu7+TriuG95CV7xN0kgz6rs+I5BoAvvXpnnw99s52w1pMeLAW33G++vjw0Up94iP0l+ljDP2jtbbTE8SPnKps5Um0xPUIpGtG9lZyDKW5/uiakb10fprxLPsnl+9WTb2thSc67kTJ6Yngn+xxnwj+2oyxmkGZLwATuE4M//pIsWzMcTEguQYASVmHTunHf91i+EciNNiq16aP1ZCeMSZG1jlGpybo6RtGGtaYIH529ueV6cv9hYa1mRy/5bcsFovmTBuuppt/OYUVbr9g6Sw7j5U0OxG8Z2y4/nnfRF06lIngAMyRmhipxKjGKr6KWpv255e18kTgIbkGEPCyC8p1x6KNqqpr3ImyWKQFPxil8X50fMm1GX10/yXGCeJ7TpTpp0wQbxfXMt0x/RI0MiXelFjQNUb0jtMPXPpWX/xkv/JLO3dS7ie783TTy2t1wuV9R/SO1Xv3T9KI3kwEB2Aei8XitntNabgRyTWAgJZfWq3pb2zQqUrj+bXzpo3Qlef43+TnR64Y4nZ+70e78vQME8TbpKSyTu9sOWpYm8WudUB49LtDFBveODysotam363c02nvv+irHN29ZJMqXSaCXz4sWf+4l4ngALyDW3LNUDMDkmsAAausuk4zF27UkVNVhvWfXDJQt09MMycoD2uYID7cZYL4nz/7Ru9sYYL4mfx90yFDhUOvuHBNGdHTxIjQVRKjQvXwFYMNa+9sOaqsQx0bDNgwEXzuv3e5TQSfNSlNr9zORHAA3sM1uc5i59qA5BpAQKqpt+m+tzZr13FjX+P3x6boke8ObuEp/xAZ2vwE8cf+b7s2HywyKSrvV2+za/Ea4xFtP5zQTyE+cu45Ou6HE/ppcI9ow9rcZTvPuq2itYng8zJHaM41TAQH4F3Oc0mu9+WXqZzZLU78RAAg4NjtDj36z6/11YGThvVLhybrqevOlcXi/z/M9o6P0KvNThDfzATxFny8O09HixurHMKCrbqV82MDSnCQVXOvGWFY23akRP86i6qP4yVVuull94ngUaFBen3GOE330+oZAL4tLiJEA7pHOa8djtNTw3EayTWAgOJwOPSb/+zWv7cdM6yP6huvP96aoeAA2oXMSE3QMzcyQbyt3nCZDn1dRh8lRPne2efomAsGJul75xhbAZ5euVel1XUtPOFux9HTE8FdK2d6xYXrn/ddoEuGJndKrADgCaP6JhiuKQ1vFDg/RQKApFe/zNYbX+UY1tKTovTGzHGKDA28vsbMUX30k0sGGtb2nCjTQ39jgnhTO4+VaEOOsWSe47cC1/9cNUxhTao+Cstr9OIn+9v07Me78vT9V9Yqr7TGsH5On9MTwYf3jm3hSQDwDhmp8YZrhpo1IrkGEDDezTqip1YYp/t2jwnT4jvON5zbGGgevmKwrnQZyvXx7jw9vYoJ4g0WuexaT0zvpqE9SYICVd/ESN37nXTD2sKvcnUgv7zV5xZ+laN73mxuIngP/ePeieoRy0RwAN6vuYnhDge/kJdIrgEEiC/2FWj2P782rMWEBWvxrPPVNzHSpKi8g9Vq0fM3n6cRLjtmL3/+jf5vMxPET5bX6H2XNgKO38KPLh6o3k2Ox6q3O/Tk8l3N/oBZb7Nrzvs79EQzE8HvvLC/Xrl9TEBWzgDwTUN7xig8pDGNLCirMcwkCWQk1wD83tdHinXfW5tV3+Sn2tAgq16ZPoYSzG9Fhgbr1elj1T3GOEH8F+8wQfztDYdUW293XvdNjNBlw3q08gQCQURokH5x1TDD2uf7CrTaZUBZeU297l6ySYvXGifNWy3Sk5kj9KurhzMRHIBPCQ6yamSfeMMapeGnkVwD8Gu5hRWatXCjoQzTYpGev/k8XTAgycTIvE/v+Aj95Xb3CeL3LAncCeJ1NrveXGdMimZMTCMZgiTp6pG9dH7/RMPavOW7VFN/+u+bhongn+4tMNwTFRqk12eO0+1MBAfgo0a59l0z1EwSyTUAP1ZQVqMZCzfoZEWtYf1XU4fr6pG9TYrKuzU3QfxkxekJ4oF4juWK7ccNg6ciQ4N009i+JkYEb2KxWDT3mhFq+ruWgycr9cZ/c50TwXe3NBF8CBPBAfiuDJe+6yx2riWRXAPwU+U19bpj0UYdPGnccb13crruuLC/SVH5hsxRffTApe4TxH/6t62yBdgE8UVrcg3XN45JUVxEiDnBwCsN7x2rW8cbzzt/cfV+3fQyE8EB+C/XnesdR0sMLVSBiuQagN+prbfrR29t1vajJYb16zP66OdThpoUlW/5f5cPdjvL9/QE8T0tPOF/th4udju7c8YFaabEAu/2yBVDDL90qay1qarOOBH8iuFMBAfgP3rFRahHbOOclpp6u/acKG3licBAcg3Ar9jtDv38/77Wl/sLDevfGdxd828cKSu9sm1itVr03PfdJ4i/8nm2/hUgE8QXupyHPnlwdw3oHm1SNPBmCVGheuS7g1t8/a4L++vlHzIRHIB/yeibYLhmqBnJNQA/M3/VHr2bddSwNjIlTn++bbRCgvgrrz0iQ4P12gz3CeL/8852bcr17wnieaXV+s/Xxw1rHL+F1tx6fqqG9owxrAVZLXry2nP0OBPBAfghhpq54ydNAH7j9f/m6JXPsw1r/bpF6o2Z4xQVxo7R2egVF6FXp49VmMsE8Xvf3KzDRf47Qfyv6w4ajm5LT4rSdwZ1NzEieLvgIKueuv5cRYYGSZKiw4L1+oyxun1CP5MjAwDPGMVQMzck1wD8wrJtx/Tk8l2GtaToUC2543wlRYe18BTaYlTfeD0dQBPEq+ts+uv6Q4a1mZPSaCnAGY1OTdDKh76jl24brf/+/BJdzERwAH5sZEqc4bSEnMIKFVfWtvxAACC5BuDz1hwo1CP/2GpYiwoN0sKZ56tftyhzgvIzmaP66EGXCeJ788r00NtZfjdB/N/bjhmOb4sJC9YNo1NMjAi+JLVbpK46t5fiI0PNDgUAPCoyNFhDehpnswR63zXJNQCftvNYie55c7PqbI0JXrDVopdvH6NzU+JMjMz//LSZCeKf7MnX0yv9Z4K4w+FwO37r++P60lYAAEAz3ErDA7zvmuQagM86XFSpmQs3upUmP3vTebqI/thO1zBB/Jw+LhPEv8jWPzcdNimqzrUx95R2Hms8SsRikWZMTDMvIAAAvFiG61Azdq4BwPecLK/R9Dc2qKCsxrD+y6uG6dqMPiZF5f8iQ4P16vSxSnadIP7udm30gwnirsdvXT6sh1K7RZoUDQAA3i3DZed66+FiORz+1S7WHiTXAHxOZW297li8STmFFYb1Oy/sr7u/k25SVIGjV1yE/uIyQbzO5vD5CeJHi6u0aucJwxrHbwEA0LIB3aMV06R1qqSqzu3ns0BCcg3Ap9TZ7Lr/r1u0zaXs6JrzeuuXVw0zJ6gANKpvvJ656TzDWpGPTxBfsjZXTWezDekRo4np3cwLCAAAL2e1WnReM7vXgYrkGoDPcDgc+sU72/Xp3gLD+qSB3fTsTSM5KqmLTTuvtx68bJBhzVcniFfW1utvG4x947Mmpcli4XsKAIDWuA41I7kGAB/w7Id79a/NRwxrw3vF6uUfjlFYcJBJUQW2n142SFed6z5BfL6PTRB/L+uYSqrqnNfxkSH07gMA0AZMDG9Ecg3AJyxek6s/ffqNYa1vYoQW3TFOMeEhJkUFq9Wi524apXP7GI89+8sX2fqHj0wQP338lnGQ2S3npyo8hF/YAABwJqNcJobvPl6q6jqbOcGYzGPJtcPh0O7du7V48WLdf//9GjdunMLCwmSxWGSxWJSbm9vm91q1apUyMzPVu3dvhYeHKzU1VbfddpvWr1/vqfABeJEV249r7r93GtYSo0K1eNb5So4JNykqNIgIDWp2gvgv392uDTneP0H8qwMntS+v3HkdZLXo9gn9TIwIAADfkRQdpr6JEc7rertDO4+VmBiReTyWXB88eFDDhw/XzJkz9dJLL2nTpk2qra1t9/s89NBDuvLKK7Vs2TIdP35cNTU1Onz4sJYuXapJkybp2Wef9UD0ALzFuuyT+unftqrpqQ4RIUF6Y+Y4pXePNi8wGPSMC9erzUwQv+8t758g7nr81pXn9FTv+IgW7gYAAK5G9U0wXAdqaXiXlIX36dNH1113nS666KJ2Pff8889rwYIFkqSpU6dqw4YNKigo0GeffaYJEybIZrNp9uzZeueddzwRNgCT7TlRqruXbFKtze5cC7Ja9NIPR7v198B85/WN17PNTBC/c/FGlVXXtfCUuXILK7R6b75hbdYFaeYEAwCAj3I97zorQIeaeSy57tatm9577z0dP35cR44c0TvvvKNLL720zc8XFhZq7ty5kqRLLrlEy5Yt07hx45SUlKTJkydr9erVGjJkiCTpkUceOatdcQDe62hxlWa8sUFl1cZjnebfMFKXDEk2KSqcyTXn9dZDLhPE9+WV66G/bfXKCeKL1+YaqiLO7ROnMf0SWn4AAAC4ce273srOdeeKiYlRZmamevbseeabm7FkyRKVlZVJkubPny+r1RhqRESE5s2bJ0nKzc3VihUrOhYwAK9xqqJW019fr7zSGsP6z64cohvHpJgUFdrqocsGaeq5vQxrq/fk63cf7DYpouaVVdfpn5uM0+c5fgsAgPYb3itWIUGN/34eLa5Sflm1iRGZw2unhS9btkyS1L9/f40bN67ZezIzMxUefnqY0fvvv99lsQHwnKpam+5cvFHfFFQY1mdekKYfTR5gUlRoD6vVomdvOs9tgvirX+boHxu9Z4L4/20+ovKaxsqIpOgwTR3Zq5UnAABAc8JDgjS8t/Hf/UDcvfba5HrLli2SpIkTJ7Z4T1hYmDIyMiRJmzdv7pK4AHhOvc2uB97O0haXv4yvOrenfnX1cHYUfUiLE8Tf26712SdNiqqR3e7Q4rUHDWu3jU/lvHQAAM4SfddemlwfPXrUWRKenp7e6r0Nr+/bt08OR/v6+U6dOtXiR3Fx8VnFDuDsOBwO/er9Hfp4d55hfXz/RD3//VEKspJY+5qeceF6bUbzE8QPnTR3gvhn+/KVU9hYHRESZNFtE1JNjAgAAN+WQd+1dybXhYWFzs979OjR6r3JyacHG9XU1Ki8vLzVe10lJia2+HGmpB5A5/r9x/v19gZjyfDQnjH6y/SxCg9hN9FXjUyJ13PfN04QP1VZZ/oE8YVf5RqurxnZmzPTAQDoANeTXL4+UuyVw0w9ySuT64qKxt2Ehp7qlkRENJ5F2t7kGoB3+Ov6g/rDJ/sNa33iI7Ro1vmKiwgxKSp0lqtH9tZPLzdOEN+fX64H384y5R/dA/ll+nJ/oWFt5qS0Lo8DAAB/kpoYqcSoUOd1Ra1N+/PLTIyo63llct20vNuTPZZFRUUtfmRnZ3vs6wJotGrnCf3qvR2GtfjIEC2+Y5x6xrGT6C8eumyQ27CwT/cW6Lcrun6CuOuu9Zh+CRqZEt/lcQAA4E8sFovb7nWglYZ7ZXIdHR3t/LyqqqrVe5u+3vS5tkhISGjxIz4+vl3vBaD9NuYW6cG3s9R08zI8xKrXZ4zTwOQY8wJDp7NYLHr2xvM0MsU4SfS1/+bo7xsPdVkcJZV1emfLUcPaLHatAQDoFG7JdYANNfPK5DopKcn5eV5eXit3Svn5+ZJOTw5vb3INwDz78sp056KNqqm3O9esFumPt4zWmH4JJkYGT2mYIN4j1jhB/PH3dnTZBPG/bzqkqjqb87pnbLimjOjZJV8bAAB/55pcZ7Fzbb4+ffooJub0rtWZyrNzcnIkSYMHD+aYHsBHHC+p0ow3Nqi0ut6w/tR15+ry4a0PMYRv6xEbrlenj1V4SNdPEK+32bV4jfH4rdsn9lNIkFf+UwgAgM85zyW53pdfpvKa+uZv9kNe+xPF6NGjJUnr1q1r8Z6amhrnedhjxozpkrjgPwrKavTiJ/s1a+EG3f/XLfr9x/v0wfbj+qagXPU2+5nfAGelpLJOM97YoOMl1Yb1h68YrB+cz1FIgWBkSryeu2mUYa0rJoh/vDtPR4sbW4nCgq26le85AAA6TVxEiAZ0j3JeOxynp4YHimCzA2jJtGnT9Pnnnys7O1ubNm3S2LFj3e5ZtmyZqqtP/4CemZnZ1SHCR207XKzFa3K1/Ovjqm2aRG9v/DQ02KqB3aM1pGeMBveI0ZCe0RqUHKM+8RGyct7yWauus+nuJZu0L8842f+28al64NKBJkUFM0wd2UsH8gfrhY/3Odf255frgbez9PqMcR4519x1kNl1GX2U0GSqKQAA6LhRfRP0TUHj6U9Zh4p1wYCkVp7wH16bXE+fPl1z585VWVmZHnvsMX344YeyWhs32qurqzVnzhxJUlpamq666iqzQoUPqK2364Mdx7VoTW6bej9q6+3adbxUu46XGtajQoM0qEeMhvSI0eCeDf83Wt2jw2hLOAOb3aGf/m2rNuQWGda/O7yH5mWew///AtCDlw3U/vwyLf/6uHPts70FemrFbv3q6uGd+rV2HivR+hzj9x7HbwEA0PkyUuP1f1uOOK8DaaiZR5PrXbt2qbS0MTk5cqTx/8lZWVk6ceKE8zolJUUpKSnO66SkJM2dO1ePPPKIPvnkE2VmZmrOnDlKS0vTrl279Nhjj2n37tNHuDz33HMKDWX3Ae4Kymq0dP0hvbX+oArKajr8fhW1Nm09XOz2l0R8ZMjpHe6mSXePaMVH8n0pnT5eb+6ynVq584RhfVxaghbckuGRXUp4P4vFomdvOk+Hiyq17UiJc/31/+ZoUHJ0p7YJLHLZtZ6Y3k1De8Z22vsDAIDTmpsY7nA4AmIjxeJoeqh0J7v44ov1+eeft+neOXPmaO7cuW7rDz74oF588cVmn7FarZo/f74effTRjoTZrFOnTikxMVHS6fOwExKYXuxLth0u1qI1ufqPa+m3i37dInX7hH6KCgvW3hNl2pdXpn155Sos73giLkk9YsM0uEeMIfEelBytqDCvLRrxiD+u3q9nP9xnWBuUHK1/3XeB4iJDTIoK3iKvtFqZf/xKJ0ob+/CDrRa9ddd4TUjv1uH3P1leo4m/W63aJpPp/3L7GH2XKeEAAHS6eptd58xdpeq6xn93//vzS5SSEGliVM3r7JzP63/CX7BggaZOnaqXXnpJGzZsUFFRkZKTk3XRRRfpoYce0vjx480OEV6iPaXf3xncXTMv6KeLByc320N9srxG+/LKtS+vTHvzyrTvxOn/W1bdvmmHeaU1yiut0Zf7Cw3rfRMjNKRHTGOJeY8YDUiOUlhwULve3xf8Y+Nht8S6Z2y4Ft9xPok1JDVOEL/plTXOf4jr7Q796K3Neu/+SerXLeoM79C6tzccMiTWfRMjdNkwptIDAOAJwUFWjewTb2gF3Hq42CuT687m0Z1rX8bOte/IL6vW0vWH9Nf1h1ot/Y4KDdINY1I0fWKaBia3/0x0h8OhvNIaQ7K979uPpr+ZO1tBVovSukU6h6g1fKR1i1Swjx4V9MnuPN3z5mbZ7I1/zcSGB+tfP7pAg3vEmBgZvNGK7cf1479uMawNTI7WOz++QLHhZ/eLmDqbXRfOX6280sa/Gx6fOkx3XZTeoVgBAEDLnlqxW3/5ovFI5bsu7K/HO3meSmcIuJ1roCUNpd/Lvz6mOlvLvyPq1y1SMyam6caxKWf9A7p0uj+0Z1y4esaFa/Lg7s51u92hw6cqtfdEmfbnlzvLy78pKG81Llc2u0PfFFTom4IKrdje2JscGmTVgORoDekR3aSf2/snl285dEr3L91iSKxDg616bcY4Ems066pze+nhKwbr+Y8aKx0O5JfrgaVZen3G2LP6JdMHO04YEuvI0CDdNLZvp8QLAACa59p3nRUgQ81IruFTGkq/F36Ve8bJg98Z3F2zLkjT5MHdPZqEWq0W9esWpX7dovTdEY3rdTa7cgsrvt3hLte+b5Pu3JMVsrejXqTWZtfu46Xa7TK5PNI5uTz62+PCTife3WPMn1x+IL9cdyzaaNjRt1qkBT/I0Pn9E02MDN7ugUsHan9+uf697Zhz7fN9BXpqxR79+pr2/8Z74Vc5husbRqcoLoJ2BAAAPCkjNd5wveNoiepsdoX4aDVmW5Fcwye0p/T7xjEpmn5BmgZ0b3/pd2cKCbJq0Ld91U1V19l0IN/Yz70vr1xHi6va9f6VtTZtO1ysbS6/ZIiLCHEeETakSXl5V53nm1darRlvbFBxZZ1hfV7mObryHAZIoXUWi0XP3DhSh05WGCaIv/FVjgb1iNYt7ZggvvVwsdv8BY7fAgDA83rFRahHbJizeqym3q49x8t0bkqcyZF5Fsk1vNrWw8Va9FWO/rP9eKsl1mndIjXjgjTdOCZFMR0o/e4K4SFBOqdPnM7pY/zLpay6Tvvzy136ucvbfYRYSVWdNuQWuZ0nnRwTpiE9YzQoOUZDep7e7R7UI0bRnTi5vLS6TjPe2OD2i4IHLx2oH07o12lfB/4tPCRIr04fq2kuE8R/9d4OpXWL0sQBbZsg7rprPXlwd9N/6QYAQKAY1Tdeq3bmSZKSosNUUF4tyb+TawaatYCBZuaprbdrxfbTU7/PVPo9eXB3zeyC0m8zFVXUOgenNfRz7z1RptJ2Ti5vSUpChPOYsMHflpgP6B6t8JD2TS6vqbdpxhsbtC7bmNTfPLavfnfDuaaXqsP37DhaohtfXmNoL4iPDNH7bZggnldarUm/W636Jj0Yi2aN08VDkj0WLwAAaLTmQKGKKms1qm+8+sRHeOXPgp2d85Fct4Dkuuv5Yum3WRwOh/LLagzJdsNOd1WdrcPvb7VIaUlRzrLyId8m3mndopodKmW3O/TA21n6z/bjhvXLhibrldvH+Oy0c5jvg+3H9aOzmCD+/Id7tWD1Aed1elKUPn54st/+Eg4AALQfyXUXIbnuOlmHTmnxmtwzln73T4rS9In9fKL02yx2u0NHi6u0t0lp+d4TZcouqFCtrePHhYUGWZXePcp5XFhD8v3GVzlatCbXcG9GaryW3jVBEaH+d3Y3utaLn+zXcx8Zz0qfPLh7ixPEq+tsmvS71TpZUetcm5c5QtMnpnk6VAAA4EM4igt+oaH0e+GaXLeBXK4mD+6umZPSNHmQ/5Z+dxar1aK+iZHqmxipy4f3cK7X2ew6eLJCe0+UN5aY55Upt7D9k8v3nCjTnhNlrd6X3j1Kb8wYR2KNTvGTbyeIL2vjBPHlXx83JNYxYcG6YXRKl8QKAAACF8k1ulR+abX++m3pd2F566XfN43tq+kT+yk9QEu/O1NIkFUDk2M0MDlGU9XLuV5dZ9M3Bd9OLj9Rrv3fJt1HTrVvcnlTyTFhWnLH+V02nRz+z2Kx6OkbR+pgUaXhl3HNTRB3OBxug8y+P66vojpxcB8AAEBz+GkDXSLr0CktWpOrFW0o/Z4xsZ9uoPS7S4SHBGlE7ziN6G2c3FheU6/9zrLyxt3u/DNMLo8JC9aiWecrJSHSk2EjAIWHBOnV28co809f6XhJyxPEN+ae0s5jjWfCWyzSDMrBAQBAFyC5hsfU1Nu+nfp98Iyl3xcPOT31+zuUfnuF6LBgZaQmKCPV2Hdyqunk8rwy7TtRrr15ZSqpqlNyTJj+eOtoDe8da1LU8HfJseF6dfpY3fTyWufgvnq7Qz/662a99+NJSkuK0qI1xl3ry4f1UGo3ftkDAAA8j+QanS6/tFpvrT+kpWco/Y4OCz499ZvSb5+REBWq8endND698Zxhh8Oh0up6RYcFK4hfjMDDzukTpxduPk/3vdU4Qby4sk53Lt6oP9022nmeZoNZF6R1cYQAACBQkVyj0zSUfv/n6+OGs2VdpX879ZvSb/9gsVgUF8H/jug6V57TS49cMdgwQfybggrd8NIa2Zr83TOkR4yzXBwAAMDTSK7RIc7S769yte1ISav3UvoNoLM0N0G8otZ4xvusSWmyWPi7BgAAdA2Sa5yVxtLvgyosr23xPkq/AXhCSxPEG8RHhujajD5dHxgAAAhYJNdoM4fDoazDxVr01emp32cq/Z5xQZpuGJOiaI7AAeABLU0Ql6Rbzk9VeAjnrAMAgK5D1oMzqqm36T9fH9eiNbn6+gyl35cM6a6Zk/rrooFJlH4D8LjmJogHWy26fUI/kyMDAACBhuQaLcorrdZf1x3U0g2Hzlj6fdPYFE2fmKb+SVFdGCEAnJ4g/tqMsfr5/32tylqbfn31cPWOjzA7LAAAEGBIrmHgcDi05VCxFq9pQ+l39yjNmEjpNwDzTRqYpC9mX0LFDAAAMA0ZESS1r/T70qHJmnFBGqXfALwKfx8BAAAzkVwHuLaWfseEBetGSr8BAAAAoFkk1wGoofR70ZpcfdCG0u+ZF6Tp+tGUfgMAAABAS8iWAkhNvU3Lt50u/d5+tOXSb4tFumRIsmZekKYLKf0GAAAAgDMiuQ4AeaXVemvdQb3dhtLvm8b21fSJ/ZRG6TcAAAAAtBnJtZ86Xfp9SovWHDxj6feAb0u/r6P0GwAAAADOCpmUn2lP6felQ5I1c9Lp0m+LhdJvAAAAADhbJNd+4kRJtf66/qCWrj+kkxWtl35/f9zp0u9+3Sj9BgAAAIDOQHLtwxpKvxd+lauVO060qfT7+tEpiqL0GwAAAAA6FVmWD6qz2fX+1mNaTOk3AAAAAHgFkmsfZHc49LsP9qiwvKbZ12PCg/X9sZR+AwAAAEBXIbn2QWHBQbp1fKoWfLLfsD6ge5RmTuqv6zP6UPoNAAAAAF2IDMxH/XB8ql769IBsDocuG5qsGRdQ+g0AAAAAZiG59lHJseF65qaRGp2aQOk3AAAAAJiM5NqHXZeRYnYIAAAAAABJVrMDAAAAAADA15FcAwAAAADQQSTXAAAAAAB0EMk1AAAAAAAdRHINAAAAAEAHkVwDAAAAANBBJNcAAAAAAHQQyTUAAAAAAB1Ecg0AAAAAQAeRXAMAAAAA0EEk1wAAAAAAdBDJNQAAAAAAHURyDQAAAABAB5FcAwAAAADQQcFmB+Ct7Ha78/Pi4mLzAgEAAAAAdLqmeV7T/O9skVy3oLS01Pl5enq6iZEAAAAAADyptLRU3bp169B7UBYOAAAAAEAHWRwOh8PsILxRfX29Dh8+LEmKjY2V1epdv4coLi527qhnZ2crPj7e3IAQsPhehDfg+xDegO9DeAu+F+ENfOH70G63OyuW+/btq+DgjhV2UxbeguDgYPXv39/sMNokPj5eCQkJZocB8L0Ir8D3IbwB34fwFnwvwht48/dhR0vBm/Ku7VgAAAAAAHwQyTUAAAAAAB1Ecg0AAAAAQAeRXAMAAAAA0EEk1wAAAAAAdBDJNQAAAAAAHcQ51wAAAAAAdBA71wAAAAAAdBDJNQAAAAAAHURyDQAAAABAB5FcAwAAAADQQSTXAAAAAAB0EMk1AAAAAAAdRHINAAAAAEAHkVwDAAAAANBBJNcAAAAAAHQQybWPWrVqlTIzM9W7d2+Fh4crNTVVt912m9avX292aPBj9fX1+uijj/Too4/qwgsvVPfu3RUSEqL4+HiNGTNGjz32mA4ePGh2mAhgBQUFSkpKksVikcVi0cyZM80OCQHmq6++0l133aVBgwYpKipKcXFxGjp0qH7wgx/olVdeMTs8+Lnjx4/rV7/6lcaNG6f4+HiFhIQoMTFREydO1Lx581RQUGB2iPBhDodDu3fv1uLFi3X//fdr3LhxCgsLc/6bm5ub2+b38tdcxuJwOBxmB4H2eeihh7RgwYJmXwsKCtLvfvc7Pfroo10cFQLByJEjtX379lbviYyM1EsvvaQZM2Z0UVRAo9tuu01Lly51Xs+YMUOLFi0yLyAEjJqaGt17771avHhxq/fxYxc8ZdWqVbr55ptVUlLS4j2JiYl699139Z3vfKcLI4O/yM3NVf/+/Vt8PScnR2lpaWd8H3/OZdi59jHPP/+885tx6tSp2rBhgwoKCvTZZ59pwoQJstlsmj17tt555x2TI4U/Ki0tldVq1RVXXKG//OUv2rFjh06ePKns7Gz96U9/Urdu3VRZWalZs2ZpxYoVZoeLALNy5UotXbpU6enpZoeCAGOz2XT99dc7E+tbb71Vq1ev1rFjx1RQUKD169dr7ty5GjBggMmRwl8dOnRIN9xwg0pKShQdHa3//d//1fbt21VQUKAtW7bo//2//6fg4GAVFRXp2muvZQcbHdanTx9dd911uuiii9r1nN/nMg74jIKCAkdMTIxDkuOSSy5x2Gw2w+uVlZWOIUOGOCQ50tLSHDU1NSZFCn81e/Zsx969e1t8fffu3Y6oqCiHJMfw4cO7MDIEuvLyckdaWppDkmPlypUOSQ5JjhkzZpgdGgLA008/7fyee+2118wOBwHol7/8pfN78B//+Eez9/zud79z3vP73/++iyOEPygtLXW89957juPHjzvX5syZ4/y+ysnJafX5QMhl2Ln2IUuWLFFZWZkkaf78+bJajf/zRUREaN68eZJOl22wc4jO9vTTT2vw4MEtvj506FDNmjVLkrRr1y76r9FlHn/8ceXm5urmm2/WlClTzA4HAaS4uFhz586VJN1yyy268847zQ0IAWnr1q2STv8seP311zd7z+233+78fM+ePV0RFvxMTEyMMjMz1bNnz7N6PhByGZJrH7Js2TJJUv/+/TVu3Lhm78nMzFR4eLgk6f333++y2IAG55xzjvPzY8eOmRgJAsXGjRv14osvKi4uTi+88ILZ4SDAvPXWW6qsrJQkzZ492+RoEKjCwsIkSVarVRaLpdl7goKCnJ8nJyd3SVxAU4GQy5Bc+5AtW7ZIkiZOnNjiPWFhYcrIyJAkbd68uUviAprKy8tzfh4XF2diJAgE9fX1uvvuu2Wz2fTUU0+pV69eZoeEANOws9K3b1/nv7/S6T5su91uVlgIMGPGjJEkVVRU6IMPPmj2nn/84x/Oz7/3ve91SVxAU4GQy5Bc+4ijR486yyjONKyn4fV9+/YxlRRdrmEARWJiooYMGWJyNPB3zzzzjLZt26bx48frvvvuMzscBKCNGzdKksaNG6e6ujo988wzGjFihMLDwxUSEqJ+/frpnnvu0f79+02OFP7s/vvvd+5G33777frjH/+oQ4cOqbq6Wt98843mzZvnrKx45JFHNGHCBDPDRQAKlFyG5NpHFBYWOj/v0aNHq/c2/OVaU1Oj8vJyj8YFNLVw4UJt27ZNknTvvfcaStCAznbgwAHNmzdPQUFBevnll916twBPq6qqcv77nJiYqIsuukg/+9nPtGvXLtXX18tut+vQoUN69dVXNXLkSP3rX/8yOWL4q7i4OH355ZcaOXKkTp06pQceeED9+vVTRESEBg4cqDlz5mj06NF6++239eyzz5odLgJQoOQy/CTiIyoqKpyfN/QhtCQiIsL5ua99Q8J37dq1Sw8++KAkqV+/fvr5z39uckTwd/fcc4+qq6v105/+VKNGjTI7HASgpucJL1myROvXr9fFF1+stWvXqqqqSgUFBXr11VcVHx+v6upq/fCHP3QOngI62+DBg/Xuu+/qsssua/b1Y8eOKTs7W/X19V0cGRA4uQzJtY9oWhLR0qAKwCz5+fmaNm2aysvLFRoaqqVLl9JvDY96/fXX9emnnyo1NVVPPPGE2eEgQDXtqa6trdX48eP14YcfasKECQoPD1dSUpLuuusurVixQlarVTU1NZozZ46JEcOfPf300xo0aJC2bNmiP/zhD9q/f7+Kioq0c+dOPfHEEzpx4oR++ctf6nvf+55zCB/QVQIllyG59hHR0dHOz6uqqlq9t+nrTZ8DPKGkpERTpkzRN998o6CgIC1dulQXXHCB2WHBj+Xl5Tl7B1988UVFRUWZHBECleu/sXPmzFFISIjbfRMnTtTUqVMlSatWrVJ1dXWXxIfA8fzzz+vnP/+5QkND9cUXX+jBBx/UwIEDlZCQoOHDh+vXv/61c/Lyxx9/rCeffNLkiBFoAiWXIbn2EUlJSc7Pm05jbk5+fr6k09P2fO0bEr6loqJCV111lbZu3SqLxaJXX31VN9xwg9lhwc/94he/0KlTp3Tttddq2rRpZoeDABYTE+M8AkmSLrroohbvbXitpqZGBw4c8HhsCBx1dXX6zW9+I0m69dZbDUdiNjVlyhRdfPHFkqTXXnvN5wZFwbcFSi5Dcu0j+vTpo5iYGElSdnZ2q/fm5ORIOt17489lFzBXdXW1pk2bpjVr1kiSFixYoFmzZpkcFQJBw9+B7733niwWS7MfDRYvXuxcW7RokUkRw19ZLBYNHTpUkhQcHNzqD4EJCQnOz0tLSz0eGwLHzp07derUKUnS2LFjW7234WzhwsJCFRQUeDw2oEGg5DIk1z5k9OjRkqR169a1eE9NTY3zDLmGMw+BzlZXV6cbbrhBq1evliT99re/1U9+8hOTowKArteQrNTX17eaNJ88edL5eXx8vKfDQgBpWkJ7pt3oQOl7hXcKhFyG5NqHNJQ/Zmdna9OmTc3es2zZMmcvV2ZmZpfFhsBhs9l06623asWKFZKkxx9/XI899pjJUSGQvPbaa8rKymr1o8E111zjXKOEHJ5w3XXXOT//7LPPWryv4bWoqCgNGjTIw1EhkPTu3dv5eUs/HzZoOJc9Ojpa3bp182hcgKuAyGUc8BkFBQWOmJgYhyTHZZdd5rDZbIbXq6qqHMOGDXNIcqSlpTlqampMihT+ym63O2bMmOGQ5JDk+OlPf2p2SECzGr5HZ8yYYXYo8HN1dXWOoUOHOiQ5MjIyHFVVVW73rF692mGxWPiehMcMGjTIIckRHh7u2L59e7P3rFy50vl34/XXX9/FEcJfzZkzx/l9lZOT0+q9gZDLsHPtQ5KSkjR37lxJ0ieffKLMzExt2rRJhYWF+uKLL3TppZdq9+7dkqTnnntOoaGhJkYLf/Tggw9q8eLFkqTbbrtNTz75pMrLy1v84CxNAP4uODhYCxYsUFBQkLKysnTJJZfo448/1smTJ3Xw4EH94Q9/0LRp0+RwOJSYmMjRcfCIhp8Pq6urNXnyZL344ov65ptvVFxcrN27d+vJJ5/UtddeK0kKDQ3Vr371K/OChU/btWuX1q1b5/w4cuSI87WsrKwWX5MCI5exOByMCvQ1Dz74oF588cVmX7NarZo/f74effTRLo4KgaC9/VkLFy7UzJkzPRMM0IqG79UZM2YwyAxdYuHChfrRj36kmpqaZl/v0aOH3nvvPU2YMKGLI0OgePrpp/U///M/stlsLd4TExOjRYsW6frrr+/CyOBPLr74Yn3++edtunfOnDnOZLopf85l2Ln2QQsWLNDKlSs1bdo09ezZU6GhoUpJSdEtt9yiNWvW+Ow3IwAAvmrWrFnKysrSfffdp/T0dIWHhysmJkajR4/W3LlztWvXLhJreNTPfvYzbdu2TQ888IBGjhypmJgYBQUFKT4+XuPGjdMvf/lL7dq1i8QapvPnXIadawAAAAAAOoidawAAAAAAOojkGgAAAACADiK5BgAAAACgg0iuAQAAAADoIJJrAAAAAAA6iOQaAAAAAIAOIrkGAAAAAKCDSK4BAAAAAOggkmsAAAAAADqI5BoAAAAAgA4iuQYAAAAAoINIrgEAAAAA6CCSawAAAAAAOojkGgAAAACADiK5BgAAAACgg0iuAQAAAADoIJJrAAAAAAA6iOQaAAAAAIAOIrkGAAAAAKCDSK4BAAAAAOggkmsAAAAAADqI5BoAAAAAgA4iuQYAAAAAoINIrgEAAAAA6KD/D28LoH1zbpmWAAAAAElFTkSuQmCC\",\n \"text/plain\": [\n@@ -1374,18 +1374,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 22,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:12.908958Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:12.908468Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:13.239941Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:13.239304Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:39.308305Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:39.307835Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:40.286831Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:40.270801Z\"\n }\n },\n \"outputs\": [\n {\n \"ename\": \"ModuleNotFoundError\",\n \"evalue\": \"No module named 'ipympl'\",\n \"output_type\": \"error\",\n@@ -1415,18 +1415,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 23,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:13.242406Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:13.241863Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:13.408344Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:13.407800Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:40.304197Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:40.303720Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:41.100042Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:41.090800Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"image/png\": \"iVBORw0KGgoAAAANSUhEUgAAA9cAAAIOCAYAAACyMf56AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAB2HAAAdhwGP5fFlAACKLUlEQVR4nO3dd3zV9dn/8fc52XsQwgohhA2KhCEgWpzFihJnrVoZ7taq/am09q4tiL1tcbbYWq2DocWu20EpggNXZUNA9jAJmwxC9j7n/P7AnOR7ThISkpPvGa/n45HHne/nfL8nF3cj5Mrnuq6PxeFwOAQAAAAAAM6a1ewAAAAAAADwdSTXAAAAAAB0EMk1AAAAAAAdRHINAAAAAEAHkVwDAAAAANBBJNcAAAAAAHQQyTUAAAAAAB1Ecg0AAAAAQAeRXAMAAAAA0EEk1wAAAAAAdBDJNQAAAAAAHURyDQAAAABAB5FcAwAAAADQQSTXAAAAAAB0EMk1AAAAAAAdRHINAAAAAEAHBZsdgLeqr6/X4cOHJUmxsbGyWvk9BAAAAAD4C7vdrtLSUklS3759FRzcsfSY5LoFhw8fVnp6utlhAAAAAAA8LDs7W/379+/Qe7AdCwAAAABAB7Fz3YLY2Fjn59nZ2YqPjzcvGAAAAABApyouLnZWKzfN/84WyXULmvZYx8fHKyEhwcRoAAAAAACe0hkztigLBwAAAACgg0iuAQAAAADoIJJrAAAAAAA6iOQaAAAAAIAOIrkGAAAAAKCDSK4BAAAAAOggkmsAAAAAADqI5BoAAAAAgA4iuQYAAAAAoINIrgEAAAAA6CCSawAAAAAAOojkGgAAAACADiK5BgAAAACgg0iuAQAAAADoIJJrAAAAAHBRUFajkqo6s8OADwk2OwAAAAAA8CZ/+vSAnv1wr0KCrHrupvN0zXm9zQ4JPoCdawAAAAD4VlFFrV74aJ8cDqm23q7frtgth8NhdljwASTXAAAAAPCtddknVW9vTKaPlVTraHGViRHBV5BcAwAAAMC31n5z0m0t61Bx1wcCn0NyDQAAAADfWpvtnlxvPVzc9YHA55BcAwAAAICk/LJqHcgvd1snuUZbdFly/dVXX+muu+7SoEGDFBUVpbi4OA0dOlQ/+MEP9Morr7T67KpVq5SZmanevXsrPDxcqampuu2227R+/fouih4AAACAv1uXXdTs+vajJaqtt3dxNPA1FoeHR9/V1NTo3nvv1eLFi1u9r6UwHnroIS1YsKDZ14KCgvS73/1Ojz76aIfjdHXq1CklJiZKkoqKipSQkNDpXwMAAACA9/jFO9v19oZDzb627CeTNDIlvmsDgkd1ds7n0Z1rm82m66+/3plY33rrrVq9erWOHTumgoICrV+/XnPnztWAAQOaff755593JtZTp07Vhg0bVFBQoM8++0wTJkyQzWbT7Nmz9c4773jyjwEAAAAgAKxrpt+6AaXhOBOP7lw/88wz+tnPfiZJeu2113TnnXe2+dnCwkKlp6errKxMl1xyiT7++GNZrY2/C6iqqlJGRob27t2rtLQ07d27V6GhoZ0WOzvXAAAAQOA4UVKtCb/9pMXXr8vooxduHtV1AcHjfGbnuri4WHPnzpUk3XLLLe1KrCVpyZIlKisrkyTNnz/fkFhLUkREhObNmydJys3N1YoVKzoeNAAAAICAtDa70HAdHRZsuGbnGmfiseT6rbfeUmVlpSRp9uzZ7X5+2bJlkqT+/ftr3Lhxzd6TmZmp8PBwSdL7779/lpECAAAACHSu51vfPK6vgqwW53VOYYVOVdR2dVjwIR5Lrht2kvv27auMjAznus1mk91+5kl7W7ZskSRNnDixxXvCwsKc77158+aOhAsAAAAggLmeb33p0GQN6RFjWNt6pLgLI4Kv8VhyvXHjRknSuHHjVFdXp2eeeUYjRoxQeHi4QkJC1K9fP91zzz3av3+/27NHjx51loSnp6e3+nUaXt+3b1+LE8cBAAAAoCVHTlXqcFGV8zo0yKox/RI0KjXecN/WQ8VdGxh8SvCZb2m/qqoqFRae7llITEzURRdd5HYm9aFDh/Tqq6/qzTff1Jtvvqkbb7zR+VrDs5LUo0ePVr9WcnKypNNHfpWXlysmJqbV+5s6depUi68VFxe3+X0AAAAA+C7XkvBRqfEKDwlSRt94LV3feDRXFn3XaIVHdq5LSkqcny9ZskTr16/XxRdfrLVr16qqqkoFBQV69dVXFR8fr+rqav3whz/U1q1bnc9UVFQ4P2/oqW5JRESE8/Py8vJ2xZmYmNjix5l2zAEAAAD4B9eS8Inp3SRJGS4719sOF1MtixZ5JLlu2lNdW1ur8ePH68MPP9SECRMUHh6upKQk3XXXXVqxYoWsVqtqamo0Z84c5zNNv2EtFosAAAAAwBMcDofWuexcTxxwOrlOT4pWTHhjsW9JVZ1yCisENMcjyXV0dLThes6cOQoJCXG7b+LEiZo6daokadWqVaqurnZ7vqqqyu25ppq+7vp1z6SoqKjFj+zs7Ha9FwAAAADfc6ioUsdKqp3XYcFW54611WrRqL7xhvuz6LtGCzySXMfExCgsLMx5fdFFF7V4b8NrNTU1OnDggCQpKSnJ+XpeXl6rXys/P1/S6cnh7U2uExISWvyIj49v13sBAAAA8D2u/dZj+iUoLDjIee2aXHPeNVrikeTaYrFo6NChkqTg4OBWk96EhATn56WlpZKkPn36OAeTnWkHOScnR5I0ePBgSsgBAAAAtEtL/dYNSK7RVh47imvcuHGSpPr6emfS3JyTJxu/mZvuFo8ePVqStG7duhaframpcZ6HPWbMmI6ECwAAACDAOBwOt53rhn7rBq7J9e7jpaqus3k6NPggjyXX1113nfPzzz77rMX7Gl6LiorSoEGDnOvTpk2TdHrnetOmTc0+u2zZMmefdmZmZgcjBgAAABBIsgsrlF9W47yOCAnSyJR4wz3dosOUmhjpvK63O7TjaIkAVx5Lrr/73e86S8Pnzp3rTIKb+vTTT7Vq1SpJ0o033mgYejZ9+nRnafhjjz1mmEAuSdXV1c4J42lpabrqqqs88ucAAAAA4J9cd63HpiUoNNg9RaI0HG3hseQ6ODhYCxYsUFBQkLKysnTJJZfo448/1smTJ3Xw4EH94Q9/0LRp0+RwOJSYmKgnnnjC8HxSUpLmzp0rSfrkk0+UmZmpTZs2qbCwUF988YUuvfRS7d69W5L03HPPKTQ01FN/FAAAAAB+yK3f2qUkvIHreddMDEdzgs98y9m74oor9Oqrr+pHP/qR1q1bpyuuuMLtnh49eui9995Tv3793F57+OGHlZubqxdffFHLly/X8uXLDa9brVbNnz9f119/vcf+DAAAAAD8j8Ph0PozDDNrwM412sJjO9cNZs2apaysLN13331KT09XeHi4YmJiNHr0aM2dO1e7du3ShAkTWnx+wYIFWrlypaZNm6aePXsqNDRUKSkpuuWWW7RmzRo9+uijnv4jAAAAAPAz+/PLVVhe67yODgvWuX3imr13eO9YhQY1pk5Hi6uUX+re9orA5tGd6wbDhg3Tn//857N+fsqUKZoyZUonRgQAAAAgkLn2W49LS1BwUPN7j2HBQRreO9awY511uFhTRvT0ZIjwMR7fuQYAAAAAb3OmI7hcURqOMyG5BgAAABBQ7HaH1uW49lsntfqM61CzrQw1gwuSawAAAAABZc+JMhVX1jmvY8ODNbx3bKvPZPRNMFx/faRYNrvDI/HBN5FcAwAAAAgorkdwnd+/m4Ksllaf6ZsYocSoxuN/K2pt2p9f5pH44JtIrgEAAAAElPb2W0uSxWJRhkvfNeddoymSawAAAAABw2Z3aL1Lv/WE9MQ2Pes21IzkGk2QXAMAAAAIGLuPl6qsut55HR8ZomE9W++3bjDKdagZE8PRBMk1AAAAgIDhWhI+vn+irGfot25wXt94WZrcui+/TGXVdS0/gIBCcg0AAAAgYLgOM5uYfuZ+6wax4SEa0D3aee1wSNuPlHRabPBtJNcAAAAAAkK9za4NOUWGtYkDWj/f2pVr33UWpeH4Fsk1AAAAgICw41ipymsa+627RYVqcI/oVp5wl+HSd83EcDQguQYAAAAQEFz7rSekd5PF0rZ+6wZuE8MPF8vhcHQ0NPgBkmsAAAAAAcG133pCG863djWkR4wiQoKc14XlNTpaXNXh2OD7SK4BAAAA+L06m12bcl36rdsxzKxBcJBV56bEGdYoDYdEcg0AAAAgAHx9pFiVtTbndfeYMA3oHnVW75XRTGk4QHINAAAAwO+59ltPPIt+6wbN9V0DJNcAAAAA/J7b+dZn0W/dICM1wXC9/WiJauvtZ/1+8A8k1wAAAAD8Wk29TZtyTxnWzqbfukHPuHD1jA13XtfW27XnROlZvx/8A8k1AAAAAL+29VCxaprsLPeKC1e/bpEdek9Kw+GK5BoAAACAX3MrCe9Av3WDjNR4wzUTw0FyDQAAAMCvuQ4zO5vzrV2xcw1XJNcAAAAA/FZ1nc1tV7kj/dYNzk2JU5C1cfc7p7BCpypqO/y+8F0k1wAAAAD81paDp1Rra+y3TkmIUN/EjvVbS1JkaLCG9IgxrG09Utzh94XvIrkGAAAA4Lea67fuLKNc+q630ncd0EiuAQAAAPgt137rjpxv7SrDpe86i77rgEZyDQAAAMAvVdbWa5tLqXanJtcuO9fbDhfL4XB02vvDt5BcAwAAAPBLm3JPqc7WmOymdYtUr7iITnv/9KRoxYQHO69LquqUU1jRae8P30JyDQAAAMAvufVbd+KutSRZrRa3I7k47zpwkVwDAAAA8Etu51t34jCzBpx3jQYk1wAAAAD8TnlNvbYfLTGsdeak8AYk12hAcg0AAADA72zMKZLN3thvPaB7lJJjwzv967gm17uPl6q6ztbpXwfej+QaAAAAgN/xdL91g27RYUpNjHRe19sd2uGyY47AQHINAAAAwO+4nW+dnuSxr0VpOCSSawAAAAB+pqSqTjuPGXePJ6QneuzruZ53zcTwwERyDQAAAMCvbMgpUpN2aw3pEaNu0WEe+3rsXEMiuQYAAADgZ9xKwj3Ub91geO9YhQY1plZHi6uUX1rt0a8J70NyDQAAAMCvuA4z88T51k2FBQdpeO9Yw1oWu9cBh+QaAAAAgN84VVGr3cdLndcWi2f7rRtQGg6SawAAAAB+Y32Ocdd6WM9YxUeGevzrug4128pQs4BDcg0AAADAb3R1v3WDjL4JhuuvjxTL1nSqGvweyTUAAAAAv+Habz3Rw/3WDfomRigxqnGHvKLWpv35ZV3yteEdSK4BAAAA+IXC8hrtyyt3Xlst0vld0G8tSRaLRRmufdeUhgcUkmsAAAAAfmGdy671OX3iFBse0mVf33WoWRbJdUAhuQYAAADgF9z6rbuoJLzBKNehZkwMDygk1wAAAAD8gtv51l00zKzBeX3jZbE0Xu/LL1NZdV2XxgDzkFwDAAAA8Hl5pdXKLqhwXgdZLRqX1jX91g1iw0M0oHu089rhkLYfKenSGGAekmsAAAAAPs+133pkSpyiw4K7PA63vmtKwwMGyTUAAAAAn2d2v3WDDJe+a4aaBQ6SawAAAAA+z63f2qTk2nXneuvhYjkcDlNiQdfySHKdm5sri8XSpo9Nmza1+l6rVq1SZmamevfurfDwcKWmpuq2227T+vXrPRE6AAAAAB9zrLhKB09WOq9Dgiwam5ZgSixDesQoIiTIeV1YXqOjxVWmxIKu5dU71w899JCuvPJKLVu2TMePH1dNTY0OHz6spUuXatKkSXr22WfNDhEAAACAyVz7rc9LiVdkaNf3W0tScJBV56bEGdYoDQ8MHk+uV6xYobKyshY/Ro8e3exzzz//vBYsWCBJmjp1qjZs2KCCggJ99tlnmjBhgmw2m2bPnq133nnH038EAAAAAF7Mrd+6i4/gcpXRTGk4/J/Hf50TERGh6OjoM9/YRGFhoebOnStJuuSSS7Rs2TJZrad/DzB58mStXr1aGRkZ2rt3rx555BFdffXVCg0N7ezQAQAAAPgA135rs4aZNWiu7xr+zyvLwpcsWaKysjJJ0vz5852JdYOIiAjNmzdP0un+7hUrVnR5jAAAAADMd7ioUkdONfY0hwZZNbqfOf3WDTJSjV9/+9ES1dbbTYoGXcUrk+tly5ZJkvr3769x48Y1e09mZqbCw8MlSe+//36XxQYAAADAe7juWmekxiu8yUAxM/SMC1fP2HDndW29XXtOlJoYEbpClyXXtbW1bb53y5YtkqSJEye2eE9YWJgyMjIkSZs3b+5YcAAAAAB80jov67duQGl44PF4cv2Tn/xEMTExCgsLU1hYmEaMGKGHHnpIBw4caPb+o0ePOkvC09PTW33vhtf37dt3VmfHnTp1qsWP4uLidr8fAAAAgK7jcDi8rt+6QUZqvOGaieH+z+MDzXbu3On8vLa2Vrt27dKuXbv08ssv69lnn9UDDzxguL+wsND5eY8ePVp97+TkZElSTU2NysvLFRMT067YEhMT23U/AAAAAO9x8GSljpdUO6/Dgq0a5ZLUmoWd68DjkZ1rq9WqK664Qq+//rq2bdumkydPqrq6Wnv27NFvf/tbxcbGqra2Vg8++KAWLlxoeLaiosL5eUNPdUsiIiKcn5eXl3fuHwIAAACAV3PdtR6blqCwYHP7rRucmxKnIKvFeZ1TWKFTFW1vlYXv8cjOdWpqqj788EO39SFDhuixxx7TtddeqwsvvFAnT57Uo48+qhtuuEGxsbGSZCjvtlgsbu/RmYqKilp8rbi4+Ixl6QAAAADM43a+tZeUhEtSZGiwhvSI0a7jjYPMth4p1iVDkk2MCp5kyrTwoUOH6oknnpB0OsFtepRW0zOxq6qq3J5tqunr7T1LW5ISEhJa/IiPj2/3+wEAAADoGs32W3vJMLMGriXqW+m79mumHcV17bXXOj9vmA4uSUlJSc7P8/LyWn2P/Px8Sacnh59Ncg0AAADAN31TUKGCshrndWRokEamxJsXUDPouw4spiXXDcPIJBkmc/fp08c5mCw7O7vV98jJyZEkDR482OMl5AAAAAC8h3u/daJCgkxLb5o12nXn+nDxWZ1yBN9g2nffiRMnnJ8nJCQYXhs9erQkad26dS0+X1NT49zxHjNmjAciBAAAAOCt3M639qJ+6wbpSdGKCW8cc1VSVaecwopWnoAvMy25fuedd5yfNyTTDaZNmybp9M71pk2bmn1+2bJlqq4+PXY/MzPTQ1ECAAAA8DYOh0PrvLzfWpKsVgul4QHEI8n1kSNHWn19+/btmjt3rqTTZ01/73vfM7w+ffp0Z2n4Y489Jrvdbni9urpac+bMkSSlpaXpqquu6qTIAQAAAHi7fXnlOtnkWKvosGCd0zvWxIha5ppcZzHUzG95JLkeNWqUrr/+ei1evFjbt29XYWGhioqKtGXLFv3617/WxIkTnX3WL7zwgvMYrgZJSUnO5PuTTz5RZmamNm3apMLCQn3xxRe69NJLtXv3bknSc889p9DQUE/8MQAAAAB4obXfFBquz++fqGAv67duwM514PDIOdf19fV699139e6777Z4T2RkpH7/+99r+vTpzb7+8MMPKzc3Vy+++KKWL1+u5cuXG163Wq2aP3++rr/++k6NHQAAAIB3czuCywv7rRu4Jte7j5equs6m8JAgcwKCx3gkuV64cKH++9//av369Tpy5IhOnjypmpoaxcfHa9iwYbr88st11113qVevXq2+z4IFCzR16lS99NJL2rBhg4qKipScnKyLLrpIDz30kMaPH++J8AEAAAB4KbvdofU5RYY1b+y3btAtOkypiZE6VFQpSaq3O7TjaInGpiWaHBk6m0eS6+uuu07XXXddp7zXlClTNGXKlE55LwAAAAC+bfeJUhVX1jmvY8ODNayXd/ZbNxjVN96ZXEunS8NJrv2PdzYmAAAAAEAz1rocwTU+vZuCrBaTommbDJfzrhlq5p9IrgEAAAD4DLcjuLy437oBQ80CA8k1AAAAAJ9g87F+6wbDe8cqtMk086PFVcovrTYxIngCyTUAAAAAn7DzWInKquud1wmRIRrSI8bEiNomLDhIw13O4c5i99rvkFwDAAAA8Amu/dYT0rvJ6uX91g0oDfd/JNcAAAAAfILb+dY+UBLewHWo2VaGmvkdkmsAAAAAXq/OZtdG135rHxhm1iCjb4Lh+usjxbLZHSZFA08guQYAAADg9bYfLVFFrc15nRQdpoHJ0SZG1D59EyOUGBXqvK6otWl/fpmJEaGzkVwDAAAA8Hru/daJslh8o99akiwWi3vfNaXhfoXkGgAAAIDXczvf2of6rRtkuCTXWSTXfoXkGgAAAIBXq623a1PuKcOaL/VbNxjlOtSMieF+heQaAAAAgFfbdqRYVXWN/dY9YsPUPynKxIjOzsiUeMP1vvwyldfUN38zfA7JNQAAAACv5tpvPTG9m0/1WzeIiwgxDGFzOKSv2b32GyTXAAAAALyaW3Ltg/3WDVyHmmWRXPsNkmsAAAAAXqu6zqbNh1z7rZNMiqbj3CaGk1z7DZJrAAAAAF4r61Cxauvtzus+8RHqmxhhYkQdk+Ey1CzrULEcDoc5waBTkVwDAAAA8Fprs13Pt/bNfusGQ3rEKCIkyHldWF6jo8VVJkaEzkJyDQAAAMBrrfOjfmtJCg6y6tyUOMMa5137B5JrAAAAAF6pqtamrMMu/dY+nlxLUgZ9136J5BoAAACAV9p88JTqbI39yKmJkeoT77v91g0YauafSK4BAAAAeKW12YWG6wnpiSZF0rkyUhMM19uPlhiGtsE3kVwDAAAA8Er+dL51Uz3jwtUzNtx5XVtv154TpSZGhM5Acg0AAADA61TU1OvrIyWGNV8+39oVpeH+h+QaAAAAgNfZmFukentjv3X/pCj1jAtv5Qnf0tx51/BtJNcAAAAAvM667CLD9YR0/ygJb8DOtf8huQYAAADgddZm+2e/dYNzU+IUZLU4r3MKK3SqotbEiNBRJNcAAAAAvEpZdZ12HDX2W/vLpPAGkaHBGtIjxrC29UixOcGgU5BcAwAAAPAqG3OLZGvSbz0wOVrJMf7Tb91glEvf9Vb6rn0ayTUAAAAAr+J2BJef9Vs3oO/av5BcAwAAAPAq/t5v3WC068714WI5HI7mb4bXI7kGAAAA4DVKKuu081ipYc3fJoU3SE+KVkx4sPO6pKpOOYUVJkaEjiC5BgAAAOA11uecVNPN26E9Y5QYFWpeQB5ktVp0Xkq8YY3ScN9Fcg0AAADAa7iWhPvrrnWDDJfS8CyGmvkskmsAAAAAXsNtmJmf9ls3YKiZ/yC5BgAAAOAViipqtedEmfPaYpEm9A+s5Hr38VJV19nMCQYdQnINAAAAwCusdykJH94rVnGRISZF0zW6RYcpNTHSeV1vd2jH0RITI8LZIrkGAAAA4BXcjuDy837rBpSG+weSawAAAABeIdD6rRu4JtcMNfNNJNcAAAAATFdQVqP9+eXOa6tFGtc/0cSIuo7rxHB2rn0TyTUAAAAA061zKQk/t0+cYsP9u9+6wfDesQoNakzNjhZXKb+02sSIcDZIrgEAAACYzu186wApCZeksOAgDe8da1jLYvfa55BcAwAAADDdOtd+6wAZZtaAoWa+j+QaAAAAgKnySquVXVjhvA62WjQuLTD6rRu49V0z1MznkFwDAAAAMJXrlPCRKXGKCgs2KRpzZPRNMFx/faRYNrvDpGhwNkiuAQAAAJgqUI/gaqpvYoQSo0Kd1xW1Nu3PLzMxIrQXyTUAAAAAU7kOM5uYnmRSJOaxWCzufdeUhvsUkmsAAAAApjlaXKVDRZXO65Agi8b0S2jlCf+V4ZJcZ5Fc+xSSawAAAACmcS0Jz+iboIjQIJOiMdco16FmTAz3KV2aXBcUFCgpKUkWi0UWi0UzZ8484zOrVq1SZmamevfurfDwcKWmpuq2227T+vXrPR8wAAAAAI9yTa4D6XxrVyNT4g3X+/LLVF5Tb04waLcuTa5/+tOf6uTJk2e+8VsPPfSQrrzySi1btkzHjx9XTU2NDh8+rKVLl2rSpEl69tlnPRgtAAAAAE9yOBxa59ZvHbjJdVxEiAYmRzuvHQ7pa3avfUaXJdcrV67U0qVLlZ6e3qb7n3/+eS1YsECSNHXqVG3YsEEFBQX67LPPNGHCBNlsNs2ePVvvvPOOJ8MGAAAA4CGHi6p0tLjKeR0abHU77znQuA41yyK59hldklxXVFToRz/6kSTppZdeOuP9hYWFmjt3riTpkksu0bJlyzRu3DglJSVp8uTJWr16tYYMGSJJeuSRR1RbW+ux2AEAAAB4xtrsQsP1mNQEhYcEZr91A7eJ4STXPqNLkuvHH39cubm5uvnmmzVlypQz3r9kyRKVlZ0+023+/PmyWo1hRkREaN68eZKk3NxcrVixovODBgAAAOBRnG/tznXnPutQsRwOhznBoF08nlxv3LhRL774ouLi4vTCCy+06Zlly5ZJkvr3769x48Y1e09mZqbCw8MlSe+//37nBAsAAACgSzgcDvfzrUmuNaRHjCKa7N4XltcYSufhvTyaXNfX1+vuu++WzWbTU089pV69erXpuS1btkiSJk6c2OI9YWFhysjIkCRt3ry548ECAAAA6DI5hRXKK61xXkeEBOk8l2nZgSg4yKpz+8QZ1igN9w0eTa6feeYZbdu2TePHj9d9993XpmeOHj3qLAk/0/Czhtf37dtHqQQAAADgQ1x3rcemJSg0uEsPM/JazZWGw/sFe+qNDxw4oHnz5ikoKEgvv/yyW990SwoLG4ca9OjRo9V7k5OTJUk1NTUqLy9XTExMu2I8depUi68VFxe3670AAAAAtJ3b+dYBfASXK4aa+SaPJdf33HOPqqur9cgjj2jUqFFtfq6iosL5eUNPdUsiIiKcn59Ncp2YmNiu+wEAAAB03OnzrYsMa/RbNxrlsnO9/WiJauvt7Ox7OY/8r/P666/r008/VWpqqp544ol2Pdu0vNtisXR2aAAAAABMdiC/XIXljf3WUaFBbn3GgaxXXIR6xjZuNNbW27XnRKmJEaEtOn3nOi8vT7Nnz5Ykvfjii4qKimrX89HR0c7Pq6pan4rX9PWmz7VVUVFRi68VFxefsecbAAAAQPu59luP65+okCB2ZZsa1TdeK3eecF5vPVyskQx882qdnlz/4he/0KlTp3Tttddq2rRp7X4+KSnJ+XleXl6r9+bn50s6PTn8bJLrhISEdj8DAAAAoGPczrem39rNqFRjcp11qFjTWz5MCV6g0389lJ2dLUl67733ZLFYmv1osHjxYufaokWLJEl9+vRx9k43vFdLcnJyJEmDBw+mhBwAAADwAXa7Q+s43/qMMhhq5nO8svZi9OjRkqR169a1eE9NTY3zPOwxY8Z0SVwAAAAAOmZvXplOVdY5r2PCgjWiN/3Wrs5NiVOQtXEDMaewQqcqak2MCGfS6WXhr732msrLy1u9JyMjQ5J0zTXXaN68eZKk1NRU5+vTpk3T559/ruzsbG3atEljx451e49ly5apurpakpSZmdlZ4QMAAADwINeS8PP7JxqSSJwWGRqsIT1itOt44yCzrUeKdcmQZBOjQms6PbkeOHBgm+9NTExs9piu6dOna+7cuSorK9Njjz2mDz/80HBOdnV1tebMmSNJSktL01VXXdXhuAEAAAB4nuswM0rCWzYqNd6YXB8iufZmXlkWnpSUpLlz50qSPvnkE2VmZmrTpk0qLCzUF198oUsvvVS7d++WJD333HMKDQ01MVoAAAAAbWGzO7TeJbmewDCzFo2i79qndPrOdWd5+OGHlZubqxdffFHLly/X8uXLDa9brVbNnz9f119/vUkRAgAAAGiP3cdLVVpd77yOiwjR8F6xJkbk3Uanxhuutx4ulsPhYJizl/LKnesGCxYs0MqVKzVt2jT17NlToaGhSklJ0S233KI1a9bo0UcfNTtEAAAAAG3k2m89vn+irPRbtyg9KVox4Y37oSVVdcoprDAxIrTGlJ1rh8PR5nunTJmiKVOmeDAaAAAAAF2BI7jax2q16LyUeP33QKFzbevhYqV3jzYxKrTEq3euAQAAAPiHeptdG3KKDGsk12eW4VIannWo2JQ4cGYk1wAAAAA8buexUpXVNPZbJ0aFanByjIkR+QaGmvkOkmsAAAAAHud6BNeEdPqt28I1ud59vFTVdTZzgkGrSK4BAAAAeJzrMLOJHMHVJt2iw5SaGOm8rrc7tONoiYkRoSUk1wAAAAA8qs5m18Zc+q3PFqXhvoHkGgAAAIBHfX2kRJW1jaXM3WPCNICJ123mmlxnkVx7JZJrAAAAAB7legTXhPRusljot24r14nhW5kY7pVIrgEAAAB4FP3WHTO8d6xCgxpTt6PFVcovrTYxIjSH5BoAAACAx9TU27TpIP3WHREWHKRhvWMNa5SGex+SawAAAAAes+1wiarr7M7rnrHhSusW2coTaE4GQ828Hsk1AAAAAI9xKwkfQL/12aDv2vuRXAMAAADwmLXZhYZr+q3PjuvE8K+PFMtmd5gTDJpFcg0AAADAI6rrbNrissNKv/XZSU2MVGJUqPO6otam/fllJkYEVyTXAAAAADxiy6FTqq1v7LfuEx+hvon0W58Ni8XitntNabh3IbkGAAAA4BHrmum3xtlzHWqWRXLtVUiuAQAAAHjE2mzOt+5Mo1yHmjEx3KuQXAMAAADodFW1Nrfkj53rjhmZEm+43pdfpvKaenOCgRuSawAAAACdbtPBItXZGqdZ9+sWqd7xESZG5PviIkI0MDnaee1wSF+ze+01SK4BAAAAdDq3860pCe8UrkPNskiuvQbJNQAAAIBO59ZvTUl4p3CbGE5y7TVIrgEAAAB0qvKaen19pMSwxs5158hwGWqWdahYDoej+ZvRpUiuAQAAAHSqjblFstkbE7707lFKjg03MSL/MaRHjCJCgpzXheU1OlpcZWJEaEByDQAAAKBTuZ1vza51pwkOsurcPnGGNUrDvQPJNQAAAIBORb+1ZzVXGg7zkVwDAAAA6DSl1XXacdTYbz2BnetOxVAz70RyDQAAAKDTbMguUpN2aw3uEa2k6DDzAvJDo1x2rnccLVFtvd2cYOBEcg0AAACg07iVhLNr3el6xUWoZ5MBcTX1du05UWpiRJBIrgEAAAB0orWuw8zot/YISsO9D8k1AAAAgE5RXFmr3U12UC0WaXx/kmtPcC0N38pQM9ORXAMAAADoFOuyi+Ro0m89tGesEqJCzQvIj2W47FxnsXNtOpJrAAAAAJ1iHf3WXebclDgFWS3O65zCCp2qqDUxIpBcAwAAAOgU9Ft3ncjQYA3uEWNY23qk2JxgIInkGgAAAEAnOFleo715Zc5rq0U6v3+iiRH5vwz6rr0KyTUAAACADluXXWS4HtE7TnERISZFExiYGO5dSK4BAAAAdNja7ELDNSXhnuc61Gzr4WI5mk6UQ5ciuQYAALLbHVq6/pCeWrFb+5qUdQJAW7n1WzPMzOMGdI9WTFiw87qkqk45hRUmRhTYSK4BAID+/Pk3+p93t+svX2TrppfX6mhxldkhAfAh+aXV+qagMakLslo0Ni3BxIgCg9Vq0XmUhnsNkmsAAAJcZW29Xvn8G+d1SVWdfrtit4kRAfA1a12O4DqnT5xiwum37gquQ82yGGpmGpJrAAAC3Dtbjqq0ut6wtvzr41rv8sMyALSE863Nw1Az70FyDQBAAHM4HFq0JrfZ1+b+e5dsdgbjADgzzrc2j2tyvft4qarrbOYEE+BIrgEACGD/PVCoA/nlzb62+3ip3t5wqIsjAuBrjpdUKfdkpfM62GrR2H70W3eVbtFhSk2MdF7X2x3acbTExIgCF8k1AAABbOFXuYbrYKvFcP3ch3tVXFnbhREB8DWuu9bn9Y1XVJMJ1vA8SsO9A8k1AAABKqewQqv35BvW/vCDDEWEBDmvT1XW6YWP9nV1aAB8CEdwmc81uc4iuTYFyTUAAAFqsUuv9ciUOF11bk/95NKBhvW31h/SnhOlXRgZAF+yLod+a7O5TgzfysRwU5BcAwAQgMqq6/SvzUcMazMvSJPFYtGdF/Y39O/Z7A49sWyXHA6GmwEwOnKqUoeLqpzXoUFWjaHfussN7x2r0KDG1O5ocZXyy6pNjCgwkVwDABCA/rX5iMprGo/fSooO09SRvSRJ4SFBenzqMMP9a7NPauWOE10aIwDv51oSPio1XuFNWkvQNcKCgzSsd6xhjd3rrkdyDQBAgLHbHW4l4T+ckKqw4MYfiK8Y3kMXDUoy3POb/+zmeBcABms539prZNB3bTqSawAAAsyne/MNx+aEBFl06/hUwz0Wi0VzrhlumB5+tLhKr3ye3WVxAvBuDodD6zjf2mvQd20+kmsAAAKM6/Fb14zsreSYcLf7BibHaPrENMPanz8/oKPFVW73Agg8h4oqdayksa83LNjqluCh67hODP/6SLFsdmZldCWPJNdHjhzRn//8Z915550aN26cUlNTFRERocjISA0YMEC33HKLPvjggza/36pVq5SZmanevXsrPDxcqampuu2227R+/XpPhA8AgN/an1em/x4oNKzNmtS/xfsfunyQukWFOq+r6+x6asVuj8UHwHe49luP6ZdgaC9B10pNjFRik7+vK2pt2p9fZmJEgccjyfXy5cv14x//WG+88YY2bdqkw4cPq7q6WlVVVcrOztbf/vY3XXXVVcrMzFRlZWWr7/XQQw/pyiuv1LJly3T8+HHV1NTo8OHDWrp0qSZNmqRnn33WE38EAAD80kKXXuux/RJ0bkpci/fHRYRo9pQhhrX/fH1c61z6LAEEHvqtvYvFYnHbvaY0vGt5JLkODw/XlClT9PTTT+ujjz7Szp07VVhYqH379umdd97RRRddJElatmyZ7rrrrhbf5/nnn9eCBQskSVOnTtWGDRtUUFCgzz77TBMmTJDNZtPs2bP1zjvveOKPAQCAXymurNU7W1yO35qUdsbnbhrbV+f0MU6hnbtsp+pt9s4MD4APcTgcbjvX9FubzzW5ziK57lIWhwmHVjocDl199dVasWKFJCknJ0dpaWmGewoLC5Wenq6ysjJdcskl+vjjj2W1Nv4uoKqqShkZGdq7d6/S0tK0d+9ehYaGqrOcOnVKiYmJkqSioiIlJHBeHwDAt73y+Tf67Qd7nNe94sL1xc8uUUjQmX/Xvim3SDe+vNaw9uS15+j2Cf06PU4A3u+bgnJd9tznzuuIkCBtm/NdhQYz0slMX+4v0O2vb3BeD+kRo1X/7zsmRuTdOjvnM+W732Kx6M4773Reb9682e2eJUuWqKzsdI/A/PnzDYm1JEVERGjevHmSpNzcXGeiDgAA3NXb7Fqy9qBh7faJ/dqUWEvS2LREXTuqt2HtuQ/3qriyttNiBOA7XHetx6YlkFh7gZEp8YbrffllKq+pNyeYAGTafwEhISHOz8PD3SeULlu2TJLUv39/jRs3rtn3yMzMdD77/vvveyBKAAD8w0e78gxTvsOCrbplXGorT7h77HvDFBnaOKyouLJOz3+0r9NiBOA73PqtKQn3CnERIRrQPcp57XBIX3PedZcxLbn+29/+Jul0kp2RkeH2+pYtWyRJEydObPE9wsLCnM82t/sNAABOcx1kdl1GHyVEta+dqmdcuO6/ZKBh7a11B7X7eGlHwwPgQxwOh9YzzMxrZaQaS5uzSK67TJcm1wUFBfryyy910003aenSpZKkn/70p+rd21hmdvToUWdJeHp6eqvv2fD6vn371N728VOnTrX4UVxc3K73AgDAW+08VqINOUWGtbYMMmvOnRf2V79ukc5ru0N64t872/1vMADftT+/XIXljS0h0WHBOrdPy6cOoGu5TQwnue4ywZ7+AjNnztTixYvd1uPj4zV79mz94he/cHutsLDx/M0ePXq0+v7JycmSpJqaGpWXlysmJqbNsTU0rwMA4M8WfpVruJ6Y3k1De8Y2f/MZhIcE6fGpw3X3kk3OtXXZRVqx/YSmjuzVkTAB+AjXfutxaQkKbuP8BnhecxPDHQ6HLBaLOQEFEFP+K7Barbrjjjt08803N/s/ckVFhfPz5vqxm4qIiHB+Xl5e3nlBAgDgBwrLa7Rs6zHD2qyz3LVucPmwZF00KMmw9tSK3aqqtXXofQH4Bo7g8m5De8YoPKQxzSssrzHM3IDneDy5fuWVV1RWVqbS0lIdPnxY77//vi699FI9//zzGjlypP7xj3+4PdO0tMyTv2EpKipq8SM7O9tjXxcAgK7y9vpDqm1yHnXfxAhdNqz1qrAzsVgsmnPNcAVbG/+NPlpcpVe++KZD7wvA+9ntDq3Lce23TmrhbpghOMiqkX3iDWuUhncNjyfXYWFhio6OVkxMjFJSUjRt2jR99NFHuu+++1RZWalbb71VmzZtMjwTHR3t/LyqqvXfsjR9velzbZGQkNDiR3x8fLveCwAAb1Nbb9eb64zHb82YmKYga8d/cT0wOUYzLkgzrP35s2905FRlh98bgPfac6JMxZV1zuvY8GAN7312bSbwnIzUeMN11qFiU+IINKY1RzzzzDOKjIyUzWbTH/7wB8NrSUmNv/3Ky8tr9X3y8/MlNSbxAADgtA92HFd+WY3zOjI0SDeN7dtp7//Q5YOUFN04cbym3q7frtjTae8PwPu4HsF1fv9unfILO3QuhpqZw7TkOjo6WiNGjJAkZWVlGV7r06ePczDZmcqzc3JyJEmDBw+mSR8AgCZcB5ndOCZFcREhnfb+seEhmj1liGHtP9uPa803hS08AcDX0W/tG0a57FzvOFqi2np78zej05g61q++vr7F10aPHi1JWrduXYv31NTUOM/DHjNmTOcGBwCAD8s6dMptp8K1jLsz3DSmr0amGI/gmffvXaq38UMc4G9sdofWu/Vbk1x7o15xEeoZ2zgYuqberj0nSk2MKDCYllyfPHlSO3bskCQNGDDA7fVp06ZJOr1z7dqT3WDZsmWqrq6WJGVmZnooUgAAfI/rrvXkwd01oHvnt09ZrRbNuWaEYW3PiTIt3XCo078WAHPtOlaqsurGzbGEyBAN7dn2Y3DRtSgN73oeSa53797d6us2m03333+/6upOD0O46aab3O6ZPn26szT8sccek91u/A14dXW15syZI0lKS0vTVVdd1RmhAwDg8/JKq7Vi+3HDWkeP32rNmH4Juj6jj2HtuQ/36VRFrce+JoCutzbb2PIxvn83Wem39lqupeFbGWrmcR5Jrs855xxdc801euONN7Rt2zbl5+eruLhY+/bt0+LFizV+/Hj9/e9/lyRNnjxZt956q9t7JCUlae7cuZKkTz75RJmZmdq0aZMKCwv1xRdf6NJLL3Um8c8995xCQ0Pd3gMAgED01rqDqrc3HmuZ3j1K3xnU3aNf8+ffG6rI0CDndUlVnZ77aK9HvyaArkW/tW/JcNm5zmLn2uOCPfGmdrtdy5cv1/Lly1u978Ybb9TChQtltTaf4z/88MPKzc3Viy++2Oz7Wa1WzZ8/X9dff32nxQ4AgC+rrrNp6XpjSfbMC9I8vrvUIzZcP7l0oJ5e2ZhQL11/SLee349jegA/UG+za2PuKcMaybV3OzclTkFWi2zf/rI1p7BCxZW1io9kU9JTPLJz/eWXX2revHm64oorNGjQIMXFxSk4OFiJiYkaM2aM7r//fq1du1b//Oc/z3h81oIFC7Ry5UpNmzZNPXv2VGhoqFJSUnTLLbdozZo1evTRRz3xRwAAwCf9e9sxnWxSjh0THqwbRqd0yde+88L+6tct0nltd0hz/71TDoejlacA+ILtR0tUXtPYb50UHapByRyD680iQ4M1uIexJ56+a8/yyM71hRdeqAsvvLDT3m/KlCmaMmVKp70fAAD+yOFwuA0yu3lsX0WFeeSfezdhwUH61dThumtJ4yDSDTlF+s/247p6ZO8uiQGAZ7iebz0+vRvH4PqAjNR47T7eOCU861CxLh6SbGJE/s3Uo7gAAEDn2ZBTpF1NfoiyWDxz/FZrLhuWrMmDjf3dT/1nt6pqbV0aB4DO5dZvzRFcPoGJ4V2L5BoAAD/humt9+bAe6psY2fzNHmKxWPSrq4cruEmP97GSav3582+6NA4Anae23q5N9Fv7JNehZlsPF9Oq40Ek1wAA+IEjpyr14a4ThjVPHr/VmoHJ0W5f+5XPv9HhokpT4gHQMV8fKVZVXWP1SXJMmNKTokyMCG01oHu0Ypq0BpVU1SmnsMLEiPwbyTUAAH7gzbUH1eT0LQ3tGWNq2eYDlw1SUnTjRNqaerueWrHbtHgAnL3mjuCi39o3WK0WnUdpeJchuQYAwMdV1tbr7Q3ux2+Z+cNvbHiIfnblUMPaBztOaM2BQpMiAnC2XIeZ0W/tW1z7rrMOFZsSRyAguQYAwMe9m3VUpdWNR+QkRIbo2ow+JkZ02o2jU3ReSpxh7Yl/71K9zW5SRADaq6beps0H6bf2ZRmp8YZrdq49h+QaAAAf5nA4tMhlkNkt56cqPCTInICasFotmjNthGFtb16Z/rr+UAtPAPA2WYeKVVPf+Aux3nHhSu3iQYnoGNed693HS1VdxwkOnkByDQCAD/vvgULtzy93XgdZLfrhhH4mRmQ0OjVB14827qI/9+FeFVXUmhQRgPZw7beeQL+1z+kWHaa+iRHO63q7QzuOlpgYkf8iuQYAwIe57lpfeU5P9Y6PaP5mkzx25VBFhTbupJdW1+u5D/eaGBGAtqLf2j9k9E0wXFMa7hkk1wAA+Kjcwgqt3ptvWLvDpOO3WpMcG64HLhtkWHt7wyHtPMbOCeDNquts2uoy/GoCybVPchtqRnLtESTXAAD4qEVrcuVocvzWyJQ4jU5NaPkBE82alKa0bo19mnaH9MSyXXI0/QMA8CqbD55SbZMBhCkJEepLv7VPGuU61IyJ4R5Bcg0AgA8qq67TvzYfMayZffxWa8KCg/Tra4Yb1jbkFmn518dNigjAmbidb82utc8a0TtWoUGNqd/R4irll1WbGJF/IrkGAMAH/WvzEZXXNB6/lRQdpqkje5kY0ZldOrSHLh7S3bD21Irdqqytb+EJAGZy67fmCC6fFRYcpGG9Yw1r7F53PpJrAAB8jN3u0OI1uYa1H05IVViw+cdvncmvrh6ukKDG3fXjJdV6+bNvTIwIQHMqauq1zaUvl+Tat2XQd+1xJNcAAPiYT/fmK/dkpfM6JMiiW8enmhhR2w3oHq1Zk/ob1l7+IluHiypbeAKAGTYdPKV6e+NMhLRukeoV510nEaB9Mui79jiSawAAfMwil13ra0b2VnJMuDnBnIUHLh2opOgw53VtvV3/+5/dJkYEwJVbvzW71j7PdWL410eKZbMzVLIzkVwDAOBD9ueV6cv9hYY1151gbxcTHqKfXznEsLZy5wl9daCwhScAdDXXfmuO4PJ9qYmRSowKdV5X1Nq0P7/MxIj8D8k1AAA+ZKHLrvWYfgk6NyXOnGA64IbRKTrPZRfliX/vVH2TY38AmKOsuk47jhrPoWdSuO+zWCxuu9eUhncukmsAAHxESWWd3tliPH5r1qQ0c4LpIKvVorkuR3PtyyvXW+sOmhQRgAabck8ZyoUHdI9ScqzvtJ6gZW7JNUPNOhXJNQAAPuJvGw+puq5xZ7dXXLimjOhpYkQdk5GaoBtGpxjWnv9on06W15gUEQCJI7j8metQsyx2rjsVyTUAAD6g3mbXkrXGXd3bJ/ZTSJBv/1P+8yuHKDos2HldWl2v5z7aZ2JEANyGmaUnmRQJOtvIlHjD9b78MpXX1JsTjB/y7X+RAQAIEB/vztPR4irndViwVbeM843jt1qTHBuuBy4daFh7e8Mht35PAF2jpKpOO48Z//ubkJ5oUjTobHERIRrQPcp57XBIX1Ma3mlIrgEA8AFvfJVruL4uo48Smkx99WWzJvVXepLxh70n/r1TDgdHxABdbUNOkZqezjSkR4y6NTk6D74vIzXBcJ1Fct1pSK4BAPByO4+VaENOkWFtpo8OMmtOaLBVv7raONxsY+4pLdt2zKSIgMDF+db+j6FmnkNyDQCAl1vosms9Mb2bhvaMNScYD7lkaLIuGdLdsPbbFXtUWUsvINCVON/a/7km11mHiqkU6iQk1wAAeLHC8hot22rcwfXV47fO5FdXD1dIkMV5faK0Wi99+o2JEQGB5VRFrXYfL3VeWyz0W/ujoT1jFB7SmAYWltcYZnrg7JFcAwDgxd5ef0i1tsbjt/omRuiyYT1MjMhz0rtH645J/Q1rf/kyW4dOVpoUERBY1ucYd62H9YxVfKR/zHZAo+Agq0b2iTesURreOUiuAQDwUrX1dr25znj81oyJaQqyWlp4wvf95NKB6h7TODyptt6u/12xy8SIgMBBv3XgGMV51x5Bcg0AgJf6YMdx5ZfVOK8jQ4N009i+JkbkeTHhIfr5lUMNa6t25um/+wtNiggIHK791hPpt/ZbGQw18wiSawAAvJTrILMbx6QoLiLEnGC60PUZfdwG7jzx752qa1IeD6BzFZbXaF9eufPaapHOp9/ab7nuXO84WqLaev6O7SiSawAAvFDWoVNuOwkzLkgzJZauZrVaNHfaCMPa/vxyvbn2YAtPAOiodS671uf0iVNsuP//Mi9Q9YqLUI/Yxhacmnq79pwobeUJtAXJNQAAXmjRmlzD9eTB3TWge7Q5wZhgVN943TQmxbD2wsf7dLK8poUnAHSEW781JeF+L6NvguGa0vCOI7kGAMDL5JVW6z9fHzes+evxW62ZfeUQRYcFO6/Lquv17Id7TYwI8F9u51szzMzvuZaGb2WoWYeRXAMA4GXeWndQ9XaH8zq9e5S+M6i7iRGZIzkmXA9eNtCw9reNh7XjaIlJEQH+Ka+0WtkFFc7rIKtF49Lot/Z3rrMtsti57jCSawAAvEh1nU1L1x8yrM28IE1WPz5+qzUzL+iv9KQo57XDIc1dtlMOh6OVp+DrqutsZocQUFz7rUemxBmqRuCfRqbEqek/LTmFFSqurDUvID9Acg0AgBf597ZjOlnR+MNNTHiwbhid0soT/i002KpfXTPcsLbp4Ckt23bMpIjgSYXlNbpz0UYN+/VKffeFz/XJ7jyzQwoI9FsHpsjQYA3pGWtYo++6Y0iuAQDwEg6Hw+34rZvH9lVUgO8gXTIkWZcNTTasPbVitypq6k2KCJ5wIL9M1730lT7Zky+HQ9qXV647F2/SnYs26tDJSrPD82tu51vTbx0wMlz6rrPou+4QkmsAALzEhpwi7TreeBSKxSJNn5hmXkBe5PGrhyskqLF+Ma+0Ri99dsDEiNCZvjpQqOteWqPDRVVur32yJ1+Xv/C5XvhoH+XiHnCsuEoHm/zyIiTIorH96LcOFK591+xcdwzJNQAAXsL1+K3Lh/VQardIc4LxMv2TonTnhemGtVe/yNHBkxUtPAFf8feNhzTjjQ0qq265EqG23q4/fLJfV7zwuT7eRal4Z3ItCR/VN14RoUEmRYOultFMcs1Mi7NHcg0AgBc4cqpSq3aeMKwF4vFbrfnJpQOVHBPmvK612fWb/+w2MSJ0hN3u0PyVe/Tz/9tumI4vSddl9NHYfgluzxwuqtJdSzbpjkUb+cVKJ3ErCaffOqAM6B6tmCatRyVVdcop5L+ts0VyDQCAF3hz7UE1zS+G9ozhh1wX0WHBeux7Qw1rH+3K0xf7CkyKCGerus6mB97O0p8/+8bttce+N1TPf/88/fO+iXrupvOUFB3qds/qPfm64oUv9Dyl4h3munPN+daBxWq16DxKwzsNyTUAACarrK3X2xvcj9+yWALz+K3WXDuqj9sAnnnLd6nOZjcnILRbQVmNfvCXdfrP9uOG9bBgq/5822jdN3mALBaLLBaLbhiTok8eufj0cXQu/znU1tu14JP9uvz5z/XRrjxKWc/C4aJKHS1u7HMPDbZqdKp7xQD8m9t51ww1O2sk1wAAmOzdrKMqbdJvmhAZomsz+pgYkfeyWi2ae80INf29w4H8ci1Ze9C8oNBm+/NOTwR33RlLig7V3+6ZoO+d28vtmbiIEM2dNkLLH7hI49LcE78jp6p0N6XiZ8V113p0arzCQ+i3DjSuv7Bk5/rskVwDAGAih8OhRS7Hb91yfio/4LbivL7xummM8ezv33+0T4XlNSZFhLb47/5CXf/SGh05ZZwIPig5Wu/+eJIyzrBjOrx3rP5x70Q9//3zlBQd5vb6p3sLTpeKf7hXVbWUireFe791kkmRwEyuO9e7j5fSbnGWSK4BADDRVwdOan9+ufM6yGrRDyf0MzEi3zB7ylDDEJ6ymno9u2qviRGhNX/bcEgzF25QmcvZ5BcNStL//fgC9U1s21R8i8Wi60enaPWjkzVrUgul4qsP6IoXPteHO09QKt4Kh8PhtnPN+daBqVt0mPomRjiv6+0O7ThaYmJEvovkGgAAEy38KsdwfeU5PdU7PqKFu9Gge0yYHrp8kGHt75sOa/sRfiD0Jna7Q7/7YI8ee8d9Ivgt56fqjZnjFBse0u73jQ0P0ZxrRug/D7ZcKn7Pm5t1x6KNymXycbNyT1bqRGm18zo8xKrz+saZGBHMlNHX+N8RpeFnh+QaAACT5BZWaPXefMPaHRy/1WbTJ6YpvXuU89rhkOb+eye7lV6ius6mn7y9RS9/bpwIbrFI/3PVUD113TkKCerYj6LDep25VPy7lIo3y3XXemy/RIUF044SqNyGmpFcnxWSawAATLJ4ba6a5oHn9oljUm87hAZb9eurhxvWNh88pfe3HjMpIjQoKKvRzX9ZpxXbjWe3h4ecngh+z3cGdNo0fNdS8SCXWvFa2+lS8cufp1S8Kbd+a0rCA9oo16FmTAw/Kx5Jruvr6/XRRx/p0Ucf1YUXXqju3bsrJCRE8fHxGjNmjB577DEdPNj2qZ6rVq1SZmamevfurfDwcKWmpuq2227T+vXrPRE+AAAeV1Zdp39uOmJYmzWJ47fa6+Ihybp8WLJh7bcf7FaFS28vus6+vDJd+6evtM1tIniY/n7PRF15jvtE8M7QUCq+/IELmy0VP1p8ulR8FqXizfZbT0gnuQ5kI3rHKrRJJcnR4irll1W38gSa45HkevTo0frud7+r5557Tl999ZUKCwtVX1+vkpISbdmyRfPnz9fw4cO1ePHiM77XQw89pCuvvFLLli3T8ePHVVNTo8OHD2vp0qWaNGmSnn32WU/8EQAA8Kh/bT6i8iYJYFJ0mKaO9EzS4e8enzrc8ENhXmmN/vTpARMjClxf7i/QDS+tMZydLEmDe0Trvfsv0Hkupaee0FAq/sLNzZeKf/ZtqfhzAVwq/k1BuWG6fmRokEam0G8dyMKCgzSsd6xhjd3r9vNIcl1aWiqr1aorrrhCf/nLX7Rjxw6dPHlS2dnZ+tOf/qRu3bqpsrJSs2bN0ooVK1p8n+eff14LFiyQJE2dOlUbNmxQQUGBPvvsM02YMEE2m02zZ8/WO++844k/BgAAHmG3O7R4Ta5h7YcTUul3PEtpSVG686L+hrXXvswJ+N3Jrvb2hkOauXBjsxPB//WjC5SS0LaJ4J3BYrHouozTpeJ3TOrfbKn4i9+Wiq8KwFJx113rcWmJHe5/h+/LoO+6wzzyX9H3v/997d69Wx9++KHuvvtujRgxQomJierfv79+/OMf67///a+ioqLkcDg0e/bsZt+jsLBQc+fOlSRdcsklWrZsmcaNG6ekpCRNnjxZq1ev1pAhQyRJjzzyiGpraz3xRwEAoNN9ti9fuScrndchQRbdOj7VxIh8308uGagesY27lLU2u37zn90mRhQ47HaHfrtit37xznbZXCaC3zr+7CeCd4bY8BD9+prh+s+DF+r8tES3148WV+neACwVp98azcmg77rDPJJcP/300xo8eHCLrw8dOlSzZs2SJO3atavZ/uslS5aorKxMkjR//nxZrcZQIyIiNG/ePElSbm5uqzvgAAB4k4Vf5RqurxnZW8kx4eYE4yeiwoL12PeGGtY+3p2nz/cVmBRRYKiqtenHf92iV77INqxbLNIvrxqm/7224xPBO8PQnrH6+70T9PubR6l7TGCXitvtDq3LLjKsTaTfGnKfGP71kWK3X5ihdab9bXfOOec4Pz92zH2q57JlyyRJ/fv317hx45p9j8zMTIWHn/5h5P333/dAlAAAdK79eWX6cn+hYW3WpP4t3I32uHZUH4122Xl54t87VVtvNycgP5dfVq0f/GWtVu5sbiL4GN39nXSvGtBnsVh0bUYfrX5ksu68MHBLxffll6moorHiMzosWCNcem0RmFITI5UYFeq8rqi1aX9+mYkR+R7Tkuu8vDzn53Fx7gMUtmzZIkmaOHFii+8RFhamjIwMSdLmzZs7OUIAADrfIpde6zH9EnQug4Q6hcVi0dxpI9Q0n8suqNCStbmmxeSv9p4o03V/WqNtR0oM691jGiaC9zQpsjOLCQ/Rr67+tlS8f8ul4jMXblSOH5aKu/Zbn98/UcFeUF0A81ksFrfda0rD28e0/5IahpAlJiY6e6cbHD161FkSnp6e3ur7NLy+b98+v/0NIwD/d/BkhY65TNeF/ymprNM7W44a1mZNSjMnGD81MiVe3x/T17D2h4/3q6CspoUn0F5f7i/QjX92nwg+pEeM3rt/UpdMBO8MQ3vG6u/3tFwq/vm+Ak154Qs9u8q/SsVdk2tKwtGUW3LNULN2MSW5XrhwobZt2yZJuvfeexUUZJyOWljYWC7Xo0ePVt8rOfn02ZY1NTUqLy9vVxynTp1q8aO4uLhd7wUAZ8PhcGjusp2a/MxnuujpT/WXL74xOyR40N82HlJVXeMP6b3iwjVlhPfu8Pmq2VcOUUxYsPO6rKZez67aa2JE/mPp+uYngn9ncHf960cT1Sc+wqTIzk5bSsX/+OnpUvGVO3y/VNxud2h9jku/NcPM0ITrULMsdq7bpcuT6127dunBBx+UJPXr108///nP3e6pqGgswWnoqW5JRETjX+LtTa4TExNb/DjTjjkAdIanV+11lgnb7A49tWKPlm1zn0MB31dvs2vJWuMAzx9O6OcVw578TVJ0mB66fJBh7R+bD+vrI8XmBOQH7HaHnlqxW//zrvtE8NvGp+qNGWMVY9JE8M7QUCq+4sGLWiwVv++tzZrh46Xiu46XqqSqznkdGx6sYb3ot0ajkSnxhut9+WUqd/llGlrWpf+i5+fna9q0aSovL1doaKiWLl3abL91098KetMgDADoTAu/ytGfP3PfqZ79z22UYfmhj3fnGcpow4KtuvV8jt/ylBkXpGlgcrTz2uGQ5i7bKTuTb9utqtamH/11s/7SzETwx6cO02+uPcdvenaH9IzR3++ZoD/8oPlS8S++LRV/ZtUeVdb6XsKxzuUIrvHp3dx26xHY4iJCNKB7lPPa4RC/mGyHLvubsKSkRFOmTNE333yjoKAgLV26VBdccEGz90ZHN/5jWFXVeg9i09ebPtcWRUVFLX5kZ2ef+Q0A4Cwt//qY5i3f1exrNfV23b1kk46X0IPtT95wOX7ruow+SmgylRWdKyTIql9fPdywtuVQsd7berSFJ9Cchongq3bmGdbDQ6x6+YdjdNdF3jURvDNYLBZljjpdKn5XC6Xif/r0G13x/BdaueO4T5WK02+NtshITTBcUxredl2SXFdUVOiqq67S1q1bZbFY9Oqrr+qGG25o8f6kpCTn502nijcnPz9f0unJ4e1NrhMSElr8iI+Pb9d7AUBbrfmmUA//fZua/jwWGmz867igrEZ3L9nkkzsjcLfzWIk2uPQ5zmSQmcd9Z3B3XTHcOLvldx/socSxjVqbCP6Peyf6/byAmPAQPf5tqfj4FkvFt2jGwo3KLmhfa6IZ6m12t7+H6LdGcxhqdvY8nlxXV1dr2rRpWrNmjSRpwYIFmjVrVqvP9OnTRzExMZJ0xh3knJwcSdLgwYP97jenAPzPrmOlunfJZtXaGs/dDbZa9Or0sbp3snHWw46jpXrkH9soY/UDi1x2rSemd9PQnvQ5doXHpw5TaJOS5fyyGv1x9QETI/INn+8r0A3NTAQf2vP0RHDXvkx/NqRnjP72bal4cgul4lf+/kuvLxXfeazUMIguITJEQ3rEmBgRvFVzybUvVWiYyaPJdV1dnW644QatXr1akvTb3/5WP/nJT9r07OjRoyVJ69ata/Gempoa53nYY8aM6WC0AOBZh4sqNXPhBrcpu0/fOFKTB3fXz6YM1eXDkg2vfbDjhH7/8b6uDBOd7GR5jd53GVLH8Vtdp1+3KN11UX/D2hv/zfHpoVSe9ta6g7pj0Ua3Hf7Jg7vrn/f53kTwztBQKv7JGUrFL3/uc68tFXftt56Q3k1W+q3RjKE9YxQe0pgmFpTVuP2iDc3zWHJts9l06623asWKFZKkxx9/XI899libn582bZqk0zvXmzZtavaeZcuWqbq6WpKUmZnZwYgBwHOKKmo1Y+EG5buctfuL7w3V9aNTJElBVot+/4MMDe1p3ElYsPqA3qdP1GctXX9ItfWNlQp9EyN02bDWj5lE57r/koHqEdu441hrs+s3Lcw8CGQ2u0P/+59devy9HW4TwX84IVWv+/hE8M5wplLxYyXVuu+tLZr+xgavKxVf65JcUxKOlgQHWTWyT7xhjdLwtvFIcu1wOHTnnXfqX//6lyTppz/9qZ588sl2vcf06dOdpeGPPfaY7Ha74fXq6mrNmTNHkpSWlqarrrqqEyIHgM5XWVuvOxZtVHaBcafsjkn9dc93jKXg0WHBenX6WHVzGXQ1+19fK+vQKY/His5VZ7PrzXXG47dmTExjOm8XiwoL1i++N8yw9smefH22N9+kiLxPZW29fvTWZr36ZY5hvWEi+JOZ/jMRvDOcqVT8y/2FmvL7L/T0Su8oFa+z2bXRtd+aYWZoxSjOuz4rHvlb8sEHH9TixYslSbfddpuefPJJlZeXt/hRX+/+l05SUpLmzp0rSfrkk0+UmZmpTZs2qbCwUF988YUuvfRS7d69W5L03HPPKTSUiasAvE+9za4Hlma5/cb36pG99PjUYc3OiuibGKlXbh9j6BOtrbfrnjc36xhlWT5lxfbjhmqFyNAg3TS2r4kRBa7MUb01pp9xAu685bsMVQWBKr+0Wj/4yzp9uMs4RDYiJEiv+OlE8M7QtFT87ovcS8XrbA699NnpUvEPtptbKr79aIkqam3O66ToMMNRdYCrDIaanRWPJNd//OMfnZ//9a9/VUxMTKsfb731VrPv8/DDD+uBBx6QJC1fvlzjxo1T9+7dNXnyZK1du1ZWq1XPPPOMrr/+ek/8MQCgQxwOh3757g59sse4O3bBgG567vvntdrrNjYtUU9df65hjQnivmehyyCzG8ekKC4isMtqzWKxWPTEtBFqmiNmF1Ro8Zpc02LyBntOlOraP32lr10mgid/OxH8u34+EbwzxISH6JdTh+uDhy7ShPTmS8V/9FdzS8Vdj+CakJ7IL0zQKted6x1HS/hlZBt4fX3PggULtHLlSk2bNk09e/ZUaGioUlJSdMstt2jNmjV69NFHzQ4RAJr1wkf79PdNhw1rw3rF6pXbxygsOOiMz984JsVtgvjOY6V6+O9MEPcFWYdOuf2mf8YFaabEgtPO6ROnH4wzVg784ZP9yi+rNikic322N183/nmtjpUY//wNE8HPTYkzKTLfNLhHjN6+e4IW3JLhdaXirsPM6LfGmfSKizDMqqipt2vPiVITI/INHuu5bs/HzJkzW32/KVOm6P3339fx48dVU1Ojw4cPa+nSpRo/frwnwgeADntz3UEtcDnuJyUhQotnjWvXQKDTE8SNw69W7jyhF5gg7vUWueyITh7cXQO6U4Zptke/O0Qx4cHO6/Kaej2zcq+JEZnjzXUHdefiTW4TwS8e0l3/+tEF6h2AE8E7g8Vi0bTzemv1oxfrnu+kK9gLSsVr6+3alGuc2UG/Ndoio6+xlYbS8DPz+p1rAPA1K3cc16/f32FYS4gM0ZI7zldybHi73uv0BPFRbhPEX2SCuFfLK63Wf74+bljj+C3v0C06TP/v8sGGtX9uPhIwPzTa7A79Zvku/aqZieC3T+in16aPVXRYcAtPo62iw4L1P1cN0wcPXdRsItu0VPwbD5eKbztSrKq6xn7rHrFh6p8U5dGvCf/gWhq+laFmZ0RyDQCdaENOkR7821Y13YyICAnSGzPHKf0sdy2jw4L12oyxSopmgriv+Ou6g6pvkrikd4/SdwZ1NzEiNHX7xH4a5DLMae6ynX7fblFZW6/73tqs1/7rPhH8V1cP17zMEUwE72SDesRo6d3jteCWDEOJbYMv9xfqyt9/ofkeLBV37beemN6Nfmu0ySiXoWZZAfJLyI7gb1AA6CR7T5TprsUbDQM/gqwW/em2DGWkJrTy5JmlJDQ/QfzuJUwQ9zbVdTb9df0hw9rMC9JaHWCHrhUSZNWvrxluWNt6uFjvZvlvNUheabVufmWdPmpmIvhfbh+rOy/sT8LlIQ2l4p880nKp+J8/+0aXPfe5VnigVNwtuabfGm00MiVOTb9dcworVFxZa15APoDkGgA6wbHiKs14Y4NKq407D7+9/lxdOrRHC0+1z5h+ifqtywTxwvIa3bWYCeLe5N/bjulkReMPHzHhwbphdIqJEaE5Fw3qru8ON/63+buVe9x6kP3B7uOnJ4JvP9r8RPArhnfO31Fo3ZlKxY+XVOvHf92i21/foAP5nVMqXl1n0+ZDrv3WSZ3y3vB/kaHBGtIz1rAWKC00Z4vkGgA6qLiyVtPf2KATpcaJu7OnDNH3O/lM4xvGpOi+yQMMa7uOl+r//X2r35e0+gKHw+F2/NbNY/sqih5Wr/T41OEKDW78UaigrEYvrt5vYkSd7/RE8DU6zkRwr9FQKv5iC6Xi/z1QqO/94Qv97oM9qujgL3uyDhUbqqn6xEeobyLD6tB2bqXh9F23iuQaADqgus6muxZvcttlmD6xn3588YAWnuqYn00Z4rbTtGpnnp7/iAniZtuYe0q7jjceVWKxSNMnppkXEFqV2i1S91xkPO7ujf/mKKewwqSIOteb6w7qjkUbVVFrM6xfwkRw01ksFl3zban4vS2Uir/8+Te6/PnP9Z+vz75UfG226/nW9FujfTJch5qxc90qkmsAOEv1NrseeDtLmw4aS+6+d05PzblmhMd+gLFaLfr9ze4TxP/46QG958c9o75g4VfGQVGXD+uh1G6RJkWDtvjxJQPUs8kU/zqbQ08u32ViRB1ns5/+M/zqvR1yLWiZMbGfXmUiuNeIDgvWL74tFb+gmV7o4yXVun/p2ZeKr6PfGh2U4bJzvfVwcZccIeerSK4B4Cw4HA796v2dbsOBzu+fqBduHqUgDw+vimphgvjP/u9rbWGCuCmOnKrUqp0nDGscv+X9IkOD9YurhhrWVu/J16d78k2KqGMqa+t175ub9XozE8HnXDNcT2Sew0RwLzSoR4z+elfnlopX1dqUddil35rkGu00oHu0Ypr8Mq6kqs5vqns8gb9dAeAsLPjkgN7eYJwIPaRHjF6dPlbhIUFdEsPpCeJj3SaI37Nks44yQbzLvbnuoGGXcEiPmGaHFsH7TDuvt8alGSf6P7l8l6FX1RfklVbr+6+s1ce7jb/0iwwN0qu3j9WsSf1Nigxt0dml4psPnlKdrfGe1MRI9aEVAO1ktVp0XjO712geyTUAtNPbGw7phY+N/c2948K1+I7zFRcR0qWxjOmXoN/d0PwE8Y4OwkHbVdbW628bDhvWZk1Ko7fRR1gslm9bORrXsgsrtGhNTssPeZldx05PBN9xtNSw3iP29ETwy5kI7jMaSsVX/rT1UvEfvr6+1VLxtdmFhmt+2Yez5TrUjOS6ZSTXANAOH+3K0y/f3W5Yi4sI0ZI7z1fPuPAWnvKs60en6Ecuw9N2M0G8S72bdVQlVXXO6/jIEF2b0cfEiNBe5/SJ0w/GpRrWFnxyQPll1S084T0+3ZOvm152nwg+rFes3rt/ks7pw0RwXzQw+XSp+B9vzTDMBWjw1YGT+t4fvtBvP9jd7C9TOd8ancV1qBkTw1tGcg0AbbT5YJF+snSLofQ3LNiqN2aO1cDkmJYf7AKzvzvE7czeD3fl6bmP9poUUeBwOBxa5HL81i3np3ZZewA6z6PfHayY8MbewvKaej290rv/G1qyNld3LnafCH7p0GT9876J6hVHGbAvs1gsunpkb33yyGTdO7n5UvFXPs/WZc99ruVfH3OWilfU1OvrI8ZzzUmucbZcd653Hy9VdZ2t+ZsDHMk1ALTBgfwy3bl4k2qa9GBaLdKLt2RoTL9EEyP7NharRS/cPErDesUa1v/06Td6N+uISVEFhq8OnNT+JqWZQVaLbp/Qz8SIcLa6RYfp4SsGG9b+tfmIsrxwSKDN7tAT/96pX7+/020i+MwL0vSX28cwEdyPRIUF6xffa7lU/ERptX6yNOvbUvEybcwtUn2Tb4z0pCj1aGb3G2iLbtFhhvPR6+0O7TxW0soTgYvkGgDO4ERJtWa8sVHFlXWG9d9ce66+O6KnSVG5a2mC+M//b7s2H/S+5MBfuB6/deU5PTk/2If9cEI/DUqONqzN/fcur2qxqKip171vbtJCl4oJ67cTwedOG8FEcD/VllLxK3//pZ5asduwPoFda3RQRl/j0EdKw5vH37wA0IqSqjrNXLjBbfr2Ty8fpFvHp7bwlHn6xEc0O0H83jc3MUHcA3ILK7R6r/HIpjs4fsunhQRZNeeaEYa1bYeL9X9bvKMCpHEiuPH7LjI0SK9OZyJ4IDhTqXi93aF9ecZBZwwzQ0e5loZnMdSsWSTXANCC6jqb7lmySXtOlBnWbzk/VQ9dNsikqM5sTL8Ezb/RdYJ4LRPEPWDx2lw1PQ3n3D5xGp2a0PID8AkXDkrSlBHGGQbzV+5VWXVdC090jYaJ4DuPNT8R/LJhTAQPJE1LxScNbD15nkByjQ4a5TLUbCs7180iuQaAZtjsDj38j61an1NkWL9ieA89mTnC649Yui4jRT9mgrhHlVXX6Z+bjLuZHL/lPx6fOlyhwY0/JhWW1+iPqw+YFk9LE8GH94rV+/dfyETwADYwOUZv3Tlef7p1dLOl4oOSo9U9JsyEyOBPRvSONVTFHS2u8onTFLoayTUAuHA4Tg8KWrH9hGF9TL8EvXhLhs/0Mj7awgTxZz/07unHvuJfm4+ovEklQFJ0mKaO7GViROhMfRMjde930g1rb3yVo+yCls8V9pTFa5qfCH7ZtxPBzToGEN7DYrFo6she+uSRybpv8gBDqfj0C9LMCwx+Iyw4SMN6G4emsnvtzjd+QgSALvTSZ99oydqDhrWBydF6fcZYnzpeqaUJ4i99xgTxjrLbHVq8Jtewdtv4VIUF+873B87sRxcPUK8miWudzaEnl+/qsq9vszs0d9lOzVnWwkTw6WMVxURwNBEVFqzHvjdUHz08Wb+8aphenT5Wt53vffNB4Jsy6Ls+I5JrAGjin5sO65lVxp3dnrHhWnzH+YqPDG3hKe/VOEHcWBL4838xQbwjPtuXr9yTlc7rkCCLbpvAD7D+JjI0WL+4aphh7dO9BVq9J8/jX7uipl73LNmkRS6/xLFapCemjdDcaSMUZKUFAc3rnxSlu7+TriuG95CV7xN0kgz6rs+I5BoAvvXpnnw99s52w1pMeLAW33G++vjw0Up94iP0l+ljDP2jtbbTE8SPnKps5Um0xPUIpGtG9lZyDKW5/uiakb10fprxLPsnl+9WTb2thSc67kTJ6Yngn+xxnwj+2oyxmkGZLwATuE4M//pIsWzMcTEguQYASVmHTunHf91i+EciNNiq16aP1ZCeMSZG1jlGpybo6RtGGtaYIH529ueV6cv9hYa1mRy/5bcsFovmTBuuppt/OYUVbr9g6Sw7j5U0OxG8Z2y4/nnfRF06lIngAMyRmhipxKjGKr6KWpv255e18kTgIbkGEPCyC8p1x6KNqqpr3ImyWKQFPxil8X50fMm1GX10/yXGCeJ7TpTpp0wQbxfXMt0x/RI0MiXelFjQNUb0jtMPXPpWX/xkv/JLO3dS7ie783TTy2t1wuV9R/SO1Xv3T9KI3kwEB2Aei8XitntNabgRyTWAgJZfWq3pb2zQqUrj+bXzpo3Qlef43+TnR64Y4nZ+70e78vQME8TbpKSyTu9sOWpYm8WudUB49LtDFBveODysotam363c02nvv+irHN29ZJMqXSaCXz4sWf+4l4ngALyDW3LNUDMDkmsAAausuk4zF27UkVNVhvWfXDJQt09MMycoD2uYID7cZYL4nz/7Ru9sYYL4mfx90yFDhUOvuHBNGdHTxIjQVRKjQvXwFYMNa+9sOaqsQx0bDNgwEXzuv3e5TQSfNSlNr9zORHAA3sM1uc5i59qA5BpAQKqpt+m+tzZr13FjX+P3x6boke8ObuEp/xAZ2vwE8cf+b7s2HywyKSrvV2+za/Ea4xFtP5zQTyE+cu45Ou6HE/ppcI9ow9rcZTvPuq2itYng8zJHaM41TAQH4F3Oc0mu9+WXqZzZLU78RAAg4NjtDj36z6/11YGThvVLhybrqevOlcXi/z/M9o6P0KvNThDfzATxFny8O09HixurHMKCrbqV82MDSnCQVXOvGWFY23akRP86i6qP4yVVuull94ngUaFBen3GOE330+oZAL4tLiJEA7pHOa8djtNTw3EayTWAgOJwOPSb/+zWv7cdM6yP6huvP96aoeAA2oXMSE3QMzcyQbyt3nCZDn1dRh8lRPne2efomAsGJul75xhbAZ5euVel1XUtPOFux9HTE8FdK2d6xYXrn/ddoEuGJndKrADgCaP6JhiuKQ1vFDg/RQKApFe/zNYbX+UY1tKTovTGzHGKDA28vsbMUX30k0sGGtb2nCjTQ39jgnhTO4+VaEOOsWSe47cC1/9cNUxhTao+Cstr9OIn+9v07Me78vT9V9Yqr7TGsH5On9MTwYf3jm3hSQDwDhmp8YZrhpo1IrkGEDDezTqip1YYp/t2jwnT4jvON5zbGGgevmKwrnQZyvXx7jw9vYoJ4g0WuexaT0zvpqE9SYICVd/ESN37nXTD2sKvcnUgv7zV5xZ+laN73mxuIngP/ePeieoRy0RwAN6vuYnhDge/kJdIrgEEiC/2FWj2P782rMWEBWvxrPPVNzHSpKi8g9Vq0fM3n6cRLjtmL3/+jf5vMxPET5bX6H2XNgKO38KPLh6o3k2Ox6q3O/Tk8l3N/oBZb7Nrzvs79EQzE8HvvLC/Xrl9TEBWzgDwTUN7xig8pDGNLCirMcwkCWQk1wD83tdHinXfW5tV3+Sn2tAgq16ZPoYSzG9Fhgbr1elj1T3GOEH8F+8wQfztDYdUW293XvdNjNBlw3q08gQCQURokH5x1TDD2uf7CrTaZUBZeU297l6ySYvXGifNWy3Sk5kj9KurhzMRHIBPCQ6yamSfeMMapeGnkVwD8Gu5hRWatXCjoQzTYpGev/k8XTAgycTIvE/v+Aj95Xb3CeL3LAncCeJ1NrveXGdMimZMTCMZgiTp6pG9dH7/RMPavOW7VFN/+u+bhongn+4tMNwTFRqk12eO0+1MBAfgo0a59l0z1EwSyTUAP1ZQVqMZCzfoZEWtYf1XU4fr6pG9TYrKuzU3QfxkxekJ4oF4juWK7ccNg6ciQ4N009i+JkYEb2KxWDT3mhFq+ruWgycr9cZ/c50TwXe3NBF8CBPBAfiuDJe+6yx2riWRXAPwU+U19bpj0UYdPGnccb13crruuLC/SVH5hsxRffTApe4TxH/6t62yBdgE8UVrcg3XN45JUVxEiDnBwCsN7x2rW8cbzzt/cfV+3fQyE8EB+C/XnesdR0sMLVSBiuQagN+prbfrR29t1vajJYb16zP66OdThpoUlW/5f5cPdjvL9/QE8T0tPOF/th4udju7c8YFaabEAu/2yBVDDL90qay1qarOOBH8iuFMBAfgP3rFRahHbOOclpp6u/acKG3licBAcg3Ar9jtDv38/77Wl/sLDevfGdxd828cKSu9sm1itVr03PfdJ4i/8nm2/hUgE8QXupyHPnlwdw3oHm1SNPBmCVGheuS7g1t8/a4L++vlHzIRHIB/yeibYLhmqBnJNQA/M3/VHr2bddSwNjIlTn++bbRCgvgrrz0iQ4P12gz3CeL/8852bcr17wnieaXV+s/Xxw1rHL+F1tx6fqqG9owxrAVZLXry2nP0OBPBAfghhpq54ydNAH7j9f/m6JXPsw1r/bpF6o2Z4xQVxo7R2egVF6FXp49VmMsE8Xvf3KzDRf47Qfyv6w4ajm5LT4rSdwZ1NzEieLvgIKueuv5cRYYGSZKiw4L1+oyxun1CP5MjAwDPGMVQMzck1wD8wrJtx/Tk8l2GtaToUC2543wlRYe18BTaYlTfeD0dQBPEq+ts+uv6Q4a1mZPSaCnAGY1OTdDKh76jl24brf/+/BJdzERwAH5sZEqc4bSEnMIKFVfWtvxAACC5BuDz1hwo1CP/2GpYiwoN0sKZ56tftyhzgvIzmaP66EGXCeJ788r00NtZfjdB/N/bjhmOb4sJC9YNo1NMjAi+JLVbpK46t5fiI0PNDgUAPCoyNFhDehpnswR63zXJNQCftvNYie55c7PqbI0JXrDVopdvH6NzU+JMjMz//LSZCeKf7MnX0yv9Z4K4w+FwO37r++P60lYAAEAz3ErDA7zvmuQagM86XFSpmQs3upUmP3vTebqI/thO1zBB/Jw+LhPEv8jWPzcdNimqzrUx95R2Hms8SsRikWZMTDMvIAAAvFiG61Azdq4BwPecLK/R9Dc2qKCsxrD+y6uG6dqMPiZF5f8iQ4P16vSxSnadIP7udm30gwnirsdvXT6sh1K7RZoUDQAA3i3DZed66+FiORz+1S7WHiTXAHxOZW297li8STmFFYb1Oy/sr7u/k25SVIGjV1yE/uIyQbzO5vD5CeJHi6u0aucJwxrHbwEA0LIB3aMV06R1qqSqzu3ns0BCcg3Ap9TZ7Lr/r1u0zaXs6JrzeuuXVw0zJ6gANKpvvJ656TzDWpGPTxBfsjZXTWezDekRo4np3cwLCAAAL2e1WnReM7vXgYrkGoDPcDgc+sU72/Xp3gLD+qSB3fTsTSM5KqmLTTuvtx68bJBhzVcniFfW1utvG4x947Mmpcli4XsKAIDWuA41I7kGAB/w7Id79a/NRwxrw3vF6uUfjlFYcJBJUQW2n142SFed6z5BfL6PTRB/L+uYSqrqnNfxkSH07gMA0AZMDG9Ecg3AJyxek6s/ffqNYa1vYoQW3TFOMeEhJkUFq9Wi524apXP7GI89+8sX2fqHj0wQP338lnGQ2S3npyo8hF/YAABwJqNcJobvPl6q6jqbOcGYzGPJtcPh0O7du7V48WLdf//9GjdunMLCwmSxWGSxWJSbm9vm91q1apUyMzPVu3dvhYeHKzU1VbfddpvWr1/vqfABeJEV249r7r93GtYSo0K1eNb5So4JNykqNIgIDWp2gvgv392uDTneP0H8qwMntS+v3HkdZLXo9gn9TIwIAADfkRQdpr6JEc7rertDO4+VmBiReTyWXB88eFDDhw/XzJkz9dJLL2nTpk2qra1t9/s89NBDuvLKK7Vs2TIdP35cNTU1Onz4sJYuXapJkybp2Wef9UD0ALzFuuyT+unftqrpqQ4RIUF6Y+Y4pXePNi8wGPSMC9erzUwQv+8t758g7nr81pXn9FTv+IgW7gYAAK5G9U0wXAdqaXiXlIX36dNH1113nS666KJ2Pff8889rwYIFkqSpU6dqw4YNKigo0GeffaYJEybIZrNp9uzZeueddzwRNgCT7TlRqruXbFKtze5cC7Ja9NIPR7v198B85/WN17PNTBC/c/FGlVXXtfCUuXILK7R6b75hbdYFaeYEAwCAj3I97zorQIeaeSy57tatm9577z0dP35cR44c0TvvvKNLL720zc8XFhZq7ty5kqRLLrlEy5Yt07hx45SUlKTJkydr9erVGjJkiCTpkUceOatdcQDe62hxlWa8sUFl1cZjnebfMFKXDEk2KSqcyTXn9dZDLhPE9+WV66G/bfXKCeKL1+YaqiLO7ROnMf0SWn4AAAC4ce273srOdeeKiYlRZmamevbseeabm7FkyRKVlZVJkubPny+r1RhqRESE5s2bJ0nKzc3VihUrOhYwAK9xqqJW019fr7zSGsP6z64cohvHpJgUFdrqocsGaeq5vQxrq/fk63cf7DYpouaVVdfpn5uM0+c5fgsAgPYb3itWIUGN/34eLa5Sflm1iRGZw2unhS9btkyS1L9/f40bN67ZezIzMxUefnqY0fvvv99lsQHwnKpam+5cvFHfFFQY1mdekKYfTR5gUlRoD6vVomdvOs9tgvirX+boHxu9Z4L4/20+ovKaxsqIpOgwTR3Zq5UnAABAc8JDgjS8t/Hf/UDcvfba5HrLli2SpIkTJ7Z4T1hYmDIyMiRJmzdv7pK4AHhOvc2uB97O0haXv4yvOrenfnX1cHYUfUiLE8Tf26712SdNiqqR3e7Q4rUHDWu3jU/lvHQAAM4SfddemlwfPXrUWRKenp7e6r0Nr+/bt08OR/v6+U6dOtXiR3Fx8VnFDuDsOBwO/er9Hfp4d55hfXz/RD3//VEKspJY+5qeceF6bUbzE8QPnTR3gvhn+/KVU9hYHRESZNFtE1JNjAgAAN+WQd+1dybXhYWFzs979OjR6r3JyacHG9XU1Ki8vLzVe10lJia2+HGmpB5A5/r9x/v19gZjyfDQnjH6y/SxCg9hN9FXjUyJ13PfN04QP1VZZ/oE8YVf5RqurxnZmzPTAQDoANeTXL4+UuyVw0w9ySuT64qKxt2Ehp7qlkRENJ5F2t7kGoB3+Ov6g/rDJ/sNa33iI7Ro1vmKiwgxKSp0lqtH9tZPLzdOEN+fX64H384y5R/dA/ll+nJ/oWFt5qS0Lo8DAAB/kpoYqcSoUOd1Ra1N+/PLTIyo63llct20vNuTPZZFRUUtfmRnZ3vs6wJotGrnCf3qvR2GtfjIEC2+Y5x6xrGT6C8eumyQ27CwT/cW6Lcrun6CuOuu9Zh+CRqZEt/lcQAA4E8sFovb7nWglYZ7ZXIdHR3t/LyqqqrVe5u+3vS5tkhISGjxIz4+vl3vBaD9NuYW6cG3s9R08zI8xKrXZ4zTwOQY8wJDp7NYLHr2xvM0MsU4SfS1/+bo7xsPdVkcJZV1emfLUcPaLHatAQDoFG7JdYANNfPK5DopKcn5eV5eXit3Svn5+ZJOTw5vb3INwDz78sp056KNqqm3O9esFumPt4zWmH4JJkYGT2mYIN4j1jhB/PH3dnTZBPG/bzqkqjqb87pnbLimjOjZJV8bAAB/55pcZ7Fzbb4+ffooJub0rtWZyrNzcnIkSYMHD+aYHsBHHC+p0ow3Nqi0ut6w/tR15+ry4a0PMYRv6xEbrlenj1V4SNdPEK+32bV4jfH4rdsn9lNIkFf+UwgAgM85zyW53pdfpvKa+uZv9kNe+xPF6NGjJUnr1q1r8Z6amhrnedhjxozpkrjgPwrKavTiJ/s1a+EG3f/XLfr9x/v0wfbj+qagXPU2+5nfAGelpLJOM97YoOMl1Yb1h68YrB+cz1FIgWBkSryeu2mUYa0rJoh/vDtPR4sbW4nCgq26le85AAA6TVxEiAZ0j3JeOxynp4YHimCzA2jJtGnT9Pnnnys7O1ubNm3S2LFj3e5ZtmyZqqtP/4CemZnZ1SHCR207XKzFa3K1/Ovjqm2aRG9v/DQ02KqB3aM1pGeMBveI0ZCe0RqUHKM+8RGyct7yWauus+nuJZu0L8842f+28al64NKBJkUFM0wd2UsH8gfrhY/3Odf255frgbez9PqMcR4519x1kNl1GX2U0GSqKQAA6LhRfRP0TUHj6U9Zh4p1wYCkVp7wH16bXE+fPl1z585VWVmZHnvsMX344YeyWhs32qurqzVnzhxJUlpamq666iqzQoUPqK2364Mdx7VoTW6bej9q6+3adbxUu46XGtajQoM0qEeMhvSI0eCeDf83Wt2jw2hLOAOb3aGf/m2rNuQWGda/O7yH5mWew///AtCDlw3U/vwyLf/6uHPts70FemrFbv3q6uGd+rV2HivR+hzj9x7HbwEA0PkyUuP1f1uOOK8DaaiZR5PrXbt2qbS0MTk5cqTx/8lZWVk6ceKE8zolJUUpKSnO66SkJM2dO1ePPPKIPvnkE2VmZmrOnDlKS0vTrl279Nhjj2n37tNHuDz33HMKDWX3Ae4Kymq0dP0hvbX+oArKajr8fhW1Nm09XOz2l0R8ZMjpHe6mSXePaMVH8n0pnT5eb+6ynVq584RhfVxaghbckuGRXUp4P4vFomdvOk+Hiyq17UiJc/31/+ZoUHJ0p7YJLHLZtZ6Y3k1De8Z22vsDAIDTmpsY7nA4AmIjxeJoeqh0J7v44ov1+eeft+neOXPmaO7cuW7rDz74oF588cVmn7FarZo/f74effTRjoTZrFOnTikxMVHS6fOwExKYXuxLth0u1qI1ufqPa+m3i37dInX7hH6KCgvW3hNl2pdXpn155Sos73giLkk9YsM0uEeMIfEelBytqDCvLRrxiD+u3q9nP9xnWBuUHK1/3XeB4iJDTIoK3iKvtFqZf/xKJ0ob+/CDrRa9ddd4TUjv1uH3P1leo4m/W63aJpPp/3L7GH2XKeEAAHS6eptd58xdpeq6xn93//vzS5SSEGliVM3r7JzP63/CX7BggaZOnaqXXnpJGzZsUFFRkZKTk3XRRRfpoYce0vjx480OEV6iPaXf3xncXTMv6KeLByc320N9srxG+/LKtS+vTHvzyrTvxOn/W1bdvmmHeaU1yiut0Zf7Cw3rfRMjNKRHTGOJeY8YDUiOUlhwULve3xf8Y+Nht8S6Z2y4Ft9xPok1JDVOEL/plTXOf4jr7Q796K3Neu/+SerXLeoM79C6tzccMiTWfRMjdNkwptIDAOAJwUFWjewTb2gF3Hq42CuT687m0Z1rX8bOte/IL6vW0vWH9Nf1h1ot/Y4KDdINY1I0fWKaBia3/0x0h8OhvNIaQ7K979uPpr+ZO1tBVovSukU6h6g1fKR1i1Swjx4V9MnuPN3z5mbZ7I1/zcSGB+tfP7pAg3vEmBgZvNGK7cf1479uMawNTI7WOz++QLHhZ/eLmDqbXRfOX6280sa/Gx6fOkx3XZTeoVgBAEDLnlqxW3/5ovFI5bsu7K/HO3meSmcIuJ1roCUNpd/Lvz6mOlvLvyPq1y1SMyam6caxKWf9A7p0uj+0Z1y4esaFa/Lg7s51u92hw6cqtfdEmfbnlzvLy78pKG81Llc2u0PfFFTom4IKrdje2JscGmTVgORoDekR3aSf2/snl285dEr3L91iSKxDg616bcY4Ems066pze+nhKwbr+Y8aKx0O5JfrgaVZen3G2LP6JdMHO04YEuvI0CDdNLZvp8QLAACa59p3nRUgQ81IruFTGkq/F36Ve8bJg98Z3F2zLkjT5MHdPZqEWq0W9esWpX7dovTdEY3rdTa7cgsrvt3hLte+b5Pu3JMVsrejXqTWZtfu46Xa7TK5PNI5uTz62+PCTife3WPMn1x+IL9cdyzaaNjRt1qkBT/I0Pn9E02MDN7ugUsHan9+uf697Zhz7fN9BXpqxR79+pr2/8Z74Vc5husbRqcoLoJ2BAAAPCkjNd5wveNoiepsdoX4aDVmW5Fcwye0p/T7xjEpmn5BmgZ0b3/pd2cKCbJq0Ld91U1V19l0IN/Yz70vr1xHi6va9f6VtTZtO1ysbS6/ZIiLCHEeETakSXl5V53nm1darRlvbFBxZZ1hfV7mObryHAZIoXUWi0XP3DhSh05WGCaIv/FVjgb1iNYt7ZggvvVwsdv8BY7fAgDA83rFRahHbJizeqym3q49x8t0bkqcyZF5Fsk1vNrWw8Va9FWO/rP9eKsl1mndIjXjgjTdOCZFMR0o/e4K4SFBOqdPnM7pY/zLpay6Tvvzy136ucvbfYRYSVWdNuQWuZ0nnRwTpiE9YzQoOUZDep7e7R7UI0bRnTi5vLS6TjPe2OD2i4IHLx2oH07o12lfB/4tPCRIr04fq2kuE8R/9d4OpXWL0sQBbZsg7rprPXlwd9N/6QYAQKAY1Tdeq3bmSZKSosNUUF4tyb+TawaatYCBZuaprbdrxfbTU7/PVPo9eXB3zeyC0m8zFVXUOgenNfRz7z1RptJ2Ti5vSUpChPOYsMHflpgP6B6t8JD2TS6vqbdpxhsbtC7bmNTfPLavfnfDuaaXqsP37DhaohtfXmNoL4iPDNH7bZggnldarUm/W636Jj0Yi2aN08VDkj0WLwAAaLTmQKGKKms1qm+8+sRHeOXPgp2d85Fct4Dkuuv5Yum3WRwOh/LLagzJdsNOd1WdrcPvb7VIaUlRzrLyId8m3mndopodKmW3O/TA21n6z/bjhvXLhibrldvH+Oy0c5jvg+3H9aOzmCD+/Id7tWD1Aed1elKUPn54st/+Eg4AALQfyXUXIbnuOlmHTmnxmtwzln73T4rS9In9fKL02yx2u0NHi6u0t0lp+d4TZcouqFCtrePHhYUGWZXePcp5XFhD8v3GVzlatCbXcG9GaryW3jVBEaH+d3Y3utaLn+zXcx8Zz0qfPLh7ixPEq+tsmvS71TpZUetcm5c5QtMnpnk6VAAA4EM4igt+oaH0e+GaXLeBXK4mD+6umZPSNHmQ/5Z+dxar1aK+iZHqmxipy4f3cK7X2ew6eLJCe0+UN5aY55Upt7D9k8v3nCjTnhNlrd6X3j1Kb8wYR2KNTvGTbyeIL2vjBPHlXx83JNYxYcG6YXRKl8QKAAACF8k1ulR+abX++m3pd2F566XfN43tq+kT+yk9QEu/O1NIkFUDk2M0MDlGU9XLuV5dZ9M3Bd9OLj9Rrv3fJt1HTrVvcnlTyTFhWnLH+V02nRz+z2Kx6OkbR+pgUaXhl3HNTRB3OBxug8y+P66vojpxcB8AAEBz+GkDXSLr0CktWpOrFW0o/Z4xsZ9uoPS7S4SHBGlE7ziN6G2c3FheU6/9zrLyxt3u/DNMLo8JC9aiWecrJSHSk2EjAIWHBOnV28co809f6XhJyxPEN+ae0s5jjWfCWyzSDMrBAQBAFyC5hsfU1Nu+nfp98Iyl3xcPOT31+zuUfnuF6LBgZaQmKCPV2Hdyqunk8rwy7TtRrr15ZSqpqlNyTJj+eOtoDe8da1LU8HfJseF6dfpY3fTyWufgvnq7Qz/662a99+NJSkuK0qI1xl3ry4f1UGo3ftkDAAA8j+QanS6/tFpvrT+kpWco/Y4OCz499ZvSb5+REBWq8endND698Zxhh8Oh0up6RYcFK4hfjMDDzukTpxduPk/3vdU4Qby4sk53Lt6oP9022nmeZoNZF6R1cYQAACBQkVyj0zSUfv/n6+OGs2VdpX879ZvSb/9gsVgUF8H/jug6V57TS49cMdgwQfybggrd8NIa2Zr83TOkR4yzXBwAAMDTSK7RIc7S769yte1ISav3UvoNoLM0N0G8otZ4xvusSWmyWPi7BgAAdA2Sa5yVxtLvgyosr23xPkq/AXhCSxPEG8RHhujajD5dHxgAAAhYJNdoM4fDoazDxVr01emp32cq/Z5xQZpuGJOiaI7AAeABLU0Ql6Rbzk9VeAjnrAMAgK5D1oMzqqm36T9fH9eiNbn6+gyl35cM6a6Zk/rrooFJlH4D8LjmJogHWy26fUI/kyMDAACBhuQaLcorrdZf1x3U0g2Hzlj6fdPYFE2fmKb+SVFdGCEAnJ4g/tqMsfr5/32tylqbfn31cPWOjzA7LAAAEGBIrmHgcDi05VCxFq9pQ+l39yjNmEjpNwDzTRqYpC9mX0LFDAAAMA0ZESS1r/T70qHJmnFBGqXfALwKfx8BAAAzkVwHuLaWfseEBetGSr8BAAAAoFkk1wGoofR70ZpcfdCG0u+ZF6Tp+tGUfgMAAABAS8iWAkhNvU3Lt50u/d5+tOXSb4tFumRIsmZekKYLKf0GAAAAgDMiuQ4AeaXVemvdQb3dhtLvm8b21fSJ/ZRG6TcAAAAAtBnJtZ86Xfp9SovWHDxj6feAb0u/r6P0GwAAAADOCpmUn2lP6felQ5I1c9Lp0m+LhdJvAAAAADhbJNd+4kRJtf66/qCWrj+kkxWtl35/f9zp0u9+3Sj9BgAAAIDOQHLtwxpKvxd+lauVO060qfT7+tEpiqL0GwAAAAA6FVmWD6qz2fX+1mNaTOk3AAAAAHgFkmsfZHc49LsP9qiwvKbZ12PCg/X9sZR+AwAAAEBXIbn2QWHBQbp1fKoWfLLfsD6ge5RmTuqv6zP6UPoNAAAAAF2IDMxH/XB8ql769IBsDocuG5qsGRdQ+g0AAAAAZiG59lHJseF65qaRGp2aQOk3AAAAAJiM5NqHXZeRYnYIAAAAAABJVrMDAAAAAADA15FcAwAAAADQQSTXAAAAAAB0EMk1AAAAAAAdRHINAAAAAEAHkVwDAAAAANBBJNcAAAAAAHQQyTUAAAAAAB1Ecg0AAAAAQAeRXAMAAAAA0EEk1wAAAAAAdBDJNQAAAAAAHURyDQAAAABAB5FcAwAAAADQQcFmB+Ct7Ha78/Pi4mLzAgEAAAAAdLqmeV7T/O9skVy3oLS01Pl5enq6iZEAAAAAADyptLRU3bp169B7UBYOAAAAAEAHWRwOh8PsILxRfX29Dh8+LEmKjY2V1epdv4coLi527qhnZ2crPj7e3IAQsPhehDfg+xDegO9DeAu+F+ENfOH70G63OyuW+/btq+DgjhV2UxbeguDgYPXv39/sMNokPj5eCQkJZocB8L0Ir8D3IbwB34fwFnwvwht48/dhR0vBm/Ku7VgAAAAAAHwQyTUAAAAAAB1Ecg0AAAAAQAeRXAMAAAAA0EEk1wAAAAAAdBDJNQAAAAAAHcQ51wAAAAAAdBA71wAAAAAAdBDJNQAAAAAAHURyDQAAAABAB5FcAwAAAADQQSTXAAAAAAB0EMk1AAAAAAAdRHINAAAAAEAHkVwDAAAAANBBJNcAAAAAAHQQybWPWrVqlTIzM9W7d2+Fh4crNTVVt912m9avX292aPBj9fX1+uijj/Too4/qwgsvVPfu3RUSEqL4+HiNGTNGjz32mA4ePGh2mAhgBQUFSkpKksVikcVi0cyZM80OCQHmq6++0l133aVBgwYpKipKcXFxGjp0qH7wgx/olVdeMTs8+Lnjx4/rV7/6lcaNG6f4+HiFhIQoMTFREydO1Lx581RQUGB2iPBhDodDu3fv1uLFi3X//fdr3LhxCgsLc/6bm5ub2+b38tdcxuJwOBxmB4H2eeihh7RgwYJmXwsKCtLvfvc7Pfroo10cFQLByJEjtX379lbviYyM1EsvvaQZM2Z0UVRAo9tuu01Lly51Xs+YMUOLFi0yLyAEjJqaGt17771avHhxq/fxYxc8ZdWqVbr55ptVUlLS4j2JiYl699139Z3vfKcLI4O/yM3NVf/+/Vt8PScnR2lpaWd8H3/OZdi59jHPP/+885tx6tSp2rBhgwoKCvTZZ59pwoQJstlsmj17tt555x2TI4U/Ki0tldVq1RVXXKG//OUv2rFjh06ePKns7Gz96U9/Urdu3VRZWalZs2ZpxYoVZoeLALNy5UotXbpU6enpZoeCAGOz2XT99dc7E+tbb71Vq1ev1rFjx1RQUKD169dr7ty5GjBggMmRwl8dOnRIN9xwg0pKShQdHa3//d//1fbt21VQUKAtW7bo//2//6fg4GAVFRXp2muvZQcbHdanTx9dd911uuiii9r1nN/nMg74jIKCAkdMTIxDkuOSSy5x2Gw2w+uVlZWOIUOGOCQ50tLSHDU1NSZFCn81e/Zsx969e1t8fffu3Y6oqCiHJMfw4cO7MDIEuvLyckdaWppDkmPlypUOSQ5JjhkzZpgdGgLA008/7fyee+2118wOBwHol7/8pfN78B//+Eez9/zud79z3vP73/++iyOEPygtLXW89957juPHjzvX5syZ4/y+ysnJafX5QMhl2Ln2IUuWLFFZWZkkaf78+bJajf/zRUREaN68eZJOl22wc4jO9vTTT2vw4MEtvj506FDNmjVLkrRr1y76r9FlHn/8ceXm5urmm2/WlClTzA4HAaS4uFhz586VJN1yyy268847zQ0IAWnr1q2STv8seP311zd7z+233+78fM+ePV0RFvxMTEyMMjMz1bNnz7N6PhByGZJrH7Js2TJJUv/+/TVu3Lhm78nMzFR4eLgk6f333++y2IAG55xzjvPzY8eOmRgJAsXGjRv14osvKi4uTi+88ILZ4SDAvPXWW6qsrJQkzZ492+RoEKjCwsIkSVarVRaLpdl7goKCnJ8nJyd3SVxAU4GQy5Bc+5AtW7ZIkiZOnNjiPWFhYcrIyJAkbd68uUviAprKy8tzfh4XF2diJAgE9fX1uvvuu2Wz2fTUU0+pV69eZoeEANOws9K3b1/nv7/S6T5su91uVlgIMGPGjJEkVVRU6IMPPmj2nn/84x/Oz7/3ve91SVxAU4GQy5Bc+4ijR486yyjONKyn4fV9+/YxlRRdrmEARWJiooYMGWJyNPB3zzzzjLZt26bx48frvvvuMzscBKCNGzdKksaNG6e6ujo988wzGjFihMLDwxUSEqJ+/frpnnvu0f79+02OFP7s/vvvd+5G33777frjH/+oQ4cOqbq6Wt98843mzZvnrKx45JFHNGHCBDPDRQAKlFyG5NpHFBYWOj/v0aNHq/c2/OVaU1Oj8vJyj8YFNLVw4UJt27ZNknTvvfcaStCAznbgwAHNmzdPQUFBevnll916twBPq6qqcv77nJiYqIsuukg/+9nPtGvXLtXX18tut+vQoUN69dVXNXLkSP3rX/8yOWL4q7i4OH355ZcaOXKkTp06pQceeED9+vVTRESEBg4cqDlz5mj06NF6++239eyzz5odLgJQoOQy/CTiIyoqKpyfN/QhtCQiIsL5ua99Q8J37dq1Sw8++KAkqV+/fvr5z39uckTwd/fcc4+qq6v105/+VKNGjTI7HASgpucJL1myROvXr9fFF1+stWvXqqqqSgUFBXr11VcVHx+v6upq/fCHP3QOngI62+DBg/Xuu+/qsssua/b1Y8eOKTs7W/X19V0cGRA4uQzJtY9oWhLR0qAKwCz5+fmaNm2aysvLFRoaqqVLl9JvDY96/fXX9emnnyo1NVVPPPGE2eEgQDXtqa6trdX48eP14YcfasKECQoPD1dSUpLuuusurVixQlarVTU1NZozZ46JEcOfPf300xo0aJC2bNmiP/zhD9q/f7+Kioq0c+dOPfHEEzpx4oR++ctf6nvf+55zCB/QVQIllyG59hHR0dHOz6uqqlq9t+nrTZ8DPKGkpERTpkzRN998o6CgIC1dulQXXHCB2WHBj+Xl5Tl7B1988UVFRUWZHBECleu/sXPmzFFISIjbfRMnTtTUqVMlSatWrVJ1dXWXxIfA8fzzz+vnP/+5QkND9cUXX+jBBx/UwIEDlZCQoOHDh+vXv/61c/Lyxx9/rCeffNLkiBFoAiWXIbn2EUlJSc7Pm05jbk5+fr6k09P2fO0bEr6loqJCV111lbZu3SqLxaJXX31VN9xwg9lhwc/94he/0KlTp3Tttddq2rRpZoeDABYTE+M8AkmSLrroohbvbXitpqZGBw4c8HhsCBx1dXX6zW9+I0m69dZbDUdiNjVlyhRdfPHFkqTXXnvN5wZFwbcFSi5Dcu0j+vTpo5iYGElSdnZ2q/fm5ORIOt17489lFzBXdXW1pk2bpjVr1kiSFixYoFmzZpkcFQJBw9+B7733niwWS7MfDRYvXuxcW7RokUkRw19ZLBYNHTpUkhQcHNzqD4EJCQnOz0tLSz0eGwLHzp07derUKUnS2LFjW7234WzhwsJCFRQUeDw2oEGg5DIk1z5k9OjRkqR169a1eE9NTY3zDLmGMw+BzlZXV6cbbrhBq1evliT99re/1U9+8hOTowKArteQrNTX17eaNJ88edL5eXx8vKfDQgBpWkJ7pt3oQOl7hXcKhFyG5NqHNJQ/Zmdna9OmTc3es2zZMmcvV2ZmZpfFhsBhs9l06623asWKFZKkxx9/XI899pjJUSGQvPbaa8rKymr1o8E111zjXKOEHJ5w3XXXOT//7LPPWryv4bWoqCgNGjTIw1EhkPTu3dv5eUs/HzZoOJc9Ojpa3bp182hcgKuAyGUc8BkFBQWOmJgYhyTHZZdd5rDZbIbXq6qqHMOGDXNIcqSlpTlqampMihT+ym63O2bMmOGQ5JDk+OlPf2p2SECzGr5HZ8yYYXYo8HN1dXWOoUOHOiQ5MjIyHFVVVW73rF692mGxWPiehMcMGjTIIckRHh7u2L59e7P3rFy50vl34/XXX9/FEcJfzZkzx/l9lZOT0+q9gZDLsHPtQ5KSkjR37lxJ0ieffKLMzExt2rRJhYWF+uKLL3TppZdq9+7dkqTnnntOoaGhJkYLf/Tggw9q8eLFkqTbbrtNTz75pMrLy1v84CxNAP4uODhYCxYsUFBQkLKysnTJJZfo448/1smTJ3Xw4EH94Q9/0LRp0+RwOJSYmMjRcfCIhp8Pq6urNXnyZL344ov65ptvVFxcrN27d+vJJ5/UtddeK0kKDQ3Vr371K/OChU/btWuX1q1b5/w4cuSI87WsrKwWX5MCI5exOByMCvQ1Dz74oF588cVmX7NarZo/f74effTRLo4KgaC9/VkLFy7UzJkzPRMM0IqG79UZM2YwyAxdYuHChfrRj36kmpqaZl/v0aOH3nvvPU2YMKGLI0OgePrpp/U///M/stlsLd4TExOjRYsW6frrr+/CyOBPLr74Yn3++edtunfOnDnOZLopf85l2Ln2QQsWLNDKlSs1bdo09ezZU6GhoUpJSdEtt9yiNWvW+Ow3IwAAvmrWrFnKysrSfffdp/T0dIWHhysmJkajR4/W3LlztWvXLhJreNTPfvYzbdu2TQ888IBGjhypmJgYBQUFKT4+XuPGjdMvf/lL7dq1i8QapvPnXIadawAAAAAAOoidawAAAAAAOojkGgAAAACADiK5BgAAAACgg0iuAQAAAADoIJJrAAAAAAA6iOQaAAAAAIAOIrkGAAAAAKCDSK4BAAAAAOggkmsAAAAAADqI5BoAAAAAgA4iuQYAAAAAoINIrgEAAAAA6CCSawAAAAAAOojkGgAAAACADiK5BgAAAACgg0iuAQAAAADoIJJrAAAAAAA6iOQaAAAAAIAOIrkGAAAAAKCDSK4BAAAAAOggkmsAAAAAADqI5BoAAAAAgA4iuQYAAAAAoINIrgEAAAAA6KD/D28LoH1zbpmWAAAAAElFTkSuQmCC\",\n \"text/plain\": [\n@@ -1458,35 +1458,35 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 24,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:13.410779Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:13.410282Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:13.632138Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:13.631532Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:41.116302Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:41.115828Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:42.167169Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:42.159820Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import numpy as np\\n\",\n \"import pandas as pd\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 25,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:13.634834Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:13.634213Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:13.643186Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:13.642669Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:42.184618Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:42.183903Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:42.221331Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:42.219445Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/html\": [\n \"\\n\",\n@@ -1622,34 +1622,34 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 26,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:13.645285Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:13.644797Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:13.647607Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:13.647084Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:42.228195Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:42.227786Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:42.234983Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:42.233551Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"from IPython.display import Markdown\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 27,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:13.649622Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:13.649154Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:13.653131Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:13.652621Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:42.244224Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:42.243820Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:42.254925Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:42.251138Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/markdown\": [\n \"\\n\",\n@@ -1721,18 +1721,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 28,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:13.655252Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:13.654813Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:13.658815Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:13.658296Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:42.268288Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:42.267884Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:42.279784Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:42.278778Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/html\": [\n \"\\n\",\n@@ -1743,15 +1743,15 @@\n \" frameborder=\\\"0\\\"\\n\",\n \" allowfullscreen\\n\",\n \" \\n\",\n \" >\\n\",\n \" \"\n ],\n \"text/plain\": [\n- \"\"\n+ \"\"\n ]\n },\n \"execution_count\": 28,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n@@ -1838,18 +1838,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 29,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:13.660960Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:13.660527Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:13.664458Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:13.663946Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:42.288464Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:42.288014Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:42.306646Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:42.304745Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"application/javascript\": [\n \"\\n\",\n@@ -1884,18 +1884,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 30,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:13.666499Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:13.666113Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:13.669549Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:13.669036Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:42.316490Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:42.316087Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:42.326357Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:42.321503Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/x-haskell\": [\n \"main = putStrLn \\\"Hello, world!\\\"\"\n@@ -1925,18 +1925,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 31,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:13.671522Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:13.671277Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:13.675100Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:13.674573Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:42.336106Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:42.335701Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:42.348972Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:42.347222Z\"\n }\n },\n \"outputs\": [\n {\n \"name\": \"stdout\",\n \"output_type\": \"stream\",\n \"text\": [\n@@ -1966,18 +1966,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 32,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:13.676996Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:13.676763Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:13.681898Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:13.681360Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:42.356268Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:42.355873Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:42.370906Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:42.365905Z\"\n }\n },\n \"outputs\": [\n {\n \"name\": \"stdout\",\n \"output_type\": \"stream\",\n \"text\": [\n@@ -2024,18 +2024,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 33,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:13.683779Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:13.683545Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:13.688307Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:13.687772Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:42.380666Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:42.380268Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:42.401011Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:42.397987Z\"\n }\n },\n \"outputs\": [\n {\n \"name\": \"stdout\",\n \"output_type\": \"stream\",\n \"text\": [\n@@ -2070,18 +2070,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 34,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:13.690193Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:13.689956Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:13.694474Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:13.693949Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:42.408251Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:42.407850Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:42.417670Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:42.416134Z\"\n }\n },\n \"outputs\": [\n {\n \"name\": \"stdout\",\n \"output_type\": \"stream\",\n \"text\": [\n"}]}]}, {"source1": "./usr/share/doc/python-nbsphinx/html/configuring-kernels.ipynb", "source2": "./usr/share/doc/python-nbsphinx/html/configuring-kernels.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.999609375%", "Differences: {\"'cells'\": \"{5: {'metadata': {'execution': {'iopub.execute_input': '2024-11-29T17:43:59.620287Z', \"", " \"'iopub.status.busy': '2024-11-29T17:43:59.619809Z', 'iopub.status.idle': \"", " \"'2024-11-29T17:43:59.636681Z', 'shell.execute_reply': \"", " \"'2024-11-29T17:43:59.635609Z'}}}}\"}"], "unified_diff": "@@ -63,18 +63,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:17.906670Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:17.906216Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:17.912625Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:17.912121Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:43:59.620287Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:43:59.619809Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:43:59.636681Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:43:59.635609Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"'Hello from conf.py!'\"\n"}]}, {"source1": "./usr/share/doc/python-nbsphinx/html/custom-css.ipynb", "source2": "./usr/share/doc/python-nbsphinx/html/custom-css.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9994791666666667%", "Differences: {\"'cells'\": \"{5: {'metadata': {'execution': {'iopub.execute_input': '2024-11-29T17:44:03.163577Z', \"", " \"'iopub.status.busy': '2024-11-29T17:44:03.163054Z', 'iopub.status.idle': \"", " \"'2024-11-29T17:44:03.197025Z', 'shell.execute_reply': \"", " \"'2024-11-29T17:44:03.195076Z'}}}}\"}"], "unified_diff": "@@ -118,18 +118,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:19.375034Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:19.374439Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:19.381475Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:19.380894Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:03.163577Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:03.163054Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:03.197025Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:03.195076Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"42\"\n"}]}, {"source1": "./usr/share/doc/python-nbsphinx/html/gallery/cell-metadata.html", "source2": "./usr/share/doc/python-nbsphinx/html/gallery/cell-metadata.html", "unified_diff": "@@ -117,15 +117,15 @@\n \n \n [5]:\n \n \n \n \n-<matplotlib.image.AxesImage at 0xed301240>\n+<matplotlib.image.AxesImage at 0xed2991e0>\n \n \n \n \n \n \n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -24,15 +24,15 @@\n z = (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)\n [4]:\n zmax = np.max(np.abs(z))\n [5]:\n fig, ax = plt.subplots(figsize=[5, 3.5])\n ax.imshow(z, vmin=-zmax, vmax=zmax)\n [5]:\n-\n+\n [../_images/gallery_cell-metadata_7_1.svg]\n *\b**\b**\b**\b**\b**\b* _\bn\bn_\bb\bb_\bs\bs_\bp\bp_\bh\bh_\bi\bi_\bn\bn_\bx\bx *\b**\b**\b**\b**\b**\b*\n *\b**\b**\b**\b* N\bNa\bav\bvi\big\bga\bat\bti\bio\bon\bn *\b**\b**\b**\b*\n * _\bI_\bn_\bs_\bt_\ba_\bl_\bl_\ba_\bt_\bi_\bo_\bn\n * _\bU_\bs_\ba_\bg_\be\n * _\bC_\bo_\bn_\bf_\bi_\bg_\bu_\br_\ba_\bt_\bi_\bo_\bn\n * _\bM_\ba_\br_\bk_\bd_\bo_\bw_\bn_\b _\bC_\be_\bl_\bl_\bs\n"}]}, {"source1": "./usr/share/doc/python-nbsphinx/html/gallery/cell-metadata.ipynb.gz", "source2": "./usr/share/doc/python-nbsphinx/html/gallery/cell-metadata.ipynb.gz", "unified_diff": null, "details": [{"source1": "cell-metadata.ipynb", "source2": "cell-metadata.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9981915020489239%", "Differences: {\"'cells'\": \"{2: {'metadata': {'execution': {'iopub.execute_input': '2024-11-29T17:44:09.940123Z', \"", " \"'iopub.status.busy': '2024-11-29T17:44:09.939655Z', 'iopub.status.idle': \"", " \"'2024-11-29T17:44:11.343306Z', 'shell.execute_reply': \"", " \"'2024-11-29T17:44:11.335870Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2024-11-29T17:44:11.355129Z', 'iopub.status.busy': \"", " \"'2024-11-29T17:44:11.354139Z', 'iopub.status.idle': '2024-11-29T17:44:1 [\u2026]"], "unified_diff": "@@ -35,35 +35,35 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:21.306186Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:21.305759Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:21.735600Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:21.734801Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:09.940123Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:09.939655Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:11.343306Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:11.335870Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot as plt\\n\",\n \"import numpy as np\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:21.738283Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:21.737768Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:21.741498Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:21.740764Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:11.355129Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:11.354139Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:11.360347Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:11.359318Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"plt.rcParams['image.cmap'] = 'coolwarm'\\n\",\n \"plt.rcParams['image.origin'] = 'lower'\"\n ]\n@@ -77,61 +77,61 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:21.743647Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:21.743224Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:21.747924Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:21.747174Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:11.366038Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:11.365614Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:11.373285Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:11.372163Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"x, y = np.meshgrid(np.arange(-3, 3, 0.1), np.arange(-2, 2, 0.1))\\n\",\n \"z = (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:21.750045Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:21.749630Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:21.753112Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:21.752398Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:11.379259Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:11.378756Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:11.387991Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:11.386787Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"zmax = np.max(np.abs(z))\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 5,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:21.755243Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:21.754682Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:22.157964Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:22.157199Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:11.396130Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:11.395682Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:13.539849Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:13.538755Z\"\n },\n \"nbsphinx-thumbnail\": {\n \"tooltip\": \"This tooltip message was defined in cell metadata\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n- \"\"\n+ \"\"\n ]\n },\n \"execution_count\": 5,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n },\n {\n@@ -173,28 +173,28 @@\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n+ \"iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAYg0lEQVR4nO2dyZLkyJEFDVtkZnXP8P//jfyC4ZC9sLqqMgPAHLKPriZiIailbVSPjsWxhQVEoPJs+vvf/3FGA86Y/jL7r+7rPOtz0xxnzKX1j+RY6bh4bhgv7ueRfV3JNI1/MlMUx2E/cxzluRfYZoLxeaL1uRxUz4/3w+dXZTrHc5/T138OfkTGv24REfnLYUEXEWmCBV1EpAkWdBGRJljQRUSasH7vA6jwXU2TK+cumhi57VH7T67aLNmxHmTMwDbV9fdk7q9tCpFNEsFmBYkVM1ggZLNk54YGDGyywH5OOIfssn5tm4Wu6yNcua+/kjHjG7qISBMs6CIiTbCgi4g0wYIuItIEC7qISBN+SMvlEaPka1srV+ap8Pr1/9errJVq/kpExHGOj5fGyVrBc4D9RGQmzUUkkgQdFWazQG7KDOe9wPrZcZGBQoYGXfOqyZJRNU2unLtK9pxXz+N7WjG+oYuINMGCLiLSBAu6iEgTLOgiIk2woIuINMGCLiLShO+qLX6LgKwr257xHLW2bkTW7g3nvijoixTBR7RF0hOv0hyz47pKZ8zedA5qQQd620LqIOmJ2eRwSart4a58k6MQLjym87oWdFXOaXzmjyiTqH5+x7Z4vqGLiDTBgi4i0gQLuohIEyzoIiJNsKCLiDThm1guV9ksDxko5TCqB2yPB9q3Vee4aptLw7mK29B41Yp5nxvGj4usn8R6mMBWoHCuE/ZFP74sDIoCvfA+FR+pzPZAYwasFbJZvoX9gjbLuY/Xz9o8Fs2Y72m/+IYuItIEC7qISBMs6CIiTbCgi4g0wYIuItKESy2Xr22zZNbIVdbK/kCmybdoZ1flsnuRXXMQItCkufC8q7bOUZ6b15+L+SjkjexoQyR2D5g0C25RI7NcZjBEquPfIsuFzCK2gZJ32+rxwr6q9ktE3YDxDV1EpAkWdBGRJljQRUSaYEEXEWmCBV1EpAlly+XSrkEXdhM64Ds/5Y1UO/RkuSKPGCJXQfkh3wL6AF/tnkNXKc8VgXHYZIYN6vYLQ7ICxct8i7cpNHKgW9IcYzMlImI57+Px4228r2LGC/tAEdVQGspfOdBASUwT+n2TGUPnV7RfIur5L76hi4g0wYIuItIEC7qISBMs6CIiTbCgi4g0AS2XH9FmIZMlgjNYDvjPImsFxzPD5ivbLLntQV+7a3YD7j+xaOhtgK75jpYLXfPkuOgZmWlf1G3nuntH12qBcVo/u0cL2SlFa2Wh8WNssrwvG9sstM0M49VORhF104QskGkCG27m2nLANlWbpbx+1PNffEMXEWmCBV1EpAkWdBGRJljQRUSaYEEXEWmCBV1EpAmXtqCrUtUTSU183wZUubO2r/2o6Yzvc48hLRN1NdhPpg6SfoadtkgdxGOqtwsjZWwtBp9l13yHa1sNXaP9XAmdBaqGqSo63madQEOkcQjaWo9XnHvdv4z3RdriPtYcKcVsSp41bCUJuiGNUwu/LBiMfhsU9IX1gPTHC/ENXUSkCRZ0EZEmWNBFRJpgQRcRaYIFXUSkCWs1hCtbvx7CVQvCIpMlgm2WO1gr1fUfMS6qUIjTMnNbsBlDiCAACebYJmgvFhzWRPsik6b6fKRhbMXQtWprwfQ5x+O9JigtC+ei+7ROY6NkO8fWyrZ/Ho/fx+MRESssm/fxHPMxfm4nGM9Aa6VouUzzNh4/Wfjb4TGc6LdXbMGIoV0R5bZ1vqGLiDTBgi4i0gQLuohIEyzoIiJNsKCLiDTh2hZ0RVuBTAXOX2HrgeyU+zE+xbeDLJfxOdD+I+ot6ODjeKxzPTdlLbaUo2yPbRqbCusJeRyRZHicYDdkX/MHUHuxCG4LxuPUFm/8fOTZPWBWFH8zZD1Q27gIvn90n277p+H49jYeX+7jvJaIiPXtj+H4fB8/O1MxyyWFrJVlbK2cy/i+Tmv9N1am+JqMLe6CE2b42RERkRZY0EVEmmBBFxFpggVdRKQJFnQRkSaUOxY9lOVyUaeazDSp2ixfIKDhbae5+byPZNmIeYasE/jYnXWw4UyH8df8LcCGOMY5HTfI/IjgbI8Fsj2mov2SWS7VDjbHPH4+drAkaP0IthL2abwNnQfdO8z8iIgFzJH1gCyX+9hmIWNleR2vHxExw7L5DbocoeUCpklyv9FyWeH+bc/j9R8xbAB+PqEOznS/uX7QMprbN3QRkSZY0EVEmmBBFxFpggVdRKQJFnQRkSbULZckt6Tagahqv2RZLlWb5fU+nuMLjN/3zHLBRUPWpWbFLGDFRPD9oK43K3S8uYGx8vTlN5x7+/Kf8dxv431NkPlB1sN0JOcNxgDZECfZLOutNB4RsS9PMAeYNNAlh7rtZJDlMkOuTtVmIZMlImL6Mt7X9AVMqDt0u3rEclmhVD2NbZaZzCk0qpK6RpYSGVWQ9VPuZJQsoy18QxcRaYIFXUSkCRZ0EZEmWNBFRJpgQRcRaYIFXUSkCWs1UCvjshCuB8K53mAZ6Ymf30BbhPE3MLAiInaysOASbmirjed+eqBtFmmL2zFuMXZ7HSuI26dfcY714y/D8enTx/EGr2O97bxDiFOiLU5FbXHexurgso31xPM21uGyZRQIhWokqJT44ERg+7YFlFBSSOfP43tEamJERHweK40naIvnW60F3bQkGieEcE2kRu7cxm/EnCikpCeeENI2Y0u5WmjX+xa1QC/f0EVEmmBBFxFpggVdRKQJFnQRkSZY0EVEmnBpC7qrQriq9ksEt46jsC2yWT5DflRmudAy+nh9QO7TDBukwWAwvsCS9Rif4PY6th7IZImImH793/Ex/T4O9Do+juc4voyP6XygXRiZEvM2ftSnZwh3ennBOebnD+N9vfw0HF/QiqEHoR7aNUFo1wRmEZlIJxlKEXF+Glsuxx9gv5BpAml208rnPd3G12qGOfAXQ8/HI5YLGVUnhLEVQ7sewTd0EZEmWNBFRJpgQRcRaYIFXUSkCRZ0EZEmoOVCrc2ozVy6DYzvME6ZLXuS5XIHy+XtPp6DbJbP46iT+PLKX6KrWS4HnDd95L8f9VydiSyX+/gEqfXY9JFb0O2//Hs4fv/XePz1t3FezP3T+JiO10QtAma4iMsTZLm8jA2U7eexyRIRsfzXz+O5f4IWbR/G9sv8BHNkmSb0UEGmCVku5x9gHMF4RMTxn/GyHX40B2S5nJDRQyZSBN8nyoUhY2yiVnaUqxMR0zpuOTgdYNjQ+Ax2T2JzTVOtbZ1v6CIiTbCgi4g0wYIuItIEC7qISBMs6CIiTcCORVdyWZZLYrm8Qt4JWS6Uv0I2S2a53O/QRabamegGNlBiuZBBRB2LlmNsHsyvY0ODbIiIiP3XsQHz+Z+/jMf//ftw/MtvY8Nmv9ByWZ/HFsPt57E98fS3sR0SEbFB9swGD9VCmSZggUy3sVWRAnNQNyGyWfbfxyZSRMSdLBewlKr3b7mx5YK5MADaLJSf88QdqjAnp2i5zDBOnY8ewTd0EZEmWNBFRJpgQRcRaYIFXUSkCRZ0EZEmXNqxiJZVxynjJbM9qKsPfWh/HX+4ZsvlC/UGirjfwShZIE8C8jjoHI7McoFrSFkP017L/MiyPd4gm4Vslj/+OR7/9MvYcnn7A25SRBw7mEW3sTFw+2lsNzz/N+SQ3NmqoCySaa69H5HbcIIN8eck4/Gy5QJmEYxHRNw/wn36OJ7jSstloy5H1IHoeWwKLZh5A+FOETE9FTNbIEfpkc5E00n7ArutPIOIiPyQWNBFRJpgQRcRaYIFXUSkCRZ0EZEmWNBFRJrALegeCO1CPbHYmo46MmX6HlhN2B6OArVo/O2NtcUdJtlBQ1xXCB8Dy4vO4RHmE7StO7QLgyCqCG4d9/qfscZGeuLH/xmPv/7G2uL5BtriC1zbv43PG9uhUT/AYL1ueR6rkdRabYLx9C0LtMUTdNQTdLwDxvcH7vcd+jneP/P9G3HSjziS1oJwvPjcwnMeiSo6gRKK2iKohkxdZyR8QxcRaYIFXUSkCRZ0EZEmWNBFRJpgQRcRaUI5nOt4wH6hbehbMLasy+YAY6Zuv5CxkoRzgQEzL+P/yx2CpXYwLsj6eV9WvB+oEMHcSeuvA1qukd1AYVtks7z+i8OdqpbLtIFx9DL+Cbx9YkODzu+AxDe6hjgOrekigvsaFvd1QvgYnUMEB5ZRCFc1nGua+Vne4biO6rUlYyUzU2gZ/ZZgvG6/1AO9fEMXEWmCBV1EpAkWdBGRJljQRUSaYEEXEWlC2XL5USnKG3Fm6shoP8kHappjgjnKc1dNlkegL/DJiVP2BrWHo3EyVvY/HrACNtjXp/G+TrCXslwRyn+pjuODk3HRM5WdH29z0XkX958uQzMMA6FK+/lzcl72g+EbuohIEyzoIiJNsKCLiDTBgi4i0gQLuohIE9pYLhOIIBQPMdEGwJz89VXnKM89XdfRBIFOONmJT7BsXsbnR+OUs7J84LnJjJlXmBvGJ8jboXN7Xwb7SrJILqP4TNGTk50fTl087+r1yNbHZTQ3FgR6zpNjpd/GD8hf50hFRCTFgi4i0gQLuohIEyzoIiJNsKCLiDShbLnMSQcN6m1D29C/CXXpyP59yASZ4es1yA2xruMF93vdNKEv7QvYHgt+see5aRl2OinqQKl5AN1zltv4sZq38frbT+P1yWSJiDjgflDHovXDeI4F7vey8dM2r+PzIHNkovVhHLsSJXNgdgnsi+aebxvOTedN48ut9puh5+Z92fi4Zjq/4nhqstAy+i2RcfSALUPd2wjf0EVEmmBBFxFpggVdRKQJFnQRkSZY0EVEmmBBFxFpAnpCqL0l0Dao1uH4eP/zzMdEmTusJ44nofEt09gojArOY4MwKjLG1iU57+ma9lioVCUK3UzKH+hn28v4BO8/3fODG3BAK7EZHoQbqJHLE4ynCh1pmeNxVuVIFU3es0jHg9Vp7nmtnUNExPJ0G45v0L6NdEbcf3bNn0BbhGOaYDxW+JHNfKwnXMMTtqnrideFuvmGLiLSBAu6iEgTLOgiIk2woIuINMGCLiLShHI4V2a/oOVSHF/AflkSy4VMkBtYK2/wsft+oy/O/N+373C8YL88PYFJA3cjs1zoWs0YlQbAl/lp47Amsh7W5/E2ZLnsX+qWy0nX/DY+j+1D7Zgy4wLDuWi8GhSVmEXpstEccP+mbXzN6Z5GRJz32jOFlgsF5mWGzctzaXy+keUCQXBkv0Ris9A41Ipq0FYEGzM07hu6iEgTLOgiIk2woIuINMGCLiLSBAu6iEgTVjJNHvkiS2BLOcghWebx1/Q1ybi4QWjL2wr2C+SpHCfla+DUse/Uam68/gtYLhBXEU8r57Us0/haTdSSjKAWdFmWC4TPrM9jw+D203j8AHtiAksoImJ/g2cHMndWyGyh8cxyQWuFWtBRqA89z4+0Q6O4GLA3pqfxNZ93NlnwilBbPNgXtWbM2t8tz0/j8Q8v4zmex/bL9DQeP7fE7lnGx1W1X47Lsl8Y39BFRJpgQRcRaYIFXUSkCRZ0EZEmWNBFRJrAHYuom9DJxsVEeSDVzBbMcuG5NzBBno7xF/UdxomFTIWIIKGEOi+RzfJ8G5/DbWHzYAMjaD5hGzxYuHeZ5QLZG5zxAh1vXutZLusTPJ9wn6o2S9Zthzo1cWcislnIfuFnjeY46XmmBj0nWB3QCSqCry0eU9G0oi5KEREzZba8kOXyYXxM29iWyS0XyH+pZrxgLktSW8A2pHHf0EVEmmBBFxFpggVdRKQJFnQRkSZY0EVEmnBpx6IZc2HGX84py4XGVxiPiDjA9tihY9EBpzHDF+ctyRWhfUG8TGyQL/PygOWyTtB55hyPo6VEX9oTy4W64ZA5Qp2MjvvYPMg46aIDbLNA55fEcqlnthRzkR7Icpk2ON6duueMmZO5T8qwge5AmOVC1y+xXKbb+BmZwHI5n8fjcRvbMsfKzyBluRwzZLxgDlbNWHkE39BFRJpgQRcRaYIFXUSkCRZ0EZEmWNBFRJpgQRcRaQK2oCMyxYb2RUFfM+iMpCeeoCZmx3UGbzOCQrju0GYuIuKEtnXzPD5vain3vI5Vw9vC4VXb9Dae+6idN7c2q4dzzcVwLmpBl1HdhjTER8K5JlqWtEgc7qe4/vscpEbWgsEoSI+CpSIiJrjfE7WtYzd4PA7t8iISNRI0RNQTQX88Vw7n2mFZtdXcIy3oONALdFvck4iI/KWwoIuINMGCLiLSBAu6iEgTLOgiIk2oh3OBsRLBwU8zGii1cK6sDdxWtFmwLR58id6TcC5ihmu1LdAujyyXmS2XZYIWdGC5TMW2YGhPRBLORZbLy9gweMxy4eMaQcFZZLlkrfdo2QQBZ2izVFvTZdskxzsEgrCmPSkJ9OwkbSnHk8A5JM/aCZZLQKgW2SzHNrZfyGSJ4BCuncK5JrBZHgjnqgZ3+YYuItIEC7qISBMs6CIiTbCgi4g0wYIuItKES1vQ0bIZDJQDvuYvRWMlIgLiVPAvC48V8lcor+V9GUwN+9ogk+YJMlu2eZzXEhGxnuNl01m7htRebAaTJYLzNSjLBTNewHLBlm7BZgy1pmPLpdZGL4JzXtCMoXE4pmlJfpaUBzLDNmX7pWisPMIjlssGeSrUHq5osxxLZrmMr+1VmS1ZlksV39BFRJpgQRcRaYIFXUSkCRZ0EZEmWNBFRJqAn9PJAkk7FlHOCwwvkOVCU2Rzb2SzYNMU6JZ0jne0J5YLscDklL9yA5tlC7ZcZrBZypktmBHygOXyPM7RWKmzDZB1Ddpfx0bQCbki1KEHOxaBkRPBnZoo26ZsvyRmCtlIlM0SYGiciUGEVG0MsNjQ6kgslwOewxOMIFqfbBZaPyJip7khs+W4MsuFzBjYxjd0EZEmWNBFRJpgQRcRaYIFXUSkCRZ0EZEmrFWbJctyQeAjLnU4wm/dWSMXOC4aP+Dr8Q52yJKcNjWYmakrElgu2zQ2N2j9iKwz0fjanmQeUP7Eyl//A/I15udxjkZAzgpxJJbL/ATX5KhlkUwwB3VdiuDzm8h+gWtI42isRETANnifMPsFrm1isqCdUrVZis9gtgxtFugmVM1lichslpqB8kiWix2LRET+n2JBFxFpggVdRKQJFnQRkSZY0EVEmmBBFxFpwqXhXNV9sQJZ1Bnfd3bJ3HMxMCw9pGI41xJjbZFa+L0fVk0FRHWKwolATYyImJ5ITxwfL749QFDUnOh7JwR9ncVQMgrOogCuiCyUDK7H0zisjK5tpopWW7HhOGl6qb5HPzLS8Yr63gPqIOqMsH41aOt9X+PjxRCuos54Jb6hi4g0wYIuItIEC7qISBMs6CIiTbCgi4g0IUkBqlMO+iq2rCP7JYINGPrSfqXFQyzQ5o6sFWqLN0PQVkQWwlUzCaiVF1kVEREBlgu2v6M2cGCanGCTREScd2hBB+Fc01wLiqJ2chFJqBbYLGQDnWQJrWDFRGKtrEX7heyQxDSphnCd8L7IwWD82yOjhI4XrRg0Vvjd9iqb5Ur7heqab+giIk2woIuINMGCLiLSBAu6iEgTLOgiIk0oWy5ZdshVbevIfsm+BlOGBx8TWQ/5sVWYwMpBmwXWJ5Mlg3M0yHKBll0bmBgRMRdtlonsBrJG7m849wRZLlG9VmQ3gHkTkVgulLMCts55A/sFjJWIiAMMGLKUqEUb2k5JpslVLejYGkl+35gXU9sXzp3Vlh/QZiF8QxcRaYIFXUSkCRZ0EZEmWNBFRJpgQRcRacL3zXK5aP0/F9bmKHa2eQSyddBmSbJqqqBhANbDfj5gjcA1nOnLfNFymY5xXktERKDlUryvdKyJ5XLO8LOBDkvnBmYK2Cx0j/JtwHKZ4JjIcsm6BsGPjPNU6H2xZoe8L4NtLjJN0rm/ss1SNVkyfEMXEWmCBV1EpAkWdBGRJljQRUSaYEEXEWnCpZYLcanNchWXZraMj7c8/oB5U824oCyLaQbTZH0gRwashxnGMRuFTJYItm8eyL0ZQiZLRJzUYYm6PlGeCuXnwH7el8G+6H7T+kVj5X2Oa6yVqrGS7usbWC54TN/RZiF8QxcRaYIFXUSkCRZ0EZEmWNBFRJpgQRcRaYIFXUSkCd9EWySqOuMj+/oWfM+5WcOqaWnTWX8USPWaZ2gdR0rcMdYTJxiPSNryXdSCLg1rovMoBl5VA7UiklZzpC0Wg7PyFnTXBGTh/i/UFqv7Sbf5AfVEwjd0EZEmWNBFRJpgQRcRaYIFXUSkCRZ0EZEmfFfLhXjEGql+ib7STKnuq9pqLm+PNZ77CDIxSlPnVgBZDxgUVbNZ0GRJtrmMR9qhkc1yYRu4qs1CwVlov3xH0+QRu+1Kk6Y+9/ezWQjf0EVEmmBBFxFpggVdRKQJFnQRkSZY0EVEmvB/E7p96GHaU8gAAAAASUVORK5CYII=\\\" id=\\\"imagee323d01371\\\" transform=\\\"scale(1 -1) translate(0 -186)\\\" x=\\\"26.925\\\" y=\\\"-7.2\\\" width=\\\"279\\\" height=\\\"186\\\"/>\\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -554,15 +554,15 @@\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \"\\n\"\n ],\n \"text/plain\": [\n \"\"\n"}]}]}, {"source1": "./usr/share/doc/python-nbsphinx/html/gallery/cell-tag.html", "source2": "./usr/share/doc/python-nbsphinx/html/gallery/cell-tag.html", "unified_diff": "@@ -82,15 +82,15 @@\n \n \n [2]:\n \n \n \n \n-[<matplotlib.lines.Line2D at 0xed32cd08>]\n+[<matplotlib.lines.Line2D at 0xed205d08>]\n \n \n \n \n \n \n \n@@ -108,15 +108,15 @@\n \n \n [3]:\n \n \n \n \n-<matplotlib.collections.PathCollection at 0xea73bf90>\n+<matplotlib.collections.PathCollection at 0xea586228>\n \n \n \n \n \n \n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -10,23 +10,23 @@\n import matplotlib.pyplot as plt\n The following cell has the nbsphinx-thumbnail tag, which will take precedence\n over the default of the last image in the notebook:\n [2]:\n fig, ax = plt.subplots(figsize=[6, 3])\n ax.plot([4, 9, 7, 20, 6, 33, 13, 23, 16, 62, 8])\n [2]:\n-[]\n+[]\n [../_images/gallery_cell-tag_4_1.svg]\n Although the next cell has an image, it won\u2019t be used as the thumbnail, due to\n the tag on the one above.\n [3]:\n fig, ax = plt.subplots(figsize=[6, 3])\n ax.scatter(range(10), [0, 8, 9, 1, -8, -10, -3, 7, 10, 4])\n [3]:\n-\n+\n [../_images/gallery_cell-tag_6_1.svg]\n *\b**\b**\b**\b**\b**\b* _\bn\bn_\bb\bb_\bs\bs_\bp\bp_\bh\bh_\bi\bi_\bn\bn_\bx\bx *\b**\b**\b**\b**\b**\b*\n *\b**\b**\b**\b* N\bNa\bav\bvi\big\bga\bat\bti\bio\bon\bn *\b**\b**\b**\b*\n * _\bI_\bn_\bs_\bt_\ba_\bl_\bl_\ba_\bt_\bi_\bo_\bn\n * _\bU_\bs_\ba_\bg_\be\n * _\bC_\bo_\bn_\bf_\bi_\bg_\bu_\br_\ba_\bt_\bi_\bo_\bn\n * _\bM_\ba_\br_\bk_\bd_\bo_\bw_\bn_\b _\bC_\be_\bl_\bl_\bs\n"}]}, {"source1": "./usr/share/doc/python-nbsphinx/html/gallery/cell-tag.ipynb.gz", "source2": "./usr/share/doc/python-nbsphinx/html/gallery/cell-tag.ipynb.gz", "unified_diff": null, "details": [{"source1": "cell-tag.ipynb", "source2": "cell-tag.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9987680190233108%", "Differences: {\"'cells'\": \"{2: {'metadata': {'execution': {'iopub.execute_input': '2024-11-29T17:44:19.224997Z', \"", " \"'iopub.status.busy': '2024-11-29T17:44:19.224459Z', 'iopub.status.idle': \"", " \"'2024-11-29T17:44:20.351132Z', 'shell.execute_reply': \"", " \"'2024-11-29T17:44:20.349835Z'}}}, 4: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2024-11-29T17:44:20.372699Z', 'iopub.status.busy': \"", " \"'2024-11-29T17:44:20.371766Z', 'iopub.status.idle': '2024-11-29T17:44:2 [\u2026]"], "unified_diff": "@@ -27,18 +27,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:23.632569Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:23.632017Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:24.074812Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:24.073974Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:19.224997Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:19.224459Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:20.351132Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:20.349835Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot as plt\"\n ]\n },\n@@ -50,28 +50,28 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:24.077721Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:24.077049Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:24.394884Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:24.394128Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:20.372699Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:20.371766Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:21.062306Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:21.061284Z\"\n },\n \"tags\": [\n \"nbsphinx-thumbnail\"\n ]\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n- \"[]\"\n+ \"[]\"\n ]\n },\n \"execution_count\": 2,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n },\n {\n@@ -117,20 +117,20 @@\n \"z\\n\",\n \"\\\" style=\\\"fill: #ffffff\\\"/>\\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -522,15 +522,15 @@\n \"L 163.888636 160.746207 \\n\",\n \"L 194.325 90.36 \\n\",\n \"L 224.761364 142.497931 \\n\",\n \"L 255.197727 116.428966 \\n\",\n \"L 285.634091 134.677241 \\n\",\n \"L 316.070455 14.76 \\n\",\n \"L 346.506818 155.532414 \\n\",\n- \"\\\" clip-path=\\\"url(#p170225affc)\\\" style=\\\"fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: square\\\"/>\\n\",\n+ \"\\\" clip-path=\\\"url(#p458e0c58d9)\\\" style=\\\"fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: square\\\"/>\\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -547,15 +547,15 @@\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \"\\n\"\n ],\n \"text/plain\": [\n \"\"\n@@ -578,25 +578,25 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:24.397670Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:24.397317Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:24.617470Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:24.616701Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:21.076878Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:21.076139Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:21.635292Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:21.619484Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n- \"\"\n+ \"\"\n ]\n },\n \"execution_count\": 3,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n },\n {\n@@ -640,49 +640,49 @@\n \"L 370.104688 7.2 \\n\",\n \"L 35.304688 7.2 \\n\",\n \"z\\n\",\n \"\\\" style=\\\"fill: #ffffff\\\"/>\\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n- \" \\n\",\n- \" \\n\",\n- \" \\n\",\n- \" \\n\",\n- \" \\n\",\n- \" \\n\",\n- \" \\n\",\n- \" \\n\",\n- \" \\n\",\n- \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n+ \" \\n\",\n+ \" \\n\",\n+ \" \\n\",\n+ \" \\n\",\n+ \" \\n\",\n+ \" \\n\",\n+ \" \\n\",\n+ \" \\n\",\n+ \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -1029,15 +1029,15 @@\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \"\\n\"\n ],\n \"text/plain\": [\n \"\"\n"}]}]}, {"source1": "./usr/share/doc/python-nbsphinx/html/gallery/default-thumbnail.ipynb.gz", "source2": "./usr/share/doc/python-nbsphinx/html/gallery/default-thumbnail.ipynb.gz", "unified_diff": null, "details": [{"source1": "default-thumbnail.ipynb", "source2": "default-thumbnail.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9986543459552496%", "Differences: {\"'cells'\": \"{2: {'metadata': {'execution': {'iopub.execute_input': '2024-11-29T17:44:25.442725Z', \"", " \"'iopub.status.busy': '2024-11-29T17:44:25.442157Z', 'iopub.status.idle': \"", " \"'2024-11-29T17:44:26.528272Z', 'shell.execute_reply': \"", " \"'2024-11-29T17:44:26.526859Z'}}}, 4: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2024-11-29T17:44:26.535021Z', 'iopub.status.busy': \"", " \"'2024-11-29T17:44:26.533937Z', 'iopub.status.idle': '2024-11-29T17:44:2 [\u2026]"], "unified_diff": "@@ -28,18 +28,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:26.148995Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:26.148424Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:26.608498Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:26.607872Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:25.442725Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:25.442157Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:26.528272Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:26.526859Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot as plt\\n\",\n \"import numpy as np\"\n ]\n@@ -52,18 +52,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:26.611296Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:26.610711Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:26.938270Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:26.937704Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:26.535021Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:26.533937Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:27.342829Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:27.324648Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"application/pdf\": \"JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMzgwLjQ4MTI1IDE5Ny4zOTE4NzUgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicrVdNTx03FN37V3jZLjD32/ayKS1SdgTULqIuIkrSoEBFUZq/3+MB3huTlxGVgvTg+eK599yPc+w5Prn69+Pl1ZvTV/nn83S8X13eJ87X+HzIlK/x+ZI5n+LzIVE+onyTtFGxxuJj+Wm15F6Ldm7VYaZ5+VdK79PxT3BzD5+nCY89PiVaWl12wXXVIs+sn1ZW7lT4yeXOw2R9DCQPgT4AOJIoDWkg7LCkZoXVa59Dr6xU9Cl0eoVKfEl3+L1kz7lGqdGCsNM89yJ1wXB5k15dpONfOTPli/epwUfrFPgX1n+mt/kH+zH/kS9ep18u0h0g0XBJ+y+XNxmPH51cXb/77fP5u9v7o5uPt5/v88nf+SydpSWHxOaFqLnoBH5t3kTPWksYq7pI1f8FX74DfCEv7auur6yb4IWkVGIfqL6JnHaAaQ94Fz/QPdde6wxgZd5GEFq8mjRslfoSEPI1CBX0QKLSs9lfmTdBqFgxQyEqmb+oEnYAxBN5VIoKO9mAYKU/Mx6kQJEsrbhYSLfQ+pLxofI9BmgH22upatTqGvbeeHD2Hb3DJi1dq7CgxH1rfMqBAdrFb1rYIqbwO9tG9NqLWod4SNuMfWhudnpHKL53cV1HX1k34jMZ9Au5NwblNiFsTQ0UpHSMqMYEYW/dgqCQ62o9mHrIJoTYguAoZTNDE9cQ9tYtCI6/4JcZkekmhLYFAYdG7ZVIJgh76xaExpBsYom+TV6e5/AuHzg5FcFbZsiYSv7nKv+eb7Pk15mLj4OvMMiMQ0uqIwWM6MNPxX8gN60JjoOe35zm+R6QQJXo3eBzTTdUuKN16jmgx0N7GhJFbBYxiMH4BqsO9aoQEtVuw4i2xELNikE11F4z5BTHFtFo1qiaB/RkBKMmXYYVR3sP9LNnB9jWO9QC1ooQvTtnC0BU5aFUTDouHHA9zNWZFhfAWgJfvWbnYg72DYowGtHYRrw+CtpGFkihkPiYy6gFYNqDC8gdOGMBAiNG8wEIZh1K3ABwmAmDvUg2GyY3yCrn8NJFTXkxx+hXrzY0CM7Q+mHGgppajYznrKLKspgh7H1IRVag1sfjgOHRKQx7YI5gXnKpXCoq0jybFWgb6eKjIgc4QdWjlU7ODxHHXceod8wa0iXjh2xQawyCoTqsgbIH8lnsUTy091gmDKR1G96X4xgcGn6alHiCKBCi3jD//MyOgjMg4lSZ/QjyY3ChznFlORDZeYYpEJmmimpPSQmKR2bOcwlwRhXxIG7reokLaFBdeCqueCtRO4lNrZAAuxBIYmqcoOhANoZs3WZB0RXTj/DroRCcDi5OOo8QrhJgVri2aeAwrVg0lGo1nIoyYCwcxFkPstI4biHsMY09OAGNE/RnIoniclG7oWwTo8btg8gd3FnTD+RFLSESdeIqKF1wC/KYeK24hQYUNXTSAAXYhr7ELBiKYmMrgTzTuX2ezvLdol60u7rPunT41eHg2wC8HXqnuPnWO8XY//IXk/XulZst72fpP3z7uRkKZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iagoxMTMyCmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9MZW5ndGggOTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0xlbmd0aCAzOQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvTGVuZ3RoIDMyMCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UktuBTEI288puECl8E/O86qqi777b2sTvRVMMGDjKS9Z0ku+1CXbpcPkWx/3JbFC3o/tmsxSxfcWsxTPLa9HzxG3LQoEURM9WJkvFSLUz/ToOqhwSp+BVwi3FBu8g0kAg2r4Bx6lMyBQ50DGu2IyUgOCJNhzaXEIiXImiX+kvJ7fJ62kofQ9WZnL35NLpdAdTU7oAcXKxUmgXUn5oJmYSkSSl+t9sUL0hsCSPD5HMcmA7DaJbaIFJucepSXMxBQ6sMcCvGaa1VXoYMIehymMVwuzqB5s8lsTlaQdreMZ2TDeyzBTYqHhsAXU5mJlgu7l4zWvwojtUZNdw3Duls13CNFo/hsWyuBjFZKAR6exEg1pOMCIwJ5eOMVe8xM5DsCIY52aLAxjaCaneo6JwNCes6VhxsceWvXzD1TpfIcKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDI1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUUlyA0EIu88r9IRmp99jlyuH5P/XCMoHBg2LQHRa4qCMnyAsV7zlkatow98zMYLfBYd+K9dtWORAVCBJY1A1oXbxevQe2HGYCcyT1rAMZqwP/Iwp3OjF4TEZZ7fXZdQQ7F2vPZlByaxcxCUTF0zVYSNnDj+ZMi60cz03IOdGWJdhkG5WGjMSjjSFSCGFqpukzgRBEoyuRo02chT7pS+PdIZVjagx7HMtbV/PTThr0OxYrPLklB5dcS4nFy+sHPT1NgMXUWms8kBIwP1uD/VzspPfeEvnzhbT43vNyfLCVGDFm9duQDbV4t+8iOP7jK/n5/n8A19gW4gKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDIxNSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0VRVlJOTCtEZWphVnVTYW5zIC9GaXJzdENoYXIgMCAvTGFzdENoYXIgMjU1Ci9Gb250RGVzY3JpcHRvciAxNCAwIFIgL1N1YnR5cGUgL1R5cGUzIC9OYW1lIC9FUVZSTkwrRGVqYVZ1U2FucwovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdCi9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gNTIgL2ZvdXIgNTQgL3NpeCA1NiAvZWlnaHQgXQo+PgovV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvRVFWUk5MK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL2VpZ2h0IDE3IDAgUiAvZm91ciAxOCAwIFIgL29uZSAyMCAwIFIgL3BlcmlvZCAyMSAwIFIgL3NpeCAyMiAwIFIKL3R3byAyMyAwIFIgL3plcm8gMjQgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMTkgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iagoyNSAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My44LjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My44LjMpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyNDExMjQxNzUyMTRaKQo+PgplbmRvYmoKeHJlZgowIDI2CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDA1NjM5IDAwMDAwIG4gCjAwMDAwMDU0MTcgMDAwMDAgbiAKMDAwMDAwNTQ0OSAwMDAwMCBuIAowMDAwMDA1NTQ4IDAwMDAwIG4gCjAwMDAwMDU1NjkgMDAwMDAgbiAKMDAwMDAwNTU5MCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDMgMDAwMDAgbiAKMDAwMDAwMTU3MSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDE1NTAgMDAwMDAgbiAKMDAwMDAwNDI1MSAwMDAwMCBuIAowMDAwMDA0MDQ0IDAwMDAwIG4gCjAwMDAwMDM2ODAgMDAwMDAgbiAKMDAwMDAwNTMwNCAwMDAwMCBuIAowMDAwMDAxNTkxIDAwMDAwIG4gCjAwMDAwMDIwNTkgMDAwMDAgbiAKMDAwMDAwMjIyNSAwMDAwMCBuIAowMDAwMDAyMzk3IDAwMDAwIG4gCjAwMDAwMDI1NTIgMDAwMDAgbiAKMDAwMDAwMjY3NSAwMDAwMCBuIAowMDAwMDAzMDY4IDAwMDAwIG4gCjAwMDAwMDMzOTIgMDAwMDAgbiAKMDAwMDAwNTY5OSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDI2IC9Sb290IDEgMCBSIC9JbmZvIDI1IDAgUiA+PgpzdGFydHhyZWYKNTg1MAolJUVPRgo=\",\n \"image/svg+xml\": [\n@@ -106,20 +106,20 @@\n \"z\\n\",\n \"\\\" style=\\\"fill: #ffffff\\\"/>\\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n+ \"\\\" clip-path=\\\"url(#pef6b707fc5)\\\" style=\\\"fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: square\\\"/>\\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -540,15 +540,15 @@\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \"\\n\"\n ],\n \"text/plain\": [\n \"\"\n@@ -573,18 +573,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:26.940652Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:26.940063Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:27.357069Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:27.356527Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:27.368445Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:27.367771Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:28.885079Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:28.883798Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"application/pdf\": \"JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMzgwLjQ4MTI1IDE5Ny4zOTE4NzUgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicrVdNTx03FN37V3jZLjD32/ayKS1SdgTULqIuIkrSoEBFUZq/3+MB3huTlxGVgvTg+eK599yPc+w5Prn69+Pl1ZvTV/nn83S8X13eJ87X+HzIlK/x+ZI5n+LzIVE+onyTtFGxxuJj+Wm15F6Ldm7VYaZ5+VdK79PxT3BzD5+nCY89PiVaWl12wXXVIs+sn1ZW7lT4yeXOw2R9DCQPgT4AOJIoDWkg7LCkZoXVa59Dr6xU9Cl0eoVKfEl3+L1kz7lGqdGCsNM89yJ1wXB5k15dpONfOTPli/epwUfrFPgX1n+mt/kH+zH/kS9ep18u0h0g0XBJ+y+XNxmPH51cXb/77fP5u9v7o5uPt5/v88nf+SydpSWHxOaFqLnoBH5t3kTPWksYq7pI1f8FX74DfCEv7auur6yb4IWkVGIfqL6JnHaAaQ94Fz/QPdde6wxgZd5GEFq8mjRslfoSEPI1CBX0QKLSs9lfmTdBqFgxQyEqmb+oEnYAxBN5VIoKO9mAYKU/Mx6kQJEsrbhYSLfQ+pLxofI9BmgH22upatTqGvbeeHD2Hb3DJi1dq7CgxH1rfMqBAdrFb1rYIqbwO9tG9NqLWod4SNuMfWhudnpHKL53cV1HX1k34jMZ9Au5NwblNiFsTQ0UpHSMqMYEYW/dgqCQ62o9mHrIJoTYguAoZTNDE9cQ9tYtCI6/4JcZkekmhLYFAYdG7ZVIJgh76xaExpBsYom+TV6e5/AuHzg5FcFbZsiYSv7nKv+eb7Pk15mLj4OvMMiMQ0uqIwWM6MNPxX8gN60JjoOe35zm+R6QQJXo3eBzTTdUuKN16jmgx0N7GhJFbBYxiMH4BqsO9aoQEtVuw4i2xELNikE11F4z5BTHFtFo1qiaB/RkBKMmXYYVR3sP9LNnB9jWO9QC1ooQvTtnC0BU5aFUTDouHHA9zNWZFhfAWgJfvWbnYg72DYowGtHYRrw+CtpGFkihkPiYy6gFYNqDC8gdOGMBAiNG8wEIZh1K3ABwmAmDvUg2GyY3yCrn8NJFTXkxx+hXrzY0CM7Q+mHGgppajYznrKLKspgh7H1IRVag1sfjgOHRKQx7YI5gXnKpXCoq0jybFWgb6eKjIgc4QdWjlU7ODxHHXceod8wa0iXjh2xQawyCoTqsgbIH8lnsUTy091gmDKR1G96X4xgcGn6alHiCKBCi3jD//MyOgjMg4lSZ/QjyY3ChznFlORDZeYYpEJmmimpPSQmKR2bOcwlwRhXxIG7reokLaFBdeCqueCtRO4lNrZAAuxBIYmqcoOhANoZs3WZB0RXTj/DroRCcDi5OOo8QrhJgVri2aeAwrVg0lGo1nIoyYCwcxFkPstI4biHsMY09OAGNE/RnIoniclG7oWwTo8btg8gd3FnTD+RFLSESdeIqKF1wC/KYeK24hQYUNXTSAAXYhr7ELBiKYmMrgTzTuX2ezvLdol60u7rPunT41eHg2wC8HXqnuPnWO8XY//IXk/XulZst72fpP3z7uRkKZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iagoxMTMyCmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9MZW5ndGggOTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0xlbmd0aCAzOQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrgysNAOG0DZgKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvTGVuZ3RoIDMyMCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UktuBTEI288puECl8E/O86qqi777b2sTvRVMMGDjKS9Z0ku+1CXbpcPkWx/3JbFC3o/tmsxSxfcWsxTPLa9HzxG3LQoEURM9WJkvFSLUz/ToOqhwSp+BVwi3FBu8g0kAg2r4Bx6lMyBQ50DGu2IyUgOCJNhzaXEIiXImiX+kvJ7fJ62kofQ9WZnL35NLpdAdTU7oAcXKxUmgXUn5oJmYSkSSl+t9sUL0hsCSPD5HMcmA7DaJbaIFJucepSXMxBQ6sMcCvGaa1VXoYMIehymMVwuzqB5s8lsTlaQdreMZ2TDeyzBTYqHhsAXU5mJlgu7l4zWvwojtUZNdw3Duls13CNFo/hsWyuBjFZKAR6exEg1pOMCIwJ5eOMVe8xM5DsCIY52aLAxjaCaneo6JwNCes6VhxsceWvXzD1TpfIcKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDI1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUUlyA0EIu88r9IRmp99jlyuH5P/XCMoHBg2LQHRa4qCMnyAsV7zlkatow98zMYLfBYd+K9dtWORAVCBJY1A1oXbxevQe2HGYCcyT1rAMZqwP/Iwp3OjF4TEZZ7fXZdQQ7F2vPZlByaxcxCUTF0zVYSNnDj+ZMi60cz03IOdGWJdhkG5WGjMSjjSFSCGFqpukzgRBEoyuRo02chT7pS+PdIZVjagx7HMtbV/PTThr0OxYrPLklB5dcS4nFy+sHPT1NgMXUWms8kBIwP1uD/VzspPfeEvnzhbT43vNyfLCVGDFm9duQDbV4t+8iOP7jK/n5/n8A19gW4gKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDIxNSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0VRVlJOTCtEZWphVnVTYW5zIC9GaXJzdENoYXIgMCAvTGFzdENoYXIgMjU1Ci9Gb250RGVzY3JpcHRvciAxNCAwIFIgL1N1YnR5cGUgL1R5cGUzIC9OYW1lIC9FUVZSTkwrRGVqYVZ1U2FucwovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdCi9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gNTIgL2ZvdXIgNTQgL3NpeCA1NiAvZWlnaHQgXQo+PgovV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvRVFWUk5MK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL2VpZ2h0IDE3IDAgUiAvZm91ciAxOCAwIFIgL29uZSAyMCAwIFIgL3BlcmlvZCAyMSAwIFIgL3NpeCAyMiAwIFIKL3R3byAyMyAwIFIgL3plcm8gMjQgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMTkgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iagoyNSAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My44LjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My44LjMpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyNDExMjQxNzUyMTRaKQo+PgplbmRvYmoKeHJlZgowIDI2CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDA1NjM5IDAwMDAwIG4gCjAwMDAwMDU0MTcgMDAwMDAgbiAKMDAwMDAwNTQ0OSAwMDAwMCBuIAowMDAwMDA1NTQ4IDAwMDAwIG4gCjAwMDAwMDU1NjkgMDAwMDAgbiAKMDAwMDAwNTU5MCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDMgMDAwMDAgbiAKMDAwMDAwMTU3MSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDE1NTAgMDAwMDAgbiAKMDAwMDAwNDI1MSAwMDAwMCBuIAowMDAwMDA0MDQ0IDAwMDAwIG4gCjAwMDAwMDM2ODAgMDAwMDAgbiAKMDAwMDAwNTMwNCAwMDAwMCBuIAowMDAwMDAxNTkxIDAwMDAwIG4gCjAwMDAwMDIwNTkgMDAwMDAgbiAKMDAwMDAwMjIyNSAwMDAwMCBuIAowMDAwMDAyMzk3IDAwMDAwIG4gCjAwMDAwMDI1NTIgMDAwMDAgbiAKMDAwMDAwMjY3NSAwMDAwMCBuIAowMDAwMDAzMDY4IDAwMDAwIG4gCjAwMDAwMDMzOTIgMDAwMDAgbiAKMDAwMDAwNTY5OSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDI2IC9Sb290IDEgMCBSIC9JbmZvIDI1IDAgUiA+PgpzdGFydHhyZWYKNTg1MAolJUVPRgo=\",\n \"image/svg+xml\": [\n@@ -627,20 +627,20 @@\n \"z\\n\",\n \"\\\" style=\\\"fill: #ffffff\\\"/>\\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n+ \"\\\" clip-path=\\\"url(#pa4f296c361)\\\" style=\\\"fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: square\\\"/>\\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -1061,15 +1061,15 @@\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \"\\n\"\n ],\n \"text/plain\": [\n \"\"\n@@ -1121,20 +1121,20 @@\n \"z\\n\",\n \"\\\" style=\\\"fill: #ffffff\\\"/>\\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -1437,15 +1437,15 @@\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -1453,30 +1453,30 @@\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -1532,15 +1532,15 @@\n \"L 320.795614 34.118026 \\n\",\n \"L 327.007117 40.411054 \\n\",\n \"L 333.21862 46.336134 \\n\",\n \"L 339.430122 49.712812 \\n\",\n \"L 345.641625 49.50626 \\n\",\n \"L 351.853128 46.106253 \\n\",\n \"L 358.064631 41.062212 \\n\",\n- \"\\\" clip-path=\\\"url(#pc728d75afb)\\\" style=\\\"fill: none; stroke: #ff0000; stroke-width: 1.5; stroke-linecap: square\\\"/>\\n\",\n+ \"\\\" clip-path=\\\"url(#pb5a902d28a)\\\" style=\\\"fill: none; stroke: #ff0000; stroke-width: 1.5; stroke-linecap: square\\\"/>\\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -1557,15 +1557,15 @@\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \"\\n\"\n ],\n \"text/plain\": [\n \"\"\n"}]}]}, {"source1": "./usr/share/doc/python-nbsphinx/html/gallery/multiple-outputs.ipynb.gz", "source2": "./usr/share/doc/python-nbsphinx/html/gallery/multiple-outputs.ipynb.gz", "unified_diff": null, "details": [{"source1": "multiple-outputs.ipynb", "source2": "multiple-outputs.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9994791666666667%", "Differences: {\"'cells'\": \"{2: {'metadata': {'execution': {'iopub.execute_input': '2024-11-29T17:44:36.580355Z', \"", " \"'iopub.status.busy': '2024-11-29T17:44:36.579854Z', 'iopub.status.idle': \"", " \"'2024-11-29T17:44:38.437600Z', 'shell.execute_reply': \"", " \"'2024-11-29T17:44:38.434881Z'}}}}\"}"], "unified_diff": "@@ -37,18 +37,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:29.935767Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:29.935070Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:30.565597Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:30.564558Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:36.580355Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:36.579854Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:38.437600Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:38.434881Z\"\n },\n \"nbsphinx-thumbnail\": {\n \"output-index\": 2\n }\n },\n \"outputs\": [\n {\n"}]}]}, {"source1": "./usr/share/doc/python-nbsphinx/html/gallery/thumbnail-from-conf-py.ipynb.gz", "source2": "./usr/share/doc/python-nbsphinx/html/gallery/thumbnail-from-conf-py.ipynb.gz", "unified_diff": null, "details": [{"source1": "thumbnail-from-conf-py.ipynb", "source2": "thumbnail-from-conf-py.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9988253134840306%", "Differences: {\"'cells'\": \"{3: {'metadata': {'execution': {'iopub.execute_input': '2024-11-29T17:44:44.012301Z', \"", " \"'iopub.status.busy': '2024-11-29T17:44:44.011770Z', 'iopub.status.idle': \"", " \"'2024-11-29T17:44:45.075149Z', 'shell.execute_reply': \"", " \"'2024-11-29T17:44:45.072042Z'}}}, 4: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2024-11-29T17:44:45.083277Z', 'iopub.status.busy': \"", " \"'2024-11-29T17:44:45.082233Z', 'iopub.status.idle': '2024-11-29T17:44:4 [\u2026]"], "unified_diff": "@@ -50,34 +50,34 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:32.680479Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:32.680254Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:33.114980Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:33.114335Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:44.012301Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:44.011770Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:45.075149Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:45.072042Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot as plt\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:33.117712Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:33.117147Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:33.207133Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:33.206414Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:45.083277Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:45.082233Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:45.277833Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:45.276646Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"fig, ax = plt.subplots()\\n\",\n \"ax.plot([4, 8, 15, 16, 23, 42])\\n\",\n \"fig.savefig('a-local-file.png')\\n\",\n@@ -115,18 +115,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:33.209573Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:33.209150Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:33.512196Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:33.511594Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:45.287915Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:45.286453Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:45.973164Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:45.972119Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"application/pdf\": \"JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMzY4LjkxODc1IDE5Ny4zOTE4NzUgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicnVZLTxsxEL77V/jYHjrxPG0fSx+RuAGRekCceLUoVKJI5e93dkOIFzZWqJRN4k+z831jz8OLr9d/f11eny6P4pezsNitLh8Dxjt/bmOKd/48RYxLf27DpxT9cx/YClQsWYflullizcCbv+vBerL+GcJNWHx2R4/udRkC2fNrxFDy+G/wjZBfoesGxZoAty5fPEzQZyLaEN26dA8DigfitAMShADZKtOEukET8JY6HPlePIUH/x7Dx8germYSYSwUK1AuSBov78PRKiy+Y8QUVzchuf3qKpzHD+ljvIir4/BtFU7CqCRgYkipmtaJhBbuaqgVCtWaUWuqh2igGQ3mzIW42FRDA3c1oCXIiayWYmyHiJC3IogEsiqiTES0cFcEEYJmFTI/OzlEhM2IKArmLwpORTRwX0QhECmoLKniISLKWxEsBpqSWpkWRAP301K8BgSxelpiOUQEziTmS0lJhpSZVIaNYJBX4JyCDBSFndc4u4rE/8ud2SMhopb6BdvHbBVY/ASkuIBeJfSYva4IEYu21DtwH3dVN5UhZKfvcHOP2w8LqCRUbMkbdB87eg1IYcpajLBXf116Rd/AimgT+h26l96zQtUrFodj79Brlz7ngTKVyak36F56zwwPm5KVar2Dtwn9Q5yZP8ziqtAMfAr8uY4/4u/o/cVHx/n462XuVhfu8ioOIlI8Xb4ans0YYT8Wfi7jTN6mmKrXkICYsRaPqOn37EmmpDYkGbLHL5aI27RvGjMbmKjZ6KMKbFgweXnydjbuOqh6UJWrDFVLqsOklJxjSVCNhvmxbludkY9aMR6sGQ2SCSV37j3Ots6bpiQIRavYmJ5n4ST6xsbjzd1hHLrT7Zkd+vNz3L3N3Qbu990G3P4dV4rWunHT834S/gG6wtesCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKNjgwCmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JvY+UZTC3r8NECVuuCfdPVwdCZkpbjPDQwaeDCyGXXGB9JYwC1xHUI6d7KNh1b7qBI31plLz7w+Unuys4obrAQJCGmYKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDMyMCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UktuBTEI288puECl8E/O86qqi777b2sTvRVMMGDjKS9Z0ku+1CXbpcPkWx/3JbFC3o/tmsxSxfcWsxTPLa9HzxG3LQoEURM9WJkvFSLUz/ToOqhwSp+BVwi3FBu8g0kAg2r4Bx6lMyBQ50DGu2IyUgOCJNhzaXEIiXImiX+kvJ7fJ62kofQ9WZnL35NLpdAdTU7oAcXKxUmgXUn5oJmYSkSSl+t9sUL0hsCSPD5HMcmA7DaJbaIFJucepSXMxBQ6sMcCvGaa1VXoYMIehymMVwuzqB5s8lsTlaQdreMZ2TDeyzBTYqHhsAXU5mJlgu7l4zWvwojtUZNdw3Duls13CNFo/hsWyuBjFZKAR6exEg1pOMCIwJ5eOMVe8xM5DsCIY52aLAxjaCaneo6JwNCes6VhxsceWvXzD1TpfIcKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvRVFWUk5MK0RlamFWdVNhbnMgL0ZpcnN0Q2hhciAwIC9MYXN0Q2hhciAyNTUKL0ZvbnREZXNjcmlwdG9yIDE0IDAgUiAvU3VidHlwZSAvVHlwZTMgL05hbWUgL0VRVlJOTCtEZWphVnVTYW5zCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0KL0NoYXJQcm9jcyAxNiAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyIC9maXZlIC9zaXggNTYgL2VpZ2h0IF0gPj4KL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0VRVlJOTCtEZWphVnVTYW5zIC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Bc2NlbnQgOTI5IC9EZXNjZW50IC0yMzYgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEzNDIgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9laWdodCAxNyAwIFIgL2ZpdmUgMTggMCBSIC9mb3VyIDE5IDAgUiAvb25lIDIwIDAgUiAvc2l4IDIxIDAgUgovdGhyZWUgMjIgMCBSIC90d28gMjMgMCBSIC96ZXJvIDI0IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTUgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwIC9jYSAxID4+Ci9BMiA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8ID4+CmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iagoyNSAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My44LjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My44LjMpIC9DcmVhdGlvbkRhdGUgKEQ6MjAyNDExMjQxNzUyMTRaKQo+PgplbmRvYmoKeHJlZgowIDI2CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDA1NjA2IDAwMDAwIG4gCjAwMDAwMDU0MTIgMDAwMDAgbiAKMDAwMDAwNTQ0NCAwMDAwMCBuIAowMDAwMDA1NTQzIDAwMDAwIG4gCjAwMDAwMDU1NjQgMDAwMDAgbiAKMDAwMDAwNTU4NSAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDMgMDAwMDAgbiAKMDAwMDAwMTExOCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDEwOTggMDAwMDAgbiAKMDAwMDAwNDIzNCAwMDAwMCBuIAowMDAwMDA0MDI3IDAwMDAwIG4gCjAwMDAwMDM2NjcgMDAwMDAgbiAKMDAwMDAwNTI4NyAwMDAwMCBuIAowMDAwMDAxMTM4IDAwMDAwIG4gCjAwMDAwMDE2MDYgMDAwMDAgbiAKMDAwMDAwMTkyOCAwMDAwMCBuIAowMDAwMDAyMDk0IDAwMDAwIG4gCjAwMDAwMDIyNDkgMDAwMDAgbiAKMDAwMDAwMjY0MiAwMDAwMCBuIAowMDAwMDAzMDU1IDAwMDAwIG4gCjAwMDAwMDMzNzkgMDAwMDAgbiAKMDAwMDAwNTY2NiAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDI2IC9Sb290IDEgMCBSIC9JbmZvIDI1IDAgUiA+PgpzdGFydHhyZWYKNTgxNwolJUVPRgo=\",\n \"image/svg+xml\": [\n@@ -169,20 +169,20 @@\n \"z\\n\",\n \"\\\" style=\\\"fill: #ffffff\\\"/>\\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -574,15 +574,15 @@\n \"L 163.888636 160.746207 \\n\",\n \"L 194.325 90.36 \\n\",\n \"L 224.761364 142.497931 \\n\",\n \"L 255.197727 116.428966 \\n\",\n \"L 285.634091 134.677241 \\n\",\n \"L 316.070455 14.76 \\n\",\n \"L 346.506818 155.532414 \\n\",\n- \"\\\" clip-path=\\\"url(#pc22087bbcd)\\\" style=\\\"fill: none; stroke-dasharray: 1.5,2.475; stroke-dashoffset: 0; stroke: #ff0000; stroke-width: 1.5\\\"/>\\n\",\n+ \"\\\" clip-path=\\\"url(#p22f3453bdf)\\\" style=\\\"fill: none; stroke-dasharray: 1.5,2.475; stroke-dashoffset: 0; stroke: #ff0000; stroke-width: 1.5\\\"/>\\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n@@ -599,15 +599,15 @@\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n- \" \\n\",\n+ \" \\n\",\n \" \\n\",\n \" \\n\",\n \" \\n\",\n \"\\n\"\n ],\n \"text/plain\": [\n \"\"\n"}]}]}, {"source1": "./usr/share/doc/python-nbsphinx/html/hidden-cells.ipynb", "source2": "./usr/share/doc/python-nbsphinx/html/hidden-cells.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9994140625%", "Differences: {\"'cells'\": \"{2: {'metadata': {'execution': {'iopub.execute_input': '2024-11-29T17:44:51.120291Z', \"", " \"'iopub.status.busy': '2024-11-29T17:44:51.119793Z', 'iopub.status.idle': \"", " \"'2024-11-29T17:44:51.131218Z', 'shell.execute_reply': \"", " \"'2024-11-29T17:44:51.127851Z'}}}, 4: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2024-11-29T17:44:51.140210Z', 'iopub.status.busy': \"", " \"'2024-11-29T17:44:51.139763Z', 'iopub.status.idle': '2024-11-29T17:44:5 [\u2026]"], "unified_diff": "@@ -27,18 +27,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:35.494789Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:35.494344Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:35.497372Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:35.496838Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:51.120291Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:51.119793Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:51.131218Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:51.127851Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"answer = 6 * 7\"\n ]\n@@ -52,18 +52,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:35.499407Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:35.498977Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:35.504609Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:35.504110Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:44:51.140210Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:44:51.139763Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:44:51.158222Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:44:51.156656Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"42\"\n"}]}, {"source1": "./usr/share/doc/python-nbsphinx/html/searchindex.js", "source2": "./usr/share/doc/python-nbsphinx/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -515,17 +515,17 @@\n \"03\": 34,\n \"04\": [33, 34],\n \"05\": 34,\n \"06\": 34,\n \"07\": [33, 34],\n \"08\": [29, 33, 34],\n \"09\": 34,\n- \"0xea73bf90\": 10,\n- \"0xed301240\": 9,\n- \"0xed32cd08\": 10,\n+ \"0xea586228\": 10,\n+ \"0xed205d08\": 10,\n+ \"0xed2991e0\": 9,\n \"1\": [0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 14, 16, 19, 22, 25, 28, 29, 32, 34],\n \"10\": [0, 3, 10, 22, 28, 34],\n \"100\": 3,\n \"1000\": [3, 14],\n \"1001\": [3, 14],\n \"1002\": [3, 14],\n \"1003\": [3, 14],\n"}]}, {"source1": "./usr/share/doc/python-nbsphinx/html/subdir/a-notebook-in-a-subdir.ipynb.gz", "source2": "./usr/share/doc/python-nbsphinx/html/subdir/a-notebook-in-a-subdir.ipynb.gz", "unified_diff": null, "details": [{"source1": "a-notebook-in-a-subdir.ipynb", "source2": "a-notebook-in-a-subdir.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.99921875%", "Differences: {\"'cells'\": \"{2: {'metadata': {'execution': {'iopub.execute_input': '2024-11-29T17:45:21.280251Z', \"", " \"'iopub.status.busy': '2024-11-29T17:45:21.279797Z', 'iopub.status.idle': \"", " \"'2024-11-29T17:45:21.309151Z', 'shell.execute_reply': \"", " \"'2024-11-29T17:45:21.307222Z'}}}}\"}"], "unified_diff": "@@ -21,18 +21,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T00:00:42.611303Z\",\n- \"iopub.status.busy\": \"2026-01-02T00:00:42.611070Z\",\n- \"iopub.status.idle\": \"2026-01-02T00:00:42.617941Z\",\n- \"shell.execute_reply\": \"2026-01-02T00:00:42.617399Z\"\n+ \"iopub.execute_input\": \"2024-11-29T17:45:21.280251Z\",\n+ \"iopub.status.busy\": \"2024-11-29T17:45:21.279797Z\",\n+ \"iopub.status.idle\": \"2024-11-29T17:45:21.309151Z\",\n+ \"shell.execute_reply\": \"2024-11-29T17:45:21.307222Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"image/png\": \"iVBORw0KGgoAAAANSUhEUgAAAIAAAACACAYAAADDPmHLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAADdgAAA3YBfdWCzAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAB7cSURBVHic7Z17fBRVmvd/p6q6k07S5E6SJiQBQoA04RpuKyMBIhFFQSTghfG2M+rg6PhZZd3ZHU14Z1hZX1l91x3ccWYWdURHYcTxBioKCkggXCQSbiIhV3PrdDp9TdflvH8k3XTS1Unf0h1Dfz+f/qRSdS5P1fPUOc95zqkqIMI1DQlmWZRSbNq0iQBAdXV1MMsOO1qtljq2y8rKKAAQ4jxFKpfnx0BQlEQpJWvXrmW0Wi1rMBhYlmUZi8VCRo8eHYziw0ZraysAICYmhgJAV1cX1Wg0kk6no8nJyRSABADV1dUUuGokZWVltNc4hr1hBGwAlFKyadMm1mAwKKKioqIlSVJJkhQliiLLcRwRRfFH2RKwLEu7u7vBsizlOI4KgkAZhhHtdrsoiqKgUqkEi8UichwnqlQqKkmS1NXVRe12u5STkyMBkKqrq+lwN4qAlVNeXs4AUBqNxjhBEJJZlk2WJClekqRoSinLMMyPzgAIIVQURQAAy7ISAEkURZFlWQFAN4BuQki3JEl2SZIEhUIh8DwvMgzDE0J4lmV5URQFpVIpdnZ2ina7XVIqlaJGo6EOoygvL3cYQlgNIiDlOO5+nU4Xw3FcilKpXJqXl/cEwzAMABYAQyn9URmAIAicwWBQE0IkSZKIIAgix3ECpdSg1+tr7Hb7d3a7/QrHcVae560cx9kA8JRSOyHEBsDKMIxFFEUbgG6FQmEXRdGuUqnskiQJoigKcXFxYlNTk1hcXCydPXuWhrN1CNgA1q5dq8jNzVV3d3dnsiy75uGHH/638ePHO48HRcowIkkSOjo60NDQQBsbG1FXV0c7OjqISqWCWq2222w2s8FgqO3s7Dxtt9vrGYbpAmACYGYYxixJkoVlWbMoihaGYSwcx9kEQbDxPG+PjY218zwvxMfHi+jxJ6RQG0MwWgCFyWRK4Hl+nEKhuGPDhg2/ysnJ+dErfiAEQUB1dTWqq6vBcRxGjx4NpVJJm5qaJKPRyHd1dRmMRmNTZ2fnOZvN9j3LsgYAXYQQI6XUyHFclyAIJoVCYeZ53qJUKm0sy3bzPC+YzWZBr9dLLt3EkBoCF2gBOp2OqNVqIggCRylVBEOo4Q7HcZg2bRq0Wi30ej0OHz4Mq9VKcnNz2fHjx7MAos1mc1p9ff2MK1euCHq9vstgMDTp9fpveZ6/LAhCJwC9IAh6hULRKYqiged5I8uyltjYWOuoUaO6dTqdUF5eLgKQhtIQAjYAAOB5nlBKCXEZGI90CCHgOA4pKSlYsWIFjEYjDh06hEuXLmHOnDlISkrC5MmTyaRJkxSU0mSr1ZpcU1Mztba21mYwGAydnZ31er3+GM/z9QzDtDMMo5MkqQNAJ6W0C4DZYrHYrFarfSgNISgG4MI1YwAOHIaQmJiI5cuXo7m5GQcOHIBGo8GMGTNACAGlFLGxsdBqtSQ/P19FKVUZDIb0M2fOzGhubu7S6/UNbW1tBymlNYSQ1t6fzmq1dkZFRRktFovVarXaS0tLhXfeeUcihATNCAL2AR577DFldHR0ot1uz1UoFHdt2LDh4ZHuAwyEJEmw2+04ePAgDAYDioqKwHEcKKV9fgCc2yaTCadPn7Y3NTUZWltbqzo6Or5iGKaBENLMsmwrgA6GYboIIdauri67RqMRg9UasIFkLi8vJ3v27GE5jlOJopjEsmzBnDlzChMSEq5ZAyCEgGVZZGVlQZIkVFRUYPz48WBZFoQQ2Z9SqcTYsWNZrVYbO3bs2HEAZkuSNMlisXRLkqQAoBAEgRFFkYqiSO12O83OzqZnz54NWN5gdwER0GMECoUCWq0WSqUSn332GUpKSsCyrGwL4LpPo9GQjIyMUSaTaXpFRUVuXV3d5ebm5p0ALjEMU89xXDPHcR1ardYCgN+5c6eEAFoCJgjnG8EDHMchLy8P+fn5OHjwIBiGAcMwYFnWue3pp1arUVxcHFtaWlowffr0J5OTk38mSZJWoVCMo5Sm6XQ6dWZmprK0tJRBAF15xACGGJZlkZ+fD47jcO7cOY8KlzMKlmURHx+PFStWjFq+fPminJycfyWEFEqSNA5AKsMwsenp6Vx5eXnEAIYzHMdh6dKluHjxIux2+6B3v9xv3Lhx7Jo1a7KmTJmyUaFQLCCEZNlstiSWZVVNTU2sv1HXiAGECIVCgXnz5uHIkSN+GQDDMIiJicHKlSsTJ02a9KhCoZjFcVw6wzBqjUajWLt2rV9dQcQJDBEMwyA7OxuVlZWwWq2IiYkZ0CHs7OxEY2Mj2traIEkSBEGAJElgGAZjx44dZTabH7t8+XKNKIp6g8FgTkxM5NG7PsEXIgYQQliWRWFhIU6cOIFFixb1MQCe51FTU4OamhoYjUawLIuUlBRMnjwZarUaKpUKLMvCaDTi3LlzRJKk0UlJSSs6OjoaKKXtGo3GUl5eLrpMM3tFxABCiKMVOHHiBBiGAaUUzc3NqKqqgl6vR3x8PAoKCqDRaMAwjFu8AABiYmKQkpKCjIwM8tFHH91qNBrfliQpCn525xEDCDEMw0ClUqGyshL19fUAgGnTpiE7OxscxzkV7wlH6HnChAlQKpUswzDRlFKutbWVaWtri/gAwx2WZTF37lwcO3YMCxcuRHJysnMI6Ascx2HUqFF6nucpy7JMXFwcaWtr81mesI0CDh06hJUrV2LlypVwLL+6FiCEID09HStWrEBaWhoUCoXPyneUg54IIBPIustICxAGHPMFw4FIHCAA6uvr8fvf/x5PPPFEuEXxm4gBBEB1dTU+/fRTdHR0hFsUvxnxBiBJEnQ6Herq6mCz2cIqi81mQ319PVpbW33yexzDxa6urqDLNOx8gFOnTuH5558HAPzxj39ETEyMW5rNmzfj7NmzWLx4MX72s58592/fvh379u3DqlWrsHr1auzatQt79uyBXq8H0OM5z5s3D/fffz9SU1MBAGazGY888gh4nsdtt92GNWvWyMr1/PPP49SpU5g8eTIWLFiA7du3g+d5AIBer8fdd9/tTPvrX/8aU6dOdf5fU1ODN954A6dOnXIqPi4uDjfeeCPWrVsHpVLpTEspxfr1653nf/HiRWzbtg0tLS1Yv349SktLfb+oAzDsWgBRFGEymWAymTymsdlsMJlM6O7uls2r1+vx7LPP4s0334RCoUBhYSFycnIgCAIOHz6MjRs3orGxEQAQGxuLgoICmEwmfPbZZ87InCtmsxkVFRUwmUyYP38+FAoF4uLiEBUVBaDHqYuLi3P+XB2848ePY+PGjThx4gRmzJiBtWvXYtmyZQCAXbt24Xe/+12f1oAQ4jy/s2fPYvPmzWhpafH/gg7CsGsBAkGh6FmU/Pnnn4PneTz66KNYunSpM7By8uRJPPfcc9Dr9XjxxRfx3HPPgRCCZcuW4auvvkJzczPOnz+PKVOm9Cn36NGj4Hke0dHRWLhwIVQqFRYtWoS9e/fi5ZdfRkJCAv7whz+4ydPe3o6tW7dCEAQ89dRTWLBggfPYunXr8NRTT+H06dP45JNPcNNNNzmPcRwHQRDw6quvIiEhAT//+c8xZcoUp8EFk2HXAgSCwwBsNhvuuusuFBcX94mqzZo1C/feey8A4OLFi6iqqgIATJ06FWPGjAEA7N+/363cw4cPA4BT+d6ye/duWCwWFBUV9VE+AKSkpOC2224DAOzdu1f2PJqbm/H0009j7ty5UKvVfbqKYDGiDMARUGFZFsuXL5dNU1xcjPj4eAA9LQLQ0+zecMMNAHoCVHa73ZneaDTi1KlTAIAlS5b4JI/DcIqLi2WPz5w5EwBQV1fXpztzdCGzZs1CVlaWT3X6yojqAhykp6cjNjZW9phCoUBOTg5Onz6NhoYG5/4lS5bgjTfegNlsRmVlJa677joAQEVFBURRhEajQX5+vtcytLe3O53PN998ExznfqkFQQDQ4/i1tbUhMzOzz/EJEyZ4XZ+/jEgDGCzKlpiYCAB9hoXx8fFYsGABDh48iP379zsNwHEXu/oS3mA0Gp3bV65c8Zg3Li4OAGSPR0dHe12fv4TNAMxmMwAMOBHiGGb5ipwn74pOpwMAqNXqPvuXLVuGgwcP4uTJkzAYDCCEoKqqCgzD+Nz8u/bX27ZtQ0JCgk/5Q0XYfABH9EytVvexftdxf2dnp2xeT/tdj3syAkqps+nPzs7uc8wxFy+KIo4cOYLKykqIoohZs2YhKSlp8JNyITU11enM1dbW+pQ3lITNAC5cuAAAcDxK7iAtLc25/c0337jla2xsdI7hJUl+BZTRaMTx48dljx07dszZNxcWFvY55uoMVlRUoLKyEoBnJ87hZ1gsFrdjSqUSBQUFAICPPvpINv9wICwGcODAAadyHX2tg+TkZOed+cEHH6C9vd15rKWlBVu2bHHe3Q4nSo6XXnoJly9f7rPv8uXL2LZtG4AeD3vixIlu+ZYuXQqO41BVVYWTJ08iMTERc+fOla0jOTkZQI8v8e2337odX7NmDQghOHr0KLZv3y4rr9lsDut0eEh8gK1bt6KtrQ2xsbFoampCU1MTACAvLw9FRUVu6e+8805s2bIFbW1teOSRRzB16lR0d3fj/PnziI+Px6233or33nuvz3DNlZSUFCiVSjzxxBOYMWMGMjIy0NLS4gzFpqWl4dFHH5XNGx8fj/nz5+PQoUMQRRGrVq3y6FTm5uZCrVbDaDRi8+bNmDp1KqxWK5555hlERUVBq9Xinnvuweuvv4733nsP+/fvx6RJk5Camgqz2Yy2tjZcuHABv/3tb30aYQSTkBhAbW1tn36QZVksXrwYDzzwgOzwaMGCBdiwYQNee+01mM1mHD9+HIQQzJkzBw899BBOnDgBwLOTGBMTg7KyMrz88ss4ceKEc7zPcRyWLFmC++67zxkLkKOwsBCHDh0Cx3HOsK0cSqUSGzduxAsvvAC9Xu/sMsxmszNqt3r1amRlZeGtt97CpUuXcOzYMWd+QohsKxRKQtYC1NXVwWQyQalUIicnZ9CIWklJCRYvXoyGhgZYrVaMGTPG6UmXlJSgpKRkwPwpKSl4+umn0dHRgaamJjAMg5ycHNnJpf4cPXoUAFBUVISUlJQB006fPh2vvPIK6urqYLVakZaW5uYwFhYWorCwEDqdDs3NzRAEATExMcjIyHAOA1157bXXBpUxWITEABQKhV9BDaVS6eYk+kpSUpJPHnxlZSWOHDkCjuNw++23e5VHqVQiNzd30HTJyclOv2G4MKJCwYFy7tw5bN26FUCPA6fRaMIs0dAzIiOBvmIwGPD+++9j9+7dEEURBQUFHtcFjDQiBgDgzJkz2LVrFwBg3rx5ePzxx51BnJHOiDKAxYsX+zVvPnPmTMycORMlJSVu07YjnRFlAGlpaX0iid4SExOD8vLy4Av0IyDiBF7jRAzgGidiANc4EQO4xokYwDVOxACucSIGcI0TMYBrnIgBXONEDOAaZ0SFgoMJz/P491+txJQx/ReQENQZVXhyy+thkSvYRAzAA5RSTE81YsVEQ+8OACAABXZ/nxFO0YJKSAzgz1sfhzrK8wpeADBaRdyx4XmPj3QFgiAIeOU/fomUUb1TvC6PDNi6eVx/+5PIGT/Aih7Ha3iH1Scfg0NIDEBt+warp7ivnXeFFyj+vuP/4o4Hy4NevyiKGEO/xc1ZYp87GQDq2+1obflB3gAoRrTygWHkBCo4ghj9AejafX/XnVc4lUn6KnNAxcoon7rsHwEMGwMAgBunWrD37eeHthKvld8vjfMLPSNH+cAwMwCGAKm2g6ivrRmaCuTuZF+MwNv0PyKGlQEAwJIpAr76+4vBL1juTr7GlQ8MQwMAgBxyDOer3R8MDRi/lUlkDGhkMCwNYN4EEUf3/H6ISvfFCUSP4zgsPvQ+NAxLAwCAGeoqHD9yIMil+ngnezKUEWQIYTUAs03Cf+3t94x/r2K0mUD1V/8bxNo83MnefGvJJT3x79tMw5awGoBEKa5Yx0Fn6jWCfn30wtHncfCLD4JbqZ/KJ5SMOOUDw6ALuOmW27Hvcpasg5adSnDp678M+s4fr5FT/kBFuyhftowRQNgngwghSJ92Jxran0NmMuPWTBdnX8a+D3fghlvWB1aRs1zflOmv8i0WC86dOY0rF06DiDxE3gZWGYOEtEzkz5iH9PR07wsbQsJuAACw9KZS7HjuPaxLutSzw+VCZ8Rz+PzkTgjL75B9mYRP+KV82jf9APk6dO3Yt/OPoG3nEGutw5REO1YmKUEIeqJcAtBxUcDZQ8CXJB00eSLm3HwPJkyc7OcJBU54DcDlYk5YcB8unP8NJrneGL0KW5H3A/bs+hNuuePhAOryoMzB+nUv5gFsNhvefeXfkdD2NVbl8GAzHd2Y0qXuHpJiOCzMAUDbAehwdMfXOBQ1HSX3bkS6JtOt7KEmPD6ATFx9/k9uwPEOl/fkuPTRCTEMjJc+cHs7uN91O//64NS5pncxikvnz+Dt/3MnVqkOoGS8AJbpH2dwySNT9zwNg/XJ3+Lofz+IL/fu9ulUgkHoDWCAaNzskl/gdD0r66DdOqkNH775X8Gp24MyB87nnv7MyaM4/9ZGrJ+oRxTHuJcn52jKlUWBFdk2jDr+3/hwh/tbx4eS0BrAIKHYqTPm4ox5Wr+0PdvRChZS/V4YjQF+NcNf5fcLHDXW1eLC7t9ieY61X1r0Rg+9V34PBNNSgHFX/opPdo2wdwQBkFe+jAKuX/1POPL+A1gwvncFkcuFvCXfjL+/9QLWPVgWgAx+Kt9lH6XAJ3/6De4db3Irq7ZDxLHOFDApeWBV8YAyDlToBuk2gu9sRHr397guk4AhRPaaTE5m0PntDpzKHIeZ86/37zx9IDQG4OFCyjFuQh4OiLMwXzp29RWyvWk5lkDVth+tLQ9hdJqPwygfZHDP13ebmFqwIlsCwDr3mbol7G4cg7ziB7BuUbHHl0M3NTbgrTdfwrTuShSk9pOp9+/8dBF/ffdF5BXMHpIlcq6EqAvw7cLfeNdT+OI7lXtaCiyfbMenf/1P/8SQlcFLR9BpQASr8wmSY68q/4qe4kOhGD/d9Ab+oeiGAd8qrhmTiXs2/geEot9gb0Ocx/D0miwD3vvDFu9kC4AwOoHwOATL0IzBD8q5EASXYVuvAgiADFsF6q5cls3rXb0u9XszITRA69FmlnAsainufvQZnz4GWbhwCbJv+zccaFLKXhOOIUhvq0BjfZ3XZfpDeJxAVyfJA6vu+xd8+l1c3zu1d3tRroAv//ZCADIMXn8feT21YJTgw47JuPOXz/glytRZ84DC+1HTKTrLc5ZPgaJMigNv/49fZXtLaAygzxjYu2hcQkIiLElF6OYlyClgEnsK586c8l0On/0AD1PIlOCLOg433v+vvsnQj6W3rsUh20SPo4boltPBiX94IMQtgG+h2FX3PomPv0uWVcCsMRTHPtzmowABKt+Zj4BSoDVxPjKzcnyUwZ3r7nwcx36QZIeMRakWfPHBzoDr8EToDEBO+YMoIDo6GszYEhit/S9OT1kzY6pRefgLLwXwfCcPikzdlY0irrv1Xi/rHpiJk7WoZXP61dEjb4KKQ9f3J4NSjxyhGwUA/S68y/4BWHn3I/j0isuQz0Vh+ekEZw+86p0IMkbn1fy+h8heHckZ+GkiH1FmzYBdkOS7Av3QOYIhbAH6b3s3/OI4DrF5K9DaJbo5SQCwMOk7HPzcy0Uj/ipfJrLHpgb3Ne8Llq/B8R8czmDfY6OldrS1Dc0DM6FzAvtsu4dWB+Lm0n/EF43ZsmVlJ7G4fPgNnxaNEBlD8ohM12WxS4hLD+4n3TIyNGihibLy5CcB1aeOBrU+B2FwAn1fX08IwZg561Cvc1k/6GJIyzLq8Nnf3xi8HNdlXX5GAQGgukVE/uzr3JIHTJz8W05TYhXQ1V0Kfn0IhxPoayi2l8U33o7DHbkuZV01pFQ1i+aT7w74DSGPK3t8MQTaU3ejNRpZWdneC+8lJDbRswg2o8djgRCm2UD07Qq8ZMqSf8T5Zvmybs5uwcdvezGV6ubUDSKDjNNK2eB/xBkAwHn+NjDlB3662l9C7wR6Cq16wez5RThhniJrSPEqFsbzH8NqtXrI3V+GANYDDJkBDFCuOPD7FfwltE6gp9CqDxTe9AscbyCyhrQytxMf7XjJCxkCWwxCydBMolJmgHKlofm0XBiGgYE9ZKmdPhtnbI6lY33LiuYYkLp96OoyDCBDgItBKECkobkbIQ7wqVzG+4kmXwjxbGBwHrIsvvNJfF3LyTpzt+Ra8fFfPE0UyazGGVAGD6FjcWhi80SU/w4iAIAdmi+YhHYU4GUIeDByJkxEDTcL1KHA3vIIJWAZAnXrV2hpbpKRATIy+LIeoCc9EbqD97CKaxWCZ8MiysE/d+cPIfIBPA3B/H/U6qZ7nsLnl686Ta7DvJIJAj7/6//rJ4Pctu+LQUCBsapu1F654rvQg2Hu8HiIRKk9HguEMA4DA3vOLnV0GlrVcyGI1G2MTwiQ3nUUly9dHEAG/xeDaFM5nD1xKBDxZSGmVtn97WYeqdl5Qa8PCMsw0MOKWT9Yef8/45PL6qtluTTvi3IoDv2t34ig353snQzufkC0goGl5UpAsvensbEB6aRT9tgZHYF2lvwHrAMlxMNA39YDDEZ8fAIsaQth7ZYJEQPIp1U4W3Wi736fooCeVwKJrd/5L7gMX3+8E7PS5YeBbezQfXE0vOsBgsBt9z+BPXUJLuVeHbbNzACOv+8SHfSgzEHp07r0pM+R6uW7GD8RG6qgZOXVQZKDH3Z2EL5Foa7RuACIjo4GN6EEXRYKuTt2TvQ590UjvirfuX01fWE6iyPvB+d9wReqqzBOlJ/z77AISJw4NM0/EGofQC4aFwRuuesX+LgxVfYOz0thcf6LHTIy+L8YxLE/ra0SDbW1fsvtoOLtl1CYJq+KA22xWHzz6oDr8ESYWoDgKR/oWTSSNH0lWo2uCyquOntLkmuRqXbRpq/dkYeZzMVjJOz987MByf75++9gofJ7+WopwGtmDulnbMMwDAzOCKA/N66+Bwd0WejjB/SSHc9ierrj4U0fF4MM8ozfitiL2PFCuV8yV1V+DXL0VeTEy4d5P28kWBLII/FeEOJhoHtcPVgQQpAxfx1qOqhnT9/fNQn90lt56jyP1BgWCywH8Zf/LAPPDxDL70fF/r1ofG8LFqXL57GLEjo0C5GuGeN1mf4QwkigH8/l+UhRyUocMY53r2PAO3kQ3JxWgv/9xoofTFcnhLJHMVhFD+LN3/wUB/a+D1H0PHN35fvv8eqzTyL2y+exLN3z1PXOxkSsenCjFwIGRhieDkZfxQQZbckDOHfgaUwZ7VD4QCuBfF8MAgpkjM3Gnq4oPBDX6Ewao2SxPlOH5pMv4G9f/BkkNRckehQQFQci8pCsBlBDE8bydfhpBgfEeT73w80MZt7xJFQqldfn7S8hfDrYdTuwKeGBmDX/erz+2SRMwUV55fvqh3hIf+tjm/G3Fx7B7WPNfZKnqzncrrYAqOrZ4ZjfUQBIAQa75N+2UwjzHkDB7PleCBc4YRgGDp3yHcxb/UscbwqC8uE5fVrGGBTc/TQ+aIj2W87+HG8DWgvuwZJb1wWtzMEI33oAYMgMYZJ2Gs7QfM+xh0CcQBemTJ+NGQ9uxV/qEmDjJflEXiBRinfrVMCSjVi25h6/y/GHEBqAp0ezhqa24vX/hEMNnEsdnhaDDOKHDCJfzoQ83LV5B95nr8eeehaC5P0JUQp82UjxlmUmlv7LdswrWuZ13mAREh+Am1yK3Tab+wEG+MmcIVhfDyB73ARcmf8I3m3qDbF60stoYOmkfLfdHMfBXnA73pVZ/hU/e3Sf/5VKJe78VRk6O/X44J0/QfrhAhRddZigsiInUYFYZc84X6IUDZ3duGBUwhCdAaTm4Se/vB9LMscGdK6BEBIDWH33Q6Goxo1FN67yOy/DMCi9f4NPeRISErGmd+jG8zy+/+47HLn4LYydOjCUglGqoJmdi38omIFRo0b5LVswGRZvCh2JKBQKTM7Px+R899ZlOBH2l0VHCC8RA7jGiRjANU7QDIAQ4s38WoQgwzBMQNc8KAagUCgoAIlSOjTPL0WQhfYgsSxLY2Ji/DKEgA0gOTmZUkolQghPCLEBztYgwhBCCKGEEJFhGBulVDCZTH5d84CHgU1NTTQpKUmglJoZhjE0NTVBkiQg0h0MOaIoSpRSg0KhsPM8L2m1Wrpzp29vFAt4Pra0tJTNzs6O7u7uToyKispjGOYnAEZJkhRNCGGDUUeEq9CeZ9J4hmHMDMPU2Wy2/SqVqjUqKspYVlbG+9r6BtwCaLVaCoCPi4vrslgsF0VRbAYQK4qikhASGWUEGUmSXJt+I8dxXVFRUdbq6mpxoHcUeyIYdycpLy8nADiTyaTgOE5JCOEIIQzP84Tn+UgLECR6nW3Y7XbKcZzIcRxvt9vt8fHxfFlZmeiP7xUs5ZDy8nKSn59P9u3bx2g0GqLT6SKKH0KSk5MpAKm6upq+8847kr+Od7CVRFwfm960aVPECIJMWVmZ8wK7NPl+O9z/H/8pEIOfU2YDAAAAAElFTkSuQmCC\",\n \"text/plain\": [\n"}]}]}]}]}]}]}
[5]:\n
\n-<matplotlib.image.AxesImage at 0xed301240>\n+<matplotlib.image.AxesImage at 0xed2991e0>\n
[2]:\n
\n-[<matplotlib.lines.Line2D at 0xed32cd08>]\n+[<matplotlib.lines.Line2D at 0xed205d08>]\n
[3]:\n
\n-<matplotlib.collections.PathCollection at 0xea73bf90>\n+<matplotlib.collections.PathCollection at 0xea586228>\n