{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.YkjchTs9/b1/pandas_2.2.3+dfsg-9_i386.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.YkjchTs9/b2/pandas_2.2.3+dfsg-9_i386.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,5 +1,5 @@\n \n- eb9235351a32a9f1e06f0596f74ed670 10794980 doc optional python-pandas-doc_2.2.3+dfsg-9_all.deb\n- 600094c305f66673d77f69be8bec0969 34673792 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-9_i386.deb\n- f856cddc3134b392938a1e355f16a2e2 4409256 python optional python3-pandas-lib_2.2.3+dfsg-9_i386.deb\n+ f98d7903348814b124afd455e1d95c4f 10795516 doc optional python-pandas-doc_2.2.3+dfsg-9_all.deb\n+ 1bfd1b89dc3a66169e5a8831adcadf9b 34673336 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-9_i386.deb\n+ c80890ac6bd0a049c8cbd7e4ed187df8 4409060 python optional python3-pandas-lib_2.2.3+dfsg-9_i386.deb\n 6f05a87b66230b056112f4c7c394692b 3096828 python optional python3-pandas_2.2.3+dfsg-9_all.deb\n"}, {"source1": "python-pandas-doc_2.2.3+dfsg-9_all.deb", "source2": "python-pandas-doc_2.2.3+dfsg-9_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2025-03-29 13:01:52.000000 debian-binary\n--rw-r--r-- 0 0 0 147412 2025-03-29 13:01:52.000000 control.tar.xz\n--rw-r--r-- 0 0 0 10647376 2025-03-29 13:01:52.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 147384 2025-03-29 13:01:52.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 10647940 2025-03-29 13:01:52.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./control", "source2": "./control", "unified_diff": "@@ -1,13 +1,13 @@\n Package: python-pandas-doc\n Source: pandas\n Version: 2.2.3+dfsg-9\n Architecture: all\n Maintainer: Debian Science Team \n-Installed-Size: 209907\n+Installed-Size: 209906\n Depends: libjs-sphinxdoc (>= 8.1), libjs-mathjax\n Suggests: python3-pandas\n Section: doc\n Priority: optional\n Multi-Arch: foreign\n Homepage: https://pandas.pydata.org/\n Description: data structures for \"relational\" or \"labeled\" data - documentation\n"}, {"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -6256,74 +6256,74 @@\n -rw-r--r-- 0 root (0) root (0) 210184 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html\n -rw-r--r-- 0 root (0) root (0) 48665 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html\n -rw-r--r-- 0 root (0) root (0) 48657 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html\n -rw-r--r-- 0 root (0) root (0) 53295 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/release.html\n -rw-r--r-- 0 root (0) root (0) 269 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 17010 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/search.html\n--rw-r--r-- 0 root (0) root (0) 2359383 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 2359297 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n -rw-r--r-- 0 root (0) root (0) 259 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/style.html\n -rw-r--r-- 0 root (0) root (0) 255 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/text.html\n -rw-r--r-- 0 root (0) root (0) 256 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 277 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 272 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/\n -rw-r--r-- 0 root (0) root (0) 171380 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html\n--rw-r--r-- 0 root (0) root (0) 283832 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n+-rw-r--r-- 0 root (0) root (0) 283971 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n -rw-r--r-- 0 root (0) root (0) 435940 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html\n -rw-r--r-- 0 root (0) root (0) 36646 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html\n -rw-r--r-- 0 root (0) root (0) 217513 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html\n -rw-r--r-- 0 root (0) root (0) 18313 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html\n -rw-r--r-- 0 root (0) root (0) 66164 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html\n -rw-r--r-- 0 root (0) root (0) 160414 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html\n -rw-r--r-- 0 root (0) root (0) 81376 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html\n--rw-r--r-- 0 root (0) root (0) 121083 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n+-rw-r--r-- 0 root (0) root (0) 121210 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n -rw-r--r-- 0 root (0) root (0) 107882 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html\n -rw-r--r-- 0 root (0) root (0) 300850 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html\n -rw-r--r-- 0 root (0) root (0) 59715 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html\n -rw-r--r-- 0 root (0) root (0) 395486 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html\n -rw-r--r-- 0 root (0) root (0) 41778 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html\n -rw-r--r-- 0 root (0) root (0) 1145870 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html\n -rw-r--r-- 0 root (0) root (0) 208885 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html\n -rw-r--r-- 0 root (0) root (0) 178690 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html\n -rw-r--r-- 0 root (0) root (0) 112153 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html\n--rw-r--r-- 0 root (0) root (0) 147524 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html\n+-rw-r--r-- 0 root (0) root (0) 146148 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html\n -rw-r--r-- 0 root (0) root (0) 162660 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html\n--rw-r--r-- 0 root (0) root (0) 115579 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n+-rw-r--r-- 0 root (0) root (0) 115584 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n -rw-r--r-- 0 root (0) root (0) 65811 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html\n -rw-r--r-- 0 root (0) root (0) 698240 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html\n--rw-r--r-- 0 root (0) root (0) 87882 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 87914 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 165302 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html\n -rw-r--r-- 0 root (0) root (0) 100947 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 486621 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 204461 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html\n -rw-r--r-- 0 root (0) root (0) 141947 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html\n -rw-r--r-- 0 root (0) root (0) 270 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/\n -rw-r--r-- 0 root (0) root (0) 107681 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html\n -rw-r--r-- 0 root (0) root (0) 10569 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz\n -rw-r--r-- 0 root (0) root (0) 83987 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html\n -rw-r--r-- 0 root (0) root (0) 66492 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html\n -rw-r--r-- 0 root (0) root (0) 82312 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html\n -rw-r--r-- 0 root (0) root (0) 104316 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html\n--rw-r--r-- 0 root (0) root (0) 222536 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n+-rw-r--r-- 0 root (0) root (0) 222544 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n -rw-r--r-- 0 root (0) root (0) 89385 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html\n -rw-r--r-- 0 root (0) root (0) 243730 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html\n -rw-r--r-- 0 root (0) root (0) 83262 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html\n -rw-r--r-- 0 root (0) root (0) 252303 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html\n -rw-r--r-- 0 root (0) root (0) 68280 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html\n -rw-r--r-- 0 root (0) root (0) 75128 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html\n -rw-r--r-- 0 root (0) root (0) 145199 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html\n--rw-r--r-- 0 root (0) root (0) 115292 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.1.html\n+-rw-r--r-- 0 root (0) root (0) 115518 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.1.html\n -rw-r--r-- 0 root (0) root (0) 64656 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.2.html\n--rw-r--r-- 0 root (0) root (0) 230436 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.0.html\n--rw-r--r-- 0 root (0) root (0) 94984 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.1.html\n--rw-r--r-- 0 root (0) root (0) 222566 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.0.html\n--rw-r--r-- 0 root (0) root (0) 171419 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.1.html\n+-rw-r--r-- 0 root (0) root (0) 231394 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.0.html\n+-rw-r--r-- 0 root (0) root (0) 95028 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.1.html\n+-rw-r--r-- 0 root (0) root (0) 224090 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.0.html\n+-rw-r--r-- 0 root (0) root (0) 171888 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.1.html\n -rw-r--r-- 0 root (0) root (0) 349334 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.0.html\n -rw-r--r-- 0 root (0) root (0) 45179 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.1.html\n -rw-r--r-- 0 root (0) root (0) 48525 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.2.html\n -rw-r--r-- 0 root (0) root (0) 406224 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.0.html\n -rw-r--r-- 0 root (0) root (0) 52898 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.2.html\n -rw-r--r-- 0 root (0) root (0) 43404 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.3.html\n -rw-r--r-- 0 root (0) root (0) 255124 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.21.0.html\n"}, {"source1": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "source2": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -21485,30 +21485,30 @@\n \"000830\": 2214,\n \"000895\": 2195,\n \"000951\": 2186,\n \"000k\": 1489,\n \"000m\": 1489,\n \"000n\": 1489,\n \"000z\": 2294,\n- \"001\": [532, 874, 1467, 2193, 2232, 2264],\n+ \"001\": [532, 874, 1467, 2232, 2264],\n \"001000\": [917, 919, 922, 929, 1876, 2209],\n \"001294\": 2210,\n \"001372\": 2207,\n \"001376\": 2207,\n \"001427\": 2214,\n \"001438\": 2195,\n \"001486\": [102, 1158],\n \"00180\": 2294,\n \"002\": [2193, 2264],\n \"002000\": 2232,\n \"002040\": 2235,\n \"002118\": [2230, 2231],\n \"002653\": 2207,\n \"002846\": 2229,\n- \"003\": [2185, 2193, 2235],\n+ \"003\": [2185, 2235],\n \"003144\": 2210,\n \"003337\": 2207,\n \"003494\": 15,\n \"003507\": [2209, 2218],\n \"003556\": 2207,\n \"00360\": 2294,\n \"003733\": 2207,\n@@ -21531,63 +21531,67 @@\n \"005000\": 2218,\n \"005361\": 2207,\n \"005383\": 2220,\n \"005446\": 2219,\n \"005462\": 2191,\n \"005977\": 2199,\n \"005979\": 2186,\n+ \"006\": 2193,\n \"006123\": 2207,\n \"006154\": [2185, 2197, 2199, 2202, 2204, 2215, 2257],\n \"0062\": 2191,\n \"006349\": 2195,\n \"006438\": 2215,\n \"006549\": [182, 760],\n \"006695\": 2186,\n \"006747\": [2185, 2197, 2199, 2202, 2204, 2215],\n \"006871\": 2212,\n \"006888\": 2220,\n \"006938\": 2207,\n+ \"007\": 2193,\n \"007200\": 2184,\n \"007207\": [2184, 2214],\n \"007717\": 2199,\n \"007824\": 15,\n \"007952\": 2207,\n \"007996\": 2186,\n \"007f\": 203,\n+ \"008\": 2193,\n \"008182\": 2204,\n \"008298\": 2186,\n \"008344\": 2207,\n \"008358\": 2207,\n \"008500\": 15,\n \"008543\": [102, 1158],\n \"008943\": [102, 1158],\n+ \"009\": 2193,\n \"009059\": 2191,\n \"009207\": 2207,\n \"009420\": 2195,\n \"009424\": 2207,\n \"009572\": 2207,\n \"009673\": 2195,\n \"009783\": 2207,\n \"009797\": 2186,\n \"009826\": [102, 1158, 2205],\n \"009920\": [2184, 2195, 2214],\n \"00am\": 2230,\n \"00index\": 2218,\n \"01\": [3, 15, 16, 17, 19, 29, 30, 31, 79, 80, 82, 88, 107, 121, 182, 187, 207, 213, 218, 219, 230, 242, 261, 270, 271, 276, 277, 278, 283, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 326, 329, 330, 331, 332, 333, 345, 362, 363, 423, 445, 510, 511, 513, 514, 515, 516, 517, 519, 521, 523, 525, 529, 531, 532, 533, 534, 535, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 566, 575, 591, 592, 593, 600, 629, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 684, 685, 686, 688, 689, 696, 760, 763, 781, 788, 793, 804, 817, 874, 893, 898, 899, 902, 903, 904, 905, 909, 910, 917, 919, 922, 929, 934, 939, 940, 943, 944, 945, 948, 949, 953, 954, 957, 959, 960, 969, 972, 982, 984, 997, 1000, 1001, 1003, 1004, 1005, 1011, 1014, 1016, 1017, 1020, 1021, 1024, 1051, 1075, 1078, 1106, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1164, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1221, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1344, 1345, 1367, 1391, 1392, 1393, 1436, 1447, 1452, 1475, 1488, 1490, 1498, 1500, 1501, 1506, 1524, 1542, 1560, 1620, 1699, 1720, 1741, 1793, 1815, 1857, 1930, 1947, 1982, 2036, 2054, 2090, 2108, 2127, 2163, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2261, 2264, 2265, 2271, 2283, 2289, 2294, 2298, 2302, 2307],\n+ \"010\": 2193,\n \"0100\": [575, 893, 957, 970, 997, 1004, 1014, 1016, 1020, 1021, 1498, 2186, 2199, 2210, 2246, 2271],\n \"010000\": [954, 1894],\n \"010010012\": [923, 2209],\n \"010026\": 2191,\n \"010081\": 15,\n \"010165\": 2199,\n \"010589\": 2193,\n \"010670\": [102, 1158],\n \"0108\": 2257,\n \"010903\": 2207,\n- \"011\": 2193,\n \"011111\": [182, 760],\n \"011342\": 2207,\n \"011351\": 2207,\n \"011374\": 2195,\n \"011470\": 2207,\n \"011736\": 2186,\n \"011829\": 2207,\n@@ -21626,23 +21630,21 @@\n \"015083\": 2186,\n \"015420\": 2195,\n \"015458\": 2207,\n \"015696\": [2220, 2228, 2230],\n \"015906\": 2186,\n \"015962\": [2184, 2214],\n \"015988\": 2186,\n- \"016\": 2193,\n \"016009\": 15,\n \"016287\": 2210,\n \"016331\": 2210,\n \"016424\": [16, 19],\n \"016543e\": 2195,\n \"016692\": [2184, 2195, 2214],\n \"01685762652715874\": [624, 1215],\n- \"017\": 2193,\n \"017106\": 2207,\n \"017118\": 2199,\n \"017152\": 2186,\n \"017263\": 2207,\n \"017276\": 2191,\n \"017587\": [2184, 2195, 2214],\n \"017796\": 2207,\n@@ -21664,15 +21666,14 @@\n \"01t03\": 2210,\n \"01t05\": [909, 2210, 2235],\n \"01t07\": 1280,\n \"01t10\": 1005,\n \"01t12\": 953,\n \"01t23\": [893, 2186, 2246],\n \"02\": [13, 16, 17, 19, 26, 27, 29, 31, 79, 80, 82, 133, 182, 183, 202, 207, 208, 213, 218, 230, 261, 271, 276, 277, 278, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 301, 304, 305, 306, 307, 310, 312, 313, 314, 318, 319, 320, 321, 322, 323, 324, 326, 327, 329, 330, 331, 332, 345, 362, 363, 423, 519, 534, 536, 542, 543, 544, 545, 546, 547, 548, 549, 557, 558, 562, 563, 564, 565, 566, 575, 591, 592, 593, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 656, 657, 658, 659, 665, 666, 667, 673, 674, 675, 677, 678, 679, 680, 684, 685, 686, 688, 708, 760, 761, 781, 782, 788, 793, 804, 893, 899, 902, 903, 904, 919, 939, 940, 943, 945, 948, 949, 953, 957, 970, 997, 1014, 1051, 1075, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1344, 1393, 1452, 1498, 1500, 1506, 1542, 1620, 1699, 1815, 1947, 2054, 2127, 2145, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2220, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2265, 2271, 2283, 2294, 2298, 2301, 2307],\n- \"020\": 2193,\n \"0200\": [957, 969, 970, 997, 1498, 2210],\n \"020161\": [102, 1158],\n \"020208\": 2195,\n \"020376\": 2207,\n \"020399\": 2195,\n \"020485\": 2207,\n \"020544\": 2186,\n@@ -21695,14 +21696,15 @@\n \"023526\": 2191,\n \"023640\": 2230,\n \"023688\": [15, 2185, 2191, 2197],\n \"0237\": 2204,\n \"023721\": 2207,\n \"023888\": 2186,\n \"023898\": 2195,\n+ \"024\": 2193,\n \"024121\": 2207,\n \"024180\": [2185, 2197, 2199, 2202, 2204, 2215],\n \"024320\": 2210,\n \"02458\": 2195,\n \"024580\": [2184, 2195, 2214],\n \"024738\": [102, 1158],\n \"024786\": 2207,\n@@ -21741,15 +21743,15 @@\n \"029587\": 2193,\n \"029630\": 2195,\n \"029766\": 2197,\n \"02d\": 2205,\n \"02t00\": [2199, 2210, 2235, 2261],\n \"02t02\": 2235,\n \"02t05\": [909, 2210],\n- \"03\": [26, 27, 29, 31, 79, 80, 82, 121, 182, 207, 213, 218, 219, 230, 264, 278, 286, 287, 290, 291, 292, 294, 296, 298, 301, 302, 304, 305, 306, 307, 310, 313, 314, 318, 321, 322, 326, 330, 331, 332, 362, 420, 423, 512, 517, 518, 519, 522, 524, 530, 534, 536, 543, 544, 545, 546, 547, 548, 549, 551, 557, 558, 562, 563, 564, 565, 566, 591, 592, 593, 637, 640, 642, 643, 644, 646, 651, 652, 656, 657, 658, 659, 666, 667, 673, 675, 677, 680, 681, 685, 686, 688, 696, 760, 781, 788, 793, 799, 804, 904, 939, 941, 943, 944, 945, 948, 949, 953, 955, 956, 957, 958, 962, 970, 973, 983, 990, 992, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1013, 1014, 1018, 1051, 1075, 1145, 1169, 1192, 1226, 1253, 1269, 1270, 1276, 1280, 1289, 1344, 1393, 1447, 1452, 1489, 1498, 1500, 1506, 1542, 1699, 1741, 1793, 1815, 1982, 2000, 2108, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2271, 2283, 2298, 2302],\n+ \"03\": [26, 27, 29, 31, 79, 80, 82, 121, 182, 207, 213, 218, 219, 230, 264, 278, 286, 287, 290, 291, 292, 294, 296, 298, 301, 302, 304, 305, 306, 307, 310, 313, 314, 318, 321, 322, 326, 330, 331, 332, 362, 420, 423, 512, 517, 518, 519, 522, 524, 530, 534, 536, 543, 544, 545, 546, 547, 548, 549, 551, 557, 558, 562, 563, 564, 565, 566, 591, 592, 593, 637, 640, 642, 643, 644, 646, 651, 652, 656, 657, 658, 659, 666, 667, 673, 675, 677, 680, 681, 685, 686, 688, 696, 760, 781, 788, 793, 799, 804, 904, 939, 941, 943, 944, 945, 948, 949, 953, 955, 956, 957, 958, 962, 970, 973, 983, 990, 992, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1013, 1014, 1018, 1051, 1075, 1145, 1169, 1192, 1226, 1253, 1269, 1270, 1276, 1280, 1289, 1344, 1393, 1447, 1452, 1489, 1498, 1500, 1506, 1542, 1699, 1741, 1793, 1815, 1982, 2000, 2108, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2271, 2283, 2298, 2302],\n \"030\": [1447, 2200, 2232],\n \"0300\": 2271,\n \"030000\": 18,\n \"030015\": 2207,\n \"030045\": 2186,\n \"030178\": 2207,\n \"030388\": 2207,\n@@ -21759,15 +21761,14 @@\n \"030874\": 2219,\n \"030876\": 2186,\n \"031296\": 2207,\n \"031393\": 2228,\n \"03162\": 2257,\n \"031833\": 2207,\n \"031903\": 2207,\n- \"032\": 2193,\n \"032059\": 2191,\n \"032084\": 2191,\n \"032131\": 2207,\n \"032332\": 2207,\n \"032628\": 2207,\n \"032652\": 2186,\n \"032685\": 2207,\n@@ -21823,14 +21824,15 @@\n \"0396\": [2184, 2186],\n \"039624\": 2207,\n \"039926\": 2210,\n \"03c\": 2208,\n \"03t00\": [2199, 2210, 2235, 2261],\n \"03t05\": [909, 2210],\n \"04\": [26, 27, 29, 31, 80, 84, 88, 114, 127, 148, 149, 157, 177, 178, 207, 213, 230, 292, 294, 306, 307, 317, 330, 332, 345, 402, 423, 528, 529, 592, 595, 600, 640, 644, 646, 658, 659, 671, 685, 688, 703, 725, 726, 732, 755, 756, 781, 788, 804, 985, 1075, 1145, 1269, 1270, 1280, 1289, 1344, 1393, 1452, 1498, 1500, 1741, 1776, 1815, 2184, 2185, 2186, 2188, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2250, 2261, 2264, 2271, 2283, 2298],\n+ \"040\": 2193,\n \"0400\": [2222, 2271],\n \"040039\": 2216,\n \"040247\": 2207,\n \"0405\": [182, 760],\n \"040775\": 2207,\n \"040863\": 2186,\n \"041\": [1447, 2200, 2232],\n@@ -21898,27 +21900,28 @@\n \"049695\": 2199,\n \"049748\": 2204,\n \"049783\": 2207,\n \"049798\": 2199,\n \"049851\": 2195,\n \"04d\": 2188,\n \"04t00\": 2261,\n- \"05\": [13, 26, 27, 29, 30, 31, 80, 148, 149, 177, 178, 183, 207, 213, 218, 230, 264, 273, 276, 292, 294, 298, 302, 316, 326, 330, 331, 332, 345, 363, 423, 551, 592, 597, 644, 646, 670, 680, 685, 686, 688, 725, 726, 755, 756, 761, 781, 788, 793, 804, 900, 902, 905, 944, 1075, 1145, 1274, 1289, 1344, 1441, 1442, 1447, 1449, 1450, 1452, 1465, 1495, 1498, 1500, 1506, 1524, 1542, 1560, 1677, 1699, 1758, 2163, 2184, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2235, 2241, 2246, 2249, 2261, 2264, 2271, 2283, 2298, 2302, 2307],\n+ \"05\": [13, 26, 27, 29, 30, 31, 80, 148, 149, 177, 178, 183, 207, 213, 218, 230, 264, 273, 276, 292, 294, 298, 302, 316, 326, 330, 331, 332, 345, 363, 423, 551, 592, 597, 644, 646, 670, 680, 685, 686, 688, 725, 726, 755, 756, 761, 781, 788, 793, 804, 900, 902, 905, 944, 1075, 1145, 1274, 1289, 1344, 1441, 1442, 1447, 1449, 1450, 1452, 1465, 1495, 1498, 1500, 1506, 1524, 1542, 1560, 1677, 1699, 1758, 2163, 2184, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2235, 2241, 2246, 2249, 2261, 2264, 2271, 2283, 2298, 2302, 2307],\n \"0500\": [24, 25, 28, 29, 32, 1498, 2210, 2235],\n \"050000\": [522, 524, 530],\n \"050038\": 2207,\n \"050046\": 2210,\n \"050390\": 2186,\n \"050498\": 2207,\n \"051514\": 2186,\n \"051539\": 2235,\n \"051686\": 2186,\n \"051694\": 2197,\n \"051824\": 2207,\n \"051928\": 2186,\n+ \"052\": 2193,\n \"052021\": 2210,\n \"052127\": 2207,\n \"052580\": 2195,\n \"052589\": 2193,\n \"052599\": 2186,\n \"052721\": 2219,\n \"052849\": 2212,\n@@ -21997,15 +22000,15 @@\n \"063328\": 2235,\n \"063367\": 2216,\n \"063474\": 2207,\n \"063477\": 2186,\n \"063850\": 2207,\n \"063922\": 2184,\n \"063933\": 2207,\n- \"064\": 2207,\n+ \"064\": [2193, 2207],\n \"064034\": [15, 2191],\n \"064423\": 2207,\n \"064434\": 2207,\n \"065587\": 2218,\n \"065761\": 2207,\n \"065818\": [2204, 2207],\n \"065934\": [182, 760],\n@@ -22101,15 +22104,14 @@\n \"079587\": 2230,\n \"079631\": 2207,\n \"0797\": 2202,\n \"079769\": 2207,\n \"079915\": 2193,\n \"07t00\": 2261,\n \"08\": [29, 30, 107, 207, 213, 230, 264, 273, 277, 292, 294, 316, 326, 330, 332, 629, 644, 646, 670, 680, 685, 688, 781, 788, 804, 900, 903, 1075, 1145, 1164, 1221, 1274, 1289, 1344, 1441, 1442, 1449, 1450, 1452, 1495, 1497, 1506, 1598, 1657, 1677, 1699, 1720, 1741, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2218, 2220, 2222, 2226, 2228, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2271, 2294, 2307],\n- \"080\": 2193,\n \"0800\": [953, 2210],\n \"080174\": 2207,\n \"080372\": 2199,\n \"080952\": [2184, 2214],\n \"081009\": 2195,\n \"081161\": 2216,\n \"081249\": 2207,\n@@ -22255,20 +22257,20 @@\n \"0n\": [1489, 2298],\n \"0px\": 2207,\n \"0rc0\": 13,\n \"0th\": [26, 249, 882, 1202, 2185, 2197, 2199, 2235],\n \"0x00\": 2294,\n \"0x40\": 2294,\n \"0x7efd0c0b0690\": 3,\n- \"0xbe02f988\": 2210,\n- \"0xd95af580\": 2199,\n- \"0xdb2d9820\": 2197,\n- \"0xdbf0fe00\": 2195,\n- \"0xe0bd6ab0\": 2246,\n- \"0xe2045818\": 2230,\n+ \"0xc20f2648\": 2230,\n+ \"0xd688c530\": 2199,\n+ \"0xd85af9d0\": 2197,\n+ \"0xd8fda1d0\": 2195,\n+ \"0xe21caac8\": 2210,\n+ \"0xe6158ea0\": 2246,\n \"1\": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310],\n \"10\": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308],\n \"100\": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307],\n \"1000\": [9, 10, 15, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294],\n \"10000\": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266],\n \"100000\": [1354, 1372, 2199, 2201, 2210],\n \"1000000\": [144, 2199, 2228],\n@@ -22470,15 +22472,15 @@\n \"10477\": 2228,\n \"104803\": 2195,\n \"10482\": 2228,\n \"10483\": 2228,\n \"10485\": 2228,\n \"10486\": 2230,\n \"104971\": 2207,\n- \"105\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246, 2271],\n+ \"105\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246, 2271],\n \"10503\": 2230,\n \"10505\": 2228,\n \"10508\": 2228,\n \"10510\": 2229,\n \"10511\": 2249,\n \"1051201\": 2205,\n \"1051355\": 2205,\n@@ -22556,15 +22558,15 @@\n \"106854\": 2185,\n \"10690\": 2232,\n \"10692\": 2228,\n \"10696\": 2241,\n \"10697\": 2228,\n \"10698\": 2228,\n \"10699\": 2228,\n- \"107\": [2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235],\n+ \"107\": [2184, 2185, 2186, 2188, 2191, 2192, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235],\n \"10704\": 2228,\n \"10709\": 2229,\n \"10711\": 2235,\n \"10713\": 2228,\n \"10726\": [2235, 2265],\n \"10728\": 2228,\n \"1073\": 2218,\n@@ -22783,15 +22785,15 @@\n \"11283\": 2229,\n \"11285\": 2229,\n \"11287\": 2232,\n \"112932\": 15,\n \"11295\": 2229,\n \"11296\": 2241,\n \"11299\": 2231,\n- \"113\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2230, 2232, 2246],\n+ \"113\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2230, 2232, 2246],\n \"11300\": [176, 179, 754, 757, 1242, 1243],\n \"11302\": 2229,\n \"11305\": 2229,\n \"113063\": 2207,\n \"11308\": [2229, 2235],\n \"11310\": 2238,\n \"11312\": 2298,\n@@ -22945,15 +22947,15 @@\n \"1169\": 2199,\n \"11690\": 2230,\n \"11692\": 2230,\n \"11693\": 2230,\n \"11696\": 2230,\n \"11698\": 2230,\n \"11699\": 2230,\n- \"117\": [29, 268, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2221, 2222, 2230, 2232, 2241],\n+ \"117\": [29, 268, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2221, 2222, 2230, 2232, 2241],\n \"1170\": 2199,\n \"11704\": [2241, 2271],\n \"11708\": 2230,\n \"1171\": 2199,\n \"11711\": 2230,\n \"11713\": 2230,\n \"11718\": 2230,\n@@ -23207,15 +23209,15 @@\n \"12386\": 2230,\n \"12388\": 2232,\n \"1239\": [2185, 2191, 2194],\n \"12392\": 2238,\n \"12396\": 2241,\n \"12397\": 2235,\n \"12399\": 2232,\n- \"124\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2210, 2211, 2218, 2220, 2232],\n+ \"124\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2210, 2211, 2220, 2232],\n \"1240\": [2185, 2191, 2194],\n \"12401\": 2238,\n \"12405\": 2236,\n \"12409\": 2230,\n \"12411\": 2231,\n \"124124\": 2207,\n \"12424\": 2232,\n@@ -23638,15 +23640,15 @@\n \"1349720105200\": 2210,\n \"1349720105300\": 2210,\n \"1349720105400\": 2210,\n \"1349720105500\": 2210,\n \"1349806505\": 2210,\n \"1349892905\": 2210,\n \"1349979305\": 2210,\n- \"135\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2210, 2211, 2232, 2235, 2249, 2253],\n+ \"135\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2210, 2211, 2232, 2235, 2249, 2253],\n \"13500\": 2232,\n \"1350065705\": 2210,\n \"13503\": 2249,\n \"13509\": 2232,\n \"13511\": 2232,\n \"135110\": 2186,\n \"13514\": 2232,\n@@ -24048,15 +24050,15 @@\n \"14684\": 2234,\n \"14685\": 2234,\n \"14686\": 2246,\n \"14687\": 2234,\n \"14689\": 2234,\n \"14696\": 2238,\n \"14699\": 2235,\n- \"147\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2210, 2211, 2232],\n+ \"147\": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2210, 2211, 2232],\n \"1470\": [16, 17, 18, 19, 2199, 2235],\n \"14704\": 2289,\n \"14711\": 2238,\n \"14712\": 2234,\n \"14714\": 2235,\n \"1472\": [16, 17, 18, 19, 2199, 2235],\n \"14721\": 2235,\n@@ -24107,15 +24109,15 @@\n \"14882\": 2235,\n \"14883\": 2235,\n \"14885\": 2249,\n \"14887\": 2235,\n \"1489\": 2197,\n \"14894\": 2234,\n \"14898\": 2235,\n- \"149\": [2184, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2202, 2210, 2211, 2232],\n+ \"149\": [2184, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2210, 2211, 2232],\n \"1490\": 2197,\n \"14901\": 2235,\n \"1490195805\": [1498, 2210],\n \"1490195805433502912\": [1498, 2210],\n \"14908\": 2235,\n \"1491\": 2197,\n \"14910\": 2235,\n@@ -25752,19 +25754,20 @@\n \"2021\": [288, 296, 318, 639, 652, 673, 940, 943, 948, 957, 970, 997, 1542, 2201, 2207, 2213, 2277, 2289, 2294],\n \"2022\": [5, 22, 523, 525, 528, 537, 982, 1185, 1246, 1288, 1491, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1542, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1560, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1578, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1598, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1620, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1637, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1657, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1677, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1699, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1720, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1758, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1776, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1793, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1815, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1839, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1857, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1876, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1894, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1912, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1930, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1947, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1964, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1982, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2018, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2036, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2054, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2108, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2127, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2145, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2186, 2203, 2213, 2227, 2298, 2302, 2307],\n \"2022a\": 2294,\n \"2023\": [34, 270, 298, 301, 320, 363, 511, 519, 526, 533, 543, 544, 545, 546, 547, 548, 549, 551, 554, 555, 556, 557, 558, 560, 563, 564, 565, 566, 567, 651, 894, 898, 954, 959, 960, 982, 984, 1000, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1024, 1122, 1141, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1501, 1620, 1930, 2090, 2127, 2145, 2213],\n \"202380\": 2207,\n \"20239\": [2241, 2265],\n \"2024\": [270, 544, 546, 555, 567, 894, 898, 2127, 2213],\n- \"2025\": [36, 544, 546, 555, 567, 894, 898, 2228],\n+ \"2025\": [36, 544, 546, 555, 567, 894, 898],\n \"20251\": 2307,\n \"2026\": 2228,\n \"202602\": 2205,\n \"202646\": 2230,\n+ \"2027\": 2228,\n \"20271\": 2241,\n \"202872\": [2184, 2214],\n \"202946\": 2207,\n \"203\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2253],\n \"2030\": 2265,\n \"20303\": 2265,\n \"20306\": 2302,\n@@ -26401,15 +26404,15 @@\n \"227877\": [1148, 1149],\n \"22790\": 2246,\n \"22794\": 2307,\n \"22796\": 2246,\n \"22797\": 2271,\n \"22799\": 2265,\n \"227996\": 2191,\n- \"228\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2218],\n+ \"228\": [2185, 2186, 2188, 2195, 2197, 2199, 2210],\n \"22801\": 2246,\n \"22803\": 2246,\n \"228039\": [2184, 2257, 2260],\n \"22805\": 2246,\n \"22818\": [2283, 2298],\n \"22835\": 2246,\n \"22858\": 2246,\n@@ -26472,15 +26475,15 @@\n \"23124\": 2302,\n \"231342\": 2199,\n \"23163\": 2249,\n \"231686\": 2207,\n \"2317\": 1344,\n \"231783\": 2207,\n \"23189\": 2246,\n- \"232\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2207, 2210, 2220],\n+ \"232\": [2185, 2186, 2188, 2195, 2197, 2199, 2207, 2210, 2220],\n \"23215\": 2246,\n \"232189\": 2207,\n \"23222\": 2249,\n \"23227\": 2246,\n \"23228\": 2246,\n \"23229\": 2246,\n \"23236\": 2246,\n@@ -26608,15 +26611,15 @@\n \"237723\": 2195,\n \"23774\": 2246,\n \"23779\": 2265,\n \"23784\": 2271,\n \"23785\": 2249,\n \"23788\": 2246,\n \"237881\": 2185,\n- \"238\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2220, 2298],\n+ \"238\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220, 2298],\n \"238000\": [2185, 2220],\n \"23801\": 2246,\n \"23803\": 2277,\n \"23807\": 2246,\n \"238075\": 2197,\n \"23809\": 2271,\n \"23814\": 2246,\n@@ -27313,15 +27316,15 @@\n \"2707\": 2199,\n \"27080\": 2250,\n \"27081\": 2271,\n \"27082\": 2249,\n \"27083\": 2249,\n \"27084\": 2249,\n \"27088\": 2249,\n- \"271\": [2186, 2188, 2195, 2197, 2199, 2210],\n+ \"271\": [2186, 2188, 2193, 2195, 2197, 2199, 2210],\n \"2710\": [2202, 2216],\n \"27101\": 2277,\n \"2710197\": 2202,\n \"27103\": 2265,\n \"27104\": 2277,\n \"27106\": 2265,\n \"27110\": 2249,\n@@ -27375,15 +27378,15 @@\n \"27368\": 2265,\n \"27384\": 2249,\n \"27388\": 2302,\n \"2739\": 2216,\n \"27394\": 2271,\n \"27395\": 2265,\n \"27398\": 2265,\n- \"274\": [2186, 2188, 2195, 2197, 2199, 2202, 2210],\n+ \"274\": [2186, 2188, 2193, 2195, 2197, 2199, 2202, 2210],\n \"2740\": 2208,\n \"274004\": 2194,\n \"274013\": 2207,\n \"274028\": 2191,\n \"2742\": [2204, 2208],\n \"27423\": 2197,\n \"274230\": [15, 2185, 2197],\n@@ -27435,15 +27438,14 @@\n \"276183\": 2257,\n \"2762\": [2184, 2186, 2191],\n \"276232\": [15, 2184, 2185, 2186, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2225, 2231, 2241, 2264],\n \"27636\": 2250,\n \"276386\": 2207,\n \"27642\": 2250,\n \"276464\": 2230,\n- \"2765\": 2193,\n \"27656\": [2294, 2298],\n \"27660\": 2265,\n \"2766617129497566\": 2257,\n \"276662\": [2185, 2197, 2199, 2202, 2215, 2257],\n \"27668\": 2265,\n \"2767\": 2191,\n \"27676\": 2265,\n@@ -27512,15 +27514,15 @@\n \"28080\": 2265,\n \"280835\": 2207,\n \"280845\": 2219,\n \"2809\": 2216,\n \"28095\": 2265,\n \"28098\": 2265,\n \"28099\": 2265,\n- \"281\": [29, 195, 770, 2186, 2195, 2197, 2199, 2210],\n+ \"281\": [29, 195, 770, 2185, 2186, 2195, 2197, 2199, 2210],\n \"2810\": 2216,\n \"281011\": 2205,\n \"28103\": 2277,\n \"281059\": 2197,\n \"28107\": 2265,\n \"28113\": 2251,\n \"28115\": 2265,\n@@ -28065,15 +28067,15 @@\n \"30am\": [84, 595],\n \"30d\": [2210, 2271],\n \"30min\": [1272, 1275, 2209],\n \"30t\": 2222,\n \"30th\": 2199,\n \"30x\": 2225,\n \"31\": [2, 15, 17, 18, 19, 25, 28, 31, 107, 133, 207, 208, 213, 228, 264, 270, 276, 282, 288, 292, 294, 296, 303, 306, 307, 308, 309, 313, 314, 318, 326, 332, 333, 341, 345, 362, 513, 514, 515, 516, 517, 518, 519, 532, 535, 542, 547, 548, 549, 560, 629, 637, 639, 644, 646, 649, 650, 651, 652, 655, 658, 659, 660, 661, 666, 667, 673, 680, 688, 689, 708, 781, 782, 788, 898, 902, 940, 943, 948, 957, 967, 968, 970, 976, 978, 980, 997, 1164, 1192, 1221, 1253, 1271, 1323, 1344, 1487, 1524, 1560, 1699, 1720, 1741, 1793, 1815, 1857, 1947, 2000, 2054, 2145, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2213, 2216, 2217, 2218, 2219, 2221, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2264, 2265, 2271, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"310\": [2186, 2197, 2199, 2201, 2210, 2231],\n+ \"310\": [2185, 2186, 2197, 2199, 2201, 2210, 2231],\n \"31016\": 2271,\n \"31025\": [2265, 2298],\n \"310274\": 2191,\n \"31043\": 2271,\n \"31048\": 2277,\n \"310530\": 2207,\n \"31064\": 2271,\n@@ -28356,15 +28358,15 @@\n \"32460\": 2271,\n \"324659\": 2186,\n \"32486\": 2269,\n \"32490\": 2267,\n \"32493\": 2271,\n \"32494\": 2271,\n \"324940\": 2207,\n- \"325\": [2186, 2193, 2197, 2199, 2210, 2222, 2227],\n+ \"325\": [2185, 2186, 2193, 2197, 2199, 2210, 2222, 2227],\n \"32501\": 2271,\n \"32503\": 2271,\n \"32515\": 2271,\n \"32516\": 2298,\n \"32526\": 2298,\n \"32535\": 2271,\n \"32538\": 2271,\n@@ -28472,15 +28474,15 @@\n \"329821\": 2191,\n \"32988\": 2269,\n \"32995\": 2271,\n \"32b\": [271, 899],\n \"32bit\": 2231,\n \"32ce785aaa5b\": 2197,\n \"33\": [2, 15, 17, 18, 19, 68, 101, 134, 230, 341, 345, 577, 804, 957, 997, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2294, 2298, 2302],\n- \"330\": [196, 617, 771, 2184, 2186, 2197, 2199, 2205, 2210, 2246],\n+ \"330\": [196, 617, 771, 2184, 2186, 2193, 2197, 2199, 2205, 2210, 2246],\n \"33012\": 2269,\n \"33013\": 2283,\n \"33015\": 2271,\n \"33017\": 2271,\n \"33027\": 2271,\n \"33041\": 2271,\n \"33043\": 2289,\n@@ -29118,14 +29120,15 @@\n \"360588\": 2186,\n \"3606\": 2217,\n \"36063\": 2274,\n \"36076\": 2277,\n \"361\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 268, 271, 275, 899, 1485, 2186, 2197, 2199, 2210, 2249, 2255, 2298],\n \"361078\": 2214,\n \"36113\": 2277,\n+ \"361182\": 2228,\n \"36122\": 2274,\n \"361288\": 2207,\n \"36131\": [2283, 2298],\n \"361428\": 2199,\n \"36148\": [2277, 2294, 2298],\n \"36153\": 2298,\n \"36159\": 2277,\n@@ -29136,14 +29139,15 @@\n \"36179\": [2277, 2298],\n \"36189\": 2274,\n \"36197\": 2273,\n \"362\": [1193, 1254, 2186, 2197, 2199, 2210, 2255, 2298],\n \"36204\": 2277,\n \"36210\": 2277,\n \"36212\": 2277,\n+ \"362191\": 2228,\n \"362228\": 2210,\n \"36226\": 30,\n \"36240\": 2277,\n \"36241\": 2274,\n \"3625\": 2191,\n \"36254\": 2277,\n \"362543\": [2185, 2197, 2199, 2202, 2204, 2215, 2257],\n@@ -29430,15 +29434,15 @@\n \"37748\": 2277,\n \"37750\": 2289,\n \"377535\": 2186,\n \"37755\": 2276,\n \"37758\": 2277,\n \"377642\": 2210,\n \"37768\": 2277,\n- \"3777\": 2218,\n+ \"3777\": [2193, 2218],\n \"37782\": 2302,\n \"377887\": 2207,\n \"37799\": 2277,\n \"378\": [2186, 2197, 2199, 2207, 2210, 2231],\n \"3780\": 2222,\n \"37804\": 2283,\n \"378163\": 2207,\n@@ -29450,15 +29454,16 @@\n \"378430\": 2207,\n \"378528\": 2197,\n \"37867\": 2277,\n \"3787\": 2228,\n \"37877\": [2277, 2298],\n \"378782\": 993,\n \"378849\": 2191,\n- \"3789841088\": 2246,\n+ \"3788860544\": 2246,\n+ \"3788861360\": 2246,\n \"37899\": 2289,\n \"379\": [2186, 2197, 2199, 2210, 2231],\n \"37901\": 2277,\n \"37909\": 2277,\n \"379098\": 2207,\n \"37910\": 2276,\n \"37918\": 2298,\n@@ -29551,15 +29556,14 @@\n \"38344\": 2278,\n \"383442\": 2166,\n \"38351\": 2283,\n \"38353\": 2283,\n \"38367\": 2277,\n \"383696\": 2207,\n \"38372\": 2283,\n- \"3837654128\": 2246,\n \"383784\": 2222,\n \"38380\": 2283,\n \"38386\": 2277,\n \"383981\": 2184,\n \"384\": [16, 17, 18, 19, 2186, 2197, 2199, 2210, 2235, 2246],\n \"38415\": 2283,\n \"384329\": 2207,\n@@ -29986,15 +29990,15 @@\n \"401668\": 2207,\n \"401695\": 2207,\n \"4017\": 2217,\n \"40176\": 2283,\n \"401781\": 2199,\n \"40180\": 2283,\n \"40193\": 2283,\n- \"402\": [2186, 2199, 2210],\n+ \"402\": [2185, 2186, 2199, 2210],\n \"402027\": 2207,\n \"40211\": 2283,\n \"40226\": 2298,\n \"40230\": 2283,\n \"40231\": 2289,\n \"40242\": 2283,\n \"40245\": [2283, 2289, 2298],\n@@ -30342,15 +30346,14 @@\n \"41918\": 2283,\n \"41919\": 2289,\n \"41927\": 2289,\n \"41931\": 2289,\n \"41933\": 2283,\n \"41934\": 2283,\n \"41935\": 2292,\n- \"419439\": 2228,\n \"41946\": 2289,\n \"41951\": 2283,\n \"419540\": 2197,\n \"4196\": 2220,\n \"41965\": 2289,\n \"41967\": 2289,\n \"41974\": 2283,\n@@ -30382,15 +30385,14 @@\n \"42101\": 2285,\n \"42104\": 2283,\n \"421077\": 2195,\n \"42113\": [2289, 2298],\n \"421201\": 2207,\n \"42130\": 2290,\n \"421359\": 2207,\n- \"421367\": 2228,\n \"42137\": 2298,\n \"4214\": 2217,\n \"42140\": 2289,\n \"421422\": 2207,\n \"4215\": 2217,\n \"4216\": 2217,\n \"421655\": 2207,\n@@ -30868,15 +30870,15 @@\n \"43986\": 2289,\n \"439872\": 2199,\n \"43988\": 2289,\n \"439895\": 2193,\n \"4399\": 2197,\n \"43997\": 2289,\n \"43999\": 2302,\n- \"44\": [15, 17, 19, 28, 31, 32, 213, 345, 788, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2294],\n+ \"44\": [15, 17, 19, 28, 31, 32, 213, 345, 788, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2294],\n \"440\": [1363, 2186, 2199, 2210],\n \"4400\": 2197,\n \"44008\": 2302,\n \"44011\": 2289,\n \"44014\": 2294,\n \"44019\": 2289,\n \"4402\": 2218,\n@@ -31552,15 +31554,15 @@\n \"471593\": 2204,\n \"47172\": 2293,\n \"47177\": 2298,\n \"4718\": 2218,\n \"47188\": 2292,\n \"47196\": 2294,\n \"471992\": 2264,\n- \"472\": [2191, 2199, 2210],\n+ \"472\": [2185, 2191, 2199, 2210],\n \"47203\": 2294,\n \"472035\": [2185, 2197, 2199, 2202, 2204, 2215, 2257],\n \"47207\": 2292,\n \"47209\": 2294,\n \"47215\": 2294,\n \"47216\": 2294,\n \"47244\": 2298,\n@@ -31678,15 +31680,15 @@\n \"47862\": 2302,\n \"47864\": 2294,\n \"47867\": 2293,\n \"47880\": 2294,\n \"4789\": 2218,\n \"478935\": 2207,\n \"478942\": 2207,\n- \"479\": [2199, 2210, 2257],\n+ \"479\": [2193, 2199, 2210, 2257],\n \"47902\": 2294,\n \"47910\": 2298,\n \"47912\": [2294, 2298],\n \"479195\": 2197,\n \"4792\": 2235,\n \"479243\": 2216,\n \"479287\": 2207,\n@@ -31752,15 +31754,15 @@\n \"48347\": 2302,\n \"48361\": 2298,\n \"48378\": 2298,\n \"48379\": 2298,\n \"48384\": 2298,\n \"483890\": 15,\n \"4839\": 2218,\n- \"484\": [2, 29, 2185, 2199, 2210],\n+ \"484\": [2, 29, 2199, 2210],\n \"48406\": 2298,\n \"48427\": 2294,\n \"484288\": 2220,\n \"484363\": 2191,\n \"484421e\": 2204,\n \"48446\": 2298,\n \"484478\": 2197,\n@@ -32671,15 +32673,15 @@\n \"52849\": 2302,\n \"528496\": 2199,\n \"52859\": 2302,\n \"52872\": 2300,\n \"528895\": 2166,\n \"52897\": 2302,\n \"52898\": 2302,\n- \"529\": [2193, 2199],\n+ \"529\": 2199,\n \"52904\": 2302,\n \"52909\": 2300,\n \"52927\": 2307,\n \"52930\": 2302,\n \"529322\": 2184,\n \"52941\": 2302,\n \"52947\": 2302,\n@@ -32858,15 +32860,15 @@\n \"53746\": 2302,\n \"53747\": 2302,\n \"53767\": 2302,\n \"5377\": 2271,\n \"53786\": 2302,\n \"537874\": 2207,\n \"53792\": 2302,\n- \"538\": [2191, 2199],\n+ \"538\": [2191, 2193, 2199],\n \"53806\": 2302,\n \"53811\": 2302,\n \"53831\": 2302,\n \"53832\": 2302,\n \"53846\": 2304,\n \"538468\": 2210,\n \"53854\": 2302,\n@@ -33405,15 +33407,15 @@\n \"568099\": 2230,\n \"5682\": 2219,\n \"568242\": 2191,\n \"568390\": 2207,\n \"5684\": 2220,\n \"568517\": 2204,\n \"5686\": 2289,\n- \"569\": [2186, 2199, 2207],\n+ \"569\": [2186, 2193, 2199, 2207],\n \"569069\": 2186,\n \"569139\": 2207,\n \"56945\": 2308,\n \"5695\": 2219,\n \"569522\": 2207,\n \"569605\": [2185, 2197, 2199, 2202, 2204, 2215],\n \"569718\": 2207,\n@@ -33728,15 +33730,15 @@\n \"6026\": 2219,\n \"602763\": 2166,\n \"6028\": 2219,\n \"603\": [2199, 2298],\n \"603194\": 2207,\n \"603594\": 2207,\n \"6039\": 2186,\n- \"604\": [2193, 2199, 2298],\n+ \"604\": [2199, 2298],\n \"6043\": 2219,\n \"604334\": 2235,\n \"604466\": 2197,\n \"604675\": 2197,\n \"604736\": 2207,\n \"604745\": [2214, 2235],\n \"6048\": 2220,\n@@ -33941,21 +33943,19 @@\n \"6289\": 2220,\n \"628992\": 2257,\n \"629\": 2199,\n \"6290\": 2220,\n \"629003\": 2207,\n \"629165\": 2230,\n \"6292\": [2220, 2230],\n- \"6295\": 2203,\n \"629546\": 2219,\n- \"6296\": [2203, 2220],\n+ \"6296\": 2220,\n \"629675\": 2185,\n- \"6297\": [2203, 2220],\n- \"6298\": 2203,\n- \"6299\": [2203, 2220],\n+ \"6297\": 2220,\n+ \"6299\": 2220,\n \"63\": [15, 17, 19, 213, 788, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2227, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"630\": 2199,\n \"630110\": 15,\n \"630256\": 2207,\n \"630482\": 2207,\n \"631\": 2199,\n \"631095\": 2195,\n@@ -34105,15 +34105,14 @@\n \"6496\": [2221, 2222],\n \"649646\": 2207,\n \"649682\": 28,\n \"649711\": 2212,\n \"649727\": 2191,\n \"649748\": 2186,\n \"64bit\": 2298,\n- \"64ec62289cb4\": 2203,\n \"65\": [17, 19, 259, 890, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2255, 2271],\n \"650\": [2199, 2298],\n \"65000000\": [176, 179, 754, 757, 1242, 1243],\n \"6504\": 2220,\n \"650762\": 2199,\n \"650776\": 2202,\n \"650794\": [121, 696],\n@@ -34441,15 +34440,14 @@\n \"686275\": [2191, 2225],\n \"6863\": 2220,\n \"686390\": 2207,\n \"686583\": 2235,\n \"6866\": 2220,\n \"686602\": 2197,\n \"686692\": 2205,\n- \"687\": 2193,\n \"687287\": 15,\n \"6873\": 2220,\n \"687406\": 2199,\n \"687500\": [283, 910],\n \"6877\": [2185, 2197],\n \"687716\": 2207,\n \"687738\": [15, 2185, 2191, 2197, 2199, 2202, 2204],\n@@ -34583,15 +34581,15 @@\n \"701948\": 2195,\n \"702\": [2199, 2203],\n \"702091\": 2207,\n \"702184\": 2216,\n \"7025\": 2220,\n \"7028\": 2199,\n \"7029\": 2199,\n- \"703\": [2199, 2203],\n+ \"703\": [2193, 2199, 2203],\n \"7030\": 2199,\n \"7031\": 2199,\n \"7032\": [2199, 2222, 2228],\n \"7033\": 2199,\n \"703334\": 2218,\n \"7034\": [2199, 2220],\n \"7035\": 2199,\n@@ -34624,15 +34622,15 @@\n \"7065\": 2222,\n \"706543\": 2216,\n \"7066\": 2220,\n \"706771\": [2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2210, 2214, 2215, 2218, 2225, 2226, 2231, 2241, 2260],\n \"7067711336300845\": 2197,\n \"7068\": [2184, 2186],\n \"7069\": 2222,\n- \"707\": [2193, 2199, 2203],\n+ \"707\": [2199, 2203],\n \"7070\": 2222,\n \"707107\": [1264, 1301, 1316, 1333, 1339, 2211, 2212, 2235],\n \"707140\": 2197,\n \"7074\": 2228,\n \"7075\": 2220,\n \"707731\": 2184,\n \"708\": 2199,\n@@ -34671,15 +34669,15 @@\n \"712795\": 2199,\n \"713\": [2192, 2199],\n \"713216\": 2217,\n \"713416\": [2185, 2207],\n \"713897\": 2197,\n \"7139\": 2226,\n \"713941\": 2204,\n- \"714\": [24, 25, 28, 2205],\n+ \"714\": [24, 25, 28],\n \"7140\": 2221,\n \"714000\": 18,\n \"714192\": 2230,\n \"714196\": 2207,\n \"714337\": 2186,\n \"714483\": 2186,\n \"7149\": 2221,\n@@ -34739,24 +34737,22 @@\n \"7212\": 2227,\n \"721555\": [15, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2210, 2214, 2215, 2218, 2225, 2241, 2260],\n \"721559\": 2191,\n \"7216\": [2184, 2186],\n \"721680\": 2216,\n \"7218\": 2220,\n \"721823\": 2207,\n- \"722\": 2205,\n \"722067\": 2207,\n \"7222\": 2230,\n \"7223\": 2221,\n \"7226\": 2221,\n \"7227\": 2221,\n \"722709\": 2186,\n \"7228\": 2221,\n \"722941\": 2207,\n- \"723\": 2193,\n \"7234\": 2221,\n \"723698\": 2185,\n \"723768\": 2184,\n \"723780\": 2193,\n \"7242\": 2221,\n \"724370\": 2186,\n \"7246\": [182, 760],\n@@ -35002,15 +34998,15 @@\n \"7575\": 2222,\n \"757508\": 2205,\n \"757555\": 2193,\n \"7576\": 2294,\n \"757698\": 2195,\n \"757745\": 2207,\n \"757772\": 2207,\n- \"758\": [27, 2185, 2218, 2298],\n+ \"758\": [27, 2185, 2298],\n \"758070\": 2207,\n \"758294\": 2191,\n \"7586\": 2221,\n \"758602\": 2207,\n \"7588\": 2231,\n \"759\": 32,\n \"759104\": 2185,\n@@ -35064,15 +35060,14 @@\n \"766822\": 2207,\n \"767\": [268, 2265],\n \"767101\": 2185,\n \"767252\": 2184,\n \"767440\": 2186,\n \"767769\": 2204,\n \"7678\": 2221,\n- \"768\": 2185,\n \"768061\": 2207,\n \"7683\": 2222,\n \"768681\": 2207,\n \"7687\": [2246, 2271],\n \"7692\": 2228,\n \"769691\": 2207,\n \"7697\": 2222,\n@@ -35244,29 +35239,30 @@\n \"7890\": 2222,\n \"7892\": 2222,\n \"789461\": 2191,\n \"789478\": 2207,\n \"7897\": 2222,\n \"789963\": 2186,\n \"78e\": [2186, 2227],\n- \"79\": [29, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"79\": [29, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"7900\": 2222,\n \"790087\": 2207,\n \"7901\": 2222,\n \"790202\": 15,\n \"7905\": 2226,\n \"7907\": 2222,\n \"7910\": 2222,\n \"7911\": 2222,\n \"791197\": 2186,\n \"7912\": 2222,\n \"791252\": 2207,\n \"7914\": 2222,\n \"791419\": 2191,\n \"791725\": 2166,\n+ \"792\": 2205,\n \"792042\": 2207,\n \"792213\": 2207,\n \"792342\": 2197,\n \"7925\": 2222,\n \"792652\": 2197,\n \"7927\": 2222,\n \"792889\": 2207,\n@@ -35658,15 +35654,15 @@\n \"848896\": 2193,\n \"848974\": 2197,\n \"849\": [16, 17, 18, 19, 2199, 2235],\n \"8494\": 2223,\n \"8496\": 2241,\n \"84960\": 2210,\n \"849980\": 2195,\n- \"85\": [182, 190, 193, 718, 760, 766, 768, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n+ \"85\": [182, 190, 193, 718, 760, 766, 768, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n \"850\": [16, 17, 18, 19, 2199, 2235],\n \"850083\": 2207,\n \"8501\": 2222,\n \"850229\": 2235,\n \"850287\": 2207,\n \"8504\": 2202,\n \"850458\": 2207,\n@@ -35807,14 +35803,15 @@\n \"866240\": 2219,\n \"8664\": 2230,\n \"866554\": 2207,\n \"866667\": 2195,\n \"8667\": 2224,\n \"86674\": 2229,\n \"8669\": [2223, 2241],\n+ \"867\": 2185,\n \"867558\": 2207,\n \"867681\": 2207,\n \"8679\": 2224,\n \"867969\": 2230,\n \"868\": 2207,\n \"8680\": 2223,\n \"8681\": 2224,\n@@ -36068,15 +36065,15 @@\n \"9009\": 2225,\n \"900906\": 2207,\n \"901\": 2199,\n \"9011\": 2224,\n \"9012\": 2224,\n \"9016\": 2225,\n \"902\": 2199,\n- \"903\": [2193, 2199],\n+ \"903\": 2199,\n \"9031\": 2246,\n \"903246\": 2207,\n \"903450\": 1340,\n \"9037\": 2225,\n \"903794\": 2186,\n \"904\": 2199,\n \"9046\": 2277,\n@@ -36112,15 +36109,15 @@\n \"9093\": 2271,\n \"909316\": 2230,\n \"9094\": 2225,\n \"909500\": 2195,\n \"9096\": 2225,\n \"909872\": 2185,\n \"9099\": 2225,\n- \"91\": [15, 182, 760, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2294, 2298],\n+ \"91\": [15, 182, 760, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2294, 2298],\n \"9100\": 2225,\n \"910199\": 2199,\n \"910400\": 28,\n \"911055\": 2195,\n \"911128\": 2207,\n \"911385\": 2207,\n \"9114\": 2232,\n@@ -36253,15 +36250,15 @@\n \"929548\": 2197,\n \"929553\": 2199,\n \"929556\": 2207,\n \"929561\": 2207,\n \"929563\": 2191,\n \"929567\": 2191,\n \"9297\": 2230,\n- \"93\": [15, 718, 1447, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2214, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246, 2257, 2298],\n+ \"93\": [15, 718, 1447, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2214, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246, 2257, 2298],\n \"930\": 2289,\n \"930201\": 2191,\n \"9304\": 2283,\n \"930687\": 2217,\n \"930806\": 2210,\n \"9309\": 2271,\n \"9311\": [2225, 2228],\n@@ -36377,15 +36374,15 @@\n \"949264\": 2210,\n \"9493\": [2225, 2265],\n \"9494\": 2230,\n \"9497\": 2225,\n \"949707\": 2207,\n \"949747\": [1269, 1270],\n \"949965\": 2217,\n- \"95\": [15, 133, 208, 586, 708, 782, 1447, 1456, 2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246, 2298],\n+ \"95\": [15, 133, 208, 586, 708, 782, 1447, 1456, 2184, 2185, 2186, 2188, 2191, 2192, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246, 2298],\n \"950\": [2194, 2207],\n \"9500\": [183, 761],\n \"950057\": 15,\n \"950088\": 2207,\n \"950146\": 2210,\n \"950460\": 2199,\n \"950775\": 2207,\n@@ -36808,15 +36805,15 @@\n \"__eq__\": [1031, 1068, 2186, 2246, 2289, 2307],\n \"__finalize__\": [2192, 2194, 2197, 2199, 2218, 2220, 2298],\n \"__floordiv__\": [2241, 2307],\n \"__from_arrow__\": [10, 1068, 2299, 2302],\n \"__fspath__\": 2238,\n \"__func__\": 2202,\n \"__getattr__\": [15, 2199, 2218],\n- \"__getattribute__\": [10, 2203, 2294],\n+ \"__getattribute__\": [10, 2294],\n \"__getitem__\": [2, 203, 1031, 1064, 1387, 2185, 2191, 2193, 2194, 2197, 2217, 2225, 2226, 2246, 2249, 2254, 2257, 2265, 2271, 2274, 2277, 2283, 2286, 2289, 2294, 2295, 2297, 2298, 2300, 2301, 2302, 2306, 2307, 2308],\n \"__getstate__\": 2218,\n \"__git_version__\": 2246,\n \"__globally__\": 2190,\n \"__gt__\": 2188,\n \"__hash__\": [1068, 2246, 2302],\n \"__index_level_\": 9,\n@@ -36850,15 +36847,14 @@\n \"__str__\": 2217,\n \"__sub__\": 2241,\n \"__subclasses__\": 2186,\n \"__truediv__\": 2307,\n \"__unicode__\": [2217, 2220, 2249],\n \"__version__\": [5, 2199],\n \"__xor__\": 2298,\n- \"_accessor\": 2203,\n \"_accumul\": [1031, 2298],\n \"_add_arithmetic_op\": 10,\n \"_add_comparison_op\": 10,\n \"_add_offset\": 2210,\n \"_add_timedeltalike_scalar\": 2210,\n \"_allows_duplicate_label\": 2192,\n \"_array_strptime_with_fallback\": 2210,\n@@ -36872,15 +36868,14 @@\n \"_bootstrap\": [2199, 2203, 2212, 2298],\n \"_buffer\": [16, 17, 18, 19, 2199, 2235],\n \"_built_with_meson\": 5,\n \"_cacheabl\": 2246,\n \"_call_chain\": [16, 17, 18, 19, 2199, 2235],\n \"_call_with_frames_remov\": 2199,\n \"_caller\": 153,\n- \"_can_hold_identifiers_and_holds_nam\": 2203,\n \"_check_deprecated_callable_usag\": [2185, 2197],\n \"_check_for_loc\": 2193,\n \"_check_indexing_error\": [2185, 2191, 2194],\n \"_check_is_chained_assignment_poss\": 2197,\n \"_check_setitem_copi\": 2197,\n \"_check_tokenize_statu\": 2199,\n \"_cmp_method\": 2186,\n@@ -36966,15 +36961,14 @@\n \"_hash\": 2235,\n \"_hash_pandas_object\": 1043,\n \"_ilocindex\": 2197,\n \"_import_class\": 2199,\n \"_indexed_sam\": [2186, 2218],\n \"_indexslic\": 440,\n \"_inferred_dtyp\": [2208, 2249],\n- \"_info_axi\": 2203,\n \"_internal_nam\": 10,\n \"_internal_names_set\": 10,\n \"_is_boolean\": [1056, 1068, 1081],\n \"_is_copi\": 2197,\n \"_is_mixed_typ\": 2197,\n \"_is_numer\": [1068, 2246, 2298],\n \"_is_scalar_access\": [2185, 2197],\n@@ -37615,15 +37609,15 @@\n \"attende\": 0,\n \"attent\": [3, 10, 2197, 2205, 2207, 2214, 2216],\n \"attr\": [15, 227, 705, 802, 1394, 1423, 1475, 1487, 2169, 2180, 2192, 2199, 2203, 2241, 2265, 2277, 2289, 2298, 2302, 2307],\n \"attr_col\": [272, 2199],\n \"attribut\": [4, 9, 10, 15, 24, 25, 31, 37, 38, 39, 46, 49, 63, 85, 107, 142, 153, 203, 210, 230, 249, 257, 266, 267, 272, 280, 286, 334, 337, 341, 342, 343, 344, 354, 386, 423, 441, 442, 443, 444, 445, 457, 459, 478, 487, 494, 509, 510, 514, 516, 532, 538, 540, 568, 573, 596, 629, 783, 784, 804, 882, 896, 914, 915, 916, 927, 930, 938, 953, 1027, 1028, 1029, 1030, 1031, 1068, 1069, 1071, 1072, 1078, 1081, 1090, 1091, 1117, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1140, 1141, 1142, 1143, 1144, 1164, 1168, 1202, 1203, 1221, 1263, 1264, 1342, 1345, 1347, 1374, 1387, 1391, 1394, 1395, 1396, 1402, 1403, 1404, 1405, 1413, 1414, 1420, 1421, 1422, 1424, 1432, 1433, 1435, 1436, 1475, 1487, 1488, 1490, 1494, 1495, 1496, 1506, 1524, 1542, 1560, 1578, 1598, 1620, 1637, 1657, 1677, 1699, 1720, 1741, 1758, 1776, 1793, 1815, 1839, 1857, 1876, 1894, 1912, 1930, 1947, 1964, 1982, 2000, 2018, 2036, 2054, 2072, 2090, 2108, 2127, 2145, 2167, 2172, 2184, 2185, 2192, 2193, 2196, 2199, 2202, 2203, 2204, 2206, 2208, 2210, 2211, 2214, 2216, 2217, 2218, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2239, 2241, 2242, 2246, 2249, 2251, 2253, 2254, 2257, 2259, 2263, 2265, 2271, 2273, 2277, 2278, 2280, 2283, 2289, 2292, 2293, 2295, 2297, 2298, 2302, 2307],\n \"attribute2\": [1395, 1396, 1413, 1414],\n \"attributeconflictwarn\": [2217, 2294],\n- \"attributeerror\": [10, 15, 845, 1069, 1071, 1072, 2203, 2220, 2221, 2222, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2239, 2241, 2246, 2247, 2249, 2250, 2265, 2266, 2269, 2271, 2274, 2275, 2276, 2278, 2279, 2281, 2283, 2286, 2289, 2290, 2294, 2295, 2298, 2301, 2302, 2307, 2308],\n+ \"attributeerror\": [10, 15, 845, 1069, 1071, 1072, 2220, 2221, 2222, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2239, 2241, 2246, 2247, 2249, 2250, 2265, 2266, 2269, 2271, 2274, 2275, 2276, 2278, 2279, 2281, 2283, 2286, 2289, 2290, 2294, 2295, 2298, 2301, 2302, 2307, 2308],\n \"attrs_onli\": [1487, 2199],\n \"audienc\": 2207,\n \"audit\": [16, 17, 18, 19, 2199, 2222, 2235],\n \"aug\": [1699, 1720, 2210, 2213],\n \"augment\": [2225, 2231, 2277],\n \"augspurg\": [35, 2247, 2248],\n \"august\": [586, 2210, 2213],\n@@ -37744,15 +37738,15 @@\n \"barboursvil\": 2199,\n \"bare\": [2, 2199, 2222, 2241, 2277],\n \"barf\": 2217,\n \"barh\": [26, 186, 188, 762, 764, 1188, 1249, 2211, 2220, 2221, 2228, 2260, 2294],\n \"bark\": 1365,\n \"barplot\": 2222,\n \"barycentr\": [146, 720, 1280, 2201, 2218],\n- \"base\": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302],\n+ \"base\": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2193, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302],\n \"base_dtyp\": 2199,\n \"base_pars\": 2199,\n \"base_typ\": [2194, 2201, 2203, 2294, 2302, 2307],\n \"basebal\": [15, 2186, 2191, 2197, 2227, 2231],\n \"baseblockmanag\": [2197, 2199, 2298],\n \"basebooleanreducetest\": 2307,\n \"basebuff\": [16, 17, 18, 19, 2199, 2235],\n@@ -37814,15 +37808,15 @@\n \"begin\": [3, 5, 13, 16, 19, 121, 233, 234, 259, 267, 270, 425, 426, 427, 502, 513, 515, 533, 535, 541, 696, 807, 808, 866, 873, 890, 896, 898, 1044, 1345, 1391, 1403, 1404, 1433, 1469, 1476, 1483, 1486, 1488, 1490, 1498, 1499, 1699, 1930, 2127, 2186, 2199, 2202, 2208, 2210, 2212, 2220, 2221, 2225, 2228, 2229, 2271, 2277, 2289],\n \"behav\": [7, 63, 134, 205, 267, 341, 709, 778, 896, 1350, 1387, 2168, 2185, 2187, 2190, 2195, 2198, 2203, 2207, 2209, 2210, 2211, 2220, 2222, 2224, 2225, 2232, 2235, 2238, 2240, 2249, 2261, 2265, 2277, 2283, 2289, 2290, 2294, 2302, 2307],\n \"behavior\": [0, 2, 3, 10, 12, 13, 14, 34, 72, 73, 74, 77, 81, 82, 94, 98, 99, 143, 146, 160, 169, 200, 201, 207, 208, 209, 210, 212, 213, 225, 226, 227, 242, 245, 255, 258, 263, 264, 270, 273, 274, 276, 277, 278, 283, 288, 296, 318, 427, 575, 581, 582, 583, 586, 593, 621, 622, 639, 652, 673, 681, 719, 720, 738, 774, 775, 781, 782, 783, 784, 787, 788, 800, 801, 802, 817, 873, 879, 880, 889, 894, 898, 900, 902, 903, 904, 910, 940, 943, 948, 957, 970, 997, 999, 1014, 1018, 1031, 1068, 1118, 1148, 1149, 1152, 1155, 1168, 1202, 1203, 1207, 1208, 1211, 1213, 1225, 1263, 1264, 1269, 1270, 1304, 1321, 1345, 1391, 1446, 1469, 1470, 1475, 1477, 1478, 1486, 1487, 1488, 1490, 1497, 1498, 2177, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2201, 2202, 2206, 2207, 2210, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2224, 2225, 2226, 2231, 2232, 2235, 2238, 2240, 2241, 2242, 2246, 2247, 2249, 2257, 2260, 2265, 2266, 2271, 2277, 2283, 2289, 2294, 2297, 2298, 2302, 2308],\n \"behaviour\": [18, 75, 77, 97, 98, 169, 205, 242, 247, 584, 620, 621, 634, 778, 808, 817, 864, 880, 1123, 1345, 1391, 1419, 1446, 1468, 1469, 1470, 1471, 1472, 1475, 1476, 1477, 1478, 1481, 1482, 1483, 1484, 1486, 1487, 1488, 1490, 1498, 1499, 2186, 2188, 2199, 2201, 2202, 2206, 2221, 2222, 2223, 2224, 2225, 2226, 2231, 2235, 2241, 2243, 2246, 2249, 2265, 2271, 2277, 2278, 2289, 2294, 2298, 2302, 2307],\n \"behind\": [2197, 2207, 2218, 2302, 2307],\n \"behr\": 32,\n \"beij\": [1145, 2207],\n- \"being\": [1, 2, 3, 4, 10, 13, 17, 141, 150, 152, 160, 188, 189, 209, 212, 214, 223, 241, 253, 257, 259, 262, 263, 269, 276, 346, 352, 375, 376, 563, 617, 699, 717, 738, 764, 765, 783, 787, 798, 830, 835, 858, 859, 864, 886, 890, 902, 1035, 1076, 1117, 1192, 1253, 1387, 1388, 1431, 1433, 1469, 1472, 1475, 1486, 1487, 1493, 1494, 1495, 1496, 1498, 2186, 2188, 2191, 2193, 2194, 2195, 2197, 2199, 2201, 2204, 2206, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2233, 2234, 2235, 2237, 2238, 2239, 2241, 2242, 2246, 2249, 2250, 2261, 2265, 2266, 2267, 2271, 2275, 2277, 2278, 2283, 2286, 2287, 2289, 2294, 2296, 2298, 2302, 2304, 2307, 2308],\n+ \"being\": [1, 2, 3, 4, 10, 13, 17, 141, 150, 152, 160, 188, 189, 209, 212, 214, 223, 241, 253, 257, 259, 262, 263, 269, 276, 346, 352, 375, 376, 563, 617, 699, 717, 738, 764, 765, 783, 787, 798, 830, 835, 858, 859, 864, 886, 890, 902, 1035, 1076, 1117, 1192, 1253, 1387, 1388, 1431, 1433, 1469, 1472, 1475, 1486, 1487, 1493, 1494, 1495, 1496, 1498, 2185, 2186, 2188, 2191, 2193, 2194, 2195, 2197, 2199, 2201, 2204, 2206, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2233, 2234, 2235, 2237, 2238, 2239, 2241, 2242, 2246, 2249, 2250, 2261, 2265, 2266, 2267, 2271, 2275, 2277, 2278, 2283, 2286, 2287, 2289, 2294, 2296, 2298, 2302, 2304, 2307, 2308],\n \"belal01\": 30,\n \"belhb23\": 30,\n \"belld01\": 30,\n \"belld02\": 30,\n \"belong\": [2, 150, 303, 445, 555, 655, 2195, 2210, 2211, 2217, 2222, 2228, 2232],\n \"below\": [1, 3, 5, 6, 9, 10, 13, 15, 16, 17, 19, 22, 79, 92, 98, 102, 107, 117, 160, 196, 213, 252, 276, 378, 380, 465, 489, 591, 616, 621, 629, 693, 738, 771, 788, 902, 1121, 1146, 1148, 1149, 1152, 1158, 1164, 1203, 1207, 1208, 1211, 1221, 1264, 1309, 1323, 1326, 1328, 1343, 1344, 1345, 1354, 1391, 1397, 1403, 1421, 1430, 1433, 1488, 1490, 1498, 1657, 1677, 1699, 1720, 1793, 1815, 2167, 2175, 2184, 2185, 2186, 2188, 2193, 2194, 2195, 2197, 2199, 2202, 2206, 2207, 2208, 2210, 2211, 2212, 2218, 2221, 2228, 2231, 2232, 2235, 2241, 2249, 2265, 2271, 2275, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n \"belr833\": 30,\n@@ -38115,15 +38109,15 @@\n \"c_parser_wrapp\": [2199, 2203, 2298],\n \"c_sum\": [1148, 1149],\n \"ca\": [824, 2208],\n \"cab\": [2185, 2226],\n \"caba\": [824, 2184, 2186, 2208],\n \"cabin\": [24, 25, 28, 29, 32],\n \"cac\": [1185, 1246, 1288],\n- \"cach\": [10, 22, 1345, 1391, 1469, 1486, 1488, 1490, 1498, 2186, 2192, 2193, 2199, 2202, 2210, 2212, 2218, 2219, 2220, 2226, 2227, 2228, 2241, 2246, 2249, 2265, 2266, 2271, 2273, 2277, 2283, 2284, 2289, 2293, 2298, 2307],\n+ \"cach\": [10, 22, 1345, 1391, 1469, 1486, 1488, 1490, 1498, 2185, 2186, 2192, 2193, 2199, 2202, 2210, 2212, 2218, 2219, 2220, 2226, 2227, 2228, 2241, 2246, 2249, 2265, 2266, 2271, 2273, 2277, 2283, 2284, 2289, 2293, 2298, 2307],\n \"cache_arrai\": 2210,\n \"cache_d\": [16, 17, 18, 19, 1469, 1486, 2199, 2203, 2232, 2235, 2249, 2298],\n \"cache_readonli\": 2255,\n \"cacheableoffset\": [2218, 2241],\n \"cacher\": 2197,\n \"cacher_needs_upd\": 2197,\n \"caeen\": 864,\n@@ -38278,15 +38272,15 @@\n \"cheat\": [21, 2234],\n \"check\": [1, 2, 4, 5, 6, 8, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 30, 32, 36, 62, 75, 80, 81, 147, 153, 163, 169, 228, 256, 284, 346, 384, 386, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 420, 445, 447, 448, 453, 454, 455, 461, 469, 473, 478, 500, 501, 584, 592, 603, 615, 741, 799, 836, 837, 838, 839, 840, 841, 842, 843, 844, 888, 912, 976, 977, 978, 979, 1076, 1079, 1081, 1082, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1093, 1095, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1110, 1111, 1112, 1113, 1114, 1115, 1127, 1136, 1141, 1146, 1184, 1345, 1354, 1370, 1391, 1441, 1442, 1446, 1449, 1450, 1475, 1482, 1483, 1488, 1490, 1493, 1494, 1495, 1496, 1499, 1512, 1530, 1548, 1566, 1586, 1607, 1626, 1643, 1665, 1686, 1707, 1728, 1747, 1765, 1782, 1801, 1823, 1846, 1863, 1883, 1901, 1919, 1936, 1953, 1971, 1988, 2006, 2025, 2043, 2061, 2079, 2096, 2114, 2133, 2151, 2168, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2211, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2253, 2255, 2261, 2265, 2271, 2277, 2279, 2283, 2289, 2294, 2298, 2302, 2307, 2308],\n \"check_array_index\": 2172,\n \"check_categor\": [1494, 1495, 1496, 2242],\n \"check_category_ord\": 1496,\n \"check_column_typ\": 1494,\n \"check_datetimelike_compat\": [1494, 1496],\n- \"check_dict_or_set_index\": [2193, 2197],\n+ \"check_dict_or_set_index\": 2197,\n \"check_dtyp\": [1493, 1494, 1496, 2271, 2272, 2299],\n \"check_dtype_backend\": 2199,\n \"check_exact\": [1493, 1494, 1495, 1496, 2272, 2277, 2307, 2308],\n \"check_extens\": 2294,\n \"check_flag\": [1494, 1496, 2290],\n \"check_frame_typ\": 1494,\n \"check_freq\": [1494, 1496, 2278],\n@@ -38721,15 +38715,15 @@\n \"correctli\": [6, 7, 1042, 1345, 1391, 1400, 1433, 1469, 1475, 1486, 1488, 1490, 2168, 2186, 2199, 2202, 2215, 2217, 2218, 2220, 2221, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2233, 2235, 2238, 2239, 2242, 2243, 2246, 2249, 2250, 2265, 2267, 2277, 2283, 2284, 2285, 2286, 2289, 2290, 2293, 2298, 2301, 2302, 2303, 2304, 2307],\n \"correl\": [99, 100, 102, 197, 597, 622, 1155, 1156, 1158, 1213, 1298, 1306, 1323, 1433, 1463, 2220, 2229, 2235, 2246, 2256, 2286, 2294, 2295],\n \"correspond\": [2, 13, 21, 27, 30, 32, 35, 56, 65, 69, 79, 109, 111, 119, 121, 129, 131, 144, 163, 171, 173, 183, 186, 192, 199, 204, 206, 207, 210, 215, 216, 217, 220, 221, 222, 244, 249, 269, 272, 275, 280, 284, 285, 286, 330, 350, 363, 378, 380, 383, 405, 420, 455, 462, 465, 489, 510, 532, 540, 578, 591, 599, 631, 685, 694, 695, 696, 706, 707, 710, 734, 739, 740, 741, 747, 749, 750, 753, 761, 762, 773, 777, 780, 781, 783, 784, 790, 791, 792, 795, 796, 797, 799, 821, 830, 834, 835, 856, 858, 859, 876, 877, 878, 882, 901, 907, 912, 913, 938, 953, 972, 1042, 1061, 1128, 1188, 1202, 1249, 1338, 1339, 1340, 1341, 1387, 1397, 1403, 1404, 1421, 1430, 1439, 1441, 1442, 1449, 1450, 1455, 1456, 1469, 1470, 1476, 1480, 1482, 1483, 1484, 1486, 1498, 1506, 1524, 1815, 1982, 2000, 2167, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2208, 2209, 2210, 2211, 2212, 2217, 2220, 2222, 2228, 2230, 2232, 2241, 2246, 2249, 2253, 2271, 2277, 2283, 2289, 2294, 2298, 2302],\n \"corrupt\": [2199, 2220, 2232, 2241, 2265, 2278, 2279, 2282, 2298, 2307],\n \"corrwith\": [99, 597, 622, 1155, 1213, 2241, 2246, 2271, 2294, 2295, 2302],\n \"cosh\": [2193, 2228],\n \"cost\": [3, 13, 118, 132, 135, 144, 159, 161, 175, 1473, 2186, 2197, 2241, 2295],\n- \"could\": [1, 2, 3, 5, 12, 13, 15, 16, 17, 18, 19, 22, 102, 162, 184, 197, 212, 251, 258, 265, 268, 272, 481, 787, 884, 889, 895, 1117, 1158, 1343, 1373, 1453, 1469, 1470, 1471, 1472, 1476, 1477, 1478, 1479, 1480, 1484, 1485, 1486, 1487, 2166, 2185, 2186, 2188, 2192, 2194, 2195, 2197, 2199, 2210, 2211, 2212, 2218, 2220, 2225, 2226, 2227, 2228, 2229, 2230, 2232, 2233, 2234, 2235, 2238, 2239, 2241, 2246, 2247, 2248, 2249, 2250, 2252, 2260, 2265, 2271, 2277, 2278, 2283, 2284, 2289, 2293, 2294, 2295, 2298, 2302, 2307, 2308],\n+ \"could\": [1, 2, 3, 5, 12, 13, 15, 16, 17, 18, 19, 22, 102, 162, 184, 197, 212, 251, 258, 265, 268, 272, 481, 787, 884, 889, 895, 1117, 1158, 1343, 1373, 1453, 1469, 1470, 1471, 1472, 1476, 1477, 1478, 1479, 1480, 1484, 1485, 1486, 1487, 2166, 2185, 2186, 2188, 2192, 2193, 2194, 2195, 2197, 2199, 2210, 2211, 2212, 2218, 2220, 2225, 2226, 2227, 2228, 2229, 2230, 2232, 2233, 2234, 2235, 2238, 2239, 2241, 2246, 2247, 2248, 2249, 2250, 2252, 2260, 2265, 2271, 2277, 2278, 2283, 2284, 2289, 2293, 2294, 2295, 2298, 2302, 2307, 2308],\n \"couldn\": [22, 2277, 2286, 2298],\n \"count\": [16, 18, 21, 23, 24, 107, 112, 123, 144, 172, 180, 281, 414, 436, 629, 748, 758, 831, 908, 1164, 1182, 1183, 1184, 1194, 1204, 1221, 1241, 1244, 1255, 1345, 1382, 1391, 1400, 1470, 1488, 1490, 2188, 2191, 2194, 2195, 2199, 2202, 2204, 2205, 2208, 2211, 2215, 2216, 2218, 2219, 2220, 2222, 2223, 2225, 2228, 2229, 2230, 2231, 2232, 2235, 2239, 2241, 2246, 2249, 2254, 2255, 2256, 2257, 2260, 2265, 2271, 2277, 2279, 2283, 2289, 2294, 2302],\n \"counter\": [3, 1416, 2235],\n \"counterexampl\": 2,\n \"counterpart\": [98, 621, 2206, 2225, 2231, 2238, 2265, 2277, 2289, 2294],\n \"countess\": 32,\n \"counti\": [1443, 2199],\n@@ -39830,15 +39824,15 @@\n \"farmer\": 2199,\n \"farthest\": [91, 1458],\n \"fashion\": [34, 39, 46, 2221, 2246, 2283],\n \"fast\": [5, 15, 34, 83, 141, 256, 351, 594, 717, 888, 1203, 1264, 1469, 1470, 1476, 1486, 2184, 2186, 2192, 2193, 2195, 2196, 2199, 2210, 2222, 2226, 2235, 2246, 2249, 2253, 2254, 2255, 2256],\n \"fast_path\": 2199,\n \"fastavro\": [1473, 2249],\n \"faster\": [4, 5, 15, 16, 34, 62, 151, 162, 251, 258, 262, 263, 265, 268, 272, 390, 615, 754, 757, 815, 884, 889, 895, 1152, 1211, 1242, 1243, 1469, 1486, 1498, 2163, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2208, 2211, 2214, 2215, 2216, 2219, 2220, 2222, 2232, 2238, 2246, 2249, 2253, 2255, 2256, 2277, 2289, 2302, 2307],\n- \"fastest\": [2186, 2197, 2199],\n+ \"fastest\": [2185, 2186, 2193, 2197, 2199],\n \"fastparquet\": [22, 263, 1345, 1391, 1478, 1488, 1490, 2184, 2199, 2202, 2205, 2238, 2246, 2249, 2265, 2271, 2277, 2278, 2283, 2286, 2289, 2294, 2298, 2302, 2307],\n \"fastparquetimpl\": 2199,\n \"fastpath\": [39, 573, 2194, 2201, 2203, 2246, 2265, 2271, 2283, 2294, 2298, 2302, 2307],\n \"fatal\": 2229,\n \"fault\": [2228, 2235, 2239, 2246, 2249, 2271, 2275, 2289],\n \"faulti\": 2220,\n \"favor\": [34, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2239, 2241, 2246, 2249, 2265, 2266, 2283, 2289, 2294, 2298],\n@@ -40276,15 +40270,15 @@\n \"get_indexer_non_uniqu\": [379, 2192, 2197, 2238, 2243, 2246, 2249, 2265, 2277, 2289],\n \"get_indexer_nonuniqu\": 2302,\n \"get_ipython\": 2193,\n \"get_item\": [2191, 2194],\n \"get_jit_argu\": 2212,\n \"get_letter_typ\": 2195,\n \"get_level_valu\": [1416, 2185, 2218, 2220, 2228, 2232, 2241, 2246, 2253, 2256],\n- \"get_loc\": [2, 362, 383, 426, 492, 2185, 2191, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299],\n+ \"get_loc\": [2, 362, 383, 426, 492, 2185, 2191, 2193, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299],\n \"get_loc_level\": 2246,\n \"get_local\": 2265,\n \"get_local_scop\": 2193,\n \"get_method\": [16, 17, 18, 19, 2199, 2235],\n \"get_near_stock_pric\": [2216, 2223],\n \"get_offset\": [2265, 2298],\n \"get_offset_nam\": [2230, 2238],\n@@ -40844,15 +40838,15 @@\n \"inject\": [120, 1387],\n \"inkwarg\": 2199,\n \"inlin\": [3, 2196, 2199, 2207, 2218, 2229, 2246],\n \"inner\": [16, 17, 19, 25, 30, 74, 96, 110, 153, 169, 241, 279, 404, 583, 619, 821, 1146, 1446, 1448, 2186, 2193, 2200, 2204, 2208, 2220, 2246, 2254, 2283, 2289, 2307],\n \"inner_join\": [16, 17, 19],\n \"innermost\": [247, 880, 1478, 2231],\n \"inplac\": [16, 17, 18, 19, 87, 89, 92, 111, 112, 114, 120, 124, 125, 146, 163, 181, 203, 209, 210, 212, 214, 228, 233, 234, 284, 370, 418, 421, 483, 500, 598, 601, 616, 633, 634, 636, 700, 701, 720, 741, 759, 783, 784, 787, 789, 807, 808, 912, 1166, 1167, 1223, 1224, 1280, 1387, 2190, 2192, 2214, 2215, 2218, 2220, 2221, 2222, 2228, 2229, 2230, 2231, 2235, 2238, 2241, 2246, 2265, 2271, 2273, 2275, 2276, 2277, 2278, 2289, 2290, 2291, 2292, 2293, 2295, 2297, 2298, 2302, 2307],\n- \"input\": [2, 3, 10, 13, 20, 24, 30, 31, 34, 49, 56, 63, 68, 69, 76, 78, 81, 85, 91, 92, 94, 97, 99, 100, 107, 108, 109, 120, 126, 129, 131, 134, 141, 143, 160, 162, 163, 171, 173, 183, 197, 199, 204, 206, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 227, 230, 233, 234, 244, 246, 256, 259, 264, 270, 273, 275, 278, 281, 284, 286, 346, 351, 354, 378, 380, 405, 415, 425, 426, 459, 465, 489, 499, 540, 573, 577, 578, 585, 596, 603, 616, 617, 620, 622, 629, 630, 631, 694, 702, 706, 707, 709, 710, 713, 717, 719, 734, 738, 739, 740, 741, 747, 749, 750, 753, 761, 773, 777, 780, 785, 787, 788, 790, 791, 792, 793, 795, 796, 797, 802, 804, 856, 877, 878, 888, 890, 893, 900, 901, 904, 912, 916, 927, 930, 938, 953, 1031, 1076, 1078, 1090, 1116, 1117, 1118, 1121, 1123, 1124, 1125, 1152, 1154, 1155, 1156, 1164, 1202, 1203, 1204, 1211, 1213, 1221, 1230, 1264, 1298, 1299, 1305, 1306, 1308, 1322, 1323, 1325, 1342, 1343, 1354, 1389, 1390, 1392, 1393, 1395, 1396, 1397, 1398, 1403, 1404, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1417, 1418, 1430, 1433, 1441, 1442, 1449, 1450, 1458, 1467, 1469, 1470, 1475, 1482, 1486, 1487, 1498, 1499, 1500, 2163, 2172, 2184, 2185, 2186, 2187, 2188, 2191, 2193, 2194, 2195, 2196, 2197, 2199, 2200, 2201, 2203, 2204, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2234, 2235, 2236, 2238, 2241, 2242, 2246, 2249, 2250, 2257, 2263, 2264, 2265, 2267, 2269, 2271, 2272, 2273, 2274, 2275, 2277, 2278, 2283, 2284, 2287, 2289, 2291, 2292, 2293, 2294, 2298, 2299, 2302, 2306, 2307, 2308, 2309],\n+ \"input\": [2, 3, 10, 13, 20, 24, 30, 31, 34, 49, 56, 63, 68, 69, 76, 78, 81, 85, 91, 92, 94, 97, 99, 100, 107, 108, 109, 120, 126, 129, 131, 134, 141, 143, 160, 162, 163, 171, 173, 183, 197, 199, 204, 206, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 227, 230, 233, 234, 244, 246, 256, 259, 264, 270, 273, 275, 278, 281, 284, 286, 346, 351, 354, 378, 380, 405, 415, 425, 426, 459, 465, 489, 499, 540, 573, 577, 578, 585, 596, 603, 616, 617, 620, 622, 629, 630, 631, 694, 702, 706, 707, 709, 710, 713, 717, 719, 734, 738, 739, 740, 741, 747, 749, 750, 753, 761, 773, 777, 780, 785, 787, 788, 790, 791, 792, 793, 795, 796, 797, 802, 804, 856, 877, 878, 888, 890, 893, 900, 901, 904, 912, 916, 927, 930, 938, 953, 1031, 1076, 1078, 1090, 1116, 1117, 1118, 1121, 1123, 1124, 1125, 1152, 1154, 1155, 1156, 1164, 1202, 1203, 1204, 1211, 1213, 1221, 1230, 1264, 1298, 1299, 1305, 1306, 1308, 1322, 1323, 1325, 1342, 1343, 1354, 1389, 1390, 1392, 1393, 1395, 1396, 1397, 1398, 1403, 1404, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1417, 1418, 1430, 1433, 1441, 1442, 1449, 1450, 1458, 1467, 1469, 1470, 1475, 1482, 1486, 1487, 1498, 1499, 1500, 2163, 2172, 2184, 2185, 2186, 2187, 2188, 2191, 2193, 2194, 2195, 2196, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2234, 2235, 2236, 2238, 2241, 2242, 2246, 2249, 2250, 2257, 2263, 2264, 2265, 2267, 2269, 2271, 2272, 2273, 2274, 2275, 2277, 2278, 2283, 2284, 2287, 2289, 2291, 2292, 2293, 2294, 2298, 2299, 2302, 2306, 2307, 2308, 2309],\n \"input_arrai\": 2199,\n \"insec\": 873,\n \"insensit\": [533, 857, 1469, 1486, 2202, 2221, 2277],\n \"insert\": [2, 34, 63, 214, 255, 258, 267, 420, 789, 799, 821, 889, 896, 1061, 1345, 1391, 1416, 1488, 1490, 2185, 2186, 2191, 2193, 2195, 2196, 2202, 2207, 2217, 2218, 2219, 2220, 2221, 2222, 2225, 2226, 2228, 2229, 2233, 2238, 2242, 2246, 2249, 2265, 2271, 2277, 2283, 2289, 2293, 2294, 2298, 2302, 2304, 2306, 2307],\n \"insert_on_conflict_noth\": [267, 896],\n \"insert_on_conflict_upd\": [267, 896],\n \"insid\": [2, 8, 13, 22, 25, 77, 89, 124, 146, 203, 251, 259, 375, 466, 601, 700, 720, 884, 890, 1031, 1054, 1118, 1280, 1469, 1486, 1498, 2186, 2193, 2194, 2196, 2197, 2199, 2201, 2227, 2241, 2246, 2249, 2261, 2263, 2264, 2265, 2271, 2307],\n@@ -40915,15 +40909,15 @@\n \"interchang\": [66, 246, 916, 953, 2172, 2299, 2300, 2302, 2307, 2308],\n \"interchange_object\": [66, 1077],\n \"interest\": [1, 2, 3, 13, 23, 24, 25, 28, 29, 32, 34, 35, 789, 2186, 2193, 2197, 2199, 2207, 2210, 2212, 2217, 2219, 2307, 2308],\n \"interest_r\": 3,\n \"interf\": 2265,\n \"interfac\": [2, 10, 12, 13, 16, 17, 18, 19, 40, 77, 119, 695, 914, 1031, 1068, 1090, 2167, 2186, 2199, 2203, 2207, 2210, 2211, 2218, 2220, 2225, 2227, 2228, 2230, 2235, 2246, 2261, 2271, 2298, 2307],\n \"interleav\": 2199,\n- \"intermedi\": [7, 2172, 2195, 2205, 2210, 2212, 2253, 2307],\n+ \"intermedi\": [7, 2172, 2185, 2193, 2195, 2205, 2210, 2212, 2253, 2307],\n \"intermix\": 2186,\n \"intern\": [0, 7, 11, 22, 191, 194, 203, 268, 286, 364, 376, 430, 622, 624, 699, 767, 769, 873, 932, 938, 1031, 1044, 1123, 1124, 1140, 1148, 1149, 1203, 1207, 1208, 1213, 1215, 1264, 1280, 1345, 1361, 1364, 1388, 1391, 1422, 1423, 1433, 1469, 1486, 1488, 1490, 1493, 1494, 1495, 1496, 1499, 2186, 2188, 2193, 2194, 2195, 2197, 2202, 2207, 2210, 2213, 2216, 2217, 2219, 2220, 2230, 2232, 2235, 2238, 2246, 2249, 2253, 2261, 2263, 2265, 2267, 2271, 2274, 2277, 2280, 2289, 2293, 2298, 2307],\n \"internal_cach\": 10,\n \"internet\": 2,\n \"interoper\": [2167, 2186, 2201, 2203, 2302],\n \"interp1d\": [146, 720, 1280],\n \"interp_\": 2201,\n@@ -40978,15 +40972,15 @@\n \"ip\": [10, 2241],\n \"ipaddress\": 10,\n \"iparrai\": 2241,\n \"ipc\": 2199,\n \"ipi\": 2202,\n \"ipv4address\": 10,\n \"ipv6\": [10, 1031],\n- \"ipython\": [4, 26, 257, 1069, 1071, 1072, 1345, 1391, 1488, 1490, 2184, 2186, 2193, 2194, 2196, 2197, 2199, 2203, 2207, 2219, 2222, 2227, 2230, 2232, 2235, 2236, 2242, 2246, 2247, 2251, 2257, 2258, 2265],\n+ \"ipython\": [4, 26, 257, 1069, 1071, 1072, 1345, 1391, 1488, 1490, 2184, 2186, 2193, 2194, 2196, 2197, 2199, 2207, 2219, 2222, 2227, 2230, 2232, 2235, 2236, 2242, 2246, 2247, 2251, 2257, 2258, 2265],\n \"ipythondir\": 2202,\n \"ipywidget\": 2207,\n \"iqr\": [91, 190, 766, 1458],\n \"iri\": [1455, 1461, 2191, 2211, 2225],\n \"irow\": [2216, 2228, 2235, 2257],\n \"irregular\": [15, 2210, 2234, 2235, 2261, 2275, 2277],\n \"irrelev\": [0, 2298],\n@@ -41533,15 +41527,15 @@\n \"logx\": [186, 762, 1188, 1249, 2211, 2215, 2249],\n \"lon\": [10, 1069, 1071, 1072],\n \"london\": [26, 27, 29, 30, 31, 586, 2210, 2221, 2271],\n \"london_mg_per_cub\": 27,\n \"long\": [0, 1, 2, 3, 21, 31, 119, 123, 167, 184, 185, 230, 241, 263, 695, 698, 804, 808, 873, 1345, 1391, 1444, 1445, 1453, 1454, 1469, 1486, 1487, 1488, 1490, 2163, 2166, 2185, 2188, 2190, 2193, 2199, 2202, 2204, 2205, 2208, 2210, 2214, 2216, 2218, 2220, 2222, 2225, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2239, 2240, 2241, 2243, 2246, 2249, 2277, 2278, 2289, 2302, 2307, 2308],\n \"long_seri\": 2186,\n \"longdoubl\": 2186,\n- \"longer\": [1, 2, 5, 98, 134, 522, 533, 563, 621, 709, 873, 874, 1118, 1178, 1179, 1180, 1181, 1189, 1200, 1237, 1238, 1239, 1240, 1250, 1261, 1284, 1290, 1295, 1469, 1486, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2217, 2218, 2219, 2220, 2221, 2222, 2224, 2225, 2226, 2228, 2230, 2231, 2233, 2235, 2238, 2242, 2243, 2246, 2247, 2257, 2261, 2263, 2264, 2265, 2266, 2271, 2275, 2277, 2278, 2292, 2294, 2295, 2298, 2302],\n+ \"longer\": [1, 2, 5, 98, 134, 522, 533, 563, 621, 709, 873, 874, 1118, 1178, 1179, 1180, 1181, 1189, 1200, 1237, 1238, 1239, 1240, 1250, 1261, 1284, 1290, 1295, 1469, 1486, 2185, 2191, 2193, 2197, 2199, 2202, 2210, 2214, 2215, 2217, 2218, 2219, 2220, 2221, 2222, 2224, 2225, 2226, 2228, 2230, 2231, 2233, 2235, 2238, 2242, 2243, 2246, 2247, 2257, 2261, 2263, 2264, 2265, 2266, 2271, 2275, 2277, 2278, 2292, 2294, 2295, 2298, 2302],\n \"longest\": [32, 923, 2217, 2272],\n \"longitud\": [10, 30, 197, 1069, 1071, 1072],\n \"longpanel\": [2228, 2246, 2257],\n \"longtabl\": [259, 890, 1345, 1391, 1433, 1488, 1490, 2202, 2220, 2230, 2239, 2277, 2289, 2291, 2298],\n \"longtablebuild\": 2277,\n \"longtim\": 2228,\n \"look\": [1, 2, 3, 5, 6, 8, 12, 13, 15, 23, 25, 30, 114, 207, 212, 218, 781, 787, 793, 983, 1460, 1491, 2168, 2185, 2186, 2193, 2195, 2196, 2199, 2207, 2210, 2211, 2212, 2216, 2217, 2219, 2220, 2223, 2225, 2228, 2238, 2241, 2246, 2249, 2261, 2271],\n@@ -41594,15 +41588,15 @@\n \"ly\": 2210,\n \"lz4\": [256, 263, 888, 2199, 2236],\n \"lz4hc\": [256, 888, 2199, 2236],\n \"lzip\": 2218,\n \"lzma\": [251, 258, 265, 268, 272, 884, 889, 895, 1469, 1476, 1479, 1480, 1485, 1486, 1487, 2213, 2289, 2298, 2302],\n \"lzmafil\": [251, 258, 265, 268, 272, 884, 889, 895, 1469, 1476, 1479, 1480, 1485, 1486, 1487, 2302],\n \"lzo\": [256, 888, 2199],\n- \"m\": [1, 2, 5, 8, 13, 16, 17, 19, 22, 23, 24, 25, 27, 31, 32, 153, 163, 169, 241, 258, 264, 270, 273, 276, 284, 287, 298, 300, 301, 320, 322, 326, 423, 513, 515, 519, 522, 523, 525, 528, 532, 535, 537, 538, 541, 547, 548, 549, 551, 557, 558, 562, 563, 564, 566, 651, 677, 680, 741, 857, 889, 898, 900, 902, 912, 916, 917, 918, 923, 938, 939, 953, 954, 997, 999, 1000, 1008, 1017, 1051, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1338, 1339, 1340, 1341, 1393, 1397, 1430, 1433, 1446, 1452, 1459, 1464, 1469, 1476, 1482, 1483, 1484, 1486, 1492, 1497, 1498, 1500, 1501, 1578, 1657, 1677, 1699, 1720, 1741, 2186, 2188, 2193, 2197, 2199, 2200, 2201, 2203, 2207, 2208, 2209, 2210, 2214, 2216, 2218, 2220, 2221, 2222, 2227, 2228, 2230, 2231, 2232, 2238, 2246, 2249, 2257, 2264, 2265, 2271, 2277, 2294, 2298, 2302],\n+ \"m\": [1, 2, 5, 8, 13, 16, 17, 19, 22, 23, 24, 25, 27, 31, 32, 153, 163, 169, 241, 258, 264, 270, 273, 276, 284, 287, 298, 300, 301, 320, 322, 326, 423, 513, 515, 519, 522, 523, 525, 528, 532, 535, 537, 538, 541, 547, 548, 549, 551, 557, 558, 562, 563, 564, 566, 651, 677, 680, 741, 857, 889, 898, 900, 902, 912, 916, 917, 918, 923, 938, 939, 953, 954, 997, 999, 1000, 1008, 1017, 1051, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1338, 1339, 1340, 1341, 1393, 1397, 1430, 1433, 1446, 1452, 1459, 1464, 1469, 1476, 1482, 1483, 1484, 1486, 1492, 1497, 1498, 1500, 1501, 1578, 1657, 1677, 1699, 1720, 1741, 2186, 2188, 2193, 2197, 2199, 2200, 2201, 2203, 2205, 2207, 2208, 2209, 2210, 2214, 2216, 2218, 2220, 2221, 2222, 2227, 2228, 2230, 2231, 2232, 2238, 2246, 2249, 2257, 2264, 2265, 2271, 2277, 2294, 2298, 2302],\n \"m8\": [46, 1114, 2210, 2216, 2228, 2230, 2298],\n \"ma\": [2211, 2283, 2298],\n \"mac\": [6, 22],\n \"machin\": [1, 2, 4, 11, 16, 19, 22, 1491, 2193, 2194, 2199, 2289],\n \"maco\": [5, 22, 250, 883, 2246, 2249, 2250, 2278],\n \"macro\": 2277,\n \"mactch\": 2200,\n@@ -43985,14 +43979,15 @@\n \"slight\": [3, 2195],\n \"slightli\": [3, 13, 203, 862, 866, 1387, 2185, 2197, 2199, 2217, 2228, 2277, 2294],\n \"slinear\": [146, 720, 1280, 2218],\n \"sln\": 2191,\n \"sloper\": 25,\n \"slow\": [2, 22, 1345, 1391, 1488, 1490, 1492, 1498, 2186, 2193, 2199, 2202, 2217, 2222, 2232, 2238, 2241, 2253, 2307],\n \"slower\": [1152, 1211, 2193, 2197, 2199, 2202, 2210, 2218, 2228],\n+ \"slowest\": [2185, 2193],\n \"slshape\": 1433,\n \"sm\": [1275, 2186, 2210, 2227, 2232, 2307],\n \"small\": [3, 13, 16, 17, 18, 19, 29, 111, 185, 190, 191, 194, 754, 757, 766, 767, 769, 1242, 1243, 1454, 2185, 2186, 2193, 2195, 2199, 2205, 2207, 2210, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2228, 2230, 2232, 2233, 2234, 2236, 2237, 2239, 2241, 2242, 2243, 2245, 2249, 2271, 2277, 2283, 2289, 2294, 2298, 2302],\n \"smaller\": [0, 94, 144, 268, 745, 1345, 1391, 1488, 1490, 1499, 2186, 2188, 2193, 2202, 2207, 2208, 2210, 2211, 2243, 2249],\n \"smallest\": [176, 179, 360, 588, 754, 757, 1191, 1194, 1242, 1243, 1252, 1255, 1499, 2199, 2205, 2235, 2246, 2264, 2294],\n \"smallint\": [2199, 2307],\n \"smart\": [22, 2186, 2277],\n@@ -44825,15 +44820,15 @@\n \"tolist\": [15, 432, 891, 2199, 2222, 2238, 2246, 2289, 2298, 2302],\n \"tolong\": 2241,\n \"tom\": [13, 35, 2199, 2247, 2248, 2294],\n \"tomaugsburg\": 2231,\n \"tomaugspurg\": [13, 35],\n \"toml\": [2, 22, 2238, 2265],\n \"too\": [2, 3, 233, 807, 831, 1196, 1257, 1358, 1469, 1470, 1486, 2197, 2199, 2205, 2207, 2211, 2215, 2217, 2220, 2231, 2241, 2249, 2257, 2274, 2277, 2283, 2289, 2293, 2294, 2298, 2308],\n- \"took\": [2199, 2223, 2241],\n+ \"took\": [2185, 2193, 2199, 2223, 2241],\n \"tool\": [2, 5, 6, 8, 10, 15, 21, 22, 34, 36, 1146, 1469, 1472, 1486, 2184, 2185, 2186, 2191, 2193, 2195, 2196, 2210, 2220, 2225, 2226, 2232, 2235, 2241, 2246, 2260, 2283, 2298, 2307],\n \"tooltip\": [1402, 1423, 2196, 2283],\n \"toordin\": 2302,\n \"top\": [22, 34, 91, 107, 148, 149, 177, 178, 185, 186, 203, 205, 212, 214, 241, 259, 341, 348, 376, 402, 413, 629, 699, 725, 726, 755, 756, 762, 778, 787, 890, 905, 1036, 1051, 1164, 1188, 1191, 1221, 1249, 1252, 1345, 1387, 1388, 1391, 1400, 1433, 1454, 1458, 1488, 1490, 2167, 2172, 2184, 2186, 2188, 2193, 2195, 2199, 2202, 2204, 2207, 2209, 2211, 2217, 2218, 2220, 2222, 2227, 2230, 2232, 2235, 2238, 2241, 2260, 2264, 2265, 2283, 2289, 2302],\n \"topic\": [0, 4, 13, 35, 2185, 2196],\n \"topmost\": 2204,\n \"toprul\": [259, 890, 1433, 2277],\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "unified_diff": "@@ -1847,25 +1847,26 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....: \n-484 us +- 20.6 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-214 us +- 768 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+867 us +- 402 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+The slowest run took 4.67 times longer than the fastest. This could mean that an intermediate result is being cached.\n+310 us +- 255 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n \n \n
In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n    .....: %timeit ser.take(indexer)\n    .....: \n-243 us +- 27.7 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-244 us +- 19.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+472 us +- 281 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+325 us +- 143 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n 
\n
\n \n
\n

Index types#

\n

We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown here,\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -1245,23 +1245,25 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....:\n-484 us +- 20.6 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-214 us +- 768 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+867 us +- 402 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+The slowest run took 4.67 times longer than the fastest. This could mean that\n+an intermediate result is being cached.\n+310 us +- 255 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n .....: %timeit ser.take(indexer)\n .....:\n-243 us +- 27.7 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-244 us +- 19.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+472 us +- 281 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+325 us +- 143 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n *\b**\b**\b**\b**\b* I\bIn\bnd\bde\bex\bx t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b**\b*\n We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown _\bh_\be_\br_\be, and\n documentation about TimedeltaIndex is found _\bh_\be_\br_\be.\n In the following sub-sections we will highlight some other index types.\n *\b**\b**\b**\b* C\bCa\bat\bte\beg\bgo\bor\bri\bic\bca\bal\blI\bIn\bnd\bde\bex\bx_\b#\b# *\b**\b**\b**\b*\n _\bC_\ba_\bt_\be_\bg_\bo_\br_\bi_\bc_\ba_\bl_\bI_\bn_\bd_\be_\bx is a type of index that is useful for supporting indexing with\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "unified_diff": "@@ -592,31 +592,31 @@\n ...: s += f(a + i * dx)\n ...: return s * dx\n ...: \n \n \n

We achieve our result by using DataFrame.apply() (row-wise):

\n
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)\n-147 ms +- 3.91 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+274 ms +- 66.5 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

Let\u2019s take a look and see where the time is spent during this operation\n using the prun ipython magic function:

\n
# most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 1.016 seconds\n+         605946 function calls (605928 primitive calls) in 0.569 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.529    0.001    0.903    0.001 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n-   552423    0.374    0.000    0.374    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n-     3000    0.018    0.000    0.080    0.000 series.py:1095(__getitem__)\n-    16098    0.013    0.000    0.017    0.000 {built-in method builtins.isinstance}\n+     1000    0.330    0.000    0.479    0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n+   552423    0.149    0.000    0.149    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n+     3000    0.013    0.000    0.052    0.000 series.py:1095(__getitem__)\n+     3000    0.009    0.000    0.024    0.000 series.py:1220(_get_value)\n 
\n
\n

By far the majority of time is spend inside either integrate_f or f,\n hence we\u2019ll concentrate our efforts cythonizing these two functions.

\n
\n
\n

Plain Cython#

\n@@ -634,15 +634,15 @@\n ...: for i in range(N):\n ...: s += f_plain(a + i * dx)\n ...: return s * dx\n ...: \n \n \n
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)\n-135 ms +- 117 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+271 ms +- 46.5 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

This has improved the performance compared to the pure Python approach by one-third.

\n
\n
\n

Declaring C types#

\n

We can annotate the function variables and return types as well as use cdef\n@@ -658,36 +658,37 @@\n ....: for i in range(N):\n ....: s += f_typed(a + i * dx)\n ....: return s * dx\n ....: \n \n \n

In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-22.3 ms +- 42 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+The slowest run took 4.95 times longer than the fastest. This could mean that an intermediate result is being cached.\n+42 ms +- 32.6 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

Annotating the functions with C types yields an over ten times performance improvement compared to\n the original Python implementation.

\n
\n
\n

Using ndarray#

\n

When re-profiling, time is spent creating a Series from each row, and calling __getitem__ from both\n the index and the series (three times for each row). These Python function calls are expensive and\n can be improved by passing an np.ndarray.

\n
In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.113 seconds\n+         52523 function calls (52505 primitive calls) in 0.064 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.018    0.000    0.080    0.000 series.py:1095(__getitem__)\n-    16098    0.013    0.000    0.017    0.000 {built-in method builtins.isinstance}\n-     3000    0.013    0.000    0.032    0.000 series.py:1220(_get_value)\n-     3000    0.011    0.000    0.020    0.000 indexing.py:2765(check_dict_or_set_indexers)\n+     3000    0.010    0.000    0.040    0.000 series.py:1095(__getitem__)\n+     3000    0.007    0.000    0.018    0.000 series.py:1220(_get_value)\n+     3000    0.006    0.000    0.007    0.000 base.py:3777(get_loc)\n+    16098    0.006    0.000    0.008    0.000 {built-in method builtins.isinstance}\n 
\n
\n
In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n@@ -722,33 +723,33 @@\n 
\n

This implementation creates an array of zeros and inserts the result\n of integrate_f_typed applied over each row. Looping over an ndarray is faster\n in Cython than looping over a Series object.

\n

Since apply_integrate_f is typed to accept an np.ndarray, Series.to_numpy()\n calls are needed to utilize this function.

\n
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-2.42 ms +- 2.03 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.92 ms +- 28.1 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

Performance has improved from the prior implementation by almost ten times.

\n
\n
\n

Disabling compiler directives#

\n

The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s boundscheck\n and wraparound checks can yield more performance.

\n
In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-         78 function calls in 0.003 seconds\n+         78 function calls in 0.002 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-        1    0.002    0.002    0.003    0.003 <string>:1(<module>)\n+        1    0.002    0.002    0.002    0.002 <string>:1(<module>)\n         1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}\n-        1    0.000    0.000    0.003    0.003 {built-in method builtins.exec}\n+        1    0.000    0.000    0.002    0.002 {built-in method builtins.exec}\n         3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n 
\n
\n
In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n@@ -1180,19 +1181,19 @@\n compared to standard Python syntax for large DataFrame. This engine requires the\n optional dependency numexpr to be installed.

\n

The 'python' engine is generally not useful except for testing\n other evaluation engines against it. You will achieve no performance\n benefits using eval() with engine='python' and may\n incur a performance hit.

\n
In [40]: %timeit df1 + df2 + df3 + df4\n-707 ms +- 28.7 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+43.8 ms +- 24.9 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")\n-687 ms +- 33.7 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+44.7 ms +- 26.1 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
\n
\n

The DataFrame.eval() method#

\n

In addition to the top level pandas.eval() function you can also\n evaluate an expression in the \u201ccontext\u201d of a DataFrame.

\n@@ -1307,39 +1308,39 @@\n
In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]\n 
\n
\n

DataFrame arithmetic:

\n
In [60]: %timeit df1 + df2 + df3 + df4\n-723 ms +- 44.8 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+30.4 ms +- 2.46 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")\n-238 ms +- 14.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+9.17 ms +- 703 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

DataFrame comparison:

\n
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-31.3 ms +- 604 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+18.9 ms +- 841 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")\n-9.05 ms +- 79.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+5.85 ms +- 107 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

DataFrame arithmetic with unaligned axes.

\n
In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-1.12 s +- 48.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+105 ms +- 45.8 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")\n-232 ms +- 12 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+17.6 ms +- 538 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
\n

Note

\n

Operations such as

\n
1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -110,33 +110,32 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f(a + i * dx)\n    ...:     return s * dx\n    ...:\n We achieve our result by using _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\ba_\bp_\bp_\bl_\by_\b(_\b) (row-wise):\n In [5]: %timeit df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]), axis=1)\n-147 ms +- 3.91 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+274 ms +- 66.5 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Let\u2019s take a look and see where the time is spent during this operation using\n the _\bp_\br_\bu_\bn_\b _\bi_\bp_\by_\bt_\bh_\bo_\bn_\b _\bm_\ba_\bg_\bi_\bc_\b _\bf_\bu_\bn_\bc_\bt_\bi_\bo_\bn:\n # most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 1.016 seconds\n+         605946 function calls (605928 primitive calls) in 0.569 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.529    0.001    0.903    0.001 :1\n+     1000    0.330    0.000    0.479    0.000 :1\n (integrate_f)\n-   552423    0.374    0.000    0.374    0.000 :1\n+   552423    0.149    0.000    0.149    0.000 :1\n (f)\n-     3000    0.018    0.000    0.080    0.000 series.py:1095(__getitem__)\n-    16098    0.013    0.000    0.017    0.000 {built-in method\n-builtins.isinstance}\n+     3000    0.013    0.000    0.052    0.000 series.py:1095(__getitem__)\n+     3000    0.009    0.000    0.024    0.000 series.py:1220(_get_value)\n By far the majority of time is spend inside either integrate_f or f, hence\n we\u2019ll concentrate our efforts cythonizing these two functions.\n *\b**\b**\b**\b* P\bPl\bla\bai\bin\bn C\bCy\byt\bth\bho\bon\bn_\b#\b# *\b**\b**\b**\b*\n First we\u2019re going to need to import the Cython magic function to IPython:\n In [7]: %load_ext Cython\n Now, let\u2019s simply copy our functions over to Cython:\n In [8]: %%cython\n@@ -147,15 +146,15 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f_plain(a + i * dx)\n    ...:     return s * dx\n    ...:\n In [9]: %timeit df.apply(lambda x: integrate_f_plain(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-135 ms +- 117 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+271 ms +- 46.5 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n This has improved the performance compared to the pure Python approach by one-\n third.\n *\b**\b**\b**\b* D\bDe\bec\bcl\bla\bar\bri\bin\bng\bg C\bC t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b*\n We can annotate the function variables and return types as well as use cdef and\n cpdef to improve performance:\n In [10]: %%cython\n    ....: cdef double f_typed(double x) except? -2:\n@@ -167,36 +166,37 @@\n    ....:     dx = (b - a) / N\n    ....:     for i in range(N):\n    ....:         s += f_typed(a + i * dx)\n    ....:     return s * dx\n    ....:\n In [11]: %timeit df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-22.3 ms +- 42 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+The slowest run took 4.95 times longer than the fastest. This could mean that\n+an intermediate result is being cached.\n+42 ms +- 32.6 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Annotating the functions with C types yields an over ten times performance\n improvement compared to the original Python implementation.\n *\b**\b**\b**\b* U\bUs\bsi\bin\bng\bg n\bnd\bda\bar\brr\bra\bay\by_\b#\b# *\b**\b**\b**\b*\n When re-profiling, time is spent creating a _\bS_\be_\br_\bi_\be_\bs from each row, and calling\n __getitem__ from both the index and the series (three times for each row).\n These Python function calls are expensive and can be improved by passing an\n np.ndarray.\n In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x\n [\"N\"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.113 seconds\n+         52523 function calls (52505 primitive calls) in 0.064 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.018    0.000    0.080    0.000 series.py:1095(__getitem__)\n-    16098    0.013    0.000    0.017    0.000 {built-in method\n+     3000    0.010    0.000    0.040    0.000 series.py:1095(__getitem__)\n+     3000    0.007    0.000    0.018    0.000 series.py:1220(_get_value)\n+     3000    0.006    0.000    0.007    0.000 base.py:3777(get_loc)\n+    16098    0.006    0.000    0.008    0.000 {built-in method\n builtins.isinstance}\n-     3000    0.013    0.000    0.032    0.000 series.py:1220(_get_value)\n-     3000    0.011    0.000    0.020    0.000 indexing.py:2765\n-(check_dict_or_set_indexers)\n In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n    ....: cpdef double integrate_f_typed(double a, double b, int N):\n    ....:     cdef int i\n@@ -237,31 +237,31 @@\n This implementation creates an array of zeros and inserts the result of\n integrate_f_typed applied over each row. Looping over an ndarray is faster in\n Cython than looping over a _\bS_\be_\br_\bi_\be_\bs object.\n Since apply_integrate_f is typed to accept an np.ndarray, _\bS_\be_\br_\bi_\be_\bs_\b._\bt_\bo_\b__\bn_\bu_\bm_\bp_\by_\b(_\b)\n calls are needed to utilize this function.\n In [14]: %timeit apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(), df\n [\"N\"].to_numpy())\n-2.42 ms +- 2.03 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.92 ms +- 28.1 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n Performance has improved from the prior implementation by almost ten times.\n *\b**\b**\b**\b* D\bDi\bis\bsa\bab\bbl\bli\bin\bng\bg c\bco\bom\bmp\bpi\bil\ble\ber\br d\bdi\bir\bre\bec\bct\bti\biv\bve\bes\bs_\b#\b# *\b**\b**\b**\b*\n The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s\n boundscheck and wraparound checks can yield more performance.\n In [15]: %prun -l 4 apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n-         78 function calls in 0.003 seconds\n+         78 function calls in 0.002 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-        1    0.002    0.002    0.003    0.003 :1()\n+        1    0.002    0.002    0.002    0.002 :1()\n         1    0.000    0.000    0.000    0.000 {method 'disable' of\n '_lsprof.Profiler' objects}\n-        1    0.000    0.000    0.003    0.003 {built-in method builtins.exec}\n+        1    0.000    0.000    0.002    0.002 {built-in method builtins.exec}\n         3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:\n    ....:     return x * (x - 1)\n@@ -648,17 +648,17 @@\n The 'numexpr' engine is the more performant engine that can yield performance\n improvements compared to standard Python syntax for large _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be. This\n engine requires the optional dependency numexpr to be installed.\n The 'python' engine is generally n\bno\bot\bt useful except for testing other evaluation\n engines against it. You will achieve n\bno\bo performance benefits using _\be_\bv_\ba_\bl_\b(_\b) with\n engine='python' and may incur a performance hit.\n In [40]: %timeit df1 + df2 + df3 + df4\n-707 ms +- 28.7 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+43.8 ms +- 24.9 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n In [41]: %timeit pd.eval(\"df1 + df2 + df3 + df4\", engine=\"python\")\n-687 ms +- 33.7 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+44.7 ms +- 26.1 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n *\b**\b**\b**\b* T\bTh\bhe\be _\bD\bD_\ba\ba_\bt\bt_\ba\ba_\bF\bF_\br\br_\ba\ba_\bm\bm_\be\be_\b.\b._\be\be_\bv\bv_\ba\ba_\bl\bl_\b(\b(_\b)\b) m\bme\bet\bth\bho\bod\bd_\b#\b# *\b**\b**\b**\b*\n In addition to the top level _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) function you can also evaluate an\n expression in the \u201ccontext\u201d of a _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be.\n In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=[\"a\", \"b\"])\n \n In [43]: df.eval(\"a + b\")\n Out[43]:\n@@ -755,29 +755,29 @@\n _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) works well with expressions containing large arrays.\n In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for\n _ in range(4)]\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic:\n In [60]: %timeit df1 + df2 + df3 + df4\n-723 ms +- 44.8 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+30.4 ms +- 2.46 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n In [61]: %timeit pd.eval(\"df1 + df2 + df3 + df4\")\n-238 ms +- 14.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+9.17 ms +- 703 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be comparison:\n In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-31.3 ms +- 604 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+18.9 ms +- 841 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n In [63]: %timeit pd.eval(\"(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\")\n-9.05 ms +- 79.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+5.85 ms +- 107 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic with unaligned axes.\n In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-1.12 s +- 48.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+105 ms +- 45.8 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n In [66]: %timeit pd.eval(\"df1 + df2 + df3 + df4 + s\")\n-232 ms +- 12 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+17.6 ms +- 538 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Note\n Operations such as\n 1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n ~1  # this is okay, but slower when using eval\n should be performed in Python. An exception will be raised if you try to\n perform any boolean/bitwise operations with scalar operands that are not of\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html", "unified_diff": "@@ -986,26 +986,19 @@\n Cell In[33], line 1\n ----> 1 table = pa.table([pa.array([1, 2, 3], type=pa.int64())], names=["a"])\n \n NameError: name 'pa' is not defined\n \n In [34]: df = table.to_pandas(types_mapper=pd.ArrowDtype)\n ---------------------------------------------------------------------------\n-AttributeError                            Traceback (most recent call last)\n-<ipython-input-34-64ec62289cb4> in ?()\n+NameError                                 Traceback (most recent call last)\n+Cell In[34], line 1\n ----> 1 df = table.to_pandas(types_mapper=pd.ArrowDtype)\n \n-/usr/lib/python3/dist-packages/pandas/core/generic.py in ?(self, name)\n-   6295             and name not in self._accessors\n-   6296             and self._info_axis._can_hold_identifiers_and_holds_name(name)\n-   6297         ):\n-   6298             return self[name]\n--> 6299         return object.__getattribute__(self, name)\n-\n-AttributeError: 'DataFrame' object has no attribute 'to_pandas'\n+NameError: name 'table' is not defined\n \n In [35]: df\n Out[35]: \n      a    b\n 0  xxx  yyy\n 1   \u00a1\u00a1   \u00a1\u00a1\n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -526,27 +526,19 @@\n Cell In[33], line 1\n ----> 1 table = pa.table([pa.array([1, 2, 3], type=pa.int64())], names=[\"a\"])\n \n NameError: name 'pa' is not defined\n \n In [34]: df = table.to_pandas(types_mapper=pd.ArrowDtype)\n ---------------------------------------------------------------------------\n-AttributeError                            Traceback (most recent call last)\n- in ?()\n+NameError                                 Traceback (most recent call last)\n+Cell In[34], line 1\n ----> 1 df = table.to_pandas(types_mapper=pd.ArrowDtype)\n \n-/usr/lib/python3/dist-packages/pandas/core/generic.py in ?(self, name)\n-   6295             and name not in self._accessors\n-   6296             and self._info_axis._can_hold_identifiers_and_holds_name\n-(name)\n-   6297         ):\n-   6298             return self[name]\n--> 6299         return object.__getattribute__(self, name)\n-\n-AttributeError: 'DataFrame' object has no attribute 'to_pandas'\n+NameError: name 'table' is not defined\n \n In [35]: df\n Out[35]:\n      a    b\n 0  xxx  yyy\n 1   \u00a1\u00a1   \u00a1\u00a1\n \n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "unified_diff": "@@ -1086,16 +1086,16 @@\n    ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")\n    ....: counts = pd.Series(dtype=int)\n    ....: for path in files:\n    ....:     df = pd.read_parquet(path)\n    ....:     counts = counts.add(df["name"].value_counts(), fill_value=0)\n    ....: counts.astype(int)\n    ....: \n-CPU times: user 714 us, sys: 0 ns, total: 714 us\n-Wall time: 722 us\n+CPU times: user 1.14 ms, sys: 792 us, total: 1.93 ms\n+Wall time: 44.2 ms\n Out[32]: Series([], dtype: int32)\n 
\n
\n

Some readers, like pandas.read_csv(), offer parameters to control the\n chunksize when reading a single file.

\n

Manually chunking is an OK option for workflows that don\u2019t\n require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby(), are\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -644,16 +644,16 @@\n ....: files = pathlib.Path(\"data/timeseries/\").glob(\"ts*.parquet\")\n ....: counts = pd.Series(dtype=int)\n ....: for path in files:\n ....: df = pd.read_parquet(path)\n ....: counts = counts.add(df[\"name\"].value_counts(), fill_value=0)\n ....: counts.astype(int)\n ....:\n-CPU times: user 714 us, sys: 0 ns, total: 714 us\n-Wall time: 722 us\n+CPU times: user 1.14 ms, sys: 792 us, total: 1.93 ms\n+Wall time: 44.2 ms\n Out[32]: Series([], dtype: int32)\n Some readers, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\br_\be_\ba_\bd_\b__\bc_\bs_\bv_\b(_\b), offer parameters to control the chunksize\n when reading a single file.\n Manually chunking is an OK option for workflows that don\u2019t require too\n sophisticated of operations. Some operations, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\bg_\br_\bo_\bu_\bp_\bb_\by_\b(_\b),\n are much harder to do chunkwise. In these cases, you may be better switching to\n a different library that implements these out-of-core algorithms for you.\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "unified_diff": null, "details": [{"source1": "style.ipynb", "source2": "style.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9985610875706213%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2026-05-15T05:10:39.207400Z', \"", " \"'iopub.status.busy': '2026-05-15T05:10:39.206983Z', 'iopub.status.idle': \"", " \"'2026-05-15T05:10:41.130990Z', 'shell.execute_reply': \"", " \"'2026-05-15T05:10:41.125747Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2026-05-15T05:10:41.157534Z', 'iopub.status.busy': \"", " \"'2026-05-15T05:10:41.157000Z', 'iopub.status.idle': '2026-05-15T05:10:4 [\u2026]"], "unified_diff": "@@ -39,18 +39,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-04-11T21:03:06.626742Z\",\n- \"iopub.status.busy\": \"2025-04-11T21:03:06.626449Z\",\n- \"iopub.status.idle\": \"2025-04-11T21:03:07.579551Z\",\n- \"shell.execute_reply\": \"2025-04-11T21:03:07.578550Z\"\n+ \"iopub.execute_input\": \"2026-05-15T05:10:39.207400Z\",\n+ \"iopub.status.busy\": \"2026-05-15T05:10:39.206983Z\",\n+ \"iopub.status.idle\": \"2026-05-15T05:10:41.130990Z\",\n+ \"shell.execute_reply\": \"2026-05-15T05:10:41.125747Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot\\n\",\n \"# We have this here to trigger matplotlib's font cache stuff.\\n\",\n@@ -77,36 +77,36 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-04-11T21:03:07.582718Z\",\n- \"iopub.status.busy\": \"2025-04-11T21:03:07.582326Z\",\n- \"iopub.status.idle\": \"2025-04-11T21:03:08.347488Z\",\n- \"shell.execute_reply\": \"2025-04-11T21:03:08.346524Z\"\n+ \"iopub.execute_input\": \"2026-05-15T05:10:41.157534Z\",\n+ \"iopub.status.busy\": \"2026-05-15T05:10:41.157000Z\",\n+ \"iopub.status.idle\": \"2026-05-15T05:10:46.630919Z\",\n+ \"shell.execute_reply\": \"2026-05-15T05:10:46.629798Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import pandas as pd\\n\",\n \"import numpy as np\\n\",\n \"import matplotlib as mpl\\n\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-04-11T21:03:08.350547Z\",\n- \"iopub.status.busy\": \"2025-04-11T21:03:08.350133Z\",\n- \"iopub.status.idle\": \"2025-04-11T21:03:08.481796Z\",\n- \"shell.execute_reply\": \"2025-04-11T21:03:08.480806Z\"\n+ \"iopub.execute_input\": \"2026-05-15T05:10:46.638871Z\",\n+ \"iopub.status.busy\": \"2026-05-15T05:10:46.638033Z\",\n+ \"iopub.status.idle\": \"2026-05-15T05:10:46.741782Z\",\n+ \"shell.execute_reply\": \"2026-05-15T05:10:46.740574Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\\n\",\n \"from pandas.io.formats.style import Styler\\n\",\n@@ -123,18 +123,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-04-11T21:03:08.484647Z\",\n- \"iopub.status.busy\": \"2025-04-11T21:03:08.484277Z\",\n- \"iopub.status.idle\": \"2025-04-11T21:03:08.497241Z\",\n- \"shell.execute_reply\": \"2025-04-11T21:03:08.496389Z\"\n+ \"iopub.execute_input\": \"2026-05-15T05:10:46.750068Z\",\n+ \"iopub.status.busy\": \"2026-05-15T05:10:46.749516Z\",\n+ \"iopub.status.idle\": \"2026-05-15T05:10:46.766009Z\",\n+ \"shell.execute_reply\": \"2026-05-15T05:10:46.764984Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/html\": [\n \"