{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.mDXHIpxI/b1/symfit_0.5.6-3_i386.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.mDXHIpxI/b2/symfit_0.5.6-3_i386.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,3 +1,3 @@\n \n- 17d583a1c3aa5a2307eab810b978417e 1120880 doc optional python3-symfit-doc_0.5.6-3_all.deb\n+ b178b9536346292a12bbf9a27836ce53 1120768 doc optional python3-symfit-doc_0.5.6-3_all.deb\n ddbb7a0032231d55d66e22bc694c0007 44740 python optional python3-symfit_0.5.6-3_all.deb\n"}, {"source1": "python3-symfit-doc_0.5.6-3_all.deb", "source2": "python3-symfit-doc_0.5.6-3_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2024-06-30 17:53:58.000000 debian-binary\n--rw-r--r-- 0 0 0 3536 2024-06-30 17:53:58.000000 control.tar.xz\n--rw-r--r-- 0 0 0 1117152 2024-06-30 17:53:58.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 3528 2024-06-30 17:53:58.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 1117048 2024-06-30 17:53:58.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -17,15 +17,15 @@\n -rw-r--r-- 0 root (0) root (0) 882 2023-02-14 13:35:47.000000 ./usr/share/doc/python3-symfit/examples/poly_surface_fit.py\n drwxr-xr-x 0 root (0) root (0) 0 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/\n drwxr-xr-x 0 root (0) root (0) 0 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/_images/\n -rw-r--r-- 0 root (0) root (0) 28654 2023-02-14 13:35:47.000000 ./usr/share/doc/python3-symfit/html/_images/callable_numerical_model.png\n -rw-r--r-- 0 root (0) root (0) 22824 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/_images/examples_ex_bivariate_likelihood_6_0.png\n -rw-r--r-- 0 root (0) root (0) 22705 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/_images/examples_ex_mexican_hat_5_1.png\n -rw-r--r-- 0 root (0) root (0) 20807 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/_images/examples_ex_ode_system_5_0.png\n--rw-r--r-- 0 root (0) root (0) 35467 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/_images/examples_ex_ode_system_8_0.png\n+-rw-r--r-- 0 root (0) root (0) 35470 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/_images/examples_ex_ode_system_8_0.png\n -rw-r--r-- 0 root (0) root (0) 16046 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/_images/examples_ex_tikhonov_15_2.png\n -rw-r--r-- 0 root (0) root (0) 29168 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/_images/examples_ex_tikhonov_17_1.png\n -rw-r--r-- 0 root (0) root (0) 10817 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/_images/examples_ex_tikhonov_5_1.png\n -rw-r--r-- 0 root (0) root (0) 17671 2023-02-14 13:35:47.000000 ./usr/share/doc/python3-symfit/html/_images/fourier_series.png\n -rw-r--r-- 0 root (0) root (0) 33325 2023-02-14 13:35:47.000000 ./usr/share/doc/python3-symfit/html/_images/gaussian_intro.png\n -rw-r--r-- 0 root (0) root (0) 44823 2023-02-14 13:35:47.000000 ./usr/share/doc/python3-symfit/html/_images/global_fitting.png\n -rw-r--r-- 0 root (0) root (0) 18350 2023-02-14 13:35:47.000000 ./usr/share/doc/python3-symfit/html/_images/interactive_guess_ODE.png\n@@ -70,44 +70,44 @@\n -rw-r--r-- 0 root (0) root (0) 2871 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/_static/nbsphinx-no-thumbnail.svg\n -rw-r--r-- 0 root (0) root (0) 90 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/_static/plus.png\n -rw-r--r-- 0 root (0) root (0) 4929 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/_static/pygments.css\n -rw-r--r-- 0 root (0) root (0) 16578 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/api_structure.html\n -rw-r--r-- 0 root (0) root (0) 5010 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/dependencies.html\n drwxr-xr-x 0 root (0) root (0) 0 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/\n -rw-r--r-- 0 root (0) root (0) 14149 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_CallableNumericalModel.html\n--rw-r--r-- 0 root (0) root (0) 14303 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_CallableNumericalModel_ode.html\n--rw-r--r-- 0 root (0) root (0) 1484 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_CallableNumericalModel_ode.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 14304 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_CallableNumericalModel_ode.html\n+-rw-r--r-- 0 root (0) root (0) 1487 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_CallableNumericalModel_ode.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 14006 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_ODEModel.html\n--rw-r--r-- 0 root (0) root (0) 17448 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_bivariate_likelihood.html\n--rw-r--r-- 0 root (0) root (0) 24525 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_bivariate_likelihood.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 17449 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_bivariate_likelihood.html\n+-rw-r--r-- 0 root (0) root (0) 24531 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_bivariate_likelihood.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 17290 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_fourier_series.html\n -rw-r--r-- 0 root (0) root (0) 11228 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_interactive_guesses_ODE.html\n -rw-r--r-- 0 root (0) root (0) 13124 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_interactive_guesses_nD.html\n -rw-r--r-- 0 root (0) root (0) 10508 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_interactive_guesses_vector_2D.html\n--rw-r--r-- 0 root (0) root (0) 19949 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_mexican_hat.html\n--rw-r--r-- 0 root (0) root (0) 24996 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_mexican_hat.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 19951 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_mexican_hat.html\n+-rw-r--r-- 0 root (0) root (0) 25004 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_mexican_hat.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 10843 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_multidataset_likelihood.html\n--rw-r--r-- 0 root (0) root (0) 24086 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_ode_system.html\n--rw-r--r-- 0 root (0) root (0) 58375 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_ode_system.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 24087 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_ode_system.html\n+-rw-r--r-- 0 root (0) root (0) 58374 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_ode_system.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 16627 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_piecewise.html\n -rw-r--r-- 0 root (0) root (0) 13985 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_poly_surface_fit.html\n--rw-r--r-- 0 root (0) root (0) 31733 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_tikhonov.html\n--rw-r--r-- 0 root (0) root (0) 57966 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_tikhonov.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 31734 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_tikhonov.html\n+-rw-r--r-- 0 root (0) root (0) 57965 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/ex_tikhonov.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 8865 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/examples/index.html\n -rw-r--r-- 0 root (0) root (0) 83854 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/fitting_types.html\n -rw-r--r-- 0 root (0) root (0) 44977 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/genindex.html\n -rw-r--r-- 0 root (0) root (0) 10783 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/index.html\n -rw-r--r-- 0 root (0) root (0) 5628 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/installation.html\n -rw-r--r-- 0 root (0) root (0) 12114 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/intro.html\n -rw-r--r-- 0 root (0) root (0) 7460 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/likelihood.html\n -rw-r--r-- 0 root (0) root (0) 343289 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/module_docs.html\n -rw-r--r-- 0 root (0) root (0) 7335 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/objects.inv\n -rw-r--r-- 0 root (0) root (0) 6352 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/py-modindex.html\n -rw-r--r-- 0 root (0) root (0) 3691 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/search.html\n--rw-r--r-- 0 root (0) root (0) 83094 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 83115 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/searchindex.js\n -rw-r--r-- 0 root (0) root (0) 15201 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/sigma.html\n -rw-r--r-- 0 root (0) root (0) 8947 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/style_guide.html\n -rw-r--r-- 0 root (0) root (0) 6010 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/technical_notes.html\n -rw-r--r-- 0 root (0) root (0) 30174 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit/html/tutorial.html\n drwxr-xr-x 0 root (0) root (0) 0 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit-doc/\n -rw-r--r-- 0 root (0) root (0) 620 2024-06-30 17:53:58.000000 ./usr/share/doc/python3-symfit-doc/changelog.Debian.gz\n -rw-r--r-- 0 root (0) root (0) 1456 2024-06-29 13:31:00.000000 ./usr/share/doc/python3-symfit-doc/copyright\n"}, {"source1": "./usr/share/doc/python3-symfit/html/_images/examples_ex_ode_system_8_0.png", "source2": "./usr/share/doc/python3-symfit/html/_images/examples_ex_ode_system_8_0.png", "unified_diff": null, "details": [{"source1": "sng", "source2": "sng", "unified_diff": "@@ -336,16 +336,16 @@\n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 6c6c6cff 1c1c1cff dededeff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 848484ff 282828ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fcfdfcff cae7caff b5ddb5ff cae7caff fcfdfcff ffffffff ffffffff e2f1e2ff 55b255ff 2ca02cff 2da02dff 95cf95ff fcfdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefcfcff da3f40ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d83435ff e78384ff e26768ff dc494aff d72c2dff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d83536ff dd5051ff de5354ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff f0b3b4ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f4c8c9ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff f4c8c9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefefeff 6b6b6bff 1a1a1aff dadadaff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 535353ff 414141ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff bbe0bbff 43aa43ff 2ca02cff 2ca02cff 2ca02cff 43aa43ff bbe0bbff bce1bcff 39a539ff 2ca02cff 3da73dff c5e4c5ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f4c8c9ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff f4c8c9ff ffffffff ffffffff fefcfcff fae5e5ff f4c7c8ff eea9a9ff e98c8cff e36d6eff de5253ff d93738ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff e68182ff f1b8b9ff f6d0d0ff fae8e9ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff f16217ff da3025ff d62728ff d62728ff d62728ff da3125ff f16217ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f0b3b4ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff f0b3b4ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 696969ff 0f0f0fff c0c0c0ff e7e7e7ff e7e7e7ff e7e7e7ff f6f6f6ff ffffffff ffffffff 787878ff 5d5d5dff ffffffff ffffffff 8f8f8fff afafafff dadadaff d4d4d4ff 787878ff 000000ff adadadff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff bbe0bbff 2da02dff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 5bb55bff e7f4e7ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f0b3b4ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff f0b3b4ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fdf4f4ff f8dadaff f2bfbfff eda2a3ff d73132ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62b2cff da4141ff df595aff e47171ff e8898aff eda1a1ff f1b9b9ff f6d1d1ff fae9e9ff fefbfaff ff8d28ff ff7f0eff fe7d0eff f46814ff f06017ff f46814ff fe7d0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefcfcff f4c8c9ff f0b3b4ff f4c8c9ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f4c8c9ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff f4c8c9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefcfcff f4c8c9ff f0b3b4ff f4c8c9ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 000000ff 000000ff 000000ff 000000ff 000000ff 000000ff 9f9f9fff ffffffff ffffffff 5f5f5fff 3f3f3fff ffffffff ffffffff 898989ff 232323ff 080808ff 111111ff 3c3c3cff b5b5b5ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fcfdfcff 43aa43ff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 88c37eff faebd9ff ffe9d7ff ffe6d0ff ffe2caff ffdfc3ff ffdbbcff ffd9b9ff ffd9b9ff ffdabaff ffdabbff ffdbbbff ffdbbcff ffdcbdff ffddbfff ffdfc3ff ffe2caff ffe6d1ff ffead8ff ffeedfff fff1e6ff fff5edff fff9f4ff fffcfbff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f4c8c9ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff f4c8c9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff d62829ff d62829ff d62728ff d62728ff d62728ff d62728ff d62728ff e26a6aff e36f70ff df5758ff da3f40ff d6292aff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62a2aff db3124ff df3b21ff e4451eff e84f1cff ed5819ff f16116ff f56914ff f97211ff fd7b0fff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff da3f40ff d62728ff d62728ff d62728ff da3f40ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefcfcff da3f40ff d62829ff d62728ff d62728ff d62728ff d62728ff d62728ff d62829ff da3f40ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff da3f40ff d62728ff d62728ff d62728ff da3f40ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fff8f2ff d4d1a3ff 729522ff 89911eff a08d1bff b68a18ff b78917ff 499b27ff 2ca02cff 339e2aff b68a18ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8011ff ff851bff ff8b26ff ff9130ff ff973bff ff9d47ff ffa352ff ffa85cff ffae68ff ffb473ff ffba7eff ffc089ff ffc694ff ffcc9fff ffd2abff ffd7b5ff ffddc0ff ffe4ccff ffead8ff fff0e4ff fff6efff fffcfbff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefcfcff da3f40ff d62829ff d62728ff d62728ff d62728ff d62728ff d62728ff d62829ff da3f40ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff da3f40ff d62728ff d62728ff d62728ff da3f40ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff fefbfbff fae7e7ff f6cfcfff f1b7b7ff ec9f9fff e88687ff e36f70ff df5657ff da3f40ff d6292aff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d8302fff dc4849ff e05e5fff e47374ff e88889ff ec9e9fff f0b3b4ff f4c9c9ff f8dedeff fdf4f4ff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff d62829ff d62728ff d62728ff d62728ff d62728ff d62829ff d62829ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff d62829ff d62829ff d62728ff d62728ff d62728ff d62829ff d62829ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d28ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff d62829ff d62728ff d62728ff d62728ff d62728ff d62829ff d62829ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffefeff ffecdcff ffd1aaff ffb778ff ffa04dff ff8c28ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff cc8615ff 3d9d29ff 2ca02cff 419c28ff d28514ff ff7f0eff fe7f0fff ff8419ff ff881fff ff8b26ff ff8f2cff ff9233ff ff963aff ff983eff ff983eff ff983dff ff973cff ff973bff ff963bff ff963aff ff9538ff ff9334ff ff8f2dff ff8b26ff ff881fff ff8418ff ff8010ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8316ff ff8922ff ff8f2dff ff963aff ff9c45ff ffa251ff ffa85cff ffae68ff ffb574ff ffbb7fff ffc18bff ffc797ff ffcea3ff ffd4aeff ffdabbff ffe0c6ff ffe7d2ff ffedddff fff2e7ff ffdabaff ffd1aaff ffdec2ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff d62829ff d62829ff d62728ff d62728ff d62728ff d62829ff d62829ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefcfcff f4c8c9ff f0b3b4ff f4c8c9ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefbfbff fac9b1ff f56b13ff f16116ff ec5719ff e84e1cff e4451fff e03c21ff db3324ff d72a26ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d83132ff dc4647ff e05c5dff e47171ff e78383ff d83334ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62829ff da3f40ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff da3f40ff d62728ff d62728ff d62728ff da3f40ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefcfcff da3f40ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62829ff da3f40ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffedddff ffca9bff ffa75aff ff881fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff fa861bff ce8614ff b68a18ff 729421ff 2e9f2bff 2ca02cff 379e2aff 509926ff 479b28ff 399d2aff cacd9aff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffcfbff fff9f4ff fff5edff fff1e5ff ffecdcff ffe6d1ff ffe0c6ff ffdbbbff ffd5b0ff ffcfa5ff ffc99aff ffc38fff ffbd84ff ffb779ff ffb16dff ffac63ff ffa658ff ffa04cff ff9940ff ff9435ff ff8a23ff ff8418ff ff8011ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8010ff ff8c27ff ff983eff ff9f4bff ffa556ff ffab62ff ffb16dff ffb87aff ffbe85ff ffc491ff ffca9cff ffd0a8ff ffd7b4ff ffddbfff ffe3ccff ffe9d7ff fff0e3ff fff6eeff fffaf7ff fffefeff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d28ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff da3f40ff d62728ff d62728ff d62728ff da3f40ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff fe7e0fff fc8728ff f8dcdbff f4c8c9ff f0b2b3ff ec9d9eff e88788ff e47273ff e05c5dff dc4748ff d83132ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff df595aff e67e7fff ea9192ff eda4a4ff f1b7b8ff f5cacaff f8dddeff fcf1f1ff fefefeff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefcfcff f4c8c9ff f0b3b4ff f4c8c9ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f4c8c9ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff f4c8c9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfdff fffbf9ff fff9f5ff fff7f1ff fff5edff fff3e9ff fff1e5ff ffefe1ff ffedddff ffebdaff ffe9d6ff ffe7d2ff ffe4cdff ffe2caff ffe0c6ff ffdec2ff ffdcbeff ffdabbff ffd8b6ff ffd6b2ff ffd4aeff ffd2abff ffd0a7ff ffcea3ff ffcb9eff ffc99aff ffc797ff ffc593ff ffad65ff ff861bff ff7f0eff ff7f0eff ff7f0eff ff8d28ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n-ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffefeff ffe6d1ff ffbb7fff ff902fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8215ff ff9a42ff ffb575ff ffcea3ff ffe2caff fff6eeff fcd1a9ff 429c28ff 2c9f2bff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2d9f2bff 449c28ff fcd1a9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8c27ff ffcea4ff ffeee0ff ffe8d5ff ffe2c9ff ffdcbdff ffd5b1ff ffcfa6ff ffc99aff ffc38eff ffbc82ff ffb677ff ffb06bff ffaa5fff ffa454ff ff9d48ff ff973cff ff9130ff ff871dff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8317ff ff881fff ff8c28ff ff9130ff ff9539ff ff9a42ff ff9f4bff ffa353ff ffa85bff ffac64ff ffb16cff ffb575ff ffba7dff ffbe86ff ffc38eff ffc797ff ffcca0ff ffd1a9ff ffd5b1ff ffd9b9ff ffdcbeff ffc08aff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffd1abff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefcfcff f4c8c9ff f0b3b4ff f4c8c9ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fdf4f4ff f9dfdfff f4c9c9ff f0b4b4ff ec9f9fff e2696aff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d72c2dff da3f40ff dd5051ff e16161ff e47172ff e78283ff ea9394ff eda4a4ff f1b5b5ff f4c6c6ff f7d7d7ff fae8e8ff fdf8f8ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f0b3b4ff d62728ff d62727ff d62827ff d72a27ff d82b26ff d82c26ff d92d25ff d92f25ff da3025ff f1ac9fff ffedddff ffebdaff ffe9d6ff ffe7d2ff ffe5ceff ffe3ccff ffe1c8ff ffdfc4ff ffddc0ff ffdcbdff ffdabaff ffd8b6ff ffd6b2ff ffd4aeff ffd2abff ffb676ff fe861eff f87111ff f66c13ff f87111ff fe851cff ffae67ff ffc38eff ffc18aff ffbf88ff ffbd84ff ffbb80ff ffb97cff ffb87aff ffb676ff ffb472ff ffb26eff ffb06aff ffae68ff ffac64ff ffaa60ff ffa85cff ffa659ff ffa556ff ffa352ff ffa14eff ff9f4bff ff9d48ff ff9b44ff ff9940ff ff973cff ff9539ff ff9436ff ff9232ff ff902eff ff8e2bff ff8c27ff ff8a23ff ff881fff ff861cff ff8418ff ff8214ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n-ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff fff6eeff ffc593ff ff9334ff ff7f0eff ff7f0eff ff7f0eff ff8113ff ff9e4aff ffc18aff ffe3cbff fffbf9ff ffffffff ffffffff ffffffff ffffffff ffffffff f3dab9ff 559925ff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2d9f2bff 2d9f2bff bb8917ff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8821ff ffd2aaff ffcca0ff ffc695ff ffc089ff ffba7dff ffb371ff ffad66ff ffa75aff ffa14eff ff9b43ff ff9437ff ff8e2cff ff881fff ff8214ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8011ff ff8317ff ff871dff ff8a23ff ff8d29ff ff902fff ff9335ff ff973bff ff9a41ff ff9d48ff ffa04dff ffa251ff ffa455ff ffa659ff ffa85cff ffaa60ff ffac64ff ffae68ff ffb06bff ffb26fff ffb473ff ffb677ff ffb87aff ffba7eff ffbd83ff ffbf87ff ffc18aff ffc38eff ffc592ff ffc796ff ffc99aff ffcb9dff ffcda1ff ffcfa5ff ffd0a8ff ffd1aaff ffd2abff ffd3adff ffd4afff ffd5b1ff ffd6b3ff ffd7b5ff ffd8b7ff ffd9b9ff ffdabbff ffdbbcff ffdcbeff ffddc0ff ffdec2ff ffdfc4ff ffe0c6ff ffe1c7ff ffe2c9ff ffe3cbff ffe4ccff ffe5ceff ffe6d0ff ffe7d2ff ffe8d4ff ffe9d6ff ffead8ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffc797ff ff8a23ff ff7f0eff ff7f0eff ff7f0eff ff8a24ff ffc796ff ffe9d6ff ffe8d4ff ffe7d3ff ffe6d1ff ffe6d0ff ffe5ceff ffe4ccff ffe3ccff ffe2caff ffe2c9ff ffe1c7ff ffe0c6ff ffdfc4ff ffdec2ff ffdec1ff f6b497ff e03e21ff e13f20ff e13f20ff e14020ff e13f20ff e13f20ff e03d21ff df3b21ff de3921ff e97762ff ea7d6bff e66e5eff e35e52ff df4f47ff dc403bff d8302fff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d82e2cff db3a33ff de4539ff e1503fff e45b45ff e8654aff eb6f4eff ee7952ff f18356ff f48d59ff f7965cff fa9f5fff fda761ff ffaa60ff ffa95dff ffa75aff ffa658ff ff973cff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8e2bff ff9538ff ff9335ff ff9232ff ff902fff ff8f2dff ff8e2bff ff8c28ff ff8b25ff ff8921ff ff871eff ff851bff ff8317ff fe8012ff fe7e0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8112ff ff8317ff ff851bff ff871eff ff8922ff ff8b26ff ff8d2aff ff902eff ff9232ff ff9436ff ff963aff ff983dff ff9a41ff ff9c45ff ff9e4aff ffa04dff ffa251ff ffa455ff ffa659ff ffa85cff ffaa60ff ff8417ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n+ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffefeff ffe6d1ff ffbb7fff ff902fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8215ff ff9a42ff ffb575ff ffcea3ff ffe2caff fff6eeff fcd1a9ff 429c28ff 2c9f2bff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2d9f2bff 449c28ff fcd1a9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8c27ff ffcea4ff ffeee0ff ffe8d5ff ffe2c9ff ffdcbdff ffd5b1ff ffcfa6ff ffc99aff ffc38eff ffbc82ff ffb677ff ffb06bff ffaa5fff ffa454ff ff9d48ff ff973cff ff9130ff ff871dff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8317ff ff881fff ff8c28ff ff9130ff ff9539ff ff9a41ff ff9e4aff ffa352ff ffa75aff ffac63ff ffb06bff ffb574ff ffb97cff ffbe86ff ffc38eff ffc797ff ffcc9fff ffd0a8ff ffd5b0ff ffd9b8ff ffdcbdff ffc089ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffd1aaff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefcfcff f4c8c9ff f0b3b4ff f4c8c9ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fdf4f4ff f9dfdfff f4c9c9ff f0b4b4ff ec9f9fff e2696aff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d72c2dff da3f40ff dd5051ff e16161ff e47172ff e78283ff ea9394ff eda4a4ff f1b5b5ff f4c6c6ff f7d7d7ff fae8e8ff fdf8f8ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f0b3b4ff d62728ff d62727ff d62827ff d72a27ff d82b26ff d82c26ff d92d25ff d92f25ff da3025ff f1ac9fff ffedddff ffebdaff ffe9d6ff ffe7d2ff ffe5ceff ffe3ccff ffe1c8ff ffdfc4ff ffddc0ff ffdcbdff ffdabaff ffd8b6ff ffd6b2ff ffd4aeff ffd2abff ffb676ff fe861eff f87111ff f66c13ff f87111ff fe851cff ffae67ff ffc38eff ffc18aff ffbf88ff ffbd84ff ffbb80ff ffb97cff ffb87aff ffb676ff ffb472ff ffb26eff ffb06aff ffae68ff ffac64ff ffaa60ff ffa85cff ffa659ff ffa556ff ffa352ff ffa14eff ff9f4bff ff9d48ff ff9b44ff ff9940ff ff973cff ff9539ff ff9436ff ff9232ff ff902eff ff8e2bff ff8c27ff ff8a23ff ff881fff ff861cff ff8418ff ff8214ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n+ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff fff6eeff ffc593ff ff9334ff ff7f0eff ff7f0eff ff7f0eff ff8113ff ff9e4aff ffc18aff ffe3cbff fffbf9ff ffffffff ffffffff ffffffff ffffffff ffffffff f3dab9ff 559925ff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2ca02cff 2d9f2bff 2d9f2bff bb8917ff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8821ff ffd2aaff ffcca0ff ffc695ff ffc089ff ffba7dff ffb371ff ffad66ff ffa75aff ffa14eff ff9b43ff ff9437ff ff8e2cff ff881fff ff8214ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8010ff ff8317ff ff861dff ff8a23ff ff8d29ff ff902fff ff9335ff ff973bff ff9a41ff ff9d48ff ffa04dff ffa251ff ffa455ff ffa659ff ffa85cff ffaa60ff ffac64ff ffae68ff ffb06bff ffb26fff ffb473ff ffb677ff ffb87aff ffba7eff ffbd83ff ffbf87ff ffc18aff ffc38eff ffc592ff ffc796ff ffc99aff ffcb9dff ffcda1ff ffcfa5ff ffd0a8ff ffd1aaff ffd2abff ffd3adff ffd4afff ffd5b1ff ffd6b3ff ffd7b5ff ffd8b7ff ffd9b9ff ffdabbff ffdbbcff ffdcbeff ffddc0ff ffdec2ff ffdfc4ff ffe0c6ff ffe1c7ff ffe2c9ff ffe3cbff ffe4ccff ffe5ceff ffe6d0ff ffe7d2ff ffe8d4ff ffe9d6ff ffead8ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffead9ff ffc797ff ff8a23ff ff7f0eff ff7f0eff ff7f0eff ff8a24ff ffc796ff ffe9d6ff ffe8d4ff ffe7d3ff ffe6d1ff ffe6d0ff ffe5ceff ffe4ccff ffe3ccff ffe2caff ffe2c9ff ffe1c7ff ffe0c6ff ffdfc4ff ffdec2ff ffdec1ff f6b497ff e03e21ff e13f20ff e13f20ff e14020ff e13f20ff e13f20ff e03d21ff df3b21ff de3921ff e97762ff ea7d6bff e66e5eff e35e52ff df4f47ff dc403bff d8302fff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d82e2cff db3a33ff de4539ff e1503fff e45b45ff e8654aff eb6f4eff ee7952ff f18356ff f48d59ff f7965cff fa9f5fff fda761ff ffaa60ff ffa95dff ffa75aff ffa658ff ff973cff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8e2bff ff9538ff ff9335ff ff9232ff ff902fff ff8f2dff ff8e2bff ff8c28ff ff8b25ff ff8921ff ff871eff ff851bff ff8317ff fe8012ff fe7e0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8112ff ff8317ff ff851bff ff871eff ff8922ff ff8b26ff ff8d2aff ff902eff ff9232ff ff9436ff ff963aff ff983dff ff9a41ff ff9c45ff ff9e4aff ffa04dff ffa251ff ffa455ff ffa659ff ffa85cff ffaa60ff ff8417ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8418ff ff8214ff ff7f0eff ff7f0eff ff8215ff ffa85bff ffd3adff fff8f2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff e2f2e2ff 4faf4eff 2ca02cff 319f2bff 3b9d29ff 2ca02cff 2ca02cff 2ca02cff 449c28ff bb8918ff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffcfaff fff7f1ff fff2e8ff ffeedfff ffe9d7ff ffe5ceff ffe0c6ff ffdcbdff ffd7b5ff ffd3acff ffcea4ff ffca9bff ffc593ff ffc08aff ffbc81ff ffb779ff ffb370ff ffae68ff ffaa5fff ffa557ff ffa14eff ff9c46ff ff983eff ff902eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff fd7c0eff fa7411ff f66d13ff f36615ff f05f17ff ed5819ff e9511bff e64a1dff e3431fff e03c21ff dd3623ff d92f25ff d62827ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d72a27ff da3025ff dd3623ff df3c21ff e2421fff e5481eff e84e1cff eb541aff ed5a18ff f06017ff f36615ff f66c13ff f97211ff fb780fff fe7d0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff fe7d0fff fe8317ff ff851aff ff871dff ff8921ff ff8b25ff ff8d29ff ff8e2cff ff902fff ff9233ff ff9437ff ff963bff ff983dff ff9a41ff ff9c45ff ff9d48ff fb7a14ff f36714ff f36515ff f26415ff f16216ff f16116ff f06016ff f05f17ff f97717ff ffb06bff ffb370ff ffb473ff ffb677ff ffb87aff ffba7eff ffbc82ff ffbe85ff ffc089ff ffc28cff ffc490ff ffc694ff ffc797ff ffc99aff ffcb9eff ffcda2ff ffcfa6ff ffd1a9ff ffd3acff ffd5b0ff ffd7b4ff ffd9b8ff ffdabbff ffdcbeff ffdec2ff ffe0c6ff ffe2caff ffe4ccff ffe6d0ff ffe8d5ff ffead9ff ffecdcff ffeee0ff fff0e4ff fff2e8ff fff4ecff fff7f0ff fff9f4ff fffbf8ff fffdfcff fefbfbff f4c8c9ff f0b3b4ff f4c8c9ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8e2bff ffcb9eff fff7f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff cae7caff 3ca73cff 2ca02cff 42a539ff d48514ff fc7f0fff ca8715ff b58a18ff ca8715ff fc7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd2abff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffd2abff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd2abff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffcb9fff fff2e7ff ffeee0ff ffebdbff ffe8d4ff ffe5ceff ffe1c8ff ffdec2ff ffdbbbff ffd8b6ff ffd4afff ffd1aaff ffd0a7ff ffcea3ff ffcc9fff ffca9bff ffc898ff ffc491ff ffb26eff ffaa60ff ffaf69ff ffbc82ff ffbb80ff ffb97cff ffb779ff ffb575ff ffb371ff ffb16cff ffaf69ff ffad65ff ffab61ff ffa95dff ffa75aff ffa556ff ffa352ff ffa14eff ffa04dff ff9f4bff ff9e4aff ff9d48ff ff9334ff ff8213ff ff7f0eff ff7f0eff ff7f0eff ff8113ff ff8f2dff ff963aff ff9538ff ff9436ff ff9334ff ff9232ff ff9130ff ff902eff ff8f2cff ff8e2bff ff8d29ff ff8c28ff ff8b26ff ff8a24ff ff8922ff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff881fff ff871eff ff8820ff ff8922ff ff8a23ff ff8b25ff ff8b26ff ff8c28ff ff8d29ff ff8e2bff ff8e2cff ff8f2dff ff902fff ff9130ff ff9232ff ff9233ff ff9335ff ff9436ff ff9538ff fc8423ff f76e12ff f76d12ff f66d13ff f66c13ff f66c13ff f66b13ff f56b13ff fb8529ff ff9d47ff ff9d48ff ff9e4aff ff9f4bff ffa04cff ffa04dff ffa14fff ffa250ff ffa352ff ffa353ff ffa556ff ffa658ff ffa75aff ffa95dff ffaa60ff ffac63ff ffad66ff ffaf69ff ffb06aff feb06cff fcaa6bff f9a068ff f69664ff f28c60ff ef825bff ec7756ff e96c51ff e6624bff e25645ff df4b3fff dc3f37ff d9332fff d62829ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d83231ff db3e3bff de4b46ff e15852ff e3655eff e6736aff e98076ff eb8d82ff ee998eff f0a69bff f3b3a8ff f5c0b6ff f8cec4ff efa49aff d82e26ff d72c27ff d82b26ff d72a27ff d62927ff d62828ff d62829ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fedbc0ff da3025ff d62727ff d62728ff d62728ff d62728ff d62728ff d62728ff d62727ff da3124ff fedbc0ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefcfcff f4c8c9ff f0b3b4ff f4c8c9ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff da3f40ff d62728ff d62728ff d62728ff da3f40ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd2abff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffd2abff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff8c28ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff addaadff 30a130ff 2ca02cff 57b357ff e8f4e8ff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d29ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d28ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd2abff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffd2abff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d28ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff f16216ff da3025ff d62728ff d62728ff d62728ff da3124ff f16217ff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefdfdff fcf2f2ff f9e3e4ff f6d4d4ff f4c6c6ff f1b7b7ff eea7a8ff eb8370ff e84f1cff e6491eff e3431fff e03d21ff dd3723ff da3124ff d82b26ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d72d2eff de5455ff e57778ff e78485ff ea9191ff ec9e9fff efababff f1b7b8ff f4c5c5ff f6d2d2ff f9dfdfff fbececff fdf9f9ff ffffffff ffffffff ffffffff ffffffff f4a78aff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff f4a78aff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff da3f40ff d62728ff d62728ff d62728ff da3f40ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff d62829ff d62728ff d62728ff d62728ff d62728ff d62829ff d62829ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffddc1ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fcfdfcff 89ca89ff 2ca02cff 2ca02cff 73c073ff f6fbf6ff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d28ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff fe7d0eff f46814ff f06017ff f46814ff fe7d0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d29ff ffd5b1ff fef9f9ff fbececff f8ddddff f5ceceff f2bfbfff f0b1b1ff eda1a2ff ea9394ff e78485ff e57778ff e26a6bff e05d5eff dd5151ff db4344ff d93637ff d62a2bff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d72e2fff d93a3bff db4546ff dd5051ff dc4440ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff e98274ff f7d8d8ff f9e3e3ff fbeeeeff fef9f9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff d62829ff d62728ff d62728ff d62728ff d62728ff d62829ff d62829ff f1b9b9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefcfcff da3f40ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62829ff da3f40ff fefcfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fff4ecff ff9940ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffd2abff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f2f9f2ff 68bb68ff 2ca02cff 2ca02cff 96cf96ff fefefeff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d28ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd2abff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffd2abff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefefeff fdf4f4ff fae6e5ff f8bfa8ff f5ab8dff f3a995ff f0b2b2ff eea7a7ff eb9a9aff e98c8dff e68080ff e47374ff e16666ff df595aff dd4c4dff da3f40ff d83233ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d72c2dff d93839ff db4344ff dd4e4fff df5a5bff e16565ff e37070ff e67c7cff e88687ff e99090ff d83435ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d93c3dff fcf2f2ff fefefeff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f4c8c9ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff f4c8c9ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffddbfff ff8b26ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff e2f1e2ff 4eaf4eff 2ca02cff 34a334ff b8dfb8ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d29ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d29ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd2abff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffd2abff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d28ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d28ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fefcfcff fcf0f0ff f9e3e4ff f7d8d8ff f5cdcdff f3c2c2ff f0b4b4ff d83231ff d62727ff d62728ff d62728ff d62728ff d62728ff d62728ff d62727ff d62a2aff db4546ff d93a3bff d72f30ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d73132ff d93b3cff db4445ff dd4e4fff df5758ff e16162ff e26b6bff e47575ff e67e7fff e88889ff ea9192ff e47273ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff efb1b2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d29ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffefeff ffc694ff ff8010ff ff7f0eff ff9334ff ff8a22ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff cae7caff 3ba73bff 2ca02cff 42a942ff d4ecd4ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd2abff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffd2abff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff8d29ff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ffdec2ff ffd2abff ffdec2ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd2abff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffd2abff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffdec2ff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ffdec2ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffdfcff ff8d28ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff8d29ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffd5b1ff ff7f0fff ff7f0eff ff7f0eff ff7f0eff ff7f0eff ff7f0fff ff7f0fff ffd5b1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1b9b9ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff f1b9b9ff ffffffff ffffffff ffffffff fefbfbff fcf0f0ff fae5e5ff f7d9d9ff f5ceceff f3c3c4ff f1b7b8ff efacadff eda1a2ff eb9696ff e98b8bff e06061ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d62728ff d72d2eff d83637ff da3e3fff dc4748ff dd5051ff df5859ff e16161ff e2696aff e47273ff e57b7bff e78384ff e98c8cff ea9494ff ec9d9eff eea6a6ff efaeafff f1b5b5ff f2a894ff f4a78aff fcd3b8ff fffdfcff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff f1f1f1ff 000000ff f1f1f1ff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff \n"}, {"source1": "Image content", "source2": "Image content", "unified_diff": null}]}, {"source1": "./usr/share/doc/python3-symfit/html/examples/ex_CallableNumericalModel_ode.html", "source2": "./usr/share/doc/python3-symfit/html/examples/ex_CallableNumericalModel_ode.html", "unified_diff": "@@ -75,15 +75,15 @@\n \n \n
\n
\n
\n
\n
\n-Matplotlib created a temporary cache directory at /tmp/matplotlib-bcfu571m because the default path (/nonexistent/first-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\n+Matplotlib created a temporary cache directory at /tmp/matplotlib-kmcy1dh2 because the default path (/nonexistent/second-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\n 
\n
\n
\n
[2]:\n 
\n
\n
print('a =', fit_result.value(a))\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -33,17 +33,17 @@\n }\n model = CallableNumericalModel(model_dict, connectivity_mapping={z: {y, b}, y:\n {x, a}})\n \n # Apply model\n fit = Fit(model, x=x_data, z=z_data)\n fit_result = fit.execute()\n-Matplotlib created a temporary cache directory at /tmp/matplotlib-bcfu571m\n-because the default path (/nonexistent/first-build/.config/matplotlib) is not a\n-writable directory; it is highly recommended to set the MPLCONFIGDIR\n+Matplotlib created a temporary cache directory at /tmp/matplotlib-kmcy1dh2\n+because the default path (/nonexistent/second-build/.config/matplotlib) is not\n+a writable directory; it is highly recommended to set the MPLCONFIGDIR\n environment variable to a writable directory, in particular to speed up the\n import of Matplotlib and to better support multiprocessing.\n [2]:\n print('a =', fit_result.value(a))\n a = 0.599999973796809\n [3]:\n print('b =', fit_result.value(b))\n"}]}, {"source1": "./usr/share/doc/python3-symfit/html/examples/ex_CallableNumericalModel_ode.ipynb.gz", "source2": "./usr/share/doc/python3-symfit/html/examples/ex_CallableNumericalModel_ode.ipynb.gz", "unified_diff": null, "details": [{"source1": "ex_CallableNumericalModel_ode.ipynb", "source2": "ex_CallableNumericalModel_ode.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9971354166666666%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2024-09-03T04:38:15.198362Z', \"", "            \"'iopub.status.busy': '2024-09-03T04:38:15.198041Z', 'iopub.status.idle': \"", "            \"'2024-09-03T04:38:19.047103Z', 'shell.execute_reply': \"", "            \"'2024-09-03T04:38:19.046101Z'}}, 'outputs': {0: {'text': ['Matplotlib created a \"", "            'temporary cache directory at /tmp/matplotlib-kmcy1dh2 because the default path '", "            '(/nonexistent/second-build/.config/matplotlib) is no [\u2026]"], "unified_diff": "@@ -16,26 +16,26 @@\n             ]\n         },\n         {\n             \"cell_type\": \"code\",\n             \"execution_count\": 1,\n             \"metadata\": {\n                 \"execution\": {\n-                    \"iopub.execute_input\": \"2025-10-06T10:53:45.806578Z\",\n-                    \"iopub.status.busy\": \"2025-10-06T10:53:45.806126Z\",\n-                    \"iopub.status.idle\": \"2025-10-06T10:53:48.154615Z\",\n-                    \"shell.execute_reply\": \"2025-10-06T10:53:48.153910Z\"\n+                    \"iopub.execute_input\": \"2024-09-03T04:38:15.198362Z\",\n+                    \"iopub.status.busy\": \"2024-09-03T04:38:15.198041Z\",\n+                    \"iopub.status.idle\": \"2024-09-03T04:38:19.047103Z\",\n+                    \"shell.execute_reply\": \"2024-09-03T04:38:19.046101Z\"\n                 }\n             },\n             \"outputs\": [\n                 {\n                     \"name\": \"stderr\",\n                     \"output_type\": \"stream\",\n                     \"text\": [\n-                        \"Matplotlib created a temporary cache directory at /tmp/matplotlib-bcfu571m because the default path (/nonexistent/first-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\\n\"\n+                        \"Matplotlib created a temporary cache directory at /tmp/matplotlib-kmcy1dh2 because the default path (/nonexistent/second-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\\n\"\n                     ]\n                 }\n             ],\n             \"source\": [\n                 \"from symfit import variables, Parameter, Fit, D, ODEModel, CallableNumericalModel\\n\",\n                 \"import numpy as np\\n\",\n                 \"import matplotlib.pyplot as plt\\n\",\n@@ -65,18 +65,18 @@\n             ]\n         },\n         {\n             \"cell_type\": \"code\",\n             \"execution_count\": 2,\n             \"metadata\": {\n                 \"execution\": {\n-                    \"iopub.execute_input\": \"2025-10-06T10:53:48.158080Z\",\n-                    \"iopub.status.busy\": \"2025-10-06T10:53:48.157558Z\",\n-                    \"iopub.status.idle\": \"2025-10-06T10:53:48.161284Z\",\n-                    \"shell.execute_reply\": \"2025-10-06T10:53:48.160741Z\"\n+                    \"iopub.execute_input\": \"2024-09-03T04:38:19.053264Z\",\n+                    \"iopub.status.busy\": \"2024-09-03T04:38:19.052799Z\",\n+                    \"iopub.status.idle\": \"2024-09-03T04:38:19.058077Z\",\n+                    \"shell.execute_reply\": \"2024-09-03T04:38:19.057157Z\"\n                 }\n             },\n             \"outputs\": [\n                 {\n                     \"name\": \"stdout\",\n                     \"output_type\": \"stream\",\n                     \"text\": [\n@@ -89,18 +89,18 @@\n             ]\n         },\n         {\n             \"cell_type\": \"code\",\n             \"execution_count\": 3,\n             \"metadata\": {\n                 \"execution\": {\n-                    \"iopub.execute_input\": \"2025-10-06T10:53:48.163763Z\",\n-                    \"iopub.status.busy\": \"2025-10-06T10:53:48.163284Z\",\n-                    \"iopub.status.idle\": \"2025-10-06T10:53:48.166448Z\",\n-                    \"shell.execute_reply\": \"2025-10-06T10:53:48.165940Z\"\n+                    \"iopub.execute_input\": \"2024-09-03T04:38:19.061447Z\",\n+                    \"iopub.status.busy\": \"2024-09-03T04:38:19.061121Z\",\n+                    \"iopub.status.idle\": \"2024-09-03T04:38:19.065755Z\",\n+                    \"shell.execute_reply\": \"2024-09-03T04:38:19.064876Z\"\n                 }\n             },\n             \"outputs\": [\n                 {\n                     \"name\": \"stdout\",\n                     \"output_type\": \"stream\",\n                     \"text\": [\n"}]}]}, {"source1": "./usr/share/doc/python3-symfit/html/examples/ex_bivariate_likelihood.html", "source2": "./usr/share/doc/python3-symfit/html/examples/ex_bivariate_likelihood.html", "unified_diff": "@@ -53,15 +53,15 @@\n 
\n
\n
\n
\n
\n
\n
\n-Matplotlib created a temporary cache directory at /tmp/matplotlib-6tc_pvm1 because the default path (/nonexistent/first-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\n+Matplotlib created a temporary cache directory at /tmp/matplotlib-1jn2rwew because the default path (/nonexistent/second-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\n 
\n
\n

Build a model corresponding to a bivariate normal distribution.

\n
\n
[2]:\n 
\n
\n@@ -146,16 +146,16 @@\n rho 6.026420e-01 2.013810e-03\n sig_x 1.100898e-01 2.461684e-04\n sig_y 2.303400e-01 5.150556e-04\n x0 5.901317e-01 3.481346e-04\n y0 8.014040e-01 7.283990e-04\n Status message CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\n Number of iterations 22\n-Objective <symfit.core.objectives.LogLikelihood object at 0xf0bd2630>\n-Minimizer <symfit.core.minimizers.LBFGSB object at 0xeaf56e70>\n+Objective <symfit.core.objectives.LogLikelihood object at 0xf0b4b570>\n+Minimizer <symfit.core.minimizers.LBFGSB object at 0xe9c38990>\n \n Goodness of fit qualifiers:\n likelihood inf\n log_likelihood 106241.24669486462\n objective_value -106241.24669486462\n
\n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -8,17 +8,17 @@\n [1]:\n import numpy as np\n from symfit import Variable, Parameter, Fit\n from symfit.core.objectives import LogLikelihood\n from symfit.distributions import BivariateGaussian\n import matplotlib.pyplot as plt\n \n-Matplotlib created a temporary cache directory at /tmp/matplotlib-6tc_pvm1\n-because the default path (/nonexistent/first-build/.config/matplotlib) is not a\n-writable directory; it is highly recommended to set the MPLCONFIGDIR\n+Matplotlib created a temporary cache directory at /tmp/matplotlib-1jn2rwew\n+because the default path (/nonexistent/second-build/.config/matplotlib) is not\n+a writable directory; it is highly recommended to set the MPLCONFIGDIR\n environment variable to a writable directory, in particular to speed up the\n import of Matplotlib and to better support multiprocessing.\n Build a model corresponding to a bivariate normal distribution.\n [2]:\n x = Variable('x')\n y = Variable('y')\n x0 = Parameter('x0', value=0.6, min=0.5, max=0.7)\n@@ -71,16 +71,16 @@\n sig_x 1.100898e-01 2.461684e-04\n sig_y 2.303400e-01 5.150556e-04\n x0 5.901317e-01 3.481346e-04\n y0 8.014040e-01 7.283990e-04\n Status message CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\n Number of iterations 22\n Objective \n-Minimizer \n+0xf0b4b570>\n+Minimizer \n \n Goodness of fit qualifiers:\n likelihood inf\n log_likelihood 106241.24669486462\n objective_value -106241.24669486462\n We see that this result is in agreement with our data.\n *\b**\b**\b**\b**\b**\b* _\bs\bs_\by\by_\bm\bm_\bf\bf_\bi\bi_\bt\bt *\b**\b**\b**\b**\b**\b*\n"}]}, {"source1": "./usr/share/doc/python3-symfit/html/examples/ex_bivariate_likelihood.ipynb.gz", "source2": "./usr/share/doc/python3-symfit/html/examples/ex_bivariate_likelihood.ipynb.gz", "unified_diff": null, "details": [{"source1": "ex_bivariate_likelihood.ipynb", "source2": "ex_bivariate_likelihood.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9989949845679013%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2024-09-03T04:38:21.825590Z', \"", " \"'iopub.status.busy': '2024-09-03T04:38:21.825240Z', 'iopub.status.idle': \"", " \"'2024-09-03T04:38:23.640215Z', 'shell.execute_reply': \"", " \"'2024-09-03T04:38:23.639197Z'}}, 'outputs': {0: {'text': ['Matplotlib created a \"", " 'temporary cache directory at /tmp/matplotlib-1jn2rwew because the default path '", " '(/nonexistent/second-build/.config/matplotlib) is no [\u2026]"], "unified_diff": "@@ -22,31 +22,31 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:53:49.899770Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:53:49.899284Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:53:51.037664Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:53:51.037031Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:38:21.825590Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:38:21.825240Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:38:23.640215Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:38:23.639197Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n \"outputs\": [\n {\n \"name\": \"stderr\",\n \"output_type\": \"stream\",\n \"text\": [\n- \"Matplotlib created a temporary cache directory at /tmp/matplotlib-6tc_pvm1 because the default path (/nonexistent/first-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\\n\"\n+ \"Matplotlib created a temporary cache directory at /tmp/matplotlib-1jn2rwew because the default path (/nonexistent/second-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\\n\"\n ]\n }\n ],\n \"source\": [\n \"import numpy as np\\n\",\n \"from symfit import Variable, Parameter, Fit\\n\",\n \"from symfit.core.objectives import LogLikelihood\\n\",\n@@ -67,18 +67,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:53:51.041112Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:53:51.040592Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:53:51.104276Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:53:51.103685Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:38:23.644906Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:38:23.644235Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:38:23.751171Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:38:23.750195Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n@@ -109,18 +109,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:53:51.107425Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:53:51.107006Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:53:51.127973Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:53:51.127419Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:38:23.755680Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:38:23.755362Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:38:23.794118Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:38:23.793093Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n@@ -136,18 +136,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:53:51.130725Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:53:51.130266Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:53:51.317430Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:53:51.316855Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:38:23.797561Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:38:23.797234Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:38:24.089734Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:38:24.088782Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n@@ -180,18 +180,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 5,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:53:51.320283Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:53:51.319839Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:01.213668Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:01.213021Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:38:24.093289Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:38:24.092979Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:38:39.128876Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:38:39.128116Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n@@ -227,16 +227,16 @@\n \"rho 6.026420e-01 2.013810e-03\\n\",\n \"sig_x 1.100898e-01 2.461684e-04\\n\",\n \"sig_y 2.303400e-01 5.150556e-04\\n\",\n \"x0 5.901317e-01 3.481346e-04\\n\",\n \"y0 8.014040e-01 7.283990e-04\\n\",\n \"Status message CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\\n\",\n \"Number of iterations 22\\n\",\n- \"Objective \\n\",\n- \"Minimizer \\n\",\n+ \"Objective \\n\",\n+ \"Minimizer \\n\",\n \"\\n\",\n \"Goodness of fit qualifiers:\\n\",\n \"likelihood inf\\n\",\n \"log_likelihood 106241.24669486462\\n\",\n \"objective_value -106241.24669486462\\n\"\n ]\n }\n"}]}]}, {"source1": "./usr/share/doc/python3-symfit/html/examples/ex_mexican_hat.html", "source2": "./usr/share/doc/python3-symfit/html/examples/ex_mexican_hat.html", "unified_diff": "@@ -51,15 +51,15 @@\n \n \n
\n
\n
\n
\n
\n-Matplotlib created a temporary cache directory at /tmp/matplotlib-7den1jfx because the default path (/nonexistent/first-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\n+Matplotlib created a temporary cache directory at /tmp/matplotlib-duj97rbb because the default path (/nonexistent/second-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\n 
\n
\n

First we define a model for the skewed mexican hat.

\n
\n
[2]:\n 
\n
\n@@ -99,15 +99,15 @@\n
\n
\n
[3]:\n 
\n
\n
\n
\n-<matplotlib.legend.Legend at 0xe9eaaaf8>\n+<matplotlib.legend.Legend at 0xe9bbdb10>\n 
\n
\n
\n
\n
\n
\n \"../_images/examples_ex_mexican_hat_5_1.png\"\n@@ -169,15 +169,15 @@\n
\n
\n
\n
\n
\n
\n exact value -2.35191046133532\n-num  value  -2.356519816345737\n+num  value  -2.3555865214239358\n 
\n
\n

Using DifferentialEvolution, we find the correct global minimum. However, it is not exactly the same as the analytical solution. This is because DifferentialEvolution is expensive to perform, and therefore does not solve to high precision by default. We could demand a higher precission from DifferentialEvolution, but this isn\u2019t worth the high computational cost. Instead, we will just tell symfit to perform DifferentialEvolution, followed by BFGS.

\n
\n
[7]:\n 
\n
\n@@ -190,15 +190,15 @@\n
\n
\n
\n
\n
\n
\n exact value -2.35191046133532\n-num  value  -2.351910461335324\n+num  value  -2.351910461335322\n 
\n
\n

We see that now the proper solution has been found to much higher precision.

\n \n \n \n
\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -5,17 +5,17 @@\n then use DifferentialEvolution to find the global minimum.\n [1]:\n from symfit import Parameter, Variable, Model, Fit, solve, diff, N, re\n from symfit.core.minimizers import DifferentialEvolution, BFGS\n import numpy as np\n import matplotlib.pyplot as plt\n \n-Matplotlib created a temporary cache directory at /tmp/matplotlib-7den1jfx\n-because the default path (/nonexistent/first-build/.config/matplotlib) is not a\n-writable directory; it is highly recommended to set the MPLCONFIGDIR\n+Matplotlib created a temporary cache directory at /tmp/matplotlib-duj97rbb\n+because the default path (/nonexistent/second-build/.config/matplotlib) is not\n+a writable directory; it is highly recommended to set the MPLCONFIGDIR\n environment variable to a writable directory, in particular to speed up the\n import of Matplotlib and to better support multiprocessing.\n First we define a model for the skewed mexican hat.\n [2]:\n x = Parameter('x')\n x.min, x.max = -100, 100\n y = Variable('y')\n@@ -33,15 +33,15 @@\n plt.plot(xdata, ydata, label=r'$f(x)$')\n plt.xlabel('x')\n plt.ylabel('f(x)')\n plt.ylim(1.1 * ydata.min(), 1.1 * ydata.max())\n plt.legend()\n \n [3]:\n-\n+\n [../_images/examples_ex_mexican_hat_5_1.png]\n Using sympy, it is easy to solve the solution analytically, by finding the\n places where the gradient is zero.\n [4]:\n sol = solve(diff(model[y], x), x)\n # Give numerical value\n sol = [re(N(s)) for s in sol]\n@@ -61,29 +61,29 @@\n [6]:\n fit = Fit(model, minimizer=DifferentialEvolution)\n fit_result = fit.execute()\n print('exact value', sol[2])\n print('num value ', fit_result.value(x))\n \n exact value -2.35191046133532\n-num value -2.356519816345737\n+num value -2.3555865214239358\n Using DifferentialEvolution, we find the correct global minimum. However, it is\n not exactly the same as the analytical solution. This is because\n DifferentialEvolution is expensive to perform, and therefore does not solve to\n high precision by default. We could demand a higher precission from\n DifferentialEvolution, but this isn\u2019t worth the high computational cost.\n Instead, we will just tell symfit to perform DifferentialEvolution, followed by\n BFGS.\n [7]:\n fit = Fit(model, minimizer=[DifferentialEvolution, BFGS])\n fit_result = fit.execute()\n print('exact value', sol[2])\n print('num value ', fit_result.value(x))\n exact value -2.35191046133532\n-num value -2.351910461335324\n+num value -2.351910461335322\n We see that now the proper solution has been found to much higher precision.\n *\b**\b**\b**\b**\b**\b* _\bs\bs_\by\by_\bm\bm_\bf\bf_\bi\bi_\bt\bt *\b**\b**\b**\b**\b**\b*\n *\b**\b**\b**\b* N\bNa\bav\bvi\big\bga\bat\bti\bio\bon\bn *\b**\b**\b**\b*\n * _\bI_\bn_\bt_\br_\bo_\bd_\bu_\bc_\bt_\bi_\bo_\bn\n * _\bI_\bn_\bs_\bt_\ba_\bl_\bl_\ba_\bt_\bi_\bo_\bn\n * _\bT_\bu_\bt_\bo_\br_\bi_\ba_\bl\n * _\bF_\bi_\bt_\bt_\bi_\bn_\bg_\b _\bT_\by_\bp_\be_\bs\n"}]}, {"source1": "./usr/share/doc/python3-symfit/html/examples/ex_mexican_hat.ipynb.gz", "source2": "./usr/share/doc/python3-symfit/html/examples/ex_mexican_hat.ipynb.gz", "unified_diff": null, "details": [{"source1": "ex_mexican_hat.ipynb", "source2": "ex_mexican_hat.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9989207175925926%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2024-09-03T04:38:41.911974Z', \"", " \"'iopub.status.busy': '2024-09-03T04:38:41.911642Z', 'iopub.status.idle': \"", " \"'2024-09-03T04:38:43.765011Z', 'shell.execute_reply': \"", " \"'2024-09-03T04:38:43.764017Z'}}, 'outputs': {0: {'text': ['Matplotlib created a \"", " 'temporary cache directory at /tmp/matplotlib-duj97rbb because the default path '", " '(/nonexistent/second-build/.config/matplotlib) is no [\u2026]"], "unified_diff": "@@ -15,29 +15,29 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:02.996560Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:02.996049Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:04.173060Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:04.172433Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:38:41.911974Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:38:41.911642Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:38:43.765011Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:38:43.764017Z\"\n },\n \"pycharm\": {\n \"is_executing\": false\n }\n },\n \"outputs\": [\n {\n \"name\": \"stderr\",\n \"output_type\": \"stream\",\n \"text\": [\n- \"Matplotlib created a temporary cache directory at /tmp/matplotlib-7den1jfx because the default path (/nonexistent/first-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\\n\"\n+ \"Matplotlib created a temporary cache directory at /tmp/matplotlib-duj97rbb because the default path (/nonexistent/second-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\\n\"\n ]\n }\n ],\n \"source\": [\n \"from symfit import Parameter, Variable, Model, Fit, solve, diff, N, re\\n\",\n \"from symfit.core.minimizers import DifferentialEvolution, BFGS\\n\",\n \"import numpy as np\\n\",\n@@ -57,18 +57,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:04.176578Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:04.175838Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:04.212102Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:04.211541Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:38:43.769903Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:38:43.769159Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:38:43.829876Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:38:43.828942Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n@@ -101,30 +101,30 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:04.214938Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:04.214338Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:04.490215Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:04.489659Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:38:43.833629Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:38:43.833342Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:38:44.252922Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:38:44.252136Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n- \"\"\n+ \"\"\n ]\n },\n \"execution_count\": 3,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n },\n {\n@@ -163,18 +163,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:04.492983Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:04.492524Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:04.610116Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:04.609562Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:38:44.256657Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:38:44.256332Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:38:44.444911Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:38:44.443937Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n@@ -210,18 +210,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 5,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:04.612776Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:04.612340Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:04.640316Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:04.639768Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:38:44.448651Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:38:44.448331Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:38:44.487474Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:38:44.486502Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n@@ -256,32 +256,32 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 6,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:04.643013Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:04.642457Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:04.763437Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:04.762862Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:38:44.491645Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:38:44.491330Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:38:44.657545Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:38:44.656425Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n \"outputs\": [\n {\n \"name\": \"stdout\",\n \"output_type\": \"stream\",\n \"text\": [\n \"exact value -2.35191046133532\\n\",\n- \"num value -2.356519816345737\\n\"\n+ \"num value -2.3555865214239358\\n\"\n ]\n }\n ],\n \"source\": [\n \"fit = Fit(model, minimizer=DifferentialEvolution)\\n\",\n \"fit_result = fit.execute()\\n\",\n \"print('exact value', sol[2])\\n\",\n@@ -300,32 +300,32 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 7,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:04.766241Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:04.765701Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:04.905024Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:04.904456Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:38:44.661225Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:38:44.660916Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:38:44.849432Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:38:44.848487Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n \"outputs\": [\n {\n \"name\": \"stdout\",\n \"output_type\": \"stream\",\n \"text\": [\n \"exact value -2.35191046133532\\n\",\n- \"num value -2.351910461335324\\n\"\n+ \"num value -2.351910461335322\\n\"\n ]\n }\n ],\n \"source\": [\n \"fit = Fit(model, minimizer=[DifferentialEvolution, BFGS])\\n\",\n \"fit_result = fit.execute()\\n\",\n \"print('exact value', sol[2])\\n\",\n"}]}]}, {"source1": "./usr/share/doc/python3-symfit/html/examples/ex_ode_system.html", "source2": "./usr/share/doc/python3-symfit/html/examples/ex_ode_system.html", "unified_diff": "@@ -53,15 +53,15 @@\n \n \n
\n
\n
\n
\n
\n-Matplotlib created a temporary cache directory at /tmp/matplotlib-ctf0_1nl because the default path (/nonexistent/first-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\n+Matplotlib created a temporary cache directory at /tmp/matplotlib-ffgb4lfg because the default path (/nonexistent/second-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\n 
\n
\n

First we build a model representing the system of equations.

\n
\n
[2]:\n 
\n
\n@@ -146,27 +146,27 @@\n
\n
\n
\n
\n
\n \n Parameter Value        Standard Deviation\n-k1_f      9.540415e-02 4.440702e-03\n-k1_r      1.065111e-01 7.165776e-02\n-k2_f      2.706139e-01 5.305094e-02\n-k2_r      2.633638e-01 5.647281e-02\n+k1_f      9.540412e-02 4.440666e-03\n+k1_r      1.065101e-01 7.165687e-02\n+k2_f      2.706136e-01 5.305083e-02\n+k2_r      2.633634e-01 5.647270e-02\n Status message         CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\n-Number of iterations   31\n-Objective              <symfit.core.objectives.LeastSquares object at 0xe9c60ed0>\n-Minimizer              <symfit.core.minimizers.LBFGSB object at 0xe9c60f60>\n+Number of iterations   30\n+Objective              <symfit.core.objectives.LeastSquares object at 0xe998a4b0>\n+Minimizer              <symfit.core.minimizers.LBFGSB object at 0xe998a570>\n \n Goodness of fit qualifiers:\n-chi_squared            33.98549453535547\n-objective_value        16.992747267677736\n-r_squared              0.9936568366399678\n+chi_squared            33.98549453602719\n+objective_value        16.992747268013595\n+r_squared              0.9936568366398425\n 
\n
\n
\n
[5]:\n 
\n
\n
taxis = np.linspace(tdata.min(), tdata.max(), 1000)\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -6,17 +6,17 @@\n from symfit import (\n     variables, parameters, ODEModel, D, Fit\n )\n from symfit.core.support import key2str\n import numpy as np\n import matplotlib.pyplot as plt\n \n-Matplotlib created a temporary cache directory at /tmp/matplotlib-ctf0_1nl\n-because the default path (/nonexistent/first-build/.config/matplotlib) is not a\n-writable directory; it is highly recommended to set the MPLCONFIGDIR\n+Matplotlib created a temporary cache directory at /tmp/matplotlib-ffgb4lfg\n+because the default path (/nonexistent/second-build/.config/matplotlib) is not\n+a writable directory; it is highly recommended to set the MPLCONFIGDIR\n environment variable to a writable directory, in particular to speed up the\n import of Matplotlib and to better support multiprocessing.\n First we build a model representing the system of equations.\n [2]:\n t, F, MM, FMM, FMMF = variables('t, F, MM, FMM, FMMF')\n k1_f, k1_r, k2_f, k2_r = parameters('k1_f, k1_r, k2_f, k2_r')\n \n@@ -70,28 +70,28 @@\n fit = Fit(model, t=tdata, MM=data[MM], F=data[F],\n           FMMF=None, FMM=None,\n           sigma_F=sigma_data, sigma_MM=sigma_data)\n fit_result = fit.execute()\n print(fit_result)\n \n Parameter Value        Standard Deviation\n-k1_f      9.540415e-02 4.440702e-03\n-k1_r      1.065111e-01 7.165776e-02\n-k2_f      2.706139e-01 5.305094e-02\n-k2_r      2.633638e-01 5.647281e-02\n+k1_f      9.540412e-02 4.440666e-03\n+k1_r      1.065101e-01 7.165687e-02\n+k2_f      2.706136e-01 5.305083e-02\n+k2_r      2.633634e-01 5.647270e-02\n Status message         CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\n-Number of iterations   31\n+Number of iterations   30\n Objective              \n-Minimizer              \n+0xe998a4b0>\n+Minimizer              \n \n Goodness of fit qualifiers:\n-chi_squared            33.98549453535547\n-objective_value        16.992747267677736\n-r_squared              0.9936568366399678\n+chi_squared            33.98549453602719\n+objective_value        16.992747268013595\n+r_squared              0.9936568366398425\n [5]:\n taxis = np.linspace(tdata.min(), tdata.max(), 1000)\n model_fit = model(t=taxis, **fit_result.params)._asdict()\n for var in data:\n     plt.scatter(tdata, data[var], label='[{}]'.format(var.name))\n     plt.plot(taxis, model_fit[var], label='[{}]'.format(var.name))\n plt.legend()\n"}]}, {"source1": "./usr/share/doc/python3-symfit/html/examples/ex_ode_system.ipynb.gz", "source2": "./usr/share/doc/python3-symfit/html/examples/ex_ode_system.ipynb.gz", "unified_diff": null, "details": [{"source1": "ex_ode_system.ipynb", "source2": "ex_ode_system.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9987916666666666%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2024-09-03T04:38:47.644225Z', \"", "            \"'iopub.status.busy': '2024-09-03T04:38:47.643909Z', 'iopub.status.idle': \"", "            \"'2024-09-03T04:38:49.432040Z', 'shell.execute_reply': \"", "            \"'2024-09-03T04:38:49.431016Z'}}, 'outputs': {0: {'text': ['Matplotlib created a \"", "            'temporary cache directory at /tmp/matplotlib-ffgb4lfg because the default path '", "            '(/nonexistent/second-build/.config/matplotlib) is no [\u2026]"], "unified_diff": "@@ -13,29 +13,29 @@\n             ]\n         },\n         {\n             \"cell_type\": \"code\",\n             \"execution_count\": 1,\n             \"metadata\": {\n                 \"execution\": {\n-                    \"iopub.execute_input\": \"2025-10-06T10:54:06.637298Z\",\n-                    \"iopub.status.busy\": \"2025-10-06T10:54:06.636897Z\",\n-                    \"iopub.status.idle\": \"2025-10-06T10:54:07.977193Z\",\n-                    \"shell.execute_reply\": \"2025-10-06T10:54:07.976565Z\"\n+                    \"iopub.execute_input\": \"2024-09-03T04:38:47.644225Z\",\n+                    \"iopub.status.busy\": \"2024-09-03T04:38:47.643909Z\",\n+                    \"iopub.status.idle\": \"2024-09-03T04:38:49.432040Z\",\n+                    \"shell.execute_reply\": \"2024-09-03T04:38:49.431016Z\"\n                 },\n                 \"pycharm\": {\n                     \"is_executing\": false\n                 }\n             },\n             \"outputs\": [\n                 {\n                     \"name\": \"stderr\",\n                     \"output_type\": \"stream\",\n                     \"text\": [\n-                        \"Matplotlib created a temporary cache directory at /tmp/matplotlib-ctf0_1nl because the default path (/nonexistent/first-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\\n\"\n+                        \"Matplotlib created a temporary cache directory at /tmp/matplotlib-ffgb4lfg because the default path (/nonexistent/second-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\\n\"\n                     ]\n                 }\n             ],\n             \"source\": [\n                 \"from symfit import (\\n\",\n                 \"\\tvariables, parameters, ODEModel, D, Fit\\n\",\n                 \") \\n\",\n@@ -58,18 +58,18 @@\n             ]\n         },\n         {\n             \"cell_type\": \"code\",\n             \"execution_count\": 2,\n             \"metadata\": {\n                 \"execution\": {\n-                    \"iopub.execute_input\": \"2025-10-06T10:54:07.980359Z\",\n-                    \"iopub.status.busy\": \"2025-10-06T10:54:07.979845Z\",\n-                    \"iopub.status.idle\": \"2025-10-06T10:54:08.023176Z\",\n-                    \"shell.execute_reply\": \"2025-10-06T10:54:08.022591Z\"\n+                    \"iopub.execute_input\": \"2024-09-03T04:38:49.436701Z\",\n+                    \"iopub.status.busy\": \"2024-09-03T04:38:49.436036Z\",\n+                    \"iopub.status.idle\": \"2024-09-03T04:38:49.509513Z\",\n+                    \"shell.execute_reply\": \"2024-09-03T04:38:49.508476Z\"\n                 },\n                 \"pycharm\": {\n                     \"is_executing\": false,\n                     \"metadata\": false,\n                     \"name\": \"#%%\\n\"\n                 }\n             },\n@@ -118,18 +118,18 @@\n             ]\n         },\n         {\n             \"cell_type\": \"code\",\n             \"execution_count\": 3,\n             \"metadata\": {\n                 \"execution\": {\n-                    \"iopub.execute_input\": \"2025-10-06T10:54:08.025864Z\",\n-                    \"iopub.status.busy\": \"2025-10-06T10:54:08.025456Z\",\n-                    \"iopub.status.idle\": \"2025-10-06T10:54:08.471367Z\",\n-                    \"shell.execute_reply\": \"2025-10-06T10:54:08.470556Z\"\n+                    \"iopub.execute_input\": \"2024-09-03T04:38:49.513271Z\",\n+                    \"iopub.status.busy\": \"2024-09-03T04:38:49.512949Z\",\n+                    \"iopub.status.idle\": \"2024-09-03T04:38:50.037729Z\",\n+                    \"shell.execute_reply\": \"2024-09-03T04:38:50.036797Z\"\n                 },\n                 \"pycharm\": {\n                     \"is_executing\": false,\n                     \"metadata\": false,\n                     \"name\": \"#%%\\n\"\n                 }\n             },\n@@ -177,45 +177,45 @@\n             ]\n         },\n         {\n             \"cell_type\": \"code\",\n             \"execution_count\": 4,\n             \"metadata\": {\n                 \"execution\": {\n-                    \"iopub.execute_input\": \"2025-10-06T10:54:08.474329Z\",\n-                    \"iopub.status.busy\": \"2025-10-06T10:54:08.473870Z\",\n-                    \"iopub.status.idle\": \"2025-10-06T10:54:16.505669Z\",\n-                    \"shell.execute_reply\": \"2025-10-06T10:54:16.504927Z\"\n+                    \"iopub.execute_input\": \"2024-09-03T04:38:50.041592Z\",\n+                    \"iopub.status.busy\": \"2024-09-03T04:38:50.041230Z\",\n+                    \"iopub.status.idle\": \"2024-09-03T04:39:02.761143Z\",\n+                    \"shell.execute_reply\": \"2024-09-03T04:39:02.760030Z\"\n                 },\n                 \"pycharm\": {\n                     \"is_executing\": false,\n                     \"metadata\": false,\n                     \"name\": \"#%%\\n\"\n                 }\n             },\n             \"outputs\": [\n                 {\n                     \"name\": \"stdout\",\n                     \"output_type\": \"stream\",\n                     \"text\": [\n                         \"\\n\",\n                         \"Parameter Value        Standard Deviation\\n\",\n-                        \"k1_f      9.540415e-02 4.440702e-03\\n\",\n-                        \"k1_r      1.065111e-01 7.165776e-02\\n\",\n-                        \"k2_f      2.706139e-01 5.305094e-02\\n\",\n-                        \"k2_r      2.633638e-01 5.647281e-02\\n\",\n+                        \"k1_f      9.540412e-02 4.440666e-03\\n\",\n+                        \"k1_r      1.065101e-01 7.165687e-02\\n\",\n+                        \"k2_f      2.706136e-01 5.305083e-02\\n\",\n+                        \"k2_r      2.633634e-01 5.647270e-02\\n\",\n                         \"Status message         CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\\n\",\n-                        \"Number of iterations   31\\n\",\n-                        \"Objective              \\n\",\n-                        \"Minimizer              \\n\",\n+                        \"Number of iterations   30\\n\",\n+                        \"Objective              \\n\",\n+                        \"Minimizer              \\n\",\n                         \"\\n\",\n                         \"Goodness of fit qualifiers:\\n\",\n-                        \"chi_squared            33.98549453535547\\n\",\n-                        \"objective_value        16.992747267677736\\n\",\n-                        \"r_squared              0.9936568366399678\\n\"\n+                        \"chi_squared            33.98549453602719\\n\",\n+                        \"objective_value        16.992747268013595\\n\",\n+                        \"r_squared              0.9936568366398425\\n\"\n                     ]\n                 }\n             ],\n             \"source\": [\n                 \"k1_f.min, k1_f.max = 0, 1\\n\",\n                 \"k1_r.min, k1_r.max = 0, 1\\n\",\n                 \"k2_f.min, k2_f.max = 0, 1\\n\",\n@@ -229,29 +229,29 @@\n             ]\n         },\n         {\n             \"cell_type\": \"code\",\n             \"execution_count\": 5,\n             \"metadata\": {\n                 \"execution\": {\n-                    \"iopub.execute_input\": \"2025-10-06T10:54:16.508404Z\",\n-                    \"iopub.status.busy\": \"2025-10-06T10:54:16.508168Z\",\n-                    \"iopub.status.idle\": \"2025-10-06T10:54:16.800508Z\",\n-                    \"shell.execute_reply\": \"2025-10-06T10:54:16.799941Z\"\n+                    \"iopub.execute_input\": \"2024-09-03T04:39:02.765160Z\",\n+                    \"iopub.status.busy\": \"2024-09-03T04:39:02.764791Z\",\n+                    \"iopub.status.idle\": \"2024-09-03T04:39:03.249650Z\",\n+                    \"shell.execute_reply\": \"2024-09-03T04:39:03.248606Z\"\n                 },\n                 \"pycharm\": {\n                     \"is_executing\": false,\n                     \"metadata\": false,\n                     \"name\": \"#%%\\n\"\n                 }\n             },\n             \"outputs\": [\n                 {\n                     \"data\": {\n-                        \"image/png\": \"iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJ+ElEQVR4nO3dd3zTdf7A8dc3o2nTBZ1poYUCMkqVpWwVBQE98Tw3HoqHcuI6ET0RvfspnjI8z9Nz3Z0KyImKiAMXAiogiiIUlD2kpVDSAaV7pEm+vz/SBkJX2ma1fT8fjy9pvvl8v3knpP2+85mKqqoqQgghhBABTOPvAIQQQgghmiIJixBCCCECniQsQgghhAh4krAIIYQQIuBJwiKEEEKIgCcJixBCCCECniQsQgghhAh4krAIIYQQIuDp/B2Ap9jtdo4fP054eDiKovg7HCGEEEK4QVVVSkpKSExMRKNpuB6l3SQsx48fJykpyd9hCCGEEKIFjh49SteuXRt8vN0kLOHh4YDjBUdERPg5GiGEEEK4o7i4mKSkJOd1vCHtJmGpbQaKiIiQhEUIIYRoY5rqziGdboUQQggR8CRhEUIIIUTAk4RFCCGEEAGv3fRhEUIIIc6kqipWqxWbzebvUDo0rVaLTqdr9ZQjkrAIIYRodywWC2azmfLycn+HIgCj0UhCQgJBQUEtPockLEIIIdoVu91ORkYGWq2WxMREgoKCZEJRP1FVFYvFQn5+PhkZGZxzzjmNTg7XGElYhBBCtCsWiwW73U5SUhJGo9Hf4XR4ISEh6PV6jhw5gsViITg4uEXnkU63Qggh2qWWfpMXnueJ/wupYWmEza6yJaOAvJJK4sKDGZoShVYj1YpCCCGEr0nC0oDVu8zM/WQP5qJK576EyGAen5TKxLQEP0YmhBBCdDxSX1aP1bvM3PVWukuyApBTVMldb6WzepfZT5EJIYRor8aMGYOiKCiKwo4dO5osn5mZ6Sw/cOBAr8fnb5KwnMVmV5n7yR7Ueh6r3Tf3kz3Y7PWVEEIIIVpu+vTpmM1m0tLSXBKSM7cpU6YAkJSUhNls5sEHH/Rz1L7RrIRl/vz5XHDBBYSHhxMXF8fVV1/N/v37XcqoqsoTTzxBYmIiISEhjBkzht27dzd57pUrV5KamorBYCA1NZUPP/ywea/EQ7ZkFNSpWTmTCpiLKtmSUeC7oIQQQvicza6y+deTfLwjm82/nvTJF1Wj0YjJZEKnO91jY926dZjNZuf28ssvA44J2UwmE2FhYV6PKxA0K2HZsGED99xzDz/88ANr167FarUyfvx4ysrKnGWeeeYZnnvuOV566SV++uknTCYTl112GSUlJQ2ed/Pmzdx4443ccsst/Pzzz9xyyy3ccMMN/Pjjjy1/ZS2UV9JwstKSckIIIdqe1bvMjF74NZNf+4H7393B5Nd+YPTCr/3SJSA6OhqTyeTcIiMjfR5DIGhWwrJ69Wpuu+02+vfvz4ABA1i8eDFZWVls27YNcNSuPP/88zz22GNcc801pKWl8eabb1JeXs7bb7/d4Hmff/55LrvsMubMmUPfvn2ZM2cOY8eO5fnnn2/Vi2uJuHD3xoe7W04IIUTbIv0YA1Or+rAUFRUBEBUVBUBGRgY5OTmMHz/eWcZgMHDxxRfz/fffN3iezZs3uxwDMGHChEaPqaqqori42GXzhKEpUSREBtPQ4GUFx2ihoSlRHnk+IYQQgSMQ+zGOHDmSsLAw57Z9+3afPXcgaXHCoqoqs2bNYvTo0aSlpQGQk5MDQHx8vEvZ+Ph452P1ycnJafYx8+fPJzIy0rklJSW19KW40GoUHp+UClAnaam9//ikVJmPRQgh2qFA7Me4fPlyduzY4dxSU1N99tyBpMUJy7333ssvv/zCO++8U+exs9dsUFW1yXUcmnvMnDlzKCoqcm5Hjx5tRvSNm5iWwKtTBmOKdG32iQkP4tUpg2UeFiGEaKcCsR9jUlISvXr1cm4Gg8Fnzx1IWjRx3H333ceqVavYuHEjXbt2de43mUyAo8YkIeH0RT0vL69ODcqZTCZTndqUpo4xGAxe/U+bmJbAZakmtmQUMPeT3ezLKWFi/wRJVoQQoh2TfoyBq1k1LKqqcu+99/LBBx/w9ddfk5KS4vJ4SkoKJpOJtWvXOvdZLBY2bNjAyJEjGzzviBEjXI4BWLNmTaPH+IJWozCiZzT/d6Wj+m3FtqMUlFn8GpMQQgjvkX6MgatZCcs999zDW2+9xdtvv014eDg5OTnk5ORQUVEBOJp1Zs6cybx58/jwww/ZtWsXt912G0ajkZtvvtl5nltvvZU5c+Y4799///2sWbOGhQsXsm/fPhYuXMi6deuYOXOmZ15lK43oGU1alwgqq+0s3Zzp73CEEEJ4ifRjDFzNSlheffVVioqKGDNmDAkJCc5t+fLlzjIPP/wwM2fO5O677+b8888nOzubNWvWEB4e7iyTlZWF2Xx6WNjIkSN59913Wbx4Meeddx5Llixh+fLlDBs2zAMvsfUUReHOi3oCsHTzESosNj9HJIQQwlsa6sdoigz2aT/G7t27o6pqh5h23x2KqqrtYo754uJiIiMjKSoqIiIiwuPnt9rsjHl2PcdOVfC3q9O4ZXg3jz+HEEKI1qusrCQjI4OUlBSCg1ve18RmV9mSUUBeSSVx4Y5mIG/WrIwZM4bvv/+eoKAgNm/ezLnnntto+aysLFJTU7FYLKSmprq1/pC/NPZ/4u71W1ZrdpNOq2H6hT14fNVuXv/2MDcPTZYqQSGEaMdq+zH6yrJly5xdLJKTk5ssn5iY6ExSOsLIIUlYmuH687vyz3UHOHKynC9353DFuTJiSAghhGd06dKlWeV1Oh29evXyUjSBR1ZrbgZjkI5ba5qC/rPxMO2kNU0IIYQIeJKwNNOtI7sTpNPw89FC0rNO+TscIYQQokOQhKWZYsIMXD0wEYA3NmX4ORohhBCiY5CEpQWmjXZMmLd6Vw5HC8r9HI0QQgjR/knC0gJ9TRGM7hWDXYU3v8/0dzhCCCFEuycJSwvdXlPLsvyno5RWWf0cjRBCCNG+ScLSQhf3jqVHbCglVVbe+8lzK0ULIYTomMaMGYOiKCiK4tYkcJmZmc7yHWE2XElYWkijUZg2ylHLsvj7DGx2GeIshBCidaZPn47ZbCYtLc0lITlzmzJlCgBJSUmYzWYefPBBP0ftGzJxXCtcO7grz67Zz9GCCtbuyWVimsnfIQkhhGjDjEYjJpPrtWTdunX079/feT8kJAQArVaLyWQiLCzMpzH6iyQsrRASpOXmocm8sv5XFm3KkIRFCCECkKqqVFT7Z9HaEL0WRWndMi7R0dF1kpiOSBKWVrp1RHf+u/EwWzIL2HmsiHO7Rvo7JCGEEGeoqLaR+n9f+uW59zw5AWOQXGo9QfqwtJIpMpgrz3OsKfTGpsN+jkYIIUR7M3LkSMLCwpzb9u3b/R2SX0ja5wG3j+7BRzuO8+kvZh65vB+myJYvZy6EEMKzQvRa9jw5wW/P3VrLly+nX79+zvtJSUmtPmdbJAmLB5zbNZKh3aPYklnA0s2ZPDyxr79DEkIIUUNRlDbdLJOUlNShVmVuiDQJeUjtdP1vb8miwuKfzl1CCCFEeyUJi4dclhpPcpSRwvJqVqYf83c4QgghRLsiCYuHaDUKt43sDsCi7zKwy0RyQgghhMdIwuJBN1yQRLhBx+H8MjYcyPd3OEIIIdqw7t27o6pqh5h23x2SsHhQmEHHjRc4em+/sSnDz9EIIYRoa1555RXCwsLYuXNnk2WzsrIICwtj3rx5PojM/9put+kANXVkdxZ9l8GmQyfYl1NMX1OEv0MSQgjRBixbtoyKigoAkpOTmyyfmJjoXCTRYDB4M7SAIAmLhyVFGbk8LYHPdpp549sM/n79AH+HJIQQog3o0qVLs8rrdLoONdxZmoS84PYLHUOcP95xnLySSj9HI4QQQrR9krB4weDkzgxO7oTFZud/m4/4OxwhhBCizZOExUumX9gDgLd+OCITyQkhhBCtJAmLl4zvbyIpKoRT5dV8sF0mkhNCCCFaQxIWL9FqFP4w0tGX5Y1NMpGcEEII0RqSsHjRmRPJrT+Q5+9whBBCiDZLEhYvCjPomDzMMZb+tY0ykZwQQoiGjRkzBkVRUBTFOb+KP2VmZjrjCYTZdpudsGzcuJFJkyaRmJiIoih89NFHLo/Xvrizt7///e8NnnPJkiX1HlNZ2faHBN82sjtajcLmwyfZlV3k73CEEEK4y26DjG9h5/uOW7v3B1BMnz4ds9lMWlqaS8Jw5jZlyhTgdEKh0+nIzs52OY/ZbEan06EoCpmZmS0qn5SUhNls5sEHH/T663ZHsxOWsrIyBgwYwEsvvVTv42az2WVbtGgRiqJw7bXXNnreiIiIOscGBwc3N7yAk9gphN+cmwDAIpmuXwgh2oY9q+D5NHjzSlh5u+P2+TTHfi8yGo2YTCZ0utPzuq5bt87l2vjyyy+7HJOYmMjSpUtd9r355psNTkTnbnmtVovJZCIsLKw1L8ljmp2wXH755Tz11FNcc8019T5uMplcto8//phLLrmEHj16NHpeRVHqHNte3FEzkdyqn4+TU9T2a42EEKJd27MK3rsVio+77i82O/Z7OWk5W3R0tMu1MTIy0uXxqVOnsnjxYpd9S5YsYerUqfWer7nlA4VX+7Dk5uby2WefcfvttzdZtrS0lG7dutG1a1euvPJKtm/f7s3QfOq8rp0Y2j0Kq11l6eZMf4cjhBCiIXYbrJ4N1Deys2bf6kd80jzkrquuuopTp06xadMmADZt2kRBQQGTJk3ySPlA4dWE5c033yQ8PLzB2phaffv2ZcmSJaxatYp33nmH4OBgRo0axcGDBxs8pqqqiuLiYpctkNVO17/sxyzKLVY/RyOEEKJeR76vW7PiQoXibEc5Hxk5ciRhYWHO7ewv9Hq9nilTprBo0SIAFi1axJQpU9Dr9fWer7nlA4VXE5ZFixbx+9//vsm+KMOHD2fKlCkMGDCACy+8kPfee4/evXvz4osvNnjM/PnziYyMdG5JSUmeDt+jxvWLp3u0kaKKalZuk4nkhBAiIJXmeracByxfvpwdO3Y4t9TU1Dplbr/9dlasWEFOTg4rVqxg2rRpjZ6zueUDgdcSlm+//Zb9+/dzxx13NPtYjUbDBRdc0GgNy5w5cygqKnJuR48ebU24XqfVKEwbfXoiOZtMJCeEEIEnLN6z5TwgKSmJXr16OTeDwVCnTFpaGn379mXy5Mn069ePtLS0Rs/Z3PKBwGsJyxtvvMGQIUMYMGBAs49VVZUdO3aQkJDQYBmDwUBERITLFuiuG9KVyBA9mSfL+Wqv77JzIYQQbuo2EiISAaWBAgpEdHGUCzDTpk1j/fr1bteWNLe8vzU7YSktLXVWSwFkZGSwY8cOsrKynGWKi4tZsWJFg7Urt956K3PmzHHenzt3Ll9++SWHDx9mx44d3H777ezYsYMZM2Y0N7yAZgzScXPNRHKvfytDnIUQIuBotDBxYc2ds5OWmvsTFzjKBZjp06eTn5/vdstGc8v7W7MTlq1btzJo0CAGDRoEwKxZsxg0aBD/93//5yzz7rvvoqoqkydPrvccWVlZmM1m5/3CwkL++Mc/0q9fP8aPH092djYbN25k6NChzQ0v4E0d0R29VmFLZgE7jhb6OxwhhBBnS70KblgKEWfV8kckOvanXuWfuJqg0+mIiYlxmcPFk+X9TVFVtV10piguLiYyMpKioqKAbx568L2fWZl+jIn9Tfz7liH+DkcIIdqVyspKMjIySElJad0EpHabYzRQaa6jz0q3kV6tWRkzZgwDBw7k+eef99pztMQTTzzBRx991KrlAhr7P3H3+i1rCfnBjIsdk+h9uSeHX/NL/RyNEEKIemm0kHIhnHud49YHzUCvvPIKYWFh7Ny50+vP1ZSsrCzCwsKYN2+ev0MBoG3UA7Uz58SHM65fPOv25vLaxsMsuPY8f4ckhBDCz5YtW0ZFRQUAycnJfo7GMYV/ba1KfSOTfE0SFj+5a0wP1u3N5YP0bB64rDfxEW1/3SQhhBAt19DaP/6i0+no1auXv8NwkiYhPxnSLYrzu3XGYrMz54OdbP71pMzNIoQQQjRAalj8ZPUus7P/ytf78vh6Xx4JkcE8PimViWkNzz8jhBBCdERSw+IHq3eZueutdE6VV7vszymq5K630lm9y9zAkUIIIUTHJAmLj9nsKnM/2dPYOqDM/WSPNA8JIYQQZ5CExce2ZBRgLqps8HEVMBdVsiWjwHdBCSGEEAFOEhYfyytpOFlpSTkhhBDtw5gxY1AUBUVRWjVJm6dkZmY64xk4cKC/w5GExdfiwt0bvuxuOSGEEO3H9OnTMZvNpKWluSQMZ25TpkwBTicUOp2O7Oxsl/OYzWZ0Oh2KopCZmdmi8klJSZjNZh588EGvv253SMLiY0NTokiIDG5wHVAAU4SBoSlRPotJCCFEYDAajZhMJpf1fdatW4fZbHZuL7/8sssxiYmJLF261GXfm2++2eC8Lu6W12q1mEwmwsLCWvOSPEYSFh/TahQen5QKNLx4+fXnd0WraSylEUII0VFER0djMpmcW2RkpMvjU6dOZfHixS77lixZwtSpU+s9X3PLBwpJWPxgYloCr04ZjCnStdknNMixTsX3vxbQTtakFEII/1NVsJT5Z/PB3/KrrrqKU6dOsWnTJgA2bdpEQUEBkyZN8kj5QCETx/nJxLQELks1sSWjgLySSuLCg+kebeTiZ9ez7cgpNv96kpG9YvwdphBCtH3V5TAv0T/P/ehxCApt1SlGjhyJRnO6fuHbb79l0KBBzvt6vZ4pU6awaNEiRo8ezaJFi5gyZQp6vb7e8zW3fKCQhMWPtBqFET2jXfbddEESSzcf4V9fH5SERQghBMuXL6dfv37O+0lJSXXK3H777YwYMYJ58+axYsUKNm/ejNVqbfCczS0fCCRhCTAzLu7JO1uy+OFwAT9lFnBBd+l8K4QQraI3Omo6/PXcrZSUlNTkIoRpaWn07duXyZMn069fP9LS0hodGt3c8oFA+rAEmMROIVw3pCsA//rqoJ+jEUKIdkBRHM0y/tgU3w2gmDZtGuvXr2fatGleKe9vkrAEoLsu7oVWo/DtwRPsOFro73CEEEK0AdOnTyc/P5877rjDK+X9TRKWAJQcbeTqgY7x8C9KLYsQQgg36HQ6YmJiXOZw8WR5f2sbUXZA91zSkw+3H+OrfXnsyi4irUtk0wcJIYRoN7p3797oFBdNPT5w4ECXx5tbPtBIDUuA6hEbxpXnOYbhvfT1IT9HI4QQwhdeeeUVwsLC2Llzp79DISsri7CwMObNm+fvUACpYQlo917ai1U/H2f17hz255TQxxTu75CEEEJ4ybJly6ioqAAgOTnZz9E4pvCvHTlkMBj8GwySsAS03vHhXHGuic935vD8ugO8OmWIv0MSQgjhJQ2t/eMvOp2uyeHUviRNQgFu5rjeKAp8sSuHXdlF/g5HCCGE8AtJWAJc7/hwrhrg6Mvyz7UH/ByNEEII4R+SsLQB9489B40CX+3LY3vWKX+HI4QQQvicJCxtQI/YMK4d7Jj99jmpZRFCCNEBScLSRvxp7Dnoama/3ZJR4O9whBBCCJ+ShKWNSIoycuMFjhU6n12zP6An9xFCCCE8TRKWNuTeS3sRpNOwJaOA7w6d9Hc4QgghPGjMmDEoioKiKAG/cjJAZmamM96BAwd6/fkkYWlDEiJD+P0wx2RC/1grtSxCCNHeTJ8+HbPZTFpamktCcOY2ZcoU4HTCoNPpyM7OdjmP2WxGp9OhKAqZmZmtKt/Q8yclJWE2m3nwwQe9+6bUaHbCsnHjRiZNmkRiYiKKovDRRx+5PH7bbbfVeXHDhw9v8rwrV64kNTUVg8FAamoqH374YXND6xDuGtOTYL2G7VmFfLU3z9/hCCFEu2Wz2/gp5yc+P/w5P+X8hM1u8/pzGo1GTCaTy4KE69atw2w2O7eXX37Z5ZjExESWLl3qsu/NN99scCK65pZv6Pm1Wi0mk4mwsLBmv86WaHbCUlZWxoABA3jppZcaLDNx4kSXF/f55583es7Nmzdz4403csstt/Dzzz9zyy23cMMNN/Djjz82N7x2Ly48mD+MSgHgmS/3YbNLLYsQQnjauiPrmLByAtO+nMbsb2cz7ctpTFg5gXVH1vk8lujoaEwmk3OLjHRdDHfq1KksXrzYZd+SJUuYOnVqvedrbvmmnt9Xmp2wXH755Tz11FNcc801DZYxGAwuLy4qKqrRcz7//PNcdtllzJkzh759+zJnzhzGjh3L888/39zwOoQZF/ekk1HPgdxSVm475u9whBCiXVl3ZB2z1s8itzzXZX9eeR6z1s/yS9LSmKuuuopTp06xadMmADZt2kRBQQGTJk3ySPlA4ZU+LOvXrycuLo7evXszffp08vIab7rYvHkz48ePd9k3YcIEvv/++waPqaqqori42GXrKCJD9Nx7iWN9h+fWHqCy2vvVlEII0RHY7DYWbFmASt3a69p9C7cs9EnzUK2RI0cSFhbm3LZv3+7yuF6vZ8qUKSxatAiARYsWMWXKFPR6fb3na275pp7fVzyesFx++eUsW7aMr7/+mn/84x/89NNPXHrppVRVVTV4TE5ODvHx8S774uPjycnJafCY+fPnExkZ6dySkpI89hraginDu9GlUwg5xZUs/i7T3+EIIUS7kJ6XXqdm5UwqKjnlOaTnpfsspuXLl7Njxw7nlpqaWqfM7bffzooVK8jJyWHFihVMmzat0XM2p7w7z+8LHk9YbrzxRn7zm9+QlpbGpEmT+OKLLzhw4ACfffZZo8cpiuJyX1XVOvvONGfOHIqKipzb0aNHPRJ/WxGs1/Lg+N4AvLL+EKfKLH6OSAgh2r788nyPlvOEpKQkevXq5dwMBkOdMmlpafTt25fJkyfTr18/0tLSGj1nc8q78/y+4PVhzQkJCXTr1o2DBw82WMZkMtWpTcnLy6tT63Img8FARESEy9bRXD2wC/0SIiiptPLK+kP+DkcIIdq8WGOsR8v50rRp01i/fn2TtSstLe9vXk9YTp48ydGjR0lISGiwzIgRI1i7dq3LvjVr1jBy5Ehvh9emaTQKsyf2AeDN749w7FS5nyMSQoi2bXDcYOKN8SjUX8OvoGAymhgcN9jHkTVt+vTp5Ofnc8cdd3ilvL81O2EpLS11tmMBZGRksGPHDrKysigtLeWhhx5i8+bNZGZmsn79eiZNmkRMTAy/+93vnOe49dZbmTNnjvP+/fffz5o1a1i4cCH79u1j4cKFrFu3jpkzZ7b6BbZ3F/eOZWTPaCw2O8+tkYURhRCiNbQaLY8MfQSgTtJSe3/20NloNVqfx9YUnU5HTEyMyxwunizvb82OcuvWrVxyySXO+7NmzQIc47pfffVVdu7cydKlSyksLCQhIYFLLrmE5cuXEx4e7jwmKysLjeZ0rjRy5Ejeffdd/vKXv/DXv/6Vnj17snz5coYNG9aa19YhKIrCI5f35aqXvuPDHdncfmEK/RP9M0ZeCCHag3HdxvHcmOdYsGWBSwfceGM8s4fOZly3cT6Jo3v37o3OaN7U4wMHDnR53NPlfU1RAymaViguLiYyMpKioqIO2Z/lvne288nPxxmWEsW7fxzeaIdlIYRozyorK8nIyCAlJYXg4OAWn8dmt5Gel05+eT6xxlgGxw32as3KmDFj+P777wkKCmLz5s2ce+65XnsuT8jKyiI1NRWLxUJqamqj6x819n/i7vW7bdQDiSY9cnlf1uzO4ceMAr7cncPEtIb7DAkhhGiaVqPlAtMFPnu+ZcuWUVFRAUBycrLPnrelEhMTnUmKL0YOScLSTnTpFMKdF/XgX18f4unP93JJ3zgMusBrYxVCCFG/htbyCVQ6nY5evXr57PlkteZ25M6LexIfYeBoQQWLNmX6OxwhhBDCYyRhaUdCDTpmT+wLwEtfHySvpNLPEQkhhBCeIQlLO3P1wC4MSOpEmcXGs1/uZ/OvJ/l4Rzabfz0pKzsLIYRos6QPSzuj0Sj835WpXPvq97y39RjvbT29mnNCZDCPT0qVDrlCCCHaHKlhaYfyG2gKyimq5K630lm9y+zjiIQQQojWkYSlnbHZVeZ+sqfex2obhOZ+skeah4QQQrQpkrC0M1syCjAXNdzZVgXMRZVsySjwXVBCCCGaNGbMGBRFQVGURidhCxSZmZnOeAcOHOj155OEpZ1xd2SQjCASQojAM336dMxmM2lpaS4JwZnblClTgNMJg06nIzs72+U8ZrMZnU6HoihkZma2qnxDz5+UlITZbObBBx/07ptSQxKWdiYu3L1pqN0tJ4QQwneMRiMmk8llQcJ169ZhNpud28svv+xyTGJiIkuXLnXZ9+abbzY4EV1zyzf0/FqtFpPJRFhYWLNfZ0tIwtLODE2JIiEyuIGF0R0SIoMZmhLls5iEEEK0XHR0NCaTyblFRroucDt16lQWL17ssm/JkiVMnTq13vM1t3xTz+8rkrC0M1qNwuOTUgEaTFoen5SKViOLIwohOgZVVSmvLvfL5ov1ha+66ipOnTrFpk2bANi0aRMFBQVMmjTJI+UDhczD0g5NTEvg1SmDmfvJnjodcMMMOob3iPZTZEII4XsV1gqGvT3ML8/9480/YtQbW3WOkSNHotGcrl/49ttvGTRokPO+Xq9nypQpLFq0iNGjR7No0SKmTJmCXq+v93zNLd/U8/uKJCzt1MS0BC5LNbElo4C8kkqiQoN48pM9HMwr5e9f7ufp3wX2suVCCCEcli9fTr9+/Zz3k5KS6pS5/fbbGTFiBPPmzWPFihVs3rwZq9Xa4DmbU96d5/cFSVjaMa1GYUTP07UpT/42jcmv/cDbW7K4dkhXBid39mN0QgjhGyG6EH68+Ue/PXdrJSUlNbkqclpaGn379mXy5Mn069ePtLS0RodGN6e8O8/vC5KwdCAjekZzzaAufLA9m0dW/sKn911IkE66MQkh2jdFUVrdLNMWTJs2jbvvvptXX33VK+X9Ta5WHcxfrkwlKjSIA7mlvLr+V3+HI4QQwkOmT59Ofn4+d9xxh1fK+5skLB1MVGiQcxTRS98c5GBuiZ8jEkII4Qk6nY6YmBiXOVw8Wd7f2kaUwqOuGpDIxzuO8/W+PGav/IX3Z4xEI8OchRAioHTv3r3RYdFNPT5w4ECXxz1d3tekhqUDUhSFv12dRmiQlvSsQv73wxF/hySEEAJ45ZVXCAsLY+fOnf4OpUlZWVmEhYUxb948nzyf1LB0UF06hTD78r7838e7eWb1PsalxtOlU+t7swshhGiZZcuWUVFRAUBycrKfo2laYmKic2SRwWDw+vNJwtKBTRnWjVU7jrP1yCke+3Ani2+7AEWRpiEhhPCHhtbyCVQ6nc6nw52lSagD02gUFlx7LkFaDev357MyPbvpg4QQQgg/kISlg+sVF879484BYO6q3WQXVvg5IiGEEKIuSVgEd17Ug0HJnSipsvLw+z9jtwdOr3AhhBACJGERgE6r4R/XDyBYr+G7Qydl1JAQQoiAIwmLAKBHbBiPTOwLwPwv9pJxoszPEQkhhBCnScIinG4d0Z2RPaOprLbz4Hs7sEnTkBBCiAAhCYtw0mgU/n79AMIMOtKzCvnPRllrSAghfGXMmDEoioKiKI2utOwpmZmZzucbOHCg15+vtSRhES66dArh/2rWGvrn2gPsyi7yc0RCCNFxTJ8+HbPZTFpamjOh0Ol0ZGe7TjthNpvR6XQoikJmZiZAs8snJSVhNpt58MEHffHSWq3ZCcvGjRuZNGkSiYmJKIrCRx995Hysurqa2bNnc+655xIaGkpiYiK33norx48fb/ScS5YscWZ5Z26VlZXNfkGi9a4f0pXLUuOptqn86d3tlFus/g5JCCF8TrXZKPtxC0WffkbZj1tQbTavP6fRaMRkMrksSJiYmMjSpUtdyr355psNTjTnbnmtVovJZCIsLMxD0XtXsxOWsrIyBgwYwEsvvVTnsfLyctLT0/nrX/9Keno6H3zwAQcOHOCqq65q8rwRERGYzWaXLTg4uLnhCQ9QFIVnrj0PU0Qwh/PLmLtqj79DEkIInypes4ZDY8eRNXUqxx96iKypUzk0dhzFa9b4PJapU6eyePFil31Llixh6tSpHinfVjQ7Ybn88st56qmnuOaaa+o8FhkZydq1a7nhhhvo06cPw4cP58UXX2Tbtm1kZWU1el5FUTCZTC6b8J/OoUE8d+MAFAWWbz3Kp780XksmhBDtRfGaNWTfPxNrTo7LfmtuLtn3z/R50nLVVVdx6tQpNm3aBMCmTZsoKChg0qRJHinfVni9D0tRURGKotCpU6dGy5WWltKtWze6du3KlVdeyfbt2xstX1VVRXFxscsmPGtkzxjuGeNYJ2LOBzs5WlDufMxmV9n860k+3pHN5l9PyogiIUS7oNps5M6bD2o9f9Nq9uXOm++T5qFaer2eKVOmsGjRIgAWLVrElClT0Ov1HinfVng1YamsrOSRRx7h5ptvJiIiosFyffv2ZcmSJaxatYp33nmH4OBgRo0axcGDBxs8Zv78+URGRjq3pKQkb7yEDu/+cecwOLkTJZVW7n93O1abndW7zIxe+DWTX/uB+9/dweTXfmD0wq9Zvcvs73CFEKJVyrduq1Oz4kJVsebkUL51m++CAm6//XZWrFhBTk4OK1asYNq0aR4t3xZ4LWGprq7mpptuwm6388orrzRadvjw4UyZMoUBAwZw4YUX8t5779G7d29efPHFBo+ZM2cORUVFzu3o0aOefgkC0Gs1vHDTIMJrhjr/6d3t3PVWOuYi1w7ROUWV3PVWuiQtQog2zZqf79FynpKWlkbfvn2ZPHky/fr1Iy0tzaPl2wKvJCzV1dXccMMNZGRksHbt2kZrV+oNSqPhggsuaLSGxWAwEBER4bIJ70iKMjLvmnMB+HxnDvU1/tTum/vJHmkeEkK0WbrYWI+W86Rp06axfv16t2tLmls+0Hk8YalNVg4ePMi6deuIjo5u9jlUVWXHjh0kJCR4OjzRQpMGJHJJn7hGy6iAuaiSLRkFvglKCCE8zHj+EHQmEyhK/QUUBZ3JhPH8Ib4NDMccLfn5+dxxxx1eKR/omp2wlJaWsmPHDucsfBkZGezYsYOsrCysVivXXXcdW7duZdmyZdhsNnJycsjJycFisTjPceuttzJnzhzn/blz5/Lll19y+PBhduzYwe23386OHTuYMWNG61+h8JgrznVv5FZeicyfI4RomxStlvhHa65PZyctNffjH52DotX6ODLQ6XTExMS4zNHiyfKBrtmvYuvWrVxyySXO+7NmzQIc476feOIJVq1aBVBnmt9vvvmGMWPGAJCVlYVGczpXKiws5I9//CM5OTlERkYyaNAgNm7cyNChQ5sbnvCirp2NbpWLC5f5c4QQbVfE+PHwwvPkzpvv0gFXFx9P/KNzHI/7QPfu3VHrG61UY+DAgS6PN7d8W6OobTn6MxQXFxMZGUlRUZH0Z/ESm11l9MKv63S4raUApshgNs2+FK2mgepUIYTwssrKSjIyMkhJSWnVBKSqzeYYNZSfjy42FuP5Q7xaszJmzBi+//57goKC2Lx5M+eee67XngsclQepqalYLBZSU1O9un5RY/8n7l6/20c9kfAJrUbh8Ump3PVWep2Ot7XpyeOTUiVZEUK0C4pWS+gw39X0L1u2jIqKCgCSk5O9/nyJiYnOJMVgMHj9+VpLEhbRLBPTEnh1ymCeWLWbnOIq5/64CANzr+rPxDTpKC2EEC3R0NpA3qLT6ejVq5dPn7M1ZLVm0WwT0xL47pGxvPr7wUQEO3LeAV07MT5VllMQQgjhHZKwiBbRahQuPzeBJdOGEqTVsGZPLi981fC8OUIIIURrSMIiWmVwcmee/p1jBsUXvjrIFztlplshhBCeJwmLaLXrz09i2qgUAB5c8TN7zbIQpRBCCM+ShEV4xKNX9GV0rxjKLTamL91KQZml6YOEEEIIN0nCIjxCp9Xw0s2D6BZt5NipCu5etg2L1e7vsIQQQrQTkrAIj+lkDOK1W88nzKDjh8MFzPlgZ5ueVVEIIXxpzJgxKIqCoihencStVmZmpvP5zp6dPhBJwiI8qnd8OC/ePAitRmFl+jFe/PqQv0MSQog2Y/r06ZjNZtLS0pwJhU6nIzs726Wc2WxGp9OhKAqZmZkAzS6flJSE2WzmwQcf9MVLazVJWITHXdInjid/2x+A59Ye4MPtx/wckRBCtA1GoxGTyeSyYGFiYiJLly51Kffmm282ONGcu+W1Wi0mk4mwsDAPRe9dkrAIr/j9sG7ceXEPAB5+/xd+OHzSzxEJIUTbNHXqVBYvXuyyb8mSJUydOtUj5dsKSViE18ye0JffnJtAtU3lzv9t41Beqb9DEkJ0QKqqYi8v98vmiX58V111FadOnWLTpk0AbNq0iYKCAiZNmuSR8m2FrCUkvEajUfjHDQMwF1WQnlXIH5ZsYeWMkcRFtHz1VCGEaC61ooL9g4f45bn7pG9DMRpbdQ69Xs+UKVNYtGgRo0ePZtGiRUyZMgW9Xu+R8m2F1LAIrwrWa3nt1vPpHm3kaEEFty7aQlFFtb/DEkKINuX2229nxYoV5OTksGLFCqZNm+bR8m2B1LAIr4sOM7B02jCu/ff37Msp4Y43f2LptGGEBGn9HZoQogNQQkLok77Nb8/tCWlpafTt25fJkyfTr18/0tLSGh363NzybYHUsAifSI42snTaUMKDdfyUeYp7306n2iYTywkhvE9RFDRGo182RVE89jqmTZvG+vXr3a4taW75QCcJi/CZfgkRvDH1Agw6DV/ty+ORlTux22ViOSGEcMf06dPJz8/njjvu8Er5QCcJi/CpoSlRvHzzYOfEcvM+3yuz4QohhBt0Oh0xMTEuc7R4snygax+vQrQp41LjWXjteTy04mde35RBSJCWB8f38XdYQggRULp3797oF7qBAwe6PN7c8m2N1LAIv7huSFcen5QKwItfH+LFrw76OSIhhPC/V155hbCwMHbu3On158rKyiIsLIx58+Z5/bk8QWpYhN/8YVQKFqud+V/s4x9rD6DXaZhxcU9/hyWEEH6xbNkyKioqAEhOTvb68yUmJjpHDhkMBq8/X2tJwiL86s6Le1Jts/PsmgMs+GIfeq2G20en+DssIYTwuYbWBvIWnU5Hr169fPqcrSFNQsLv7r30HP50qeOX5m+f7uF/Pxzxc0RCCCECjSQsIiA8cFlv52KJf/1oF29J0iKEEOIMkrCIgKAoCo9M7OtsDvrLR7t4Y1OGn6MSQrRldrtMThkoPPF/IX1YRMBQFIW//KYfOq3CfzYc5m+f7qHKauPuMW2njVUI4X9BQUFoNBqOHz9ObGwsQUFBHp1xVrhPVVUsFgv5+floNBqCgoJafC5JWERAqa1pCdZpeeGrgzyzej+/5pWy8Nrz0GmlQlAI0TSNRkNKSgpms5njx4/7OxwBGI1GkpOT0Wha/ndcEhYRcL7cncN7W486769Mz2b1rhyevf48Lj830Y+RCSHaiqCgIJKTk7FardhsNn+H06FptVp0Ol2ra7kkYREBZfUuM3e9lc7ZczGWWWzctWw7r/werpCkRQjhBkVR0Ov16PV6f4ciPEDq2EXAsNlV5n6yp06ycqZZ7/1MhUW+LQkhREfT7IRl48aNTJo0icTERBRF4aOPPnJ5XFVVnnjiCRITEwkJCWHMmDHs3r27yfOuXLmS1NRUDAYDqampfPjhh80NTbRxWzIKMBdVNlqmstrO9f/ZTGmV1UdRCSGECATNTljKysoYMGAAL730Ur2PP/PMMzz33HO89NJL/PTTT5hMJi677DJKSkoaPOfmzZu58cYbueWWW/j555+55ZZbuOGGG/jxxx+bG55HqTYbZT9uoejTzyj7cQuqtIN6VV5J48lKrV3ZRdz82g+cKK3yckRCCCEChaK2YulGRVH48MMPufrqqwFH7UpiYiIzZ85k9uzZAFRVVREfH8/ChQu588476z3PjTfeSHFxMV988YVz38SJE+ncuTPvvPOOW7EUFxcTGRlJUVERERERLX1Jp8+3Zg258+Zjzclx7tOZTMQ/OoeI8eNbfX5R1+ZfTzL5tR+aLBcerKOk0kpKTChLpw0lKcrog+iEEEJ4g7vXb4/2YcnIyCAnJ4fxZ1zQDQYDF198Md9//32Dx23evNnlGIAJEyY0ekxVVRXFxcUum6cUr1lD9v0zXZIVAGtuLtn3z6R4zRqPPZc4bWhKFAmRwTTUj1wBEiKD+fDukXTpFELGiTKuefV7dmUX+TJMIYQQfuDRhCWn5gIfHx/vsj8+Pt75WEPHNfeY+fPnExkZ6dySkpJaEflpqs1G7rz5UF/FU82+3HnzpXnIC7QahccnpQLUSVpq7z8+KZVeceF8cPdI+prCyS+p4vp/b2btnlyfxiqEEMK3vDJK6Oyx1qqqNjn+urnHzJkzh6KiIud29OjRBss2R/nWbXVqVs4KDGtODuVbt3nk+YSriWkJvDplMKbIYJf9pshgXp0ymIlpCQDERwTz3owRXHhODBXVNv74v628sSmDVrRwCiGECGAenYfFZDIBjhqThIQE5/68vLw6NShnH3d2bUpTxxgMBgwGQysjrsuan+/RcqL5JqYlcFmqiS0ZBeSVVBIXHszQlCi0GtcENiJYz6LbLuDxVbt5+8cs/vbpHjJPlPH4pFSZFVcIIdoZj/5VT0lJwWQysXbtWuc+i8XChg0bGDlyZIPHjRgxwuUYgDVr1jR6jLfoYmM9Wk60jFajMKJnNL8d2IURPaPrJCu19FoNT1+dxmNX9ENR4H8/HOH2N7dSUlnt44iFEEJ4U7MTltLSUnbs2MGOHTsAR0fbHTt2kJWVhaIozJw5k3nz5vHhhx+ya9cubrvtNoxGIzfffLPzHLfeeitz5sxx3r///vtZs2YNCxcuZN++fSxcuJB169Yxc+bMVr/A5jKePwSdyQSNNEdp4+Mxnj/Eh1GJxiiKwvSLevDq74cQrNew4UA+17zyPRknyvwdmhBCCA9pdsKydetWBg0axKBBgwCYNWsWgwYN4v/+7/8AePjhh5k5cyZ33303559/PtnZ2axZs4bw8HDnObKysjCbzc77I0eO5N1332Xx4sWcd955LFmyhOXLlzNs2LDWvr5mU7Ra4h+tSaYaSFo6X38dilbrw6iEOyammVj+xxHERxg4mFfKVS9tYv3+PH+HJYQQwgNaNQ9LIPHFPCyK0YhaXo7xggtIXvqmLFceoPKKK5nx1jbSswpRFHh4Ql9mXNxD/r+EECIAuXv9loSlEarN5hg1lJ+PLjYWfZdEDl9+BWp1NcmL3iDUD31shHuqrDaeWLWbd7Y4Ro/95rwE/n7deRiDZL1PIYQIJH6ZOK69UbRaQocNJfLK3xA6bChBXbvS6aabAMj75/MyhDaAGXRa5l9zHk//Lg2dRuGzX8xc++pmsk6W+zs0IYQQLSAJSzPFzLgTxWikcudOStat83c4ogm/H9aNd/44nJgwA3vNxfzmxW/5cncj8+wIIYQISJKwNJMuOpqoqbcCkP/CCzLjbRtwQfcoPrlvFEO6daak0sqd/9vGU5/uodpm93doQggh3CQJSwtE/+EPaCIjsRz6laJPPvF3OMINCZEhvPvH4Uy/MAWA1zdlcMUL37L4uww2/3oSm12a94QQIpBJwtIC2ogIYqbfAcCJF19CtVj8HJFwh16r4bHfpDpGDAEH80qZ+8keJr/2A6MXfs3qXeYmzyGEEMI/JGFpoc6//z262Fiqs7M5tfw9f4cj3LR6l5n/bDjM2fUp5qJKZryVLkmLEEIEKElYWkgTEkLMPXcDcOKll7AVFfk5ItEUm11l7id76iQrZ/rLR7ukeUgIIQKQJCyt0Om66zCc0wtbUREnXv23v8MRTdiSUYC5qLLRMidKLTz16R4Zsi6EEAFGEpZWUHQ64h6eDUDBsmVYMjP9G5BoVF5J48lKrcXfZzJtyU/kl1R5OSIhhBDukoSllcIuHE3ohRdCdTW5zz7r73BEI+LCg90qp9cqfLM/n8tf2MjqXS2bs8VmV9n860k+3pEto5CEEMIDJGHxgPjZD4NWS+m6ryj7cYu/wxENGJoSRUJkMA2tKKQACZHBfHzPKPrEh3Oi1MKMt7bxp3e2c6rM/ZFgq3eZGb3waya/9gP3v7tDRiEJIYQHSMLiAYZeveh84w0A5C5cIJPJBSitRuHxSakAdZKW2vuPT0olNTGSVfeN4u4xPdEosOrn41z2z41uzZC7epeZu95Kr9NXJqeokrtkFJIQQrSYJCweEnPvvWjCw6nas5fCFSv8HY5owMS0BF6dMhhTpGvzkCkymFenDGZiWgLgWIvo4Yl9+eDuUfSKC+NEaRV3/m8bM9/dTmF5/bUtjY1Cqt0395M90jwkhBAtIKs1e1DB0v+RO28emshIen7xObqoKL/EIZpms6tsySggr6SSuPBghqZEodXU31hUWW3j+XUH+e/GX7GrEBtu4Mmr+jMxzYSinD5m868nmfzaD00+9zvThzOiZ7THXosQQrRlslqzH3S+eTKGfv2wFxWR9+w//B2OaIRWozCiZzS/HdiFET2jG0xWAIL1Wh65vC8r7xpJz9hQ8kuquGtZOtOXbiW7sMJZzt1RSO6WE0IIcZokLB6k6HSY/u+vABR98AHl6el+jkh40qDkznz2pwu595Je6LUK6/bmcdlzG3hjUwZWm93tUUjulhNCCHGaJCweZhw0iMhrrwEgZ+6TqFarnyMSnhSs1/LQhD589qcLOb9bZ8otNv726R6ufuU7QoK0bo1CGpoiTYVCCNFckrB4QdyDD6KJjKRq/35OLVvm73CEF/SOD+e9O0cw/5pziQjWsSu7mGte+Y6+pnBUGh+F1FjzkxBCiPpJwuIFuqgo4mbNAiDvhX9hOZbt54iEN2g0CpOHJvPVg2O4akAidhW+2Z9PuEFHRIjOpezZo5CEEEI0j4wS8hLVbufIrbdSsXUboaNGkfT6ay4jSkT7s+ngCZ74ZDeH8koB6BETym8HJTK0e3Sjo5CEEKIjk1FCfqZoNCT87W8oQUGUffcdRR9+5O+QhJeNPieGL+6/kL/8ph/hBh2HT5Txz7UHWZl+jJNlsi6REEK0hiQsXmRISSHmvnsByF2wAGt+vp8jEt6m12q448IefPXQxVw3pCsA7287xqXPbuDfG36lslpmQRZCiJaQhMXLov/wB4JTU7EXF5Pz5N/8HY7wkbjwYJ69fgAf3j2SAV0jKa2ysuCLfYz9xwY+3H4Mu8x2K4QQzSIJi5cpOh0J854GnY6StWsp/vxzf4ckfGhQcmc+vHsUz14/gITIYLILK3hg+c9c9fImvj90wt/hCSFEmyEJiw8E9+1LzB//CIB57pNU5+b6OSLhSxqNwnVDuvLNQ2P484Q+hBkcw6Bvfv1Hblu8hf05Jf4OUQghAp6MEvIRtbqazJsmU7l7N6EjRzpGDWkkX+yITpZW8a+vDrLsxyysdhWNAlcP6sLMsb1JjjY2eXxz1kESQohA5+71WxIWH6o6fJiMa65Frawk/rHHiLplir9DEn50OL+UZ1bvZ/XuHAB0GoXrz0/ivkt7kdgppN5jVu8yM/eTPZiLTq9HlBAZzOOTUmWOFyFEmyQJS4AqWLaM3L89hWIwkPLBSgw9e/o7JOFnPx8t5B9rD7DxgGMUWZBWw83Dkrn7kp4u6w6t3mXmrrfSOfsXtrZuRSamE0K0RZKwBChVVTk6/Y+UbdqEIbUf3d99F01QkL/DEgFgS0YBz67Zz5aMAgBC9FpuHdmNOy/qSWSIntELv3apWTmTgmM23U2zL5XmISFEm+K3ieO6d++Ooih1tnvuuafe8uvXr6+3/L59+zwdWkBQFIWEp59G26kTVXv2kv3gQxR9+hllP25BtckcHR3Z0JQolv9xOG/dPowBSZ2oqLbxnw2HGbXga+57Z3uDyQqACpiLKp3JjhBCtDe6pos0z08//YTtjAvvrl27uOyyy7j++usbPW7//v0umVVsbKynQwsY+vg4Ot14Ayf/819K166ldO1aAHQmE/GPziFi/Hg/Ryj8RVEURp8Tw6he0Xy9L49/rjvAruxiPt9pduv4vJKGkxohhGjLPJ6wnJ1oLFiwgJ49e3LxxRc3elxcXBydOnXydDgBqXjNGk7+97U6+625uWTfPxNeeF6Slg5OURTG9ovn0r5xrD+Qz4LP97E/t+nhz2f2eRFCiPbEq+NqLRYLb731FtOmTWty4b9BgwaRkJDA2LFj+eabb5o8d1VVFcXFxS5bW6DabOTOmw/1dR2q2Zc7b740DwnAkbhc0ieOz/40mqjQhvs6KThGCw1NifJdcEII4UNeTVg++ugjCgsLue222xosk5CQwH//+19WrlzJBx98QJ8+fRg7diwbN25s9Nzz588nMjLSuSUlJXk4eu8o37oNa05OwwVUFWtODuVbt/kuKBHwdFoN836XRkNpvwr8dmBig48LIURb59VRQhMmTCAoKIhPPvmkWcdNmjQJRVFYtWpVg2Wqqqqoqjq9Am5xcTFJSUkBP0qo6NPPOP7QQ02WS3z2WSKv/I0PIhJtSX3zsJwpJSaUaaNTuG5wV0KCtD6OTgjRHtnsNtLz0skvzyfWGMvguMFoNZ77++LuKCGP92GpdeTIEdatW8cHH3zQ7GOHDx/OW2+91WgZg8GAwWBoaXh+o3OzM7G75UTHMjEtgctSTS4z3SZHGfnfD0d4+8cjZJwo468f7eK5NfuZMrwbt4zoJv1ahBAttu7IOhZsWUBu+eklZeKN8Twy9BHGdRvn01i8VsPyxBNP8J///IejR4+i0zUvL7ruuusoKCjg66+/dvuYNjMPi83GobHjsObm1t+PBUCjodfXX6M3xfs2ONGmlVVZeW/rURZ9l8HRggoA9FqFK85N4NYR3Ric3LnJvmRCCFFr3ZF1zFo/C/Ws6SqVmsbn58Y855Gkxa8Tx9ntdlJSUpg8eTILFixweWzOnDlkZ2ezdOlSAJ5//nm6d+9O//79nZ10FyxYwMqVK7nmmmvcfs62krCAY5RQ9v0zHXcaePtDBg+m25LFKDKpnGgmm11lze4cXvv2MOlZhc79qQkRTB3ZjasGdJHmItHmeLtZQriy2W1MWDnBpWblTAoK8cZ4Vl+7utX/D35tElq3bh1ZWVlMmzatzmNms5msrCznfYvFwkMPPUR2djYhISH079+fzz77jCuuuMIboQWEiPHj4YXnyZ0336UDrs5kIur2aZx44V9UpKeT89TTmOY+Id+KRbNoNQqXn5vA5ecmsCu7iKWbM/l4x3H2mIuZvXIn8z7fx/VDujJleDe6x4T6O1zRjngrqQikZolA1NT7Xm2vptJa6dwqbBWn79sqqbJVUWl13Nb+fLjocIPJCoCKSk55Dul56VxgusAXL1Om5vcn1WZzjBrKz0cXG4vx/CEoWi2lGzZwdMZdoKrEzZ5N9B9u83eooo07VWZhxbajvPVDFlkF5c79F/WOZfIFSYztF0+QTlYPFy3nraTCV80S/qCqKtX2aiqsFc7kodJaSYW1ot59lbZK5/7a2yPFR9hzcg8Wu8V5Xq2iJVQfiqqqVFgrsKpWr72GhRcu5IoeratgkLWE2riTixaT98wzoCh0ef55IibIRHKi9ex2lQ0H8nlzcyYbDuQ7WySjQ4O4dkhXbjg/iZSYUJdOvUNTomR9ItEobyUVvmyWaErtxb/cWk5FteO23FpOeXXDtxXWCsqqy+p9vPYcNtV3c25pFA3B2mCCdcGE6EIwaA0YtAaCdcGOW20wBp1jX7GlmPVH1zd5zkUTFrW6hkUSljZOVVVy//YUp95+G8VgIHnJYoyDBvk7LNGOHDlZxvKfjrJi2zHyS05PEaDXKlTbTv9ZSIgM5vFJqbISdDvgjSYbbyYVP+X8xLQv63YtOFtDF027aqfCWkGJpYSy6jJKq0sps9Tc1twvrS6l1HL6fll1WYPJx9kJmSdpFS0huhCCdcEEa4MJ0YcQoq25X7OvNtEI0YUQpA3i7b1vU1pd2uA5Y4JjWPabZYTqQwnRhaDX6N3uYlD7/5pXnlfv6243fVhE6ymKQvxjj1JtNlP6zTccu/seur/7DkHduvk7NNFOdIsO5eGJfZl1WW++2Z/Pi18d5JfsIpdkBRyLKs54K51/TxksSUsb5q0mm/S8dK/0dai2V5NZlOlW2X9u+yfhQeF1EpKy6jKvJBlGnRGj3uhyG6IPcdyv57HM4kxWZ6ymyFLkPEd0cDT3DrqXCd0nEKwLRq/RNyuGn3J+4r+//LfRMicqT5Bdmt2iGhCtRssjQx9h1vpZKCgu72NtzdnsobN92vFZEpYApmi1dPnHsxy5dSqVu3aR9cc/0v3tt9FFR/s7NNGO6LQaLu0bx/99vKvRcg+t+IXe8eH0iA1r1fPZ7Ko0OflYQ002eeV5zFo/q1X9QPLL890q96P5R0otpRRbiimxlLjcFluKKa4qpqS6xHFrKaHcWt70SWvsPLGz0ce1ipawoDDC9GGE6kNP39bsO/O+UWckVB9aJ+movQ3WBaNR3O/vte7IOp756Zk6731BZQFPbn6SToZOLXrv3X3f3S1Xn3HdxvHcmOfqTXRnD53dfuZh8bX21iR0Jmt+Ppk3TaY6OxtDv350e3MJ2nb2GoV/bf71JJNf+8GtskO6debqQV248twEOjeyvlF96pupV5qcvMsTTTaV1koKqwopqiqisKrQ5ef9BftZc2SN1+I/+9v92cL0Ydw78F7CDeHOZOTshMSgNfhltGUgN5c1R6DMdCsJSxthycwk8/dTsJ08SciQISS//hqakBB/hyXaiY93ZHP/uzuaLKcop6cO0msdCzP+blAXLukbR7C+8T9gq3eZueut9DqXntrLyKvS5OQV7l7YruxxJaH6UGdCUlh5OjGptNW/FIS7NGhIikgiIiiCiKAIwoPCT98aHLe1+84sEx4Uzvqj65m1fhZAvc0Snhol5I2LsjeTCl/2MfE26cPSzgR1707yG69z5JZbqdi2jWN/up+kl1+SieWER7g7ff9LkwdzvLCCD7Zns9dczJo9uazZk0u4QcdlqfH85rwERp8Tg0Hn+gfSZleZ+8meer8nqziSlrmf7OGyVJM0DzWT1W6lsKqQU5WnKKgscG4nK05SUFnAvoJ9bp3n08OfNvq4TtERYYigk6ETnQydiDREOn4O7kR+eX6jx/9jzD9anFT4olnCW/17vNlsE4h9TLxNaljamPL07WTdfjtqRQXhl0+ky7PPomjbzwdS+IfNrjJ64dfkFFXWm1QogCkymE2zL3UmFPtyivlwezardhx3aeIJD9YxPtXEleclMKpXDEE6jdtNTu9MH86IntJHS1VVii3F5Jfnk1+Rz4mKE+RX5JNf7vj5ZOVJCiociUlhVaFHOpZemnQpvaN6uyYjZ/wcpg9rtFmlvou+yWjyWFLhzUnpvDXPiy+abbz9vvuCNAm1Y6XfbuLo3XdDdTURV15J4oL5KM1cr0mIs9U22QAuf7qbarKx21XSs07x6S9mPt9pJu+MIdKRIXom9I8nKjSIf2843GQML9w0kN8O7NKalxHQbHYbBZUFp5OQMxOS8tOJyYmKE1Tbq90+r4JCJ0MnooKjiAqJctwGR9E5uDOdDZ15aftLLiNUzj7WU00HbW36fG/P8+KrZpu29r6fTRKWdq5k3TqOzXwArFYirriCxGcWStIiWq21nWLtdpWtR07x2S/H+XxXjsv8Lu7wRA2Lv/54V9urOVF+gtzyXHLKclxua38+UXECu2p3+5yRhkhiQ2KJCYkhJiTG5efokGhnUtLJ0AmdpuHf/9paBPBuP5C2xlc1IPLeN04Slg6g5KuvHElLdTURV1xO4jPPSNIiWs1Tw45tdpWfMgv4rKbm5WSZpcGy9TU5tYS3+iLY7DbyyvPILs1ms3kzx0qOYbFZUFHJK89zJiPuNM1oFA3RwdGOBMQYS2xILNEh0Y7b4GhOVp7EZreR0imFYaZhHku22kPTgad9fvhzZn87u8lyrZ1+Xt77xknC0kGUfP01x+6fCdXVhE+cSJe/P4Oib94EREJ4m82u8u8Nh/j7lwcaLHPNoC7ce2mvFs/z0pq+CFa71ZmQHC897tjKHLfZpdnkluW6tR6LTqMj3hhPvDEeU6iJ+NCan42nf44Kjqo3CfHFAn9tvenA09rT0OC2TBKWDqTkm2/I/tP9qNXVhI0bS5d//AONweDvsISoY/UuM0+s2k1OccNNRd2jjVzSN45L+sQxNCWqyeHS0HRfBIDY4FgWXLTAJRGpTU5yy3NbtabLrCGzuKrnVXQO7tysScVqtecF/gJZexoa3JZJwtLBlKxf70haLBaMw4bR9eWX0Ia1bkZSIbzh7CanpKgQvtmXx5e7c/kx46TL0gAhei2jekUzpk8cl/SNo0un+ucecvebcmP0Gj2JYYkkhiY6bms2k9HEnzf8mROVJ+o9zlMdMwNhgb+OSPqY+J8kLB1Q2Y9bOHb33djLyghOTSXptf/KNP6iTSmprOa7QydZvz+Pb/bnkXtWTUzv+FAuOEehu6kMffAJjpcdI6ski/0F+zlRUX9Ccaao4Cj6dO5Dl/AudAnr4kxOuoR1ITokut7aEW83G/iyWULUT/qY+JdMHNcBhQ4bSvLSNzk6/Y9U7tnDkd9PIfmN19F3ab/DREX7Eh6sZ2KaiYv6RHBLkZbvjuzl+6w9HCg4TKE1m+NBJ1h10gonW3b+Zy9+ttkXfW+v2eKLNWFE48Z1G8clSZdIH5MAJwlLOxPSvz/dlr3F0dvvcEznP/lmkv77H4L79vV3aKKN8GXnwILKAg6dOsSvRb+SUZTh3Oo0j+hAW/PXSkEH1TFYKqKxW2JQq6OxW6LBHoISlIMu9Fe0oQfR6Iudh6sqdA5yvJbmijXGerScr88v3KPVaKUGK8BJwtIOGVJS6PbO2xy94w6qDh7iyM2/J/G5fxA+Zoy/QxMBzlsjVcqqyzhUeIhDpw5xqPAQBwsPcujUIU5WNlxVEhUcRfeI7qREppzeIlJIDEtEo2jYl1PCd4dO8O3BE2zJKKCi2gaViViLHUmJJigPbeghtMZDaI0ZVOZeCTS/Q+zguMHEG+Ob7JjZkmTIF+cXor2QPiztmK24mGP330/55h9AoyF+zhyibpni77BEKwXyFOXV9moyijLYX7DfkaDUJCnHy47XW15BoWt4V3p26kmPyB4uCUqkIdLt2DceyOfWRVtQgvJQFCv2KhP1JScT+pu4emAiQ1OiiA5zfySdtztmSsdP0ZFJp1sBgFpdjXnuXIreXwlA5ylTiJ/ziKw/1EZ5c2K05o5UKa8u58CpA+wr2Me+gn3sLdjLoVOHsNjrnyAuLiSOXp170auTYzun8zn0iOyBUW9scdy1XFebtqMJOQKAWh2Fao3g9AIDp50TF8awHlEMS4lmWI+oJheArP+9N/GIFxfgk46foiOQTrcC1WajPH07xmHDUbQ6Cpcv59Rbb2HJzKTLs39H26mTv0MUzdBQDUheeR6z1s9q1bfw9Lz0RucwUVHJKc/h6R+fptRSyt6CvRwpPlJvE0aoPpQ+nftwTudznIlJr069mlVj0lyuyYYGe0VKveXGp8Zz5GQ5+3NLOJhXysG8Ut76IQuAHjGhDOsRxZBuUQzp1pnu0UaXxf6sJf0pPTSb8uq9KLoSVGs4pfp+WPv198hrGNdtHBd1GcPbP68nqziH5AgTNw8YQ5DMXi0EIDUs7VbxmjXkzpuPNSfHuU/TqRNqWRlqdTX6rl3p+tKL0hm3jfD2XB3uTlF+tpiQGPpG9aVfVD/nbZfwLi2aPK01mrvadEGZhS0ZBfyYcZIfDxewN6eYs/8SRoUGMTi5M0O6dcZqt/OPNXVn6W1qYcjmaO06TkK0VdIk1IEVr1lD9v0zqfMXWFFAVdFGR2M7eRIlOJiEv/2NyElX+iVO4T5vzdVRba/m0KlDfHr4U5buWdpk+fPjz2dUl1H0jepL36i+xITEuP1c3tbS1aYBisqr2ZJZwNbMArYdOcUv2UVYrO4tUuiJdZBqYz/7j7EnEyIhApU0CXVQqs1G7rz5dZMVcOxTFNBqCR01irLvvuP4n/9Mxc5fiP/zn2UNogDmqbk6CioL2J63nR15O9iRt4O9BXupsrm3orLJaOL18a+3uoOvtzoNT0xL4NUpg+vUUpjcqKWINOq5LDWey1LjAaiy2th9vJj0I6dYszuXLZkFDR6rAuaiShZ/l8GNFyQRHty83yObXWXuJ3vqrRlScSQtcz/Zw2WpplYtDClEWycJSztTvnWbSzNQHaqKLS+PqIULCT43jZP//g+nlv6Pyl276fLs39EnJvouWOG2lszVoaoqGcUZ7Mjb4UxSMosz6xwTrg8nLSaNUH0o67LW1Xm8dqTK7KGzW51YeHuBv4lpCVyWamr1atMGnZbByZ0ZnNyZ2HBDowlLrac+28vTn++lR0woA5I6MaBrJwYkdaJfQjgGXcPv25aMApcE62y1CdGWjAJG9JSZq0XHJQlLO2PNd++buO3kSeJmziQkLY3jj8yhIj2dw1f/joSnnyLissu8HKVoLnfm6ogLiUOn6Fi0axHb87bzc97PnKo6Vadsz8ieDIofxKC4QZwXcx7JEcnOPicNJRSeGKnizU7DZ9JqFI9e2JsaPVQrJiyIE6UWfs0v49f8Mj5IzwZAr1Xoa4pgQFIk53XtRFpiJOfEh6HXOt7zvJKGk5UzuVtOiPZK+rC0M2U/biFr6tQmyyW/+Sahw4YCYDl6lOwHH6Lyl18A6HzzZOIefhhNsHt/qIVvNDRXRy2D1lCnecegNZAWk8agOEeCMiB2QJOjdbzRZNOWF/hrTofeU+UWfjlWyI6jRfxyrJBfjhVRUFZ3mHeQVkNvUxj9EyIxBmlZ/H1mk3G8M3241LCIdkk63XZQqs3GobHjsObm1t+PRVHQxcfT66t1LnOxqBYLeS+8QMEbiwAw9O5Nl+f+gaFXL1+FLppgV+0s3b2U//zyH0qrS+stE2mIZEjcEAbHD2ZQ3CD6RfVDr/V/36S2vsBfSzv0qqrKsVMV/FyTvPx8tJA95mJKKq1uP7cnOvUKEcik020HpWi1xD86xzFKqGZU0OkHHX/s4h+dU2fiOCUoiPg//5nQ4SM4/sgjVB04QMY11xI7cyZRU2+Vieb8xFxq5rvj3/H98e/50fwjxZZil8dDdCEMNQ11bAlD6d25t8+HFLujrS/w19IOvYqikBRlJCnKyJXnOfqHqarK0YIKdh8vYvfxYnYfLyI9q5Ciiup6z6HiGGL9zJf76GsKp3d8OL3iwhrtFyNEeyQ1LO1UffOw6Ewm4h+dQ8T48Y0ea83P5/hjj1G28VsAQoYMIXH+PIKSk70as4BKayVbc7fyXbYjSTlcdNjlcaPOyOD4wc4kpW9U34BrQqlPW69hqWWzq63u0NuQ937KYsEX+ygorz9xOZNWo5ASE0qf+HD6mBxbX1M4SZ2NaKQWRrQx0iQkHDPdbt2GNT8fXWwsxvOHuF1Toqoqhe+/T978BdjLy1FCQoh/+M90uukml9k/ReuoqsrhosNsyt7Ed9nfsS13m8vU9hpFw7kx5zIqcRQjEkfQP6Y/eo3/m3iaq7YPS1ML/AViHxZfOjshSk2M4EBuCftySjiQU8L+nBL25RRT3ECTUoheS+/4MPrU1MT0jg+nZ1wYiZHB8nsrApbfEpYnnniCuXPnuuyLj48np5Ghths2bGDWrFns3r2bxMREHn74YWbMmNGs55WExTssx7IxP/oo5Vu2AGAcNgzTE49jSKl/6nPh0FjH1Wp7Nem56aw/up71R9dzrPSYy7HxxnhGdxnNyMSRDEsY5tUp7X1JFvjzDFVVyS2uYl9OMftzStif60hkDuaVNjjZnTFIS8/YMHrFhdEzNpRecY6fk6NCCdIFXhOi6Fj8mrC8//77rFt3ej4HrVZLbGz980hkZGSQlpbG9OnTufPOO/nuu++4++67eeedd7j22mvdfl5JWLxHtds59dYy8p57DrWyEiUoiJi7ZhB9++0oQUH+Di/g1Dc0ODYklondJ3Ki4gSbsjdRUl3ifCxIE8QFpgsYmTiSUV1G0SOyR7v9NiwL/HmP1WbnSEF5TS1MCftzivk1v4zME2VY7fX/mddpFJKjjfRyJjM1t3FhhBmki6PwDb8mLB999BE7duxwq/zs2bNZtWoVe/fude6bMWMGP//8M5s3b3b7eSVh8T7L0aPkPDGXsu++AyCoV08SnnwS4+DBfo4scDQ018jZooKjuKjrRYxJGsOIhBEeWbG4rfDWTLeiftU2O0dOlvNrfimH8kr5Na+UQ/mO2zKLrcHj4sINdI8OpXuMke4xoaREh9I9JpTu0aGEBPn+/8ub/Yd8oa3H701+HSV08OBBEhMTMRgMDBs2jHnz5tGjR496y27evJnxZ3UCnTBhAm+88QbV1dXoG5guvqqqiqqq03NOFBcX11tOeE5QUhJJr79G8aefkTt/PpZDv3Lk5t/T6YYbiH1gJrrOnf0dol/Z7Dae/uHpRpOVUF0or4x7hQGxAzrsRVqr0QZ0x9r2Rq/VOJuAxvU7fdGMDTOQHG0k40SZM4k5lFfKobwyTpRWkVfi2Oqb5dcUEUz3GCMpNQlM95hQUmJCSY4yEqz3/Oe6rS8M2dbjDxQer2H54osvKC8vp3fv3uTm5vLUU0+xb98+du/eTXR03UmPevfuzW233cajjz7q3Pf9998zatQojh8/TkJC/f+Z9fWVAaSGxUdshYXk/v3vFK38AABNZCSx991H55tuRNF1rKrkYyXHWHtkLR8e/JCM4owmywf6SBjRPjXnollUUU3miTIyT5aRccLRrJRxspzME2UNDr8Gx8wJiZEhdIs2klwznDspyvFzcpSRzkZ9s5s72/rCkG09fl8ImFFCZWVl9OzZk4cffphZs2bVebx379784Q9/YM6cOc593333HaNHj8ZsNmMymeo9b301LElJSZKw+Fj5Tz+R89TTVO3fD4DhnHOIf+wxQocP83Nk3pVblssXGV/wReYX7Dm5p1nHLrxwIVf0uMJLkQlRlycvmqfKLGScdCQxZyYymSfKKKlqfEK80CCtSxKT1DmE5JrkpmvnurUztbMMN7TWUqBPqtfW4/eVgJk4LjQ0lHPPPZeDBw/W+7jJZKozgigvLw+dTldvjUwtg8GAwWDwaKzCfWcOmY6bPRtLxmFO/OtFqg4eJOu22wgfP564Pz9EUFKSv0P1mFJLKWuPrOWzjM/YYt7ibPrRKBrOjz+fPp378L+9/2vyPO4uZCiEJ3h6NejOoUF0Dg1icLJrE/AXO4/z+Ko95JWc/iIZotfQpVMIJVVWcourKLPY2FfTKbg+ceEGZzLTtXMIldX2Nr0wpCxs6VleT1iqqqrYu3cvF154Yb2Pjxgxgk8++cRl35o1azj//PMb7L8i/KuhSeniHplN5c5dnHr3XUrWrKHkm2/ofNNNxNw1A11UlB8jbrlqWzXfHf+OTw9/yvqj613W6hkcN5grUq5gXLdxRIdEY7PbWHNkTZNzjQyOk07Kwnd8cdFcvcvM3cu21/nUV1bb+TW/jFenDGZMnziOnarg6KlyjhY4tqyCco4WVHC0oJySKquz38y2I3UX7WzMT5kn6RUXRkxYUItH2HmjU6wsbOlZHk9YHnroISZNmkRycjJ5eXk89dRTFBcXM7VmQb45c+aQnZ3N0qVLAceIoJdeeolZs2Yxffp0Nm/ezBtvvME777zj6dCEBxSvWeOY9v+slkRrbi7mRx+jywvP0+nGG8n7+98p27SJU//7H0UffEDU7dOInjoVTWioW8/TmknvPGFfwT4+OPgBX2R8QWFVoXN/SmQKk3pM4ooeV9AlrIvLMVqNlkeGPsKs9bNQUOqda2T20NkdtrOt8A9vXzSbU4NT2/m3TjlVpaii2pnAZBWUc+xUObuPF7PjaGGTMTy39iDPrT1IkE5DYmQwiZ1C6NIphMROISR2CiY+IpiEyBBMEcFEhOjqJDXe6hTr7krf7pbr6DyesBw7dozJkydz4sQJYmNjGT58OD/88APdunUDwGw2k5WV5SyfkpLC559/zgMPPMDLL79MYmIi//rXv5o1B4vwDdVmI3fe/PoXVVRVUBRy582n11frSH79Nco2bybv789SuWcPJ/71IqfefofYe+6m07XXNjp/S2uWFWiNYksxnx/+nA8OfsDegtPD7GNCYrg85XKu7HEl/aL6NfoNbly3cTw35rk6c43EG+NlrhHhF96+aHqiBkdRFDoZg+hkDOK8rp2c+5taKRtAr1WIDjWQW1KJxWon82Q5mSfLG4wnWK/BFBGMKTIYU0Qw5RYba/bUXUU8p6iSu95Kb1Wn2KEpUSREBje50vfQlLZZA+1rMjW/cFvZj1vIqqkpa0zym28SOmwo4Jh0rviLL8h//gWqjx4FQJeYQMydM+j0u6vrJC4N1eDULtzY5YXnPZK01M4FkleWR0FVAbtP7GZd1jpnk49eo+fS5Ev5Xa/fMTxheLNrRWSuEREomrrot7bj58c7srn/3R1NlnvhpoH8dmCXJsudzd2VsqttdnKKKjleWEF2YUXNbSXmogpyiirJKa6k0I11ms5m0Gm44fwkZ4ITG24gLsJAbJiBzsagJtduaulK383R1ud4CZhRQr4iCYv3FX36GccfeqjJconPPkvklb9x2adaLJxa/h4n/vsfbPkngLqJi2qzcWjsOJeaFReKgi4+nl5frWtV89C6I+uY9+M88ivqrgzcq1MvrjnnGq7scSWdgzv2vDKi/fDmRXPzryeZ/NoPTZZ7Z/rwVvWR8USTTWW1jdziSmcC8+PhAt7ektX0gQ3QaRRiwk4nMLHhBuLCHbex4cHO+9uzTjH/i31emYelPczxIgmL8LiW1LCczV5ZSeF773HitddcE5c/3om+a1eO3nFHq87flMW7FvPctucafPy5i5/jsu6XtejcQgQyb13YvF2Dc+bzeLoWwd3aoXH94ogI0ZNfUkVecRX5pVUUlFmaPO5M4cE6woN1GIN0xIUb6GsKJz4imJgwA1FhQcSEGogOCyIqNMjtyffayxwvkrAIj3PWgOTm1t+PpRk1II7EZQUnX3sNa76jpkMTEYHdjRmL66vBaYzFZmHNkTW8s/cdfjnxS4PlZMVg0d55q+nAF80e3tCa2iGL1c7JsiqXJMZxW+nYV1LlvG1oUcqGhBl0RIcFER0aRHSYoeY2iOiapCY61EBno54/LPnJZRj5mdrSHC+SsAivcPYxAdekpYV9TOyVlRSueJ+Tr7/uSITc4G4NS355Pu/se4eVB1dSUFl3evGGyEy0QjRfW2ya8EXtkKqqFFdaa5IXRzKTf0Yyc6K0ipOlFgrKLJwsq6La5tlL8r2X9GJoShSdjUF0DtXT2RiEMUjbrOHf3u4jIwmL8BpvjOJRLRaKPvkU8+OPg7WB2TLdrME5dOoQb+55k88Of0a13dHJLs4Yx8DYgaw5ssZxKrtKv6MqnUvhVBjsTVJQa34BZSZaIVqmLXb+DKTaodrk5mRpFSfLLJwsdSQxJ0stnCyt4kSZhYKafccLKyltYmbhhgTpNHQ2OpKXzkZHM1Qno77mNoioUL3j1hjEL8cKeembQ+QWn67J8XQiKgmL8CpvzZNStHo1x2c+0ODjif98jsjLL68bj6qyJWcLS3YvYVP2Juf+QXGDmNJvCpckX8KOvB1M+3IaQ/fbuW2tnZgzJts8EQ5LLtOwpY9GaliE6GDaYu2Qu81ZqQkR2FWVU+UWTpVVY7E1r3mqPp5O5iRhEW1WfTU4tXSJCXS+aTKdrr8OXefOWO1W1mSuYcnuJc65UxQUxiaPZWr/qQyMG+g81ma38fCTF3H7uwU15U6z19x/46Zonvm/DdKHRYgOpq3VDrWkOUtVVcotNmfycqrcUvOzhYLyagrLHU1TheXVFJRZ2JdTjL2BDMGTfWQkYRFt2pk1OGg0VO3dQ+GK97EVFgKgBAVx6sL+LDknh+875YGiEKwN5re9fsutqbeSHJFc7zl3XTwa7YlC6vv1sgP22E6krd/k01l1hRCiJdr6cPVaAbP4oRAtoWi1rh1rr7icmHvvpeCTjzmy6N8YD5vp9NV2Zn4F18Zrqbx8FKP+MIfo+G4NnrN86zZ0JwobfFwDaPILKd+6rcXDpoUQwlcmpiXw6pTBdZqzTB5ozgrEdZAkYRFtQoW1ghWHVrDEvoT8G/I457iWq37Wc8FeK0m5Vliygfy3N1M5fjydrrsO49ALUDQal3PUDp9uirvlhBDC3yamJXBZqsnjzVmBuA6SJCwioFXZqnhv/3u8vvN159BkU1gC118zjWtmX4OutJKiTz+lcMX7VO3bR/Gnn1L86afok5PpdM3viLhyEkFdHdOB62Jj3XpOd8sJIUQg0GqUVjfLnC0Q10GSPiwiIFXbq1l1aBWv/vyqcxHBrmFduePcO7iq51XotXqX8qqqUrlrN4Xvv0/xp59iLytzPhYyZAiRkyYRftllZFx7rUcmvhNCiPbOV0O+pdOtaJPsqp3VGat5ecfLZJU41viIN8Zz14C7uKrXVeg1+ibOAPbycoq/XEPRqo8p/+HH08mJXk9wv75U/rKz7kEeXlxRCCHaA18M+ZaERbQpqqqy8dhG/rX9Xxw4dQCA8KBwLu56MZN6TGJYwrAWDTWuzs2l+NPPKPrkE6r27Tv9gKK41LK0duI7IYRor2SmWw+ThKXt2ntyL89ufZYtOVsACNYGo9VoKas+3awTb4znkaGPMK7buBY/T+WBAxR/8ilFn36K1Wx27ldCQggfN5aIiRMJHTUKTbDvOpEJIURHJwmLCHi5Zbm8uP1FVv26ChWVIE0Qo7uM5uujX9cpq9S0mj435rlWJS0Aqt1ORXo6xV+uoWTNGpc1jDRGI2FjxhA+YQJhF45GYzS26rmEEEI0ThIWEbDKq8tZvHsxb+5+kwprBQCXp1zOfQPv4w9f/sHZyfZs3lhNWbXbqdjxMyVffknxmjWuNS8GA8bhwwi/5BLCxoxBbzJ55DmFEEKcJgmLCDh21c4nv37CC+kvkF/hmOtkUNwgHjr/Ic6LPY+fcn5i2pfTmjyPt9b6UVWVyp07Kf7yS0q+XEP1sWMujwenphJ2ySWEXXIJwf1Tm7XaqRBCiPrJTLcioOwr2MfTPzzNjvwdgGOI8gNDHuCybpc5L/z55e5N2OZuueZSFIWQ884j5LzziHvoISyHDlHy9TeUfvMNFT//TOWePVTu2cOJl19GFxdH2MUXE3rhaEJHjEAbHu5yLm8tDuntcwshRKCShEV4VbGlmJe2v8Ty/cuxq3ZCdCHMGDCDKf2mEKQNcikba3RvwjZ3y7WGoigYzjkHwznnEHPnH7GePEnpho2UfvM1pd99jzUvj8IVKyhcsQK0WkLOO4/Q0aMIGzUKS04OeQsWuize6KlRSPUtDCkjnIQQHYE0CQmvsKt2Vv26in9u+6dzhtqJ3Sfy4PkPYgqtvy+IzW5jwsoJ5JXnodYzt6I3+rC0hL2qivItWyjdsJGy777DkpHR9EEemOeleM0asu+fWXfSO5lDRgjRhkkfFuFVNruN9Lx08svziTXGMjhusDOJOHTqEHM3z3U2//SI7MGjwx5lWMKwJs+77sg6Zq2fBeCStHhylJCnWY5lU/b9d5R9u4mSdevqn0W3hjY2lnPWf9PsJhzVZuPQ2HEuNSsuZJZeIUQbJX1YhNesO7KOBVsWuIzmiTfG89D5D/Fr0a+8vvN1rHYrIboQ7h5wN7/v9/s6U+k3ZFy3cTw35rl6zz976OyAS1YAgrp2IeiGGwjq1p2StWsbLWvLz+fQpWMJu+hCjEOHYhw6FH18fJPPUb51W8PJCoCqYs3JkZWmhRDtliQsollqa0DObrLJLc/lzxv/7Lw/pusYHhv+WIPNP40Z120clyRd0mANTqByezXo3FwKV7xP4Yr3AQjq1g3j0AsIGTQY4+BB6Lt1qzMCSVaaFkJ0dJKwCLfZ7DYWbFlQb/+SWho0LLhoARO7T2zVsF+tRuuVocve5O4qz7EPPICtqIjyH3+kcu9eLEeOYDlyxJnAaKOiCBk0COPgQYQMGkRw//6y0rQQosOThEW4LT0vvcFJ3WrZsRMTEtMh5ygxnj8EncnU5GrQ0Xfc7uxnYisupnzbNsq3bqUifTuVu3ZhKyig9KuvKP3qK8dhej3B/fujGI2o5eX1P3nNuY3nD2n165Bh00KIQCQJi3Cbv+dJCXSKVkv8o3McI3nOWlyxdiRP/KNzXC7+2ogIwi+5hPBLLgHAbrFQuWs3Fdu3U749nYr07dgKCqjYsaPxJ1fVOuduCRk2LYQIVDJKSLjN3zPRthWevOirqkp1Vhbl27dTkb6d0m+/dVk+4ExB3boRfO65hJx3LsFp5xKc2q9ZCznKsGkhhD/IsGbhURXWCv659Z+8s/+dBssEyjwpgcCbzSq24hIKP/yQyp07sebnU308m+qjx+oW1Gox9OxJcL9+GPr1JbhvP4L79kHbqVO98cqwaSGEP8iwZuExP+f/zGObHuNI8ZEGy9TOkzJ76OwOn6yAo3nIW8OLtRHhRE+91WWf9dQpKnftomLnTip37qJi105s+SeoOnCAqgMH4OOPnWV1iQmO5KVfP4L79cXQtx+WY8dk2LQbpH+PEP4jCYtokM1u441db/DKjlewqTbijHE8OfJJKqwVbWqelI5A17kzYRdeSNiFFwKOpiRrbi6Ve/ZSuW8vVXv3Url3H9XHjmE9bqb0uJnSr792Hq+42XTUkYdNS/8eIfzL4wnL/Pnz+eCDD9i3bx8hISGMHDmShQsX0qdPnwaPWb9+PZfUdDo80969e+nbt6+nQxRuyCnLYc63c9iauxWAy1Mu5y/D/0JEkKO6ri3Ok9KRKIqC3mRCbzIRfunp3y1bcTFV+/dTuXcflfv2OZKZg4dQKyvdOq+tuBh7WRma0FBvhR6QGurfY83NdeyX/j1CeJ3H+7BMnDiRm266iQsuuACr1cpjjz3Gzp072bNnD6EN/JGrTVj279/v0n4VGxuL1s3qVunD4jnrjqzj8e8fp9hSjFFn5LHhjzGpx6QOOVS5I1AtFioPHiRr2u3Yi4rcOkbftSuGXr0wnNOLoJQeGHqkEJSSgjYy0svRNs3TzTbSv0cI7/JbH5bVq1e73F+8eDFxcXFs27aNiy66qNFj4+Li6FRPh0DhGxXWCp756RneP+CYwCwtOo2FFy0kOSLZz5EJb1KCggjp35+Evz3pqC2AeueRMfTujbWgANuJE1QfO0b1sWOUrl/vUkYbHU1QSncMKT0ISkkhqEcKhpQU9F26oOi83wLtjWab9rQsgvTBEW2Z1/+CFNV8Y4uKimqy7KBBg6isrCQ1NZW//OUv9TYT1aqqqqKqqsp5v7i4uPXBdmC/Fv7KrPWzOFx0GAWFaWnTuGfgPW6vASTavojx4+GF55u84FtPnaLq4EHHdugQloxMLBkZWHNzsZ08ScXJk1Rs3eZybkWvR98t2ZHIdO+GqjoSpeA+fQgbeykaDyQz3mq2aS/LIkgfHNHWeXVYs6qq/Pa3v+XUqVN8++23DZbbv38/GzduZMiQIVRVVfG///2Pf//736xfv77BWpknnniCuXPn1tkvTULN98mvn/C3H/5GhbWC2JBY5l04j+EJw/0dlvCTln4Lt5WWYcnMxJJxGEtGBlWHM7BkZGDJzEQ948tFHYqCLsFEcGoqQcndCEpOIig5GX1yMnqTya2aGW8225T9uIWsqVObLJf85psBW8Mic+yIQBYQ87Dcc889fPbZZ2zatImuXbs269hJkxx9JlatWlXv4/XVsCQlJUnC0gxVtioWbFngbAIanjCcBRcuIDok2s+RifZEtdupPm6m8P33OfnvfzfvYL2eoMRE9MnJBCUnE5SchD4pCX2XLugTE9GGhwPeTSqcyVATSy4Eah8W6YMjAp3f52G57777WLVqFRs3bmx2sgIwfPhw3nrrrQYfNxgMGAyG1oTY7tnstgZH8hwtPsqDGx5kb8FeFBRmDJjBnefdKSN9hMcpGg36BBNFH33UaDlNeDiRv/0t1ceOYcnKovroUdTqaufikGX1HRMR4egf4+aFtiXNNs4lF/50f/0FPLQsgre0pz44omPzeMKiqir33XcfH374IevXryclJaVF59m+fTsJCQkejq7jWHdkXb1zpTwy9BEUReGvm/5KSXUJnQ2dWXDhAkZ2GenHaEV71+RFE7CXlBB+2WXOi6Zqs2HNzcWSdRRL1hGqjx7FciSL6uxsqrOzsRUWYi8upqoZ/dfK09Md/WlM8ehMCehiot1KNCK6VsKoU+SmR2CtOF1eZ7QRP6jY8XiAai99cITweMJyzz338Pbbb/Pxxx8THh5OTs0fqcjISEJCQgCYM2cO2dnZLF26FIDnn3+e7t27079/fywWC2+99RYrV65k5cqVng6vQ1h3ZB2z1s9CxbX6Orc8lwfWP+C8PyB2AM9e/CymUJOvQxQdTEsumopWiz4xEX1iIqHDh9Upay8ro/r4cSzZjqUJ8v75z4ZXs65R+PbbFL799ukdOh26uFj0pgRnEuO4dcxhozOZ0EV1Rlk9m4ikCsK7VFCeH4S1Uosu2IYx1oKiUWD1I9D3N9DKGkpvjOLRxcZ6tJy/yAgn4fGE5dVXXwVgzJgxLvsXL17MbbfdBoDZbCYrK8v5mMVi4aGHHiI7O5uQkBD69+/PZ599xhVXXOHp8No9m93Ggi0L6iQrZ5vS8xpm9f09+rJCKM4FqwVsVWCtArvNUUhRAAXHrPuK476iAY0OtAbQnbFpz/pZK5Moi9O8cdHUhIZiOOccDOec4zg2Pq7RYdlhYy9F0QdhzcmhOicHa14eWK1Yj5uxHjdT0dATaTXoDVZ0xmj0Rhs6ox19iA1FUak4EYQuxIbOehzNke8h5UK34z+bt0bxGM8fgs5karIPjvH8IS1+Die7DY58D6W5EBYP3Ua2OokDGeEkHGTxw/akqoTd+z9m0abHibdaibfaiLPZUFSVf0V14qhej8Fu528nCri8rPFvoq2maEFvhKBQCKq9DXPc6o2nf66zhZ0+zhBWUy7s9GOSCLVJvuq42pwLm2q1Yj1xwpnAVOfkYDXnUJ2bi9Vsdtzm5YHd7tZza0IM6EyJ6OLi0MXGOrban+Mc9/VxcfXOEuztUTzO84Prc3hylNCeVbB6NhQfP70vIhEmLoTUq1p8Whnh1P4FxCghX+pQCYuqQsFhyE6H4+mQuxtOHISS43WKbjMYeCA+hlNaLbFWKy/knuBciwUVBUVvBF1QTe1I0OlaEk1tUqDW/JFQcVTYqKDawW511MRYq07XylgrHY95my74dAJjCHdNhILCapKc0NOJjvN++BlJUE3SlLMTKgoh3OSxb4I+4aVvsd7mk4smnm06UK1WrOmfU710GtZyLdXlWqwVtZuG6ppb1aZx+5wao/GMZCYGbVQURR99jL20tP4D/JDMNdueVfDerVCnZrdmduwblrYoaZERTgHCy39zJGFpbwoOw69fw6/fwJHvoOJUvcWqDeHsooocnY51xhDWhRqxKwqhdjsJ1VYqNBqKNRpeGDiTCwZP92yMNqtrAlNdAZYyx1ZddvrnOlspVJef/rmq1FG+vMCxz1oFqs2zsZ5N0Th+EcPi6yZCjSZGZyVCuhBH0uetZQy89C3WV9pk1b7dBs+nQbGZuhdkUFUFe0gC1us/wXqiAGteHtb8/Hpv7U30sWlMyODBGM45B110NNroKHTRMeiio9BGx6CLiUYTHt7k8hle6QfifH/qfmFyUByf0Zk7m32R8+kcOG3li4C95ktjo5vt9M+2atf7zserGyl/xr6cX2D/51BVcjoGD//N8fuwZtFKquqoAdj9Aez+CE5luD6uNYDpXOgyBBLOg5g+ENMLzcG1PPTT4+RptS4XzTKNhkOGIBRVJd5mY7DOC2u+aHWOLaiVC+PVXpTLzuioGZ4Al/4Vuo8+ndjUJjeN3beU1eyr2cpPQmU96+WodigxO7ZWUxw1QfpgRwLjvK3Z6n2skbK6YNDq4dhW+Oapuk9XfBzeuwWueQPSfheYf2RrRIwfT/jYsW2r86RG6/jj/N6tOGoMzkxaFBQFtFctRNuzF4aejZ/KXlaGNT+f6tokJj+f8i0/uayc3ZCK9HQq0tMbfFzR69FGR6Pt3Bld505oO3VG27l264Su8+n7Qd27oe3UyTPv+5HvG0lWAFQoznaUa2Yfn9OdsFVHNzoNKErNz4oKGsefOduxPXBOTD0X5rMu7qqt/ov3sZ9Qd7yLJb8Ee7UGjd5OUEwoSr/fQGyfBs5VX+Jw9j5bzXOemRjU8/x1yjSSfDTRP9Enis2O34cW1py1lNSw+FN9GX1VMWxfBulvwokDp8tq9JA0DHqOgR6XgOk8RzPOWUoPrmHaN/eyt545apSa/+rn8k4w7voVreog6DVeqloG3PgmCIREwxULwVLuZiJUBpYSx63N0rK4PE3RgjaoppnvrM25z+BIgjS6Mzate/edx539+Fn7FG3tFabmtrGtoTKKG2U0OD8f3vTr1/Dts66JdGgcXDgLeoxxXMDUmmbT2uZT1e74KLvsO+MxVCr27CHvmWccF2BwyYlUu+IsGnrRJShBIViLSrAVlmItKsNWVIq1sBR7RSMzCTdCY9ChDTOgDQ1ybjqjHq1Rd8amRRtSswVr0GjV0xd+1Q5FxxzfwpsSmeSorXReoG2n3weXi/bpi7pa821f1l11g0bnuE7U97upbeT3VKNv+Hf9wBeOmvJ6tbzm7GxSwxLo6qva1xtrsuiaC5/WAL3HQ/9r4JzLHL/sjThacpT7dr/MrwYDelXFaLdTdMY3qHibjdknCxmni3IkR4HGbnO8J/V+g1CBVg4fbfKbIFBxEsJMLUvmbNWOX+7qCrBWQHVl07dula2EykI4leleHKrNcay1wXEvwlPK8hyfyVYIAbo1vGzaGRwzUtO5ZjuD3Qa2Si3WKg22M7az79ssp/ehKtirrNirrFSfrG9avvopWhVtkB1tkB1Nza02qNNZ+06Xce47ddSRWzaD4vynYapdgaBgFI227oVXqWefRuPyuPXXrVSeBOxKTS6pnNF9TyHEBEEjrnMk6oq2ngt+Pfvqfd7mxtfIF4OzEhDVrlK+Ld2ztZYZ3zpq+Bt+51tcc9ZSkrD4Q0O1CNU17duRSXDhg5B2LQS7V1v0U85PzFo/i8KqQuL04fwr8yB9LdWkBweRr9USa7MxuNKCFuCG/7S+2cAb7b1erFoGHLF6stzZtHrH5ub/WbPsfB9W3t50uStfgD4TazpEVzv6FNksNcPWa4au26pPP67WU/1srYKCX6Gy2NEsFZ5wRvX3meUbahs/s9r8rFqF8hOO5k1b9emYNXrHNzVD+Bm1EvVt9dRQqHbv929qjKrWrQE63XZxxv369p2+bzuVT3XeqZr+7crpPw01/d2DEuPQmZLPOk5x3tcoChpFgx7F8XtYG5NGe/qi6LxVUNFgt6jYym3Yyq1Yy63YyquxldVs5RaspRZsZRZspZWOrcwCqopqU5wdj5tLExqCNsyINjwUbXgYmvAwtBFhp38OC0MTHo42PBxNeATaiAgq9uwh95lnUe0KiqqiqoozmQClVZ211UMbyHhxOtaKhmrpVHRGG73uuB6l18Uteg7nmbw0j4zX+oV5++9lC0jC4muN1iKcUWbwrW4nAB8c/IC/bf4bVtVK/+j+vHDJC8Qf+RFWz+YCl86ZXWDigta3OXqr46e3f0HC4j1bzpfcjSm6p2PUU0t5s1NvQ4m63QqFWZ5rD28rnSdr2W1on0+jrFRHbnrkWTPpWokfVIIxGLjtM4+9DgXQ1mzuUu127GVl2IqKsRU5Zhm2FRVhKyzCdugHbFvfx27RYLMo2Cyamk3BbtFgtzqqVuxlFdjLKqjOPdnMiB3Hq2ckFUpQEIY+fSj9+hvKf9pak/REOG7DwtFGhJ+R/NRsQa7N6OVbtzSReClYy3WUb91CaCsSFm8lFd5aoRwIyL+XkrD4WuZ3TTdLlBx3qxbBZrfxj23/4H97/gfAhO4T+NuovxGiC3H84e/7G8//4W7oouOJTlje/gXpNtJx8W1gtIezTdYTzWWevmj6InZv/t96u7mvVlscRVVTsxiRBOFdKuuZSRefV73XR9Fo0NYkAHTtctajN8KeS+p57x1fktReE7GVlDgSnJrNXlzsSHZqEh97SQm2khLHbWkJ9uLan0vBVrcWTbVYqNy5k8qdO91/DQYDmrAwNKGhaEJDUUvrH215trKDeWj373cepw0NRTkr+WmIt5IK1WYjd978+uc1UlVQFHLnzSd87NiW1eT48u+lmyRh8aWyk7DucffKNlGLUGIp4eGND7MpexMAdw+4mxkDZrgOa9RoPfsHztsXHW//gjQx2gNw1EB5Iqnz9EXT27H7vf+QB9rDvZlwedMZv+uKBkLjG+i87Ymqd2/WPjXyJUkBdNHR6KKbvxK8qqqo5eXYiouw7/8W24ls7PZgbCFJjhqfEkdyYystwV5Siq2kGHtJqUsCZC9z9NFRq6qwVVVhO9m8Gp6Tyz7l5LJPXfYper1L8uP42ehIaMLC0BhDUYwhnHprWcNJBZDzt6cIHTECTVhYk8PSz+T1RS199feyGSRh8ZXD6+GDO6G08QXgnBqpRThafJR7v76Xw0WHCdYG89Top5jQfYJn4myMty86vvgFSb3KceGqN6HwUHOZty6a3oy9rfcf8lUNjjf4qurdF7VPnv6SBCiKgnLkKzQNxn5Tk+dQbTbspaXYSkqxl5ViLytzJDvFxeT831+xl5XTUB8WtFr0Xbo6j1ErHQtdqtXV2E6dwnbKvVqahtjy8zlwgSOhUIxGNEYjmpAQl1vFWHv/9OOWI0fcOn91bisSXW//vWwmSVi8TVXhh1dgzV8cHQRjekNFgaO2pQW1CD/l/MQD6x+gqKqIuJA4/jX2X/SP7u/Vl+Dki05YvvgF8VZzmS8umt6Kva33H/JFDY63tPXmPm/zQOyKVos2MhJtZN35pxS9nuw/3d/QkXT55z9dmmxUq/V0wlNam/yUYy89nQjVJkUVu/dQvnmz2y9VLS/HVl6OJ7uRmx9+mJy//AUlJARNcDCakJAzfg5GCQ6p2ReMJjikZl+wIzmqfbzvP1BKMtCo5QSnnYc2dZxfEn9JWLzJVg2fzIQdbznuD7gZrnwODq5tUS3C+wfe5+kfnsaqWkmLTuOFS18gzhjn5RdxBl99E/TWRflMXvgm6LOLpjdib+v9hwJwRIPb2npznzf5IPaI8ePhXy+Q+/Q8x1pXNRrqFKvodM7kR9/Euct+3EKWGwlL1//8h5D+qdjLy7FXVDgSoIpy7OXlqBUVjv3lNbc1++1lZZR89gmqreZ9qOP0ftViQbVYsBfVM2lmM3V7+22MfvqcSMLiLdUVsOIPjol3FC1MeBqGzXAMRWxmLYLVbuUfW//BW3sdic/l3S/nyVFPEqwL9uUr8m0nLG9clL2tLV8023r/oQAc0dAsbbm5z5t8FLu3ZmB2d6XssNGjmv9cGd9SfPJNsr/rzJnJiYPjuRKHFxB6/2LU+IHYKyuxl1egVlZgr6jEXlmBWt++ikpH0lT7c2WlI2mqqMBeWYk2PKylb0erScLiDVWl8PYNjjV/dMFw/ZuOuTHO5GYtQomlhD9v/DPfZX8HwD0D7+HO8+5sVucsjwnATlgBpS1fNNt6/6EAHNHQbG21ue8MHp9rxIexK1pt69cjquec8Y/OabjJSVWJf3ROy96j0lwikiph1Kl6hsPbiB9U7HhcVw6JiS18BYFFEhZPq66Ad25yJCuGCJj8LnQfVW9RG5AeEky+aiQ2JJjBuM6LkFWcxb1f30tGUQbB2mCeHv0047v7eYG4AOuEFVDa+kWzLfcfai/JdFts7qvhlblG2vKXgBoRXWuTioj6k4qulS07cc1rjkiqbHg4/Bnl2gNZS8iTbNXw7u/h4JeOFX1vXQVdh9RbdN2RdSzYsoDc8tPfDOKN8Twy9BHGdRvHFvMWZm2Y5ehca4zjxUtfJDU61VevpGltbXIuX3F2EIR6L5qB3LmxVlv+v613JIyHJkxsq5pYbdoTa8I0NNdI7SJALZ6N1gexe9UZ65epdupJKloRf1t/b87g7vVbEhZPUVVYdS9sf8vRDDRlpWNl4XqsO7KOWetnoZ71IVNqLmrX9b6ODw9+6Oxc+69L/0WsMdbrL0F4iFw0/astJ1ze4sVEWrXZODR2XMNzgtT00+j11bqWNX205S8BGd/Cm1c2XW7qpy2rWfPRe+OtZQVqyeKHvrb5ZUeyomgcH5IGkhWb3caCLQvqJCuAc9+KAysAP3auFa3ji1FOomFtscO2t3mxuc/rE5i15WZob/fB8cF747W1ilpAEhZPOLDGMc8KwIR50LvhSdzS89JdmoEa8rtev2PuyLn+6VwrWk8umiLQeCmRtubne7RcvdrqlwBf9MHx4nvj1bWKWkASltYqPAofTAdUGDzVMXS5Efnl7v3SDk8YLsmKEMKzvJBI62Lda652t1yD2uKXAF91xPfCe+P1tYpaQNN0EdEgm9WRrFQWQuJguOJZZyezhrjbF0X6rAgh2oLauUYa/NunKOhMJozn1z8AoV2rHb0G1J3cLbBHrzWnqc9XJGFpjQ0LIWszBIXDdYtA1/TqnYPjBhNvbLj6T0HBZDQxOG6wJyMVQgivqJ1rxHHnrItyzf0WzzXSHtT2M4lIcN0fkRjQHYZ90tTXTNIk1JjGRhtkb4Nvn3X8POl5iEpx65RajZZZQ2Yx+9vZdR6rHSU0e+hstAGYcQshRH0ixo+HF56v2zkzPt4vnTMDThvsg+Ozpr5mkISlIY2tbNp7Inx8n2Mxw7Rr4dzr3D7tkeIjLNq1qN7H4o3xzB46m3HdxrU2eiGE8ClvTW/fbrSxPjjuLivgy6Y+SVjq09TqoGnXQN5uCImCy59x+7Rrj6zlr9/9lbLqMqKCo1h44UK0Gi355fnEGmMZHDdYalaEEG2WN6a3F/7hXFbg/pmOpr0zkxY/NfVJwnK2JlcHBXatdNxevhBCY5o8ZbWtmue2PedcvHBQ3CD+ftHfiQ9tP1MmCyGEaF8CralPEpaznbE6qA1IDzaQr9USa7MxuLLq9Fo/iYPh3OubPN3hwsPM2TSHPSf3AHBb/9v40+A/odc0tTC5EEII4V+B1NQnCcvZamYcXGcMYUF0Z3J1p9+iy0vLeCb/pONO/2saHcJsV+28vfdtnk9/nipbFRFBETw56knGJo/1avhCCCGEJwVKU58kLGcLi2edMYRZcTEujUJaVWV6YTEAWTotyYkDGzxFVnEWT/7wJD+afwRgZOJInhz5pDQBCSGEEC0kCctZbEnDWBBTk6ycUYNydUkZ51RXU6TRMDM+nhVJwzi7QqzKVsWiXYt4/ZfXsdgtBGuDmXX+LG7qc5PMWiuEEEK0gtcmjnvllVdISUkhODiYIUOG8O233zZafsOGDQwZMoTg4GB69OjBv//9b2+F1qj0Ez+Tq1VckhWdqnJnYREA/+4UwcEgHeknfnY+brPb+PjQx/z2o9/yyo5XsNgtDE8YzopJK5jcd7IkK0IIIUQreaWGZfny5cycOZNXXnmFUaNG8Z///IfLL7+cPXv2kJycXKd8RkYGV1xxBdOnT+ett97iu+++4+677yY2NpZrr73WGyE2qL61fn5XUkqCzUaeVst74eHOcpXWSlZnrmbxrsUcLjoMQGxILA9f8DATuk+QREUIIYTwEEVV65sRpnWGDRvG4MGDefXVV537+vXrx9VXX838+fPrlJ89ezarVq1i7969zn0zZszg559/ZvPmzW49Z3FxMZGRkRQVFREREdHi2H/K+YlpX05z3terKp8dPU6Czcb8qM68HelIWMYmj2Vr7laKqhw1LxFBEdx+7u1M7juZEF1Ii59fCCGE6EjcvX57vIbFYrGwbds2HnnkEZf948eP5/vvv6/3mM2bNzP+rPHcEyZM4I033qC6uhq9vu4Q4KqqKqqqqpz3i4uLPRD96bV+8srzUFHpX1XFG50iyNNqWW88nYh8lfUVAAmhCdzQ5wZu7HMj4UHhHolBCCGEEK48nrCcOHECm81GfLzriJj4+HhyGlj5MScnp97yVquVEydOkJCQUOeY+fPnM3fuXM8FXkOr0fLI0EeYtX4WehWqFA3LI1wTkTB9GOO7j2ds8lhGJY6S2WmFEEIIL/Nap9uz+2+oqtpon476yte3v9acOXMoKipybkePHm1lxKeN6zaO58Y8R5QxjnJF4bLSMrR2lcigSOYMncN3k79j7si5XNT1IklWhBBCCB/weA1LTEwMWq22Tm1KXl5enVqUWiaTqd7yOp2O6Ojoeo8xGAwYDAbPBF2Pcd3GcUnSJaTnpZNfns9kWetHCCGE8BuP17AEBQUxZMgQ1q5d67J/7dq1jBw5st5jRowYUaf8mjVrOP/88+vtv+IrWo2WC0wXcEWPK7jAdIEkK0IIIYSfeKVJaNasWbz++ussWrSIvXv38sADD5CVlcWMGTMAR3POrbfe6iw/Y8YMjhw5wqxZs9i7dy+LFi3ijTfe4KGHHvJGeEIIIYRoY7wyD8uNN97IyZMnefLJJzGbzaSlpfH555/TrVs3AMxmM1lZWc7yKSkpfP755zzwwAO8/PLLJCYm8q9//cvnc7AIIYQQIjB5ZR4Wf/DUPCxCCCGE8B13r99eGyUkhBBCCOEpkrAIIYQQIuBJwiKEEEKIgCcJixBCCCECniQsQgghhAh4krAIIYQQIuBJwiKEEEKIgCcJixBCCCECniQsQgghhAh4Xpma3x9qJ+wtLi72cyRCCCGEcFftdbupiffbTcJSUlICQFJSkp8jEUIIIURzlZSUEBkZ2eDj7WYtIbvdzvHjxwkPD0dRFI+dt7i4mKSkJI4ePSprFDVB3qvmkffLffJeuU/eK/fJe+U+b75XqqpSUlJCYmIiGk3DPVXaTQ2LRqOha9euXjt/RESEfKDdJO9V88j75T55r9wn75X75L1yn7feq8ZqVmpJp1shhBBCBDxJWIQQQggR8CRhaYLBYODxxx/HYDD4O5SAJ+9V88j75T55r9wn75X75L1yXyC8V+2m060QQggh2i+pYRFCCCFEwJOERQghhBABTxIWIYQQQgQ8SViEEEIIEfAkYQFeeeUVUlJSCA4OZsiQIXz77beNlt+wYQNDhgwhODiYHj168O9//9tHkfpfc96r9evXoyhKnW3fvn0+jNg/Nm7cyKRJk0hMTERRFD766KMmj+mon6vmvlcd+XM1f/58LrjgAsLDw4mLi+Pqq69m//79TR7XET9bLXmvOupn69VXX+W8885zTgo3YsQIvvjii0aP8cdnqsMnLMuXL2fmzJk89thjbN++nQsvvJDLL7+crKysestnZGRwxRVXcOGFF7J9+3YeffRR/vSnP7Fy5UofR+57zX2vau3fvx+z2ezczjnnHB9F7D9lZWUMGDCAl156ya3yHflz1dz3qlZH/Fxt2LCBe+65hx9++IG1a9ditVoZP348ZWVlDR7TUT9bLXmvanW0z1bXrl1ZsGABW7duZevWrVx66aX89re/Zffu3fWW99tnSu3ghg4dqs6YMcNlX9++fdVHHnmk3vIPP/yw2rdvX5d9d955pzp8+HCvxRgomvteffPNNyqgnjp1ygfRBS5A/fDDDxst05E/V2dy572Sz9VpeXl5KqBu2LChwTLy2XJw572Sz9ZpnTt3Vl9//fV6H/PXZ6pD17BYLBa2bdvG+PHjXfaPHz+e77//vt5jNm/eXKf8hAkT2Lp1K9XV1V6L1d9a8l7VGjRoEAkJCYwdO5ZvvvnGm2G2WR31c9Ua8rmCoqIiAKKiohosI58tB3feq1od+bNls9l49913KSsrY8SIEfWW8ddnqkMnLCdOnMBmsxEfH++yPz4+npycnHqPycnJqbe81WrlxIkTXovV31ryXiUkJPDf//6XlStX8sEHH9CnTx/Gjh3Lxo0bfRFym9JRP1ctIZ8rB1VVmTVrFqNHjyYtLa3BcvLZcv+96sifrZ07dxIWFobBYGDGjBl8+OGHpKam1lvWX5+pdrNac2soiuJyX1XVOvuaKl/f/vaoOe9Vnz596NOnj/P+iBEjOHr0KM8++ywXXXSRV+Nsizry56o55HPlcO+99/LLL7+wadOmJst29M+Wu+9VR/5s9enThx07dlBYWMjKlSuZOnUqGzZsaDBp8cdnqkPXsMTExKDVauvUEOTl5dXJHmuZTKZ6y+t0OqKjo70Wq7+15L2qz/Dhwzl48KCnw2vzOurnylM62ufqvvvuY9WqVXzzzTd07dq10bId/bPVnPeqPh3lsxUUFESvXr04//zzmT9/PgMGDOCFF16ot6y/PlMdOmEJCgpiyJAhrF271mX/2rVrGTlyZL3HjBgxok75NWvWcP7556PX670Wq7+15L2qz/bt20lISPB0eG1eR/1ceUpH+Vypqsq9997LBx98wNdff01KSkqTx3TUz1ZL3qv6dJTP1tlUVaWqqqrex/z2mfJql9424N1331X1er36xhtvqHv27FFnzpyphoaGqpmZmaqqquojjzyi3nLLLc7yhw8fVo1Go/rAAw+oe/bsUd944w1Vr9er77//vr9egs8097365z//qX744YfqgQMH1F27dqmPPPKICqgrV67010vwmZKSEnX79u3q9u3bVUB97rnn1O3bt6tHjhxRVVU+V2dq7nvVkT9Xd911lxoZGamuX79eNZvNzq28vNxZRj5bDi15rzrqZ2vOnDnqxo0b1YyMDPWXX35RH330UVWj0ahr1qxRVTVwPlMdPmFRVVV9+eWX1W7duqlBQUHq4MGDXYa9TZ06Vb344otdyq9fv14dNGiQGhQUpHbv3l199dVXfRyx/zTnvVq4cKHas2dPNTg4WO3cubM6evRo9bPPPvND1L5XOzzy7G3q1Kmqqsrn6kzNfa868ueqvvcJUBcvXuwsI58th5a8Vx31szVt2jTn3/XY2Fh17NixzmRFVQPnM6Woak1PGSGEEEKIANWh+7AIIYQQom2QhEUIIYQQAU8SFiGEEEIEPElYhBBCCBHwJGERQgghRMCThEUIIYQQAU8SFiGEEEIEPElYhBBCCBHwJGERQgghRMCThEUIIYQQAU8SFiGEEEIEPElYhBBCCBHw/h97TNNT8d2GogAAAABJRU5ErkJggg==\",\n+                        \"image/png\": \"iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJ+0lEQVR4nO3dd3zTdf7A8dc3o2nTBZ1poYUCMkqVpWwVBQE98Tw3HoqHcuI6ET0RvfspnjI8z9Nz3Z0KyImKiAMXAiogiiIUlD2kpVDSAaV7pEm+vz/SBkJX2ma1fT8fjy9pvvl8v3knpP2+85mKqqoqQgghhBABTOPvAIQQQgghmiIJixBCCCECniQsQgghhAh4krAIIYQQIuBJwiKEEEKIgCcJixBCCCECniQsQgghhAh4krAIIYQQIuDp/B2Ap9jtdo4fP054eDiKovg7HCGEEEK4QVVVSkpKSExMRKNpuB6l3SQsx48fJykpyd9hCCGEEKIFjh49SteuXRt8vN0kLOHh4YDjBUdERPg5GiGEEEK4o7i4mKSkJOd1vCHtJmGpbQaKiIiQhEUIIYRoY5rqziGdboUQQggR8CRhEUIIIUTAk4RFCCGEEAGv3fRhEUIIIc6kqipWqxWbzebvUDo0rVaLTqdr9ZQjkrAIIYRodywWC2azmfLycn+HIgCj0UhCQgJBQUEtPockLEIIIdoVu91ORkYGWq2WxMREgoKCZEJRP1FVFYvFQn5+PhkZGZxzzjmNTg7XGElYhBBCtCsWiwW73U5SUhJGo9Hf4XR4ISEh6PV6jhw5gsViITg4uEXnkU63Qggh2qWWfpMXnueJ/wupYWmEza6yJaOAvJJK4sKDGZoShVYj1YpCCCGEr0nC0oDVu8zM/WQP5qJK576EyGAen5TKxLQEP0YmhBBCdDxSX1aP1bvM3PVWukuyApBTVMldb6WzepfZT5EJIYRor8aMGYOiKCiKwo4dO5osn5mZ6Sw/cOBAr8fnb5KwnMVmV5n7yR7Ueh6r3Tf3kz3Y7PWVEEIIIVpu+vTpmM1m0tLSXBKSM7cpU6YAkJSUhNls5sEHH/Rz1L7RrIRl/vz5XHDBBYSHhxMXF8fVV1/N/v37XcqoqsoTTzxBYmIiISEhjBkzht27dzd57pUrV5KamorBYCA1NZUPP/ywea/EQ7ZkFNSpWTmTCpiLKtmSUeC7oIQQQvicza6y+deTfLwjm82/nvTJF1Wj0YjJZEKnO91jY926dZjNZuf28ssvA44J2UwmE2FhYV6PKxA0K2HZsGED99xzDz/88ANr167FarUyfvx4ysrKnGWeeeYZnnvuOV566SV++uknTCYTl112GSUlJQ2ed/Pmzdx4443ccsst/Pzzz9xyyy3ccMMN/Pjjjy1/ZS2UV9JwstKSckIIIdqe1bvMjF74NZNf+4H7393B5Nd+YPTCr/3SJSA6OhqTyeTcIiMjfR5DIGhWwrJ69Wpuu+02+vfvz4ABA1i8eDFZWVls27YNcNSuPP/88zz22GNcc801pKWl8eabb1JeXs7bb7/d4Hmff/55LrvsMubMmUPfvn2ZM2cOY8eO5fnnn2/Vi2uJuHD3xoe7W04IIUTbIv0YA1Or+rAUFRUBEBUVBUBGRgY5OTmMHz/eWcZgMHDxxRfz/fffN3iezZs3uxwDMGHChEaPqaqqori42GXzhKEpUSREBtPQ4GUFx2ihoSlRHnk+IYQQgSMQ+zGOHDmSsLAw57Z9+3afPXcgaXHCoqoqs2bNYvTo0aSlpQGQk5MDQHx8vEvZ+Ph452P1ycnJafYx8+fPJzIy0rklJSW19KW40GoUHp+UClAnaam9//ikVJmPRQgh2qFA7Me4fPlyduzY4dxSU1N99tyBpMUJy7333ssvv/zCO++8U+exs9dsUFW1yXUcmnvMnDlzKCoqcm5Hjx5tRvSNm5iWwKtTBmOKdG32iQkP4tUpg2UeFiGEaKcCsR9jUlISvXr1cm4Gg8Fnzx1IWjRx3H333ceqVavYuHEjXbt2de43mUyAo8YkIeH0RT0vL69ODcqZTCZTndqUpo4xGAxe/U+bmJbAZakmtmQUMPeT3ezLKWFi/wRJVoQQoh2TfoyBq1k1LKqqcu+99/LBBx/w9ddfk5KS4vJ4SkoKJpOJtWvXOvdZLBY2bNjAyJEjGzzviBEjXI4BWLNmTaPH+IJWozCiZzT/d6Wj+m3FtqMUlFn8GpMQQgjvkX6MgatZCcs999zDW2+9xdtvv014eDg5OTnk5ORQUVEBOJp1Zs6cybx58/jwww/ZtWsXt912G0ajkZtvvtl5nltvvZU5c+Y4799///2sWbOGhQsXsm/fPhYuXMi6deuYOXOmZ15lK43oGU1alwgqq+0s3Zzp73CEEEJ4ifRjDFzNSlheffVVioqKGDNmDAkJCc5t+fLlzjIPP/wwM2fO5O677+b8888nOzubNWvWEB4e7iyTlZWF2Xx6WNjIkSN59913Wbx4Meeddx5Llixh+fLlDBs2zAMvsfUUReHOi3oCsHTzESosNj9HJIQQwlsa6sdoigz2aT/G7t27o6pqh5h23x2KqqrtYo754uJiIiMjKSoqIiIiwuPnt9rsjHl2PcdOVfC3q9O4ZXg3jz+HEEKI1qusrCQjI4OUlBSCg1ve18RmV9mSUUBeSSVx4Y5mIG/WrIwZM4bvv/+eoKAgNm/ezLnnntto+aysLFJTU7FYLKSmprq1/pC/NPZ/4u71W1ZrdpNOq2H6hT14fNVuXv/2MDcPTZYqQSGEaMdq+zH6yrJly5xdLJKTk5ssn5iY6ExSOsLIIUlYmuH687vyz3UHOHKynC9353DFuTJiSAghhGd06dKlWeV1Oh29evXyUjSBR1ZrbgZjkI5ba5qC/rPxMO2kNU0IIYQIeJKwNNOtI7sTpNPw89FC0rNO+TscIYQQokOQhKWZYsIMXD0wEYA3NmX4ORohhBCiY5CEpQWmjXZMmLd6Vw5HC8r9HI0QQgjR/knC0gJ9TRGM7hWDXYU3v8/0dzhCCCFEuycJSwvdXlPLsvyno5RWWf0cjRBCCNG+ScLSQhf3jqVHbCglVVbe+8lzK0ULIYTomMaMGYOiKCiK4tYkcJmZmc7yHWE2XElYWkijUZg2ylHLsvj7DGx2GeIshBCidaZPn47ZbCYtLc0lITlzmzJlCgBJSUmYzWYefPBBP0ftGzJxXCtcO7grz67Zz9GCCtbuyWVimsnfIQkhhGjDjEYjJpPrtWTdunX079/feT8kJAQArVaLyWQiLCzMpzH6iyQsrRASpOXmocm8sv5XFm3KkIRFCCECkKqqVFT7Z9HaEL0WRWndMi7R0dF1kpiOSBKWVrp1RHf+u/EwWzIL2HmsiHO7Rvo7JCGEEGeoqLaR+n9f+uW59zw5AWOQXGo9QfqwtJIpMpgrz3OsKfTGpsN+jkYIIUR7M3LkSMLCwpzb9u3b/R2SX0ja5wG3j+7BRzuO8+kvZh65vB+myJYvZy6EEMKzQvRa9jw5wW/P3VrLly+nX79+zvtJSUmtPmdbJAmLB5zbNZKh3aPYklnA0s2ZPDyxr79DEkIIUUNRlDbdLJOUlNShVmVuiDQJeUjtdP1vb8miwuKfzl1CCCFEeyUJi4dclhpPcpSRwvJqVqYf83c4QgghRLsiCYuHaDUKt43sDsCi7zKwy0RyQgghhMdIwuJBN1yQRLhBx+H8MjYcyPd3OEIIIdqw7t27o6pqh5h23x2SsHhQmEHHjRc4em+/sSnDz9EIIYRoa1555RXCwsLYuXNnk2WzsrIICwtj3rx5PojM/9put+kANXVkdxZ9l8GmQyfYl1NMX1OEv0MSQgjRBixbtoyKigoAkpOTmyyfmJjoXCTRYDB4M7SAIAmLhyVFGbk8LYHPdpp549sM/n79AH+HJIQQog3o0qVLs8rrdLoONdxZmoS84PYLHUOcP95xnLySSj9HI4QQQrR9krB4weDkzgxO7oTFZud/m4/4OxwhhBCizZOExUumX9gDgLd+OCITyQkhhBCtJAmLl4zvbyIpKoRT5dV8sF0mkhNCCCFaQxIWL9FqFP4w0tGX5Y1NMpGcEEII0RqSsHjRmRPJrT+Q5+9whBBCiDZLEhYvCjPomDzMMZb+tY0ykZwQQoiGjRkzBkVRUBTFOb+KP2VmZjrjCYTZdpudsGzcuJFJkyaRmJiIoih89NFHLo/Xvrizt7///e8NnnPJkiX1HlNZ2faHBN82sjtajcLmwyfZlV3k73CEEEK4y26DjG9h5/uOW7v3B1BMnz4ds9lMWlqaS8Jw5jZlyhTgdEKh0+nIzs52OY/ZbEan06EoCpmZmS0qn5SUhNls5sEHH/T663ZHsxOWsrIyBgwYwEsvvVTv42az2WVbtGgRiqJw7bXXNnreiIiIOscGBwc3N7yAk9gphN+cmwDAIpmuXwgh2oY9q+D5NHjzSlh5u+P2+TTHfi8yGo2YTCZ0utPzuq5bt87l2vjyyy+7HJOYmMjSpUtd9r355psNTkTnbnmtVovJZCIsLKw1L8ljmp2wXH755Tz11FNcc8019T5uMplcto8//phLLrmEHj16NHpeRVHqHNte3FEzkdyqn4+TU9T2a42EEKJd27MK3rsVio+77i82O/Z7OWk5W3R0tMu1MTIy0uXxqVOnsnjxYpd9S5YsYerUqfWer7nlA4VX+7Dk5uby2WefcfvttzdZtrS0lG7dutG1a1euvPJKtm/f7s3QfOq8rp0Y2j0Kq11l6eZMf4cjhBCiIXYbrJ4N1Deys2bf6kd80jzkrquuuopTp06xadMmADZt2kRBQQGTJk3ySPlA4dWE5c033yQ8PLzB2phaffv2ZcmSJaxatYp33nmH4OBgRo0axcGDBxs8pqqqiuLiYpctkNVO17/sxyzKLVY/RyOEEKJeR76vW7PiQoXibEc5Hxk5ciRhYWHO7ewv9Hq9nilTprBo0SIAFi1axJQpU9Dr9fWer7nlA4VXE5ZFixbx+9//vsm+KMOHD2fKlCkMGDCACy+8kPfee4/evXvz4osvNnjM/PnziYyMdG5JSUmeDt+jxvWLp3u0kaKKalZuk4nkhBAiIJXmeracByxfvpwdO3Y4t9TU1Dplbr/9dlasWEFOTg4rVqxg2rRpjZ6zueUDgdcSlm+//Zb9+/dzxx13NPtYjUbDBRdc0GgNy5w5cygqKnJuR48ebU24XqfVKEwbfXoiOZtMJCeEEIEnLN6z5TwgKSmJXr16OTeDwVCnTFpaGn379mXy5Mn069ePtLS0Rs/Z3PKBwGsJyxtvvMGQIUMYMGBAs49VVZUdO3aQkJDQYBmDwUBERITLFuiuG9KVyBA9mSfL+Wqv77JzIYQQbuo2EiISAaWBAgpEdHGUCzDTpk1j/fr1bteWNLe8vzU7YSktLXVWSwFkZGSwY8cOsrKynGWKi4tZsWJFg7Urt956K3PmzHHenzt3Ll9++SWHDx9mx44d3H777ezYsYMZM2Y0N7yAZgzScXPNRHKvfytDnIUQIuBotDBxYc2ds5OWmvsTFzjKBZjp06eTn5/vdstGc8v7W7MTlq1btzJo0CAGDRoEwKxZsxg0aBD/93//5yzz7rvvoqoqkydPrvccWVlZmM1m5/3CwkL++Mc/0q9fP8aPH092djYbN25k6NChzQ0v4E0d0R29VmFLZgE7jhb6OxwhhBBnS70KblgKEWfV8kckOvanXuWfuJqg0+mIiYlxmcPFk+X9TVFVtV10piguLiYyMpKioqKAbx568L2fWZl+jIn9Tfz7liH+DkcIIdqVyspKMjIySElJad0EpHabYzRQaa6jz0q3kV6tWRkzZgwDBw7k+eef99pztMQTTzzBRx991KrlAhr7P3H3+i1rCfnBjIsdk+h9uSeHX/NL/RyNEEKIemm0kHIhnHud49YHzUCvvPIKYWFh7Ny50+vP1ZSsrCzCwsKYN2+ev0MBoG3UA7Uz58SHM65fPOv25vLaxsMsuPY8f4ckhBDCz5YtW0ZFRQUAycnJfo7GMYV/ba1KfSOTfE0SFj+5a0wP1u3N5YP0bB64rDfxEW1/3SQhhBAt19DaP/6i0+no1auXv8NwkiYhPxnSLYrzu3XGYrMz54OdbP71pMzNIoQQQjRAalj8ZPUus7P/ytf78vh6Xx4JkcE8PimViWkNzz8jhBBCdERSw+IHq3eZueutdE6VV7vszymq5K630lm9y9zAkUIIIUTHJAmLj9nsKnM/2dPYOqDM/WSPNA8JIYQQZ5CExce2ZBRgLqps8HEVMBdVsiWjwHdBCSGEEAFOEhYfyytpOFlpSTkhhBDtw5gxY1AUBUVRWjVJm6dkZmY64xk4cKC/w5GExdfiwt0bvuxuOSGEEO3H9OnTMZvNpKWluSQMZ25TpkwBTicUOp2O7Oxsl/OYzWZ0Oh2KopCZmdmi8klJSZjNZh588EGvv253SMLiY0NTokiIDG5wHVAAU4SBoSlRPotJCCFEYDAajZhMJpf1fdatW4fZbHZuL7/8sssxiYmJLF261GXfm2++2eC8Lu6W12q1mEwmwsLCWvOSPEYSFh/TahQen5QKNLx4+fXnd0WraSylEUII0VFER0djMpmcW2RkpMvjU6dOZfHixS77lixZwtSpU+s9X3PLBwpJWPxgYloCr04ZjCnStdknNMixTsX3vxbQTtakFEII/1NVsJT5Z/PB3/KrrrqKU6dOsWnTJgA2bdpEQUEBkyZN8kj5QCETx/nJxLQELks1sSWjgLySSuLCg+kebeTiZ9ez7cgpNv96kpG9YvwdphBCtH3V5TAv0T/P/ehxCApt1SlGjhyJRnO6fuHbb79l0KBBzvt6vZ4pU6awaNEiRo8ezaJFi5gyZQp6vb7e8zW3fKCQhMWPtBqFET2jXfbddEESSzcf4V9fH5SERQghBMuXL6dfv37O+0lJSXXK3H777YwYMYJ58+axYsUKNm/ejNVqbfCczS0fCCRhCTAzLu7JO1uy+OFwAT9lFnBBd+l8K4QQraI3Omo6/PXcrZSUlNTkIoRpaWn07duXyZMn069fP9LS0hodGt3c8oFA+rAEmMROIVw3pCsA//rqoJ+jEUKIdkBRHM0y/tgU3w2gmDZtGuvXr2fatGleKe9vkrAEoLsu7oVWo/DtwRPsOFro73CEEEK0AdOnTyc/P5877rjDK+X9TRKWAJQcbeTqgY7x8C9KLYsQQgg36HQ6YmJiXOZw8WR5f2sbUXZA91zSkw+3H+OrfXnsyi4irUtk0wcJIYRoN7p3797oFBdNPT5w4ECXx5tbPtBIDUuA6hEbxpXnOYbhvfT1IT9HI4QQwhdeeeUVwsLC2Llzp79DISsri7CwMObNm+fvUACpYQlo917ai1U/H2f17hz255TQxxTu75CEEEJ4ybJly6ioqAAgOTnZz9E4pvCvHTlkMBj8GwySsAS03vHhXHGuic935vD8ugO8OmWIv0MSQgjhJQ2t/eMvOp2uyeHUviRNQgFu5rjeKAp8sSuHXdlF/g5HCCGE8AtJWAJc7/hwrhrg6Mvyz7UH/ByNEEII4R+SsLQB9489B40CX+3LY3vWKX+HI4QQQvicJCxtQI/YMK4d7Jj99jmpZRFCCNEBScLSRvxp7Dnoama/3ZJR4O9whBBCCJ+ShKWNSIoycuMFjhU6n12zP6An9xFCCCE8TRKWNuTeS3sRpNOwJaOA7w6d9Hc4QgghPGjMmDEoioKiKAG/cjJAZmamM96BAwd6/fkkYWlDEiJD+P0wx2RC/1grtSxCCNHeTJ8+HbPZTFpamktCcOY2ZcoU4HTCoNPpyM7OdjmP2WxGp9OhKAqZmZmtKt/Q8yclJWE2m3nwwQe9+6bUaHbCsnHjRiZNmkRiYiKKovDRRx+5PH7bbbfVeXHDhw9v8rwrV64kNTUVg8FAamoqH374YXND6xDuGtOTYL2G7VmFfLU3z9/hCCFEu2Wz2/gp5yc+P/w5P+X8hM1u8/pzGo1GTCaTy4KE69atw2w2O7eXX37Z5ZjExESWLl3qsu/NN99scCK65pZv6Pm1Wi0mk4mwsLBmv86WaHbCUlZWxoABA3jppZcaLDNx4kSXF/f55583es7Nmzdz4403csstt/Dzzz9zyy23cMMNN/Djjz82N7x2Ly48mD+MSgHgmS/3YbNLLYsQQnjauiPrmLByAtO+nMbsb2cz7ctpTFg5gXVH1vk8lujoaEwmk3OLjHRdDHfq1KksXrzYZd+SJUuYOnVqvedrbvmmnt9Xmp2wXH755Tz11FNcc801DZYxGAwuLy4qKqrRcz7//PNcdtllzJkzh759+zJnzhzGjh3L888/39zwOoQZF/ekk1HPgdxSVm475u9whBCiXVl3ZB2z1s8itzzXZX9eeR6z1s/yS9LSmKuuuopTp06xadMmADZt2kRBQQGTJk3ySPlA4ZU+LOvXrycuLo7evXszffp08vIab7rYvHkz48ePd9k3YcIEvv/++waPqaqqori42GXrKCJD9Nx7iWN9h+fWHqCy2vvVlEII0RHY7DYWbFmASt3a69p9C7cs9EnzUK2RI0cSFhbm3LZv3+7yuF6vZ8qUKSxatAiARYsWMWXKFPR6fb3na275pp7fVzyesFx++eUsW7aMr7/+mn/84x/89NNPXHrppVRVVTV4TE5ODvHx8S774uPjycnJafCY+fPnExkZ6dySkpI89hraginDu9GlUwg5xZUs/i7T3+EIIUS7kJ6XXqdm5UwqKjnlOaTnpfsspuXLl7Njxw7nlpqaWqfM7bffzooVK8jJyWHFihVMmzat0XM2p7w7z+8LHk9YbrzxRn7zm9+QlpbGpEmT+OKLLzhw4ACfffZZo8cpiuJyX1XVOvvONGfOHIqKipzb0aNHPRJ/WxGs1/Lg+N4AvLL+EKfKLH6OSAgh2r788nyPlvOEpKQkevXq5dwMBkOdMmlpafTt25fJkyfTr18/0tLSGj1nc8q78/y+4PVhzQkJCXTr1o2DBw82WMZkMtWpTcnLy6tT63Img8FARESEy9bRXD2wC/0SIiiptPLK+kP+DkcIIdq8WGOsR8v50rRp01i/fn2TtSstLe9vXk9YTp48ydGjR0lISGiwzIgRI1i7dq3LvjVr1jBy5Ehvh9emaTQKsyf2AeDN749w7FS5nyMSQoi2bXDcYOKN8SjUX8OvoGAymhgcN9jHkTVt+vTp5Ofnc8cdd3ilvL81O2EpLS11tmMBZGRksGPHDrKysigtLeWhhx5i8+bNZGZmsn79eiZNmkRMTAy/+93vnOe49dZbmTNnjvP+/fffz5o1a1i4cCH79u1j4cKFrFu3jpkzZ7b6BbZ3F/eOZWTPaCw2O8+tkYURhRCiNbQaLY8MfQSgTtJSe3/20NloNVqfx9YUnU5HTEyMyxwunizvb82OcuvWrVxyySXO+7NmzQIc47pfffVVdu7cydKlSyksLCQhIYFLLrmE5cuXEx4e7jwmKysLjeZ0rjRy5Ejeffdd/vKXv/DXv/6Vnj17snz5coYNG9aa19YhKIrCI5f35aqXvuPDHdncfmEK/RP9M0ZeCCHag3HdxvHcmOdYsGWBSwfceGM8s4fOZly3cT6Jo3v37o3OaN7U4wMHDnR53NPlfU1RAymaViguLiYyMpKioqIO2Z/lvne288nPxxmWEsW7fxzeaIdlIYRozyorK8nIyCAlJYXg4OAWn8dmt5Gel05+eT6xxlgGxw32as3KmDFj+P777wkKCmLz5s2ce+65XnsuT8jKyiI1NRWLxUJqamqj6x819n/i7vW7bdQDiSY9cnlf1uzO4ceMAr7cncPEtIb7DAkhhGiaVqPlAtMFPnu+ZcuWUVFRAUBycrLPnrelEhMTnUmKL0YOScLSTnTpFMKdF/XgX18f4unP93JJ3zgMusBrYxVCCFG/htbyCVQ6nY5evXr57PlkteZ25M6LexIfYeBoQQWLNmX6OxwhhBDCYyRhaUdCDTpmT+wLwEtfHySvpNLPEQkhhBCeIQlLO3P1wC4MSOpEmcXGs1/uZ/OvJ/l4Rzabfz0pKzsLIYRos6QPSzuj0Sj835WpXPvq97y39RjvbT29mnNCZDCPT0qVDrlCCCHaHKlhaYfyG2gKyimq5K630lm9y+zjiIQQQojWkYSlnbHZVeZ+sqfex2obhOZ+skeah4QQQrQpkrC0M1syCjAXNdzZVgXMRZVsySjwXVBCCCGaNGbMGBRFQVGURidhCxSZmZnOeAcOHOj155OEpZ1xd2SQjCASQojAM336dMxmM2lpaS4JwZnblClTgNMJg06nIzs72+U8ZrMZnU6HoihkZma2qnxDz5+UlITZbObBBx/07ptSQxKWdiYu3L1pqN0tJ4QQwneMRiMmk8llQcJ169ZhNpud28svv+xyTGJiIkuXLnXZ9+abbzY4EV1zyzf0/FqtFpPJRFhYWLNfZ0tIwtLODE2JIiEyuIGF0R0SIoMZmhLls5iEEEK0XHR0NCaTyblFRroucDt16lQWL17ssm/JkiVMnTq13vM1t3xTz+8rkrC0M1qNwuOTUgEaTFoen5SKViOLIwohOgZVVSmvLvfL5ov1ha+66ipOnTrFpk2bANi0aRMFBQVMmjTJI+UDhczD0g5NTEvg1SmDmfvJnjodcMMMOob3iPZTZEII4XsV1gqGvT3ML8/9480/YtQbW3WOkSNHotGcrl/49ttvGTRokPO+Xq9nypQpLFq0iNGjR7No0SKmTJmCXq+v93zNLd/U8/uKJCzt1MS0BC5LNbElo4C8kkqiQoN48pM9HMwr5e9f7ufp3wX2suVCCCEcli9fTr9+/Zz3k5KS6pS5/fbbGTFiBPPmzWPFihVs3rwZq9Xa4DmbU96d5/cFSVjaMa1GYUTP07UpT/42jcmv/cDbW7K4dkhXBid39mN0QgjhGyG6EH68+Ue/PXdrJSUlNbkqclpaGn379mXy5Mn069ePtLS0RodGN6e8O8/vC5KwdCAjekZzzaAufLA9m0dW/sKn911IkE66MQkh2jdFUVrdLNMWTJs2jbvvvptXX33VK+X9Ta5WHcxfrkwlKjSIA7mlvLr+V3+HI4QQwkOmT59Ofn4+d9xxh1fK+5skLB1MVGiQcxTRS98c5GBuiZ8jEkII4Qk6nY6YmBiXOVw8Wd7f2kaUwqOuGpDIxzuO8/W+PGav/IX3Z4xEI8OchRAioHTv3r3RYdFNPT5w4ECXxz1d3tekhqUDUhSFv12dRmiQlvSsQv73wxF/hySEEAJ45ZVXCAsLY+fOnf4OpUlZWVmEhYUxb948nzyf1LB0UF06hTD78r7838e7eWb1PsalxtOlU+t7swshhGiZZcuWUVFRAUBycrKfo2laYmKic2SRwWDw+vNJwtKBTRnWjVU7jrP1yCke+3Ani2+7AEWRpiEhhPCHhtbyCVQ6nc6nw52lSagD02gUFlx7LkFaDev357MyPbvpg4QQQgg/kISlg+sVF879484BYO6q3WQXVvg5IiGEEKIuSVgEd17Ug0HJnSipsvLw+z9jtwdOr3AhhBACJGERgE6r4R/XDyBYr+G7Qydl1JAQQoiAIwmLAKBHbBiPTOwLwPwv9pJxoszPEQkhhBCnScIinG4d0Z2RPaOprLbz4Hs7sEnTkBBCiAAhCYtw0mgU/n79AMIMOtKzCvnPRllrSAghfGXMmDEoioKiKI2utOwpmZmZzucbOHCg15+vtSRhES66dArh/2rWGvrn2gPsyi7yc0RCCNFxTJ8+HbPZTFpamjOh0Ol0ZGe7TjthNpvR6XQoikJmZiZAs8snJSVhNpt58MEHffHSWq3ZCcvGjRuZNGkSiYmJKIrCRx995Hysurqa2bNnc+655xIaGkpiYiK33norx48fb/ScS5YscWZ5Z26VlZXNfkGi9a4f0pXLUuOptqn86d3tlFus/g5JCCF8TrXZKPtxC0WffkbZj1tQbTavP6fRaMRkMrksSJiYmMjSpUtdyr355psNTjTnbnmtVovJZCIsLMxD0XtXsxOWsrIyBgwYwEsvvVTnsfLyctLT0/nrX/9Keno6H3zwAQcOHOCqq65q8rwRERGYzWaXLTg4uLnhCQ9QFIVnrj0PU0Qwh/PLmLtqj79DEkIInypes4ZDY8eRNXUqxx96iKypUzk0dhzFa9b4PJapU6eyePFil31Llixh6tSpHinfVjQ7Ybn88st56qmnuOaaa+o8FhkZydq1a7nhhhvo06cPw4cP58UXX2Tbtm1kZWU1el5FUTCZTC6b8J/OoUE8d+MAFAWWbz3Kp780XksmhBDtRfGaNWTfPxNrTo7LfmtuLtn3z/R50nLVVVdx6tQpNm3aBMCmTZsoKChg0qRJHinfVni9D0tRURGKotCpU6dGy5WWltKtWze6du3KlVdeyfbt2xstX1VVRXFxscsmPGtkzxjuGeNYJ2LOBzs5WlDufMxmV9n860k+3pHN5l9PyogiIUS7oNps5M6bD2o9f9Nq9uXOm++T5qFaer2eKVOmsGjRIgAWLVrElClT0Ov1HinfVng1YamsrOSRRx7h5ptvJiIiosFyffv2ZcmSJaxatYp33nmH4OBgRo0axcGDBxs8Zv78+URGRjq3pKQkb7yEDu/+cecwOLkTJZVW7n93O1abndW7zIxe+DWTX/uB+9/dweTXfmD0wq9Zvcvs73CFEKJVyrduq1Oz4kJVsebkUL51m++CAm6//XZWrFhBTk4OK1asYNq0aR4t3xZ4LWGprq7mpptuwm6388orrzRadvjw4UyZMoUBAwZw4YUX8t5779G7d29efPHFBo+ZM2cORUVFzu3o0aOefgkC0Gs1vHDTIMJrhjr/6d3t3PVWOuYi1w7ROUWV3PVWuiQtQog2zZqf79FynpKWlkbfvn2ZPHky/fr1Iy0tzaPl2wKvJCzV1dXccMMNZGRksHbt2kZrV+oNSqPhggsuaLSGxWAwEBER4bIJ70iKMjLvmnMB+HxnDvU1/tTum/vJHmkeEkK0WbrYWI+W86Rp06axfv16t2tLmls+0Hk8YalNVg4ePMi6deuIjo5u9jlUVWXHjh0kJCR4OjzRQpMGJHJJn7hGy6iAuaiSLRkFvglKCCE8zHj+EHQmEyhK/QUUBZ3JhPH8Ib4NDMccLfn5+dxxxx1eKR/omp2wlJaWsmPHDucsfBkZGezYsYOsrCysVivXXXcdW7duZdmyZdhsNnJycsjJycFisTjPceuttzJnzhzn/blz5/Lll19y+PBhduzYwe23386OHTuYMWNG61+h8JgrznVv5FZeicyfI4RomxStlvhHa65PZyctNffjH52DotX6ODLQ6XTExMS4zNHiyfKBrtmvYuvWrVxyySXO+7NmzQIc476feOIJVq1aBVBnmt9vvvmGMWPGAJCVlYVGczpXKiws5I9//CM5OTlERkYyaNAgNm7cyNChQ5sbnvCirp2NbpWLC5f5c4QQbVfE+PHwwvPkzpvv0gFXFx9P/KNzHI/7QPfu3VHrG61UY+DAgS6PN7d8W6OobTn6MxQXFxMZGUlRUZH0Z/ESm11l9MKv63S4raUApshgNs2+FK2mgepUIYTwssrKSjIyMkhJSWnVBKSqzeYYNZSfjy42FuP5Q7xaszJmzBi+//57goKC2Lx5M+eee67XngsclQepqalYLBZSU1O9un5RY/8n7l6/20c9kfAJrUbh8Ump3PVWep2Ot7XpyeOTUiVZEUK0C4pWS+gw39X0L1u2jIqKCgCSk5O9/nyJiYnOJMVgMHj9+VpLEhbRLBPTEnh1ymCeWLWbnOIq5/64CANzr+rPxDTpKC2EEC3R0NpA3qLT6ejVq5dPn7M1ZLVm0WwT0xL47pGxvPr7wUQEO3LeAV07MT5VllMQQgjhHZKwiBbRahQuPzeBJdOGEqTVsGZPLi981fC8OUIIIURrSMIiWmVwcmee/p1jBsUXvjrIFztlplshhBCeJwmLaLXrz09i2qgUAB5c8TN7zbIQpRBCCM+ShEV4xKNX9GV0rxjKLTamL91KQZml6YOEEEIIN0nCIjxCp9Xw0s2D6BZt5NipCu5etg2L1e7vsIQQQrQTkrAIj+lkDOK1W88nzKDjh8MFzPlgZ5ueVVEIIXxpzJgxKIqCoihencStVmZmpvP5zp6dPhBJwiI8qnd8OC/ePAitRmFl+jFe/PqQv0MSQog2Y/r06ZjNZtLS0pwJhU6nIzs726Wc2WxGp9OhKAqZmZkAzS6flJSE2WzmwQcf9MVLazVJWITHXdInjid/2x+A59Ye4MPtx/wckRBCtA1GoxGTyeSyYGFiYiJLly51Kffmm282ONGcu+W1Wi0mk4mwsDAPRe9dkrAIr/j9sG7ceXEPAB5+/xd+OHzSzxEJIUTbNHXqVBYvXuyyb8mSJUydOtUj5dsKSViE18ye0JffnJtAtU3lzv9t41Beqb9DEkJ0QKqqYi8v98vmiX58V111FadOnWLTpk0AbNq0iYKCAiZNmuSR8m2FrCUkvEajUfjHDQMwF1WQnlXIH5ZsYeWMkcRFtHz1VCGEaC61ooL9g4f45bn7pG9DMRpbdQ69Xs+UKVNYtGgRo0ePZtGiRUyZMgW9Xu+R8m2F1LAIrwrWa3nt1vPpHm3kaEEFty7aQlFFtb/DEkKINuX2229nxYoV5OTksGLFCqZNm+bR8m2B1LAIr4sOM7B02jCu/ff37Msp4Y43f2LptGGEBGn9HZoQogNQQkLok77Nb8/tCWlpafTt25fJkyfTr18/0tLSGh363NzybYHUsAifSI42snTaUMKDdfyUeYp7306n2iYTywkhvE9RFDRGo182RVE89jqmTZvG+vXr3a4taW75QCcJi/CZfgkRvDH1Agw6DV/ty+ORlTux22ViOSGEcMf06dPJz8/njjvu8Er5QCcJi/CpoSlRvHzzYOfEcvM+3yuz4QohhBt0Oh0xMTEuc7R4snygax+vQrQp41LjWXjteTy04mde35RBSJCWB8f38XdYQggRULp3797oF7qBAwe6PN7c8m2N1LAIv7huSFcen5QKwItfH+LFrw76OSIhhPC/V155hbCwMHbu3On158rKyiIsLIx58+Z5/bk8QWpYhN/8YVQKFqud+V/s4x9rD6DXaZhxcU9/hyWEEH6xbNkyKioqAEhOTvb68yUmJjpHDhkMBq8/X2tJwiL86s6Le1Jts/PsmgMs+GIfeq2G20en+DssIYTwuYbWBvIWnU5Hr169fPqcrSFNQsLv7r30HP50qeOX5m+f7uF/Pxzxc0RCCCECjSQsIiA8cFlv52KJf/1oF29J0iKEEOIMkrCIgKAoCo9M7OtsDvrLR7t4Y1OGn6MSQrRldrtMThkoPPF/IX1YRMBQFIW//KYfOq3CfzYc5m+f7qHKauPuMW2njVUI4X9BQUFoNBqOHz9ObGwsQUFBHp1xVrhPVVUsFgv5+floNBqCgoJafC5JWERAqa1pCdZpeeGrgzyzej+/5pWy8Nrz0GmlQlAI0TSNRkNKSgpms5njx4/7OxwBGI1GkpOT0Wha/ndcEhYRcL7cncN7W486769Mz2b1rhyevf48Lj830Y+RCSHaiqCgIJKTk7FardhsNn+H06FptVp0Ol2ra7kkYREBZfUuM3e9lc7ZczGWWWzctWw7r/werpCkRQjhBkVR0Ov16PV6f4ciPEDq2EXAsNlV5n6yp06ycqZZ7/1MhUW+LQkhREfT7IRl48aNTJo0icTERBRF4aOPPnJ5XFVVnnjiCRITEwkJCWHMmDHs3r27yfOuXLmS1NRUDAYDqampfPjhh80NTbRxWzIKMBdVNlqmstrO9f/ZTGmV1UdRCSGECATNTljKysoYMGAAL730Ur2PP/PMMzz33HO89NJL/PTTT5hMJi677DJKSkoaPOfmzZu58cYbueWWW/j555+55ZZbuOGGG/jxxx+bG55HqTYbZT9uoejTzyj7cQuqtIN6VV5J48lKrV3ZRdz82g+cKK3yckRCCCEChaK2YulGRVH48MMPufrqqwFH7UpiYiIzZ85k9uzZAFRVVREfH8/ChQu588476z3PjTfeSHFxMV988YVz38SJE+ncuTPvvPOOW7EUFxcTGRlJUVERERERLX1Jp8+3Zg258+Zjzclx7tOZTMQ/OoeI8eNbfX5R1+ZfTzL5tR+aLBcerKOk0kpKTChLpw0lKcrog+iEEEJ4g7vXb4/2YcnIyCAnJ4fxZ1zQDQYDF198Md9//32Dx23evNnlGIAJEyY0ekxVVRXFxcUum6cUr1lD9v0zXZIVAGtuLtn3z6R4zRqPPZc4bWhKFAmRwTTUj1wBEiKD+fDukXTpFELGiTKuefV7dmUX+TJMIYQQfuDRhCWn5gIfHx/vsj8+Pt75WEPHNfeY+fPnExkZ6dySkpJaEflpqs1G7rz5UF/FU82+3HnzpXnIC7QahccnpQLUSVpq7z8+KZVeceF8cPdI+prCyS+p4vp/b2btnlyfxiqEEMK3vDJK6Oyx1qqqNjn+urnHzJkzh6KiIud29OjRBss2R/nWbXVqVs4KDGtODuVbt3nk+YSriWkJvDplMKbIYJf9pshgXp0ymIlpCQDERwTz3owRXHhODBXVNv74v628sSmDVrRwCiGECGAenYfFZDIBjhqThIQE5/68vLw6NShnH3d2bUpTxxgMBgwGQysjrsuan+/RcqL5JqYlcFmqiS0ZBeSVVBIXHszQlCi0GtcENiJYz6LbLuDxVbt5+8cs/vbpHjJPlPH4pFSZFVcIIdoZj/5VT0lJwWQysXbtWuc+i8XChg0bGDlyZIPHjRgxwuUYgDVr1jR6jLfoYmM9Wk60jFajMKJnNL8d2IURPaPrJCu19FoNT1+dxmNX9ENR4H8/HOH2N7dSUlnt44iFEEJ4U7MTltLSUnbs2MGOHTsAR0fbHTt2kJWVhaIozJw5k3nz5vHhhx+ya9cubrvtNoxGIzfffLPzHLfeeitz5sxx3r///vtZs2YNCxcuZN++fSxcuJB169Yxc+bMVr/A5jKePwSdyQSNNEdp4+Mxnj/Eh1GJxiiKwvSLevDq74cQrNew4UA+17zyPRknyvwdmhBCCA9pdsKydetWBg0axKBBgwCYNWsWgwYN4v/+7/8AePjhh5k5cyZ33303559/PtnZ2axZs4bw8HDnObKysjCbzc77I0eO5N1332Xx4sWcd955LFmyhOXLlzNs2LDWvr5mU7Ra4h+tSaYaSFo6X38dilbrw6iEOyammVj+xxHERxg4mFfKVS9tYv3+PH+HJYQQwgNaNQ9LIPHFPCyK0YhaXo7xggtIXvqmLFceoPKKK5nx1jbSswpRFHh4Ql9mXNxD/r+EECIAuXv9loSlEarN5hg1lJ+PLjYWfZdEDl9+BWp1NcmL3iDUD31shHuqrDaeWLWbd7Y4Ro/95rwE/n7deRiDZL1PIYQIJH6ZOK69UbRaQocNJfLK3xA6bChBXbvS6aabAMj75/MyhDaAGXRa5l9zHk//Lg2dRuGzX8xc++pmsk6W+zs0IYQQLSAJSzPFzLgTxWikcudOStat83c4ogm/H9aNd/44nJgwA3vNxfzmxW/5cncj8+wIIYQISJKwNJMuOpqoqbcCkP/CCzLjbRtwQfcoPrlvFEO6daak0sqd/9vGU5/uodpm93doQggh3CQJSwtE/+EPaCIjsRz6laJPPvF3OMINCZEhvPvH4Uy/MAWA1zdlcMUL37L4uww2/3oSm12a94QQIpBJwtIC2ogIYqbfAcCJF19CtVj8HJFwh16r4bHfpDpGDAEH80qZ+8keJr/2A6MXfs3qXeYmzyGEEMI/JGFpoc6//z262Fiqs7M5tfw9f4cj3LR6l5n/bDjM2fUp5qJKZryVLkmLEEIEKElYWkgTEkLMPXcDcOKll7AVFfk5ItEUm11l7id76iQrZ/rLR7ukeUgIIQKQJCyt0Om66zCc0wtbUREnXv23v8MRTdiSUYC5qLLRMidKLTz16R4Zsi6EEAFGEpZWUHQ64h6eDUDBsmVYMjP9G5BoVF5J48lKrcXfZzJtyU/kl1R5OSIhhBDukoSllcIuHE3ohRdCdTW5zz7r73BEI+LCg90qp9cqfLM/n8tf2MjqXS2bs8VmV9n860k+3pEto5CEEMIDJGHxgPjZD4NWS+m6ryj7cYu/wxENGJoSRUJkMA2tKKQACZHBfHzPKPrEh3Oi1MKMt7bxp3e2c6rM/ZFgq3eZGb3waya/9gP3v7tDRiEJIYQHSMLiAYZeveh84w0A5C5cIJPJBSitRuHxSakAdZKW2vuPT0olNTGSVfeN4u4xPdEosOrn41z2z41uzZC7epeZu95Kr9NXJqeokrtkFJIQQrSYJCweEnPvvWjCw6nas5fCFSv8HY5owMS0BF6dMhhTpGvzkCkymFenDGZiWgLgWIvo4Yl9+eDuUfSKC+NEaRV3/m8bM9/dTmF5/bUtjY1Cqt0395M90jwkhBAtIKs1e1DB0v+RO28emshIen7xObqoKL/EIZpms6tsySggr6SSuPBghqZEodXU31hUWW3j+XUH+e/GX7GrEBtu4Mmr+jMxzYSinD5m868nmfzaD00+9zvThzOiZ7THXosQQrRlslqzH3S+eTKGfv2wFxWR9+w//B2OaIRWozCiZzS/HdiFET2jG0xWAIL1Wh65vC8r7xpJz9hQ8kuquGtZOtOXbiW7sMJZzt1RSO6WE0IIcZokLB6k6HSY/u+vABR98AHl6el+jkh40qDkznz2pwu595Je6LUK6/bmcdlzG3hjUwZWm93tUUjulhNCCHGaJCweZhw0iMhrrwEgZ+6TqFarnyMSnhSs1/LQhD589qcLOb9bZ8otNv726R6ufuU7QoK0bo1CGpoiTYVCCNFckrB4QdyDD6KJjKRq/35OLVvm73CEF/SOD+e9O0cw/5pziQjWsSu7mGte+Y6+pnBUGh+F1FjzkxBCiPpJwuIFuqgo4mbNAiDvhX9hOZbt54iEN2g0CpOHJvPVg2O4akAidhW+2Z9PuEFHRIjOpezZo5CEEEI0j4wS8hLVbufIrbdSsXUboaNGkfT6ay4jSkT7s+ngCZ74ZDeH8koB6BETym8HJTK0e3Sjo5CEEKIjk1FCfqZoNCT87W8oQUGUffcdRR9+5O+QhJeNPieGL+6/kL/8ph/hBh2HT5Txz7UHWZl+jJNlsi6REEK0hiQsXmRISSHmvnsByF2wAGt+vp8jEt6m12q448IefPXQxVw3pCsA7287xqXPbuDfG36lslpmQRZCiJaQhMXLov/wB4JTU7EXF5Pz5N/8HY7wkbjwYJ69fgAf3j2SAV0jKa2ysuCLfYz9xwY+3H4Mu8x2K4QQzSIJi5cpOh0J854GnY6StWsp/vxzf4ckfGhQcmc+vHsUz14/gITIYLILK3hg+c9c9fImvj90wt/hCSFEmyEJiw8E9+1LzB//CIB57pNU5+b6OSLhSxqNwnVDuvLNQ2P484Q+hBkcw6Bvfv1Hblu8hf05Jf4OUQghAp6MEvIRtbqazJsmU7l7N6EjRzpGDWkkX+yITpZW8a+vDrLsxyysdhWNAlcP6sLMsb1JjjY2eXxz1kESQohA5+71WxIWH6o6fJiMa65Frawk/rHHiLplir9DEn50OL+UZ1bvZ/XuHAB0GoXrz0/ivkt7kdgppN5jVu8yM/eTPZiLTq9HlBAZzOOTUmWOFyFEmyQJS4AqWLaM3L89hWIwkPLBSgw9e/o7JOFnPx8t5B9rD7DxgGMUWZBWw83Dkrn7kp4u6w6t3mXmrrfSOfsXtrZuRSamE0K0RZKwBChVVTk6/Y+UbdqEIbUf3d99F01QkL/DEgFgS0YBz67Zz5aMAgBC9FpuHdmNOy/qSWSIntELv3apWTmTgmM23U2zL5XmISFEm+K3ieO6d++Ooih1tnvuuafe8uvXr6+3/L59+zwdWkBQFIWEp59G26kTVXv2kv3gQxR9+hllP25BtckcHR3Z0JQolv9xOG/dPowBSZ2oqLbxnw2HGbXga+57Z3uDyQqACpiLKp3JjhBCtDe6pos0z08//YTtjAvvrl27uOyyy7j++usbPW7//v0umVVsbKynQwsY+vg4Ot14Ayf/819K166ldO1aAHQmE/GPziFi/Hg/Ryj8RVEURp8Tw6he0Xy9L49/rjvAruxiPt9pduv4vJKGkxohhGjLPJ6wnJ1oLFiwgJ49e3LxxRc3elxcXBydOnXydDgBqXjNGk7+97U6+625uWTfPxNeeF6Slg5OURTG9ovn0r5xrD+Qz4LP97E/t+nhz2f2eRFCiPbEq+NqLRYLb731FtOmTWty4b9BgwaRkJDA2LFj+eabb5o8d1VVFcXFxS5bW6DabOTOmw/1dR2q2Zc7b740DwnAkbhc0ieOz/40mqjQhvs6KThGCw1NifJdcEII4UNeTVg++ugjCgsLue222xosk5CQwH//+19WrlzJBx98QJ8+fRg7diwbN25s9Nzz588nMjLSuSUlJXk4eu8o37oNa05OwwVUFWtODuVbt/kuKBHwdFoN836XRkNpvwr8dmBig48LIURb59VRQhMmTCAoKIhPPvmkWcdNmjQJRVFYtWpVg2Wqqqqoqjq9Am5xcTFJSUkBP0qo6NPPOP7QQ02WS3z2WSKv/I0PIhJtSX3zsJwpJSaUaaNTuG5wV0KCtD6OTgjRHtnsNtLz0skvzyfWGMvguMFoNZ77++LuKCGP92GpdeTIEdatW8cHH3zQ7GOHDx/OW2+91WgZg8GAwWBoaXh+o3OzM7G75UTHMjEtgctSTS4z3SZHGfnfD0d4+8cjZJwo468f7eK5NfuZMrwbt4zoJv1ahBAttu7IOhZsWUBu+eklZeKN8Twy9BHGdRvn01i8VsPyxBNP8J///IejR4+i0zUvL7ruuusoKCjg66+/dvuYNjMPi83GobHjsObm1t+PBUCjodfXX6M3xfs2ONGmlVVZeW/rURZ9l8HRggoA9FqFK85N4NYR3Ric3LnJvmRCCFFr3ZF1zFo/C/Ws6SqVmsbn58Y855Gkxa8Tx9ntdlJSUpg8eTILFixweWzOnDlkZ2ezdOlSAJ5//nm6d+9O//79nZ10FyxYwMqVK7nmmmvcfs62krCAY5RQ9v0zHXcaePtDBg+m25LFKDKpnGgmm11lze4cXvv2MOlZhc79qQkRTB3ZjasGdJHmItHmeLtZQriy2W1MWDnBpWblTAoK8cZ4Vl+7utX/D35tElq3bh1ZWVlMmzatzmNms5msrCznfYvFwkMPPUR2djYhISH079+fzz77jCuuuMIboQWEiPHj4YXnyZ0336UDrs5kIur2aZx44V9UpKeT89TTmOY+Id+KRbNoNQqXn5vA5ecmsCu7iKWbM/l4x3H2mIuZvXIn8z7fx/VDujJleDe6x4T6O1zRjngrqQikZolA1NT7Xm2vptJa6dwqbBWn79sqqbJVUWl13Nb+fLjocIPJCoCKSk55Dul56VxgusAXL1Om5vcn1WZzjBrKz0cXG4vx/CEoWi2lGzZwdMZdoKrEzZ5N9B9u83eooo07VWZhxbajvPVDFlkF5c79F/WOZfIFSYztF0+QTlYPFy3nraTCV80S/qCqKtX2aiqsFc7kodJaSYW1ot59lbZK5/7a2yPFR9hzcg8Wu8V5Xq2iJVQfiqqqVFgrsKpWr72GhRcu5IoeratgkLWE2riTixaT98wzoCh0ef55IibIRHKi9ex2lQ0H8nlzcyYbDuQ7WySjQ4O4dkhXbjg/iZSYUJdOvUNTomR9ItEobyUVvmyWaErtxb/cWk5FteO23FpOeXXDtxXWCsqqy+p9vPYcNtV3c25pFA3B2mCCdcGE6EIwaA0YtAaCdcGOW20wBp1jX7GlmPVH1zd5zkUTFrW6hkUSljZOVVVy//YUp95+G8VgIHnJYoyDBvk7LNGOHDlZxvKfjrJi2zHyS05PEaDXKlTbTv9ZSIgM5vFJqbISdDvgjSYbbyYVP+X8xLQv63YtOFtDF027aqfCWkGJpYSy6jJKq0sps9Tc1twvrS6l1HL6fll1WYPJx9kJmSdpFS0huhCCdcEEa4MJ0YcQoq25X7OvNtEI0YUQpA3i7b1vU1pd2uA5Y4JjWPabZYTqQwnRhaDX6N3uYlD7/5pXnlfv6243fVhE6ymKQvxjj1JtNlP6zTccu/seur/7DkHduvk7NNFOdIsO5eGJfZl1WW++2Z/Pi18d5JfsIpdkBRyLKs54K51/TxksSUsb5q0mm/S8dK/0dai2V5NZlOlW2X9u+yfhQeF1EpKy6jKvJBlGnRGj3uhyG6IPcdyv57HM4kxWZ6ymyFLkPEd0cDT3DrqXCd0nEKwLRq/RNyuGn3J+4r+//LfRMicqT5Bdmt2iGhCtRssjQx9h1vpZKCgu72NtzdnsobN92vFZEpYApmi1dPnHsxy5dSqVu3aR9cc/0v3tt9FFR/s7NNGO6LQaLu0bx/99vKvRcg+t+IXe8eH0iA1r1fPZ7Ko0OflYQ002eeV5zFo/q1X9QPLL890q96P5R0otpRRbiimxlLjcFluKKa4qpqS6xHFrKaHcWt70SWvsPLGz0ce1ipawoDDC9GGE6kNP39bsO/O+UWckVB9aJ+movQ3WBaNR3O/vte7IOp756Zk6731BZQFPbn6SToZOLXrv3X3f3S1Xn3HdxvHcmOfqTXRnD53dfuZh8bX21iR0Jmt+Ppk3TaY6OxtDv350e3MJ2nb2GoV/bf71JJNf+8GtskO6debqQV248twEOjeyvlF96pupV5qcvMsTTTaV1koKqwopqiqisKrQ5ef9BftZc2SN1+I/+9v92cL0Ydw78F7CDeHOZOTshMSgNfhltGUgN5c1R6DMdCsJSxthycwk8/dTsJ08SciQISS//hqakBB/hyXaiY93ZHP/uzuaLKcop6cO0msdCzP+blAXLukbR7C+8T9gq3eZueut9DqXntrLyKvS5OQV7l7YruxxJaH6UGdCUlh5OjGptNW/FIS7NGhIikgiIiiCiKAIwoPCT98aHLe1+84sEx4Uzvqj65m1fhZAvc0Snhol5I2LsjeTCl/2MfE26cPSzgR1707yG69z5JZbqdi2jWN/up+kl1+SieWER7g7ff9LkwdzvLCCD7Zns9dczJo9uazZk0u4QcdlqfH85rwERp8Tg0Hn+gfSZleZ+8meer8nqziSlrmf7OGyVJM0DzWT1W6lsKqQU5WnKKgscG4nK05SUFnAvoJ9bp3n08OfNvq4TtERYYigk6ETnQydiDREOn4O7kR+eX6jx/9jzD9anFT4olnCW/17vNlsE4h9TLxNaljamPL07WTdfjtqRQXhl0+ky7PPomjbzwdS+IfNrjJ64dfkFFXWm1QogCkymE2zL3UmFPtyivlwezardhx3aeIJD9YxPtXEleclMKpXDEE6jdtNTu9MH86IntJHS1VVii3F5Jfnk1+Rz4mKE+RX5JNf7vj5ZOVJCiociUlhVaFHOpZemnQpvaN6uyYjZ/wcpg9rtFmlvou+yWjyWFLhzUnpvDXPiy+abbz9vvuCNAm1Y6XfbuLo3XdDdTURV15J4oL5KM1cr0mIs9U22QAuf7qbarKx21XSs07x6S9mPt9pJu+MIdKRIXom9I8nKjSIf2843GQML9w0kN8O7NKalxHQbHYbBZUFp5OQMxOS8tOJyYmKE1Tbq90+r4JCJ0MnooKjiAqJctwGR9E5uDOdDZ15aftLLiNUzj7WU00HbW36fG/P8+KrZpu29r6fTRKWdq5k3TqOzXwArFYirriCxGcWStIiWq21nWLtdpWtR07x2S/H+XxXjsv8Lu7wRA2Lv/54V9urOVF+gtzyXHLKclxua38+UXECu2p3+5yRhkhiQ2KJCYkhJiTG5efokGhnUtLJ0AmdpuHf/9paBPBuP5C2xlc1IPLeN04Slg6g5KuvHElLdTURV1xO4jPPSNIiWs1Tw45tdpWfMgv4rKbm5WSZpcGy9TU5tYS3+iLY7DbyyvPILs1ms3kzx0qOYbFZUFHJK89zJiPuNM1oFA3RwdGOBMQYS2xILNEh0Y7b4GhOVp7EZreR0imFYaZhHku22kPTgad9fvhzZn87u8lyrZ1+Xt77xknC0kGUfP01x+6fCdXVhE+cSJe/P4Oib94EREJ4m82u8u8Nh/j7lwcaLHPNoC7ce2mvFs/z0pq+CFa71ZmQHC897tjKHLfZpdnkluW6tR6LTqMj3hhPvDEeU6iJ+NCan42nf44Kjqo3CfHFAn9tvenA09rT0OC2TBKWDqTkm2/I/tP9qNXVhI0bS5d//AONweDvsISoY/UuM0+s2k1OccNNRd2jjVzSN45L+sQxNCWqyeHS0HRfBIDY4FgWXLTAJRGpTU5yy3NbtabLrCGzuKrnVXQO7tysScVqtecF/gJZexoa3JZJwtLBlKxf70haLBaMw4bR9eWX0Ia1bkZSIbzh7CanpKgQvtmXx5e7c/kx46TL0gAhei2jekUzpk8cl/SNo0un+ucecvebcmP0Gj2JYYkkhiY6bms2k9HEnzf8mROVJ+o9zlMdMwNhgb+OSPqY+J8kLB1Q2Y9bOHb33djLyghOTSXptf/KNP6iTSmprOa7QydZvz+Pb/bnkXtWTUzv+FAuOEehu6kMffAJjpcdI6ski/0F+zlRUX9Ccaao4Cj6dO5Dl/AudAnr4kxOuoR1ITokut7aEW83G/iyWULUT/qY+JdMHNcBhQ4bSvLSNzk6/Y9U7tnDkd9PIfmN19F3ab/DREX7Eh6sZ2KaiYv6RHBLkZbvjuzl+6w9HCg4TKE1m+NBJ1h10gonW3b+Zy9+ttkXfW+v2eKLNWFE48Z1G8clSZdIH5MAJwlLOxPSvz/dlr3F0dvvcEznP/lmkv77H4L79vV3aKKN8GXnwILKAg6dOsSvRb+SUZTh3Oo0j+hAW/PXSkEH1TFYKqKxW2JQq6OxW6LBHoISlIMu9Fe0oQfR6Iudh6sqdA5yvJbmijXGerScr88v3KPVaKUGK8BJwtIOGVJS6PbO2xy94w6qDh7iyM2/J/G5fxA+Zoy/QxMBzlsjVcqqyzhUeIhDpw5xqPAQBwsPcujUIU5WNlxVEhUcRfeI7qREppzeIlJIDEtEo2jYl1PCd4dO8O3BE2zJKKCi2gaViViLHUmJJigPbeghtMZDaI0ZVOZeCTS/Q+zguMHEG+Ob7JjZkmTIF+cXor2QPiztmK24mGP330/55h9AoyF+zhyibpni77BEKwXyFOXV9moyijLYX7DfkaDUJCnHy47XW15BoWt4V3p26kmPyB4uCUqkIdLt2DceyOfWRVtQgvJQFCv2KhP1JScT+pu4emAiQ1OiiA5zfySdtztmSsdP0ZFJp1sBgFpdjXnuXIreXwlA5ylTiJ/ziKw/1EZ5c2K05o5UKa8u58CpA+wr2Me+gn3sLdjLoVOHsNjrnyAuLiSOXp170auTYzun8zn0iOyBUW9scdy1XFebtqMJOQKAWh2Fao3g9AIDp50TF8awHlEMS4lmWI+oJheArP+9N/GIFxfgk46foiOQTrcC1WajPH07xmHDUbQ6Cpcv59Rbb2HJzKTLs39H26mTv0MUzdBQDUheeR6z1s9q1bfw9Lz0RucwUVHJKc/h6R+fptRSyt6CvRwpPlJvE0aoPpQ+nftwTudznIlJr069mlVj0lyuyYYGe0VKveXGp8Zz5GQ5+3NLOJhXysG8Ut76IQuAHjGhDOsRxZBuUQzp1pnu0UaXxf6sJf0pPTSb8uq9KLoSVGs4pfp+WPv198hrGNdtHBd1GcPbP68nqziH5AgTNw8YQ5DMXi0EIDUs7VbxmjXkzpuPNSfHuU/TqRNqWRlqdTX6rl3p+tKL0hm3jfD2XB3uTlF+tpiQGPpG9aVfVD/nbZfwLi2aPK01mrvadEGZhS0ZBfyYcZIfDxewN6eYs/8SRoUGMTi5M0O6dcZqt/OPNXVn6W1qYcjmaO06TkK0VdIk1IEVr1lD9v0zqfMXWFFAVdFGR2M7eRIlOJiEv/2NyElX+iVO4T5vzdVRba/m0KlDfHr4U5buWdpk+fPjz2dUl1H0jepL36i+xITEuP1c3tbS1aYBisqr2ZJZwNbMArYdOcUv2UVYrO4tUuiJdZBqYz/7j7EnEyIhApU0CXVQqs1G7rz5dZMVcOxTFNBqCR01irLvvuP4n/9Mxc5fiP/zn2UNogDmqbk6CioL2J63nR15O9iRt4O9BXupsrm3orLJaOL18a+3uoOvtzoNT0xL4NUpg+vUUpjcqKWINOq5LDWey1LjAaiy2th9vJj0I6dYszuXLZkFDR6rAuaiShZ/l8GNFyQRHty83yObXWXuJ3vqrRlScSQtcz/Zw2WpplYtDClEWycJSztTvnWbSzNQHaqKLS+PqIULCT43jZP//g+nlv6Pyl276fLs39EnJvouWOG2lszVoaoqGcUZ7Mjb4UxSMosz6xwTrg8nLSaNUH0o67LW1Xm8dqTK7KGzW51YeHuBv4lpCVyWamr1atMGnZbByZ0ZnNyZ2HBDowlLrac+28vTn++lR0woA5I6MaBrJwYkdaJfQjgGXcPv25aMApcE62y1CdGWjAJG9JSZq0XHJQlLO2PNd++buO3kSeJmziQkLY3jj8yhIj2dw1f/joSnnyLissu8HKVoLnfm6ogLiUOn6Fi0axHb87bzc97PnKo6Vadsz8ieDIofxKC4QZwXcx7JEcnOPicNJRSeGKnizU7DZ9JqFI9e2JsaPVQrJiyIE6UWfs0v49f8Mj5IzwZAr1Xoa4pgQFIk53XtRFpiJOfEh6HXOt7zvJKGk5UzuVtOiPZK+rC0M2U/biFr6tQmyyW/+Sahw4YCYDl6lOwHH6Lyl18A6HzzZOIefhhNsHt/qIVvNDRXRy2D1lCnecegNZAWk8agOEeCMiB2QJOjdbzRZNOWF/hrTofeU+UWfjlWyI6jRfxyrJBfjhVRUFZ3mHeQVkNvUxj9EyIxBmlZ/H1mk3G8M3241LCIdkk63XZQqs3GobHjsObm1t+PRVHQxcfT66t1LnOxqBYLeS+8QMEbiwAw9O5Nl+f+gaFXL1+FLppgV+0s3b2U//zyH0qrS+stE2mIZEjcEAbHD2ZQ3CD6RfVDr/V/36S2vsBfSzv0qqrKsVMV/FyTvPx8tJA95mJKKq1uP7cnOvUKEcik020HpWi1xD86xzFKqGZU0OkHHX/s4h+dU2fiOCUoiPg//5nQ4SM4/sgjVB04QMY11xI7cyZRU2+Vieb8xFxq5rvj3/H98e/50fwjxZZil8dDdCEMNQ11bAlD6d25t8+HFLujrS/w19IOvYqikBRlJCnKyJXnOfqHqarK0YIKdh8vYvfxYnYfLyI9q5Ciiup6z6HiGGL9zJf76GsKp3d8OL3iwhrtFyNEeyQ1LO1UffOw6Ewm4h+dQ8T48Y0ea83P5/hjj1G28VsAQoYMIXH+PIKSk70as4BKayVbc7fyXbYjSTlcdNjlcaPOyOD4wc4kpW9U34BrQqlPW69hqWWzq63u0NuQ937KYsEX+ygorz9xOZNWo5ASE0qf+HD6mBxbX1M4SZ2NaKQWRrQx0iQkHDPdbt2GNT8fXWwsxvOHuF1Toqoqhe+/T978BdjLy1FCQoh/+M90uukml9k/ReuoqsrhosNsyt7Ed9nfsS13m8vU9hpFw7kx5zIqcRQjEkfQP6Y/eo3/m3iaq7YPS1ML/AViHxZfOjshSk2M4EBuCftySjiQU8L+nBL25RRT3ECTUoheS+/4MPrU1MT0jg+nZ1wYiZHB8nsrApbfEpYnnniCuXPnuuyLj48np5Ghths2bGDWrFns3r2bxMREHn74YWbMmNGs55WExTssx7IxP/oo5Vu2AGAcNgzTE49jSKl/6nPh0FjH1Wp7Nem56aw/up71R9dzrPSYy7HxxnhGdxnNyMSRDEsY5tUp7X1JFvjzDFVVyS2uYl9OMftzStif60hkDuaVNjjZnTFIS8/YMHrFhdEzNpRecY6fk6NCCdIFXhOi6Fj8mrC8//77rFt3ej4HrVZLbGz980hkZGSQlpbG9OnTufPOO/nuu++4++67eeedd7j22mvdfl5JWLxHtds59dYy8p57DrWyEiUoiJi7ZhB9++0oQUH+Di/g1Dc0ODYklondJ3Ki4gSbsjdRUl3ifCxIE8QFpgsYmTiSUV1G0SOyR7v9NiwL/HmP1WbnSEF5TS1MCftzivk1v4zME2VY7fX/mddpFJKjjfRyJjM1t3FhhBmki6PwDb8mLB999BE7duxwq/zs2bNZtWoVe/fude6bMWMGP//8M5s3b3b7eSVh8T7L0aPkPDGXsu++AyCoV08SnnwS4+DBfo4scDQ018jZooKjuKjrRYxJGsOIhBEeWbG4rfDWTLeiftU2O0dOlvNrfimH8kr5Na+UQ/mO2zKLrcHj4sINdI8OpXuMke4xoaREh9I9JpTu0aGEBPn+/8ub/Yd8oa3H701+HSV08OBBEhMTMRgMDBs2jHnz5tGjR496y27evJnxZ3UCnTBhAm+88QbV1dXoG5guvqqqiqqq03NOFBcX11tOeE5QUhJJr79G8aefkTt/PpZDv3Lk5t/T6YYbiH1gJrrOnf0dol/Z7Dae/uHpRpOVUF0or4x7hQGxAzrsRVqr0QZ0x9r2Rq/VOJuAxvU7fdGMDTOQHG0k40SZM4k5lFfKobwyTpRWkVfi2Oqb5dcUEUz3GCMpNQlM95hQUmJCSY4yEqz3/Oe6rS8M2dbjDxQer2H54osvKC8vp3fv3uTm5vLUU0+xb98+du/eTXR03UmPevfuzW233cajjz7q3Pf9998zatQojh8/TkJC/f+Z9fWVAaSGxUdshYXk/v3vFK38AABNZCSx991H55tuRNF1rKrkYyXHWHtkLR8e/JCM4owmywf6SBjRPjXnollUUU3miTIyT5aRccLRrJRxspzME2UNDr8Gx8wJiZEhdIs2klwznDspyvFzcpSRzkZ9s5s72/rCkG09fl8ImFFCZWVl9OzZk4cffphZs2bVebx379784Q9/YM6cOc593333HaNHj8ZsNmMymeo9b301LElJSZKw+Fj5Tz+R89TTVO3fD4DhnHOIf+wxQocP83Nk3pVblssXGV/wReYX7Dm5p1nHLrxwIVf0uMJLkQlRlycvmqfKLGScdCQxZyYymSfKKKlqfEK80CCtSxKT1DmE5JrkpmvnurUztbMMN7TWUqBPqtfW4/eVgJk4LjQ0lHPPPZeDBw/W+7jJZKozgigvLw+dTldvjUwtg8GAwWDwaKzCfWcOmY6bPRtLxmFO/OtFqg4eJOu22wgfP564Pz9EUFKSv0P1mFJLKWuPrOWzjM/YYt7ibPrRKBrOjz+fPp378L+9/2vyPO4uZCiEJ3h6NejOoUF0Dg1icLJrE/AXO4/z+Ko95JWc/iIZotfQpVMIJVVWcourKLPY2FfTKbg+ceEGZzLTtXMIldX2Nr0wpCxs6VleT1iqqqrYu3cvF154Yb2Pjxgxgk8++cRl35o1azj//PMb7L8i/KuhSeniHplN5c5dnHr3XUrWrKHkm2/ofNNNxNw1A11UlB8jbrlqWzXfHf+OTw9/yvqj613W6hkcN5grUq5gXLdxRIdEY7PbWHNkTZNzjQyOk07Kwnd8cdFcvcvM3cu21/nUV1bb+TW/jFenDGZMnziOnarg6KlyjhY4tqyCco4WVHC0oJySKquz38y2I3UX7WzMT5kn6RUXRkxYUItH2HmjU6wsbOlZHk9YHnroISZNmkRycjJ5eXk89dRTFBcXM7VmQb45c+aQnZ3N0qVLAceIoJdeeolZs2Yxffp0Nm/ezBtvvME777zj6dCEBxSvWeOY9v+slkRrbi7mRx+jywvP0+nGG8n7+98p27SJU//7H0UffEDU7dOInjoVTWioW8/TmknvPGFfwT4+OPgBX2R8QWFVoXN/SmQKk3pM4ooeV9AlrIvLMVqNlkeGPsKs9bNQUOqda2T20NkdtrOt8A9vXzSbU4NT2/m3TjlVpaii2pnAZBWUc+xUObuPF7PjaGGTMTy39iDPrT1IkE5DYmQwiZ1C6NIphMROISR2CiY+IpiEyBBMEcFEhOjqJDXe6hTr7krf7pbr6DyesBw7dozJkydz4sQJYmNjGT58OD/88APdunUDwGw2k5WV5SyfkpLC559/zgMPPMDLL79MYmIi//rXv5o1B4vwDdVmI3fe/PoXVVRVUBRy582n11frSH79Nco2bybv789SuWcPJ/71IqfefofYe+6m07XXNjp/S2uWFWiNYksxnx/+nA8OfsDegtPD7GNCYrg85XKu7HEl/aL6NfoNbly3cTw35rk6c43EG+NlrhHhF96+aHqiBkdRFDoZg+hkDOK8rp2c+5taKRtAr1WIDjWQW1KJxWon82Q5mSfLG4wnWK/BFBGMKTIYU0Qw5RYba/bUXUU8p6iSu95Kb1Wn2KEpUSREBje50vfQlLZZA+1rMjW/cFvZj1vIqqkpa0zym28SOmwo4Jh0rviLL8h//gWqjx4FQJeYQMydM+j0u6vrJC4N1eDULtzY5YXnPZK01M4FkleWR0FVAbtP7GZd1jpnk49eo+fS5Ev5Xa/fMTxheLNrRWSuEREomrrot7bj58c7srn/3R1NlnvhpoH8dmCXJsudzd2VsqttdnKKKjleWEF2YUXNbSXmogpyiirJKa6k0I11ms5m0Gm44fwkZ4ITG24gLsJAbJiBzsagJtduaulK383R1ud4CZhRQr4iCYv3FX36GccfeqjJconPPkvklb9x2adaLJxa/h4n/vsfbPkngLqJi2qzcWjsOJeaFReKgi4+nl5frWtV89C6I+uY9+M88ivqrgzcq1MvrjnnGq7scSWdgzv2vDKi/fDmRXPzryeZ/NoPTZZ7Z/rwVvWR8USTTWW1jdziSmcC8+PhAt7ektX0gQ3QaRRiwk4nMLHhBuLCHbex4cHO+9uzTjH/i31emYelPczxIgmL8LiW1LCczV5ZSeF773HitddcE5c/3om+a1eO3nFHq87flMW7FvPctucafPy5i5/jsu6XtejcQgQyb13YvF2Dc+bzeLoWwd3aoXH94ogI0ZNfUkVecRX5pVUUlFmaPO5M4cE6woN1GIN0xIUb6GsKJz4imJgwA1FhQcSEGogOCyIqNMjtyffayxwvkrAIj3PWgOTm1t+PpRk1II7EZQUnX3sNa76jpkMTEYHdjRmL66vBaYzFZmHNkTW8s/cdfjnxS4PlZMVg0d55q+nAF80e3tCa2iGL1c7JsiqXJMZxW+nYV1LlvG1oUcqGhBl0RIcFER0aRHSYoeY2iOiapCY61EBno54/LPnJZRj5mdrSHC+SsAivcPYxAdekpYV9TOyVlRSueJ+Tr7/uSITc4G4NS355Pu/se4eVB1dSUFl3evGGyEy0QjRfW2ya8EXtkKqqFFdaa5IXRzKTf0Yyc6K0ipOlFgrKLJwsq6La5tlL8r2X9GJoShSdjUF0DtXT2RiEMUjbrOHf3u4jIwmL8BpvjOJRLRaKPvkU8+OPg7WB2TLdrME5dOoQb+55k88Of0a13dHJLs4Yx8DYgaw5ssZxKrtKv6MqnUvhVBjsTVJQa34BZSZaIVqmLXb+DKTaodrk5mRpFSfLLJwsdSQxJ0stnCyt4kSZhYKafccLKyltYmbhhgTpNHQ2OpKXzkZHM1Qno77mNoioUL3j1hjEL8cKeembQ+QWn67J8XQiKgmL8CpvzZNStHo1x2c+0ODjif98jsjLL68bj6qyJWcLS3YvYVP2Juf+QXGDmNJvCpckX8KOvB1M+3IaQ/fbuW2tnZgzJts8EQ5LLtOwpY9GaliE6GDaYu2Qu81ZqQkR2FWVU+UWTpVVY7E1r3mqPp5O5iRhEW1WfTU4tXSJCXS+aTKdrr8OXefOWO1W1mSuYcnuJc65UxQUxiaPZWr/qQyMG+g81ma38fCTF3H7uwU15U6z19x/46Zonvm/DdKHRYgOpq3VDrWkOUtVVcotNmfycqrcUvOzhYLyagrLHU1TheXVFJRZ2JdTjL2BDMGTfWQkYRFt2pk1OGg0VO3dQ+GK97EVFgKgBAVx6sL+LDknh+875YGiEKwN5re9fsutqbeSHJFc7zl3XTwa7YlC6vv1sgP22E6krd/k01l1hRCiJdr6cPVaAbP4oRAtoWi1rh1rr7icmHvvpeCTjzmy6N8YD5vp9NV2Zn4F18Zrqbx8FKP+MIfo+G4NnrN86zZ0JwobfFwDaPILKd+6rcXDpoUQwlcmpiXw6pTBdZqzTB5ozgrEdZAkYRFtQoW1ghWHVrDEvoT8G/I457iWq37Wc8FeK0m5Vliygfy3N1M5fjydrrsO49ALUDQal3PUDp9uirvlhBDC3yamJXBZqsnjzVmBuA6SJCwioFXZqnhv/3u8vvN159BkU1gC118zjWtmX4OutJKiTz+lcMX7VO3bR/Gnn1L86afok5PpdM3viLhyEkFdHdOB62Jj3XpOd8sJIUQg0GqUVjfLnC0Q10GSPiwiIFXbq1l1aBWv/vyqcxHBrmFduePcO7iq51XotXqX8qqqUrlrN4Xvv0/xp59iLytzPhYyZAiRkyYRftllZFx7rUcmvhNCiPbOV0O+pdOtaJPsqp3VGat5ecfLZJU41viIN8Zz14C7uKrXVeg1+ibOAPbycoq/XEPRqo8p/+HH08mJXk9wv75U/rKz7kEeXlxRCCHaA18M+ZaERbQpqqqy8dhG/rX9Xxw4dQCA8KBwLu56MZN6TGJYwrAWDTWuzs2l+NPPKPrkE6r27Tv9gKK41LK0duI7IYRor2SmWw+ThKXt2ntyL89ufZYtOVsACNYGo9VoKas+3awTb4znkaGPMK7buBY/T+WBAxR/8ilFn36K1Wx27ldCQggfN5aIiRMJHTUKTbDvOpEJIURHJwmLCHi5Zbm8uP1FVv26ChWVIE0Qo7uM5uujX9cpq9S0mj435rlWJS0Aqt1ORXo6xV+uoWTNGpc1jDRGI2FjxhA+YQJhF45GYzS26rmEEEI0ThIWEbDKq8tZvHsxb+5+kwprBQCXp1zOfQPv4w9f/sHZyfZs3lhNWbXbqdjxMyVffknxmjWuNS8GA8bhwwi/5BLCxoxBbzJ55DmFEEKcJgmLCDh21c4nv37CC+kvkF/hmOtkUNwgHjr/Ic6LPY+fcn5i2pfTmjyPt9b6UVWVyp07Kf7yS0q+XEP1sWMujwenphJ2ySWEXXIJwf1Tm7XaqRBCiPrJTLcioOwr2MfTPzzNjvwdgGOI8gNDHuCybpc5L/z55e5N2OZuueZSFIWQ884j5LzziHvoISyHDlHy9TeUfvMNFT//TOWePVTu2cOJl19GFxdH2MUXE3rhaEJHjEAbHu5yLm8tDuntcwshRKCShEV4VbGlmJe2v8Ty/cuxq3ZCdCHMGDCDKf2mEKQNcikba3RvwjZ3y7WGoigYzjkHwznnEHPnH7GePEnpho2UfvM1pd99jzUvj8IVKyhcsQK0WkLOO4/Q0aMIGzUKS04OeQsWuize6KlRSPUtDCkjnIQQHYE0CQmvsKt2Vv26in9u+6dzhtqJ3Sfy4PkPYgqtvy+IzW5jwsoJ5JXnodYzt6I3+rC0hL2qivItWyjdsJGy777DkpHR9EEemOeleM0asu+fWXfSO5lDRgjRhkkfFuFVNruN9Lx08svziTXGMjhusDOJOHTqEHM3z3U2//SI7MGjwx5lWMKwJs+77sg6Zq2fBeCStHhylJCnWY5lU/b9d5R9u4mSdevqn0W3hjY2lnPWf9PsJhzVZuPQ2HEuNSsuZJZeIUQbJX1YhNesO7KOBVsWuIzmiTfG89D5D/Fr0a+8vvN1rHYrIboQ7h5wN7/v9/s6U+k3ZFy3cTw35rl6zz976OyAS1YAgrp2IeiGGwjq1p2StWsbLWvLz+fQpWMJu+hCjEOHYhw6FH18fJPPUb51W8PJCoCqYs3JkZWmhRDtliQsollqa0DObrLJLc/lzxv/7Lw/pusYHhv+WIPNP40Z120clyRd0mANTqByezXo3FwKV7xP4Yr3AQjq1g3j0AsIGTQY4+BB6Lt1qzMCSVaaFkJ0dJKwCLfZ7DYWbFlQb/+SWho0LLhoARO7T2zVsF+tRuuVocve5O4qz7EPPICtqIjyH3+kcu9eLEeOYDlyxJnAaKOiCBk0COPgQYQMGkRw//6y0rQQosOThEW4LT0vvcFJ3WrZsRMTEtMh5ygxnj8EncnU5GrQ0Xfc7uxnYisupnzbNsq3bqUifTuVu3ZhKyig9KuvKP3qK8dhej3B/fujGI2o5eX1P3nNuY3nD2n165Bh00KIQCQJi3Cbv+dJCXSKVkv8o3McI3nOWlyxdiRP/KNzXC7+2ogIwi+5hPBLLgHAbrFQuWs3Fdu3U749nYr07dgKCqjYsaPxJ1fVOuduCRk2LYQIVDJKSLjN3zPRthWevOirqkp1Vhbl27dTkb6d0m+/dVk+4ExB3boRfO65hJx3LsFp5xKc2q9ZCznKsGkhhD/IsGbhURXWCv659Z+8s/+dBssEyjwpgcCbzSq24hIKP/yQyp07sebnU308m+qjx+oW1Gox9OxJcL9+GPr1JbhvP4L79kHbqVO98cqwaSGEP8iwZuExP+f/zGObHuNI8ZEGy9TOkzJ76OwOn6yAo3nIW8OLtRHhRE+91WWf9dQpKnftomLnTip37qJi105s+SeoOnCAqgMH4OOPnWV1iQmO5KVfP4L79cXQtx+WY8dk2LQbpH+PEP4jCYtokM1u441db/DKjlewqTbijHE8OfJJKqwVbWqelI5A17kzYRdeSNiFFwKOpiRrbi6Ve/ZSuW8vVXv3Url3H9XHjmE9bqb0uJnSr792Hq+42XTUkYdNS/8eIfzL4wnL/Pnz+eCDD9i3bx8hISGMHDmShQsX0qdPnwaPWb9+PZfUdDo80969e+nbt6+nQxRuyCnLYc63c9iauxWAy1Mu5y/D/0JEkKO6ri3Ok9KRKIqC3mRCbzIRfunp3y1bcTFV+/dTuXcflfv2OZKZg4dQKyvdOq+tuBh7WRma0FBvhR6QGurfY83NdeyX/j1CeJ3H+7BMnDiRm266iQsuuACr1cpjjz3Gzp072bNnD6EN/JGrTVj279/v0n4VGxuL1s3qVunD4jnrjqzj8e8fp9hSjFFn5LHhjzGpx6QOOVS5I1AtFioPHiRr2u3Yi4rcOkbftSuGXr0wnNOLoJQeGHqkEJSSgjYy0svRNs3TzTbSv0cI7/JbH5bVq1e73F+8eDFxcXFs27aNiy66qNFj4+Li6FRPh0DhGxXWCp756RneP+CYwCwtOo2FFy0kOSLZz5EJb1KCggjp35+Evz3pqC2AeueRMfTujbWgANuJE1QfO0b1sWOUrl/vUkYbHU1QSncMKT0ISkkhqEcKhpQU9F26oOi83wLtjWab9rQsgvTBEW2Z1/+CFNV8Y4uKimqy7KBBg6isrCQ1NZW//OUv9TYT1aqqqqKqqsp5v7i4uPXBdmC/Fv7KrPWzOFx0GAWFaWnTuGfgPW6vASTavojx4+GF55u84FtPnaLq4EHHdugQloxMLBkZWHNzsZ08ScXJk1Rs3eZybkWvR98t2ZHIdO+GqjoSpeA+fQgbeykaDyQz3mq2aS/LIkgfHNHWeXVYs6qq/Pa3v+XUqVN8++23DZbbv38/GzduZMiQIVRVVfG///2Pf//736xfv77BWpknnniCuXPn1tkvTULN98mvn/C3H/5GhbWC2JBY5l04j+EJw/0dlvCTln4Lt5WWYcnMxJJxGEtGBlWHM7BkZGDJzEQ948tFHYqCLsFEcGoqQcndCEpOIig5GX1yMnqTya2aGW8225T9uIWsqVObLJf85psBW8Mic+yIQBYQ87Dcc889fPbZZ2zatImuXbs269hJkxx9JlatWlXv4/XVsCQlJUnC0gxVtioWbFngbAIanjCcBRcuIDok2s+RifZEtdupPm6m8P33OfnvfzfvYL2eoMRE9MnJBCUnE5SchD4pCX2XLugTE9GGhwPeTSqcyVATSy4Eah8W6YMjAp3f52G57777WLVqFRs3bmx2sgIwfPhw3nrrrQYfNxgMGAyG1oTY7tnstgZH8hwtPsqDGx5kb8FeFBRmDJjBnefdKSN9hMcpGg36BBNFH33UaDlNeDiRv/0t1ceOYcnKovroUdTqaufikGX1HRMR4egf4+aFtiXNNs4lF/50f/0FPLQsgre0pz44omPzeMKiqir33XcfH374IevXryclJaVF59m+fTsJCQkejq7jWHdkXb1zpTwy9BEUReGvm/5KSXUJnQ2dWXDhAkZ2GenHaEV71+RFE7CXlBB+2WXOi6Zqs2HNzcWSdRRL1hGqjx7FciSL6uxsqrOzsRUWYi8upqoZ/dfK09Md/WlM8ehMCehiot1KNCK6VsKoU+SmR2CtOF1eZ7QRP6jY8XiAai99cITweMJyzz338Pbbb/Pxxx8THh5OTs0fqcjISEJCQgCYM2cO2dnZLF26FIDnn3+e7t27079/fywWC2+99RYrV65k5cqVng6vQ1h3ZB2z1s9CxbX6Orc8lwfWP+C8PyB2AM9e/CymUJOvQxQdTEsumopWiz4xEX1iIqHDh9Upay8ro/r4cSzZjqUJ8v75z4ZXs65R+PbbFL799ukdOh26uFj0pgRnEuO4dcxhozOZ0EV1Rlk9m4ikCsK7VFCeH4S1Uosu2IYx1oKiUWD1I9D3N9DKGkpvjOLRxcZ6tJy/yAgn4fGE5dVXXwVgzJgxLvsXL17MbbfdBoDZbCYrK8v5mMVi4aGHHiI7O5uQkBD69+/PZ599xhVXXOHp8No9m93Ggi0L6iQrZ5vS8xpm9f09+rJCKM4FqwVsVWCtArvNUUhRAAXHrPuK476iAY0OtAbQnbFpz/pZK5Moi9O8cdHUhIZiOOccDOec4zg2Pq7RYdlhYy9F0QdhzcmhOicHa14eWK1Yj5uxHjdT0dATaTXoDVZ0xmj0Rhs6ox19iA1FUak4EYQuxIbOehzNke8h5UK34z+bt0bxGM8fgs5karIPjvH8IS1+Die7DY58D6W5EBYP3Ua2OokDGeEkHGTxw/akqoTd+z9m0abHibdaibfaiLPZUFSVf0V14qhej8Fu528nCri8rPFvoq2maEFvhKBQCKq9DXPc6o2nf66zhZ0+zhBWUy7s9GOSCLVJvuq42pwLm2q1Yj1xwpnAVOfkYDXnUJ2bi9Vsdtzm5YHd7tZza0IM6EyJ6OLi0MXGOrban+Mc9/VxcfXOEuztUTzO84Prc3hylNCeVbB6NhQfP70vIhEmLoTUq1p8Whnh1P4FxCghX+pQCYuqQsFhyE6H4+mQuxtOHISS43WKbjMYeCA+hlNaLbFWKy/knuBciwUVBUVvBF1QTe1I0OlaEk1tUqDW/JFQcVTYqKDawW511MRYq07XylgrHY95my74dAJjCHdNhILCapKc0NOJjvN++BlJUE3SlLMTKgoh3OSxb4I+4aVvsd7mk4smnm06UK1WrOmfU710GtZyLdXlWqwVtZuG6ppb1aZx+5wao/GMZCYGbVQURR99jL20tP4D/JDMNdueVfDerVCnZrdmduwblrYoaZERTgHCy39zJGFpbwoOw69fw6/fwJHvoOJUvcWqDeHsooocnY51xhDWhRqxKwqhdjsJ1VYqNBqKNRpeGDiTCwZP92yMNqtrAlNdAZYyx1ZddvrnOlspVJef/rmq1FG+vMCxz1oFqs2zsZ5N0Th+EcPi6yZCjSZGZyVCuhBH0uetZQy89C3WV9pk1b7dBs+nQbGZuhdkUFUFe0gC1us/wXqiAGteHtb8/Hpv7U30sWlMyODBGM45B110NNroKHTRMeiio9BGx6CLiUYTHt7k8hle6QfifH/qfmFyUByf0Zk7m32R8+kcOG3li4C95ktjo5vt9M+2atf7zserGyl/xr6cX2D/51BVcjoGD//N8fuwZtFKquqoAdj9Aez+CE5luD6uNYDpXOgyBBLOg5g+ENMLzcG1PPTT4+RptS4XzTKNhkOGIBRVJd5mY7DOC2u+aHWOLaiVC+PVXpTLzuioGZ4Al/4Vuo8+ndjUJjeN3beU1eyr2cpPQmU96+WodigxO7ZWUxw1QfpgRwJT720w6EPOujU2XFarh2Nb4Zun6z5d8XF47xa45nVIuyYw/8jWiBg/nvCxY9tW50mN1vHH+b1bcdQYnJm0KCgKaK9aiLZnLww9Gz+VvawMa34+1bVJTH4+5Vt+clk5uyEV6elUpKc3+Lii16ONjkbbuTO6zp3QduqMtnPt1gld59P3g7p3Q9upk2fe9yPfN5KsAKhQnO0o18w+Pqc7YauObnQaUJSanxUVNI4/c7Zje+CcmHouzGdd3FVb/RfvYz+h7ngXS34J9moNGr2doJhQlH6/gdg+DZyrvsTh7H22muc8MzGo5/nrlGkk+Wiif6JPFJsdvw8trDlrKalh8af6MvqqYti+DNLfhBMHTpfV6CFpGPQcAz0uAdN5jmacs5QeXMO0b+5lbz1z1Cg1/9XP5Z1g3PUrWtVB0Gu8VLUMuPFNEAiJhisWgqXczUSoDCwljlubpWVxeZqiqen4HFTT1HfG5rxvcCRBGt0Zm9a9+87jzn78rH2KtvYKU3Pb2NZQGcWNMhqcnw9v+vVr+PZZ10Q6NA4unAU9xjguYGpNs2lt86lqd3yUXfad8RgqFXv2kPfMM44LMLjkRKpdcRYNvegSlKAQrEUl2ApLsRaVYSsqxVpYir2ikZmEG6Ex6NCGGdCGBjk3nVGP1qg7Y9OiDanZgjVotOrpC79qh6Jjjm/hTYlMctRWOi/QttPvg8tF+/RFXa35ti/rrrpBo3NcJ+r73dQ28nuq0Tf8u37gC0dNeb1aXnN2NqlhCXT1Ve3rjTVZdM2FT2uA3uOh/zVwzmWOX/ZGHC05yn27X+ZXgwG9qmK02yk64xtUvM3G7JOFjNNFOZKjQGO3Od6Ter9BqEArh482+U0QqDgJYaaWJXO2ascvd3UFWCugurLpW7fKVkJlIZzKdC8O1e441loBLbuOCXeV5Tk+k60QAnRreNm0MzhmpKZzzXYGuw1slVqsVRpsZ2xn37dZTu9DVbBXWbFXWak+Wd+0fPVTtCraIDvaIDuamlttUKez9p0u49x36qgjt2wGxflPw1S7AkHBKBpt3QuvUs8+jcblceuvW6k8CdiVmlxSOaP7nkKICYJGXOdI1BVtPRf8evbV+7zNja+RLwZnJSCqXaV8W7pnay0zvnXU8Df8zre45qylJGHxh4ZqEapr2rcjk+DCByHtWgh2r7bop5yfmLV+FoVVhcTpw/lX5kH6WqpJDw4iX6sl1mZjcKUFLcAN/2l9s4E32nu9WLUMOGL1ZLmzafWOzc3/s2bZ+T6svL3pcle+AH0m1nSIrnb0KbJZaoat1wxdt1Wfflytp/rZWgUFv0JlsaO5KjzhjOrvM8s31DZ+ZrX5WbUK5ScczZu26tMxa/SOb2qG8DNqJerb6qmhUO3e79/UGFWtWwN0uu3ijPv17Tt933Yqn+q8UzX925XTfxpq+rsHJcahMyWfdZzivK9RFDSKBj2K4/ewNiaN9vRF0XmroKLBblGxlduwlVuxlluxlVdjK6vZyi1YSy3YyizYSisdW5kFVBXVpjg7HjeXJjQEbZgRbXgo2vAwNOFhaCPCTv8cFoYmPBxteDia8Ai0ERFU7NlD7jPPotoVFFVFVRVnMgFKqzprq4c2kPHidKwVDdXSqeiMNnrdcT1Kr4tb9BzOM3lpHhmv9Qvz9t/LFpCExdcarUU4o8zgW91OAD44+AF/2/w3rKqV/tH9eeGSF4g/8iOsns0FLp0zu8DEBa1vc/RWx09v/4KExXu2nC+5G1N0T8eop5byZqfehhJ1uxUKszzXHt5WOk/WstvQPp9GWamO3PTIs2bStRI/qARjMHDbZx57HQqgrdncpdrt2MvKsBUVYytyzDJsKyrCVliE7dAP2La+j92iwWZRsFk0NZuC3aLBbnVUrdjLKrCXVVCde7KZETuOV89IKpSgIAx9+lD69TeU/7S1JumJcNyGhaONCD8j+anZglyb0cu3bmki8VKwluso37qF0FYkLN5KKry1QjkQkH8vJWHxtczvmm6WKDnuVi2CzW7jH9v+wf/2/A+ACd0n8LdRfyNEF+L4w9/3N57/w93QRccTnbC8/QvSbaTj4tvAaA9nm6wnmss8fdH0Reze/L/1dnNfrbY4iqqmZjEiCcK7VNYzky4+r3qvj6LRoK1JAOja5axHb4Q9l9Tz3ju+JKm9JmIrKXEkODWbvbjYkezUJD72khJsJSWO29IS7MW1P5eCrW4tmmqxULlzJ5U7d7r/GgwGNGFhaEJD0YSGopbWP9rybGUH89Du3+88ThsainJW8tMQbyUVqs1G7rz59c9rpKqgKOTOm0/42LEtq8nx5d9LN0nC4ktlJ2Hd4+6VbaIWocRSwsMbH2ZT9iYA7h5wNzMGzHAd1qjRevYPnLcvOt7+BWlitAfgqIHyRFLn6Yumt2P3e/8hD7SHezPh8qYzftcVDYTGN9B52xNV796sfWrkS5IC6KKj0UU3fyV4VVVRy8uxFRdh3/8tthPZ2O3B2EKSHDU+JY7kxlZagr2kFFtJMfaSUpcEyF7m6KOjVlVhq6rCdrJ5NTwnl33KyWWfuuxT9HqX5Mfxs9GR0ISFoTGGohhDOPXWsoaTCiDnb08ROmIEmrCwJoeln8nri1r66u9lM0jC4iuH18MHd0Jp4wvAOTVSi3C0+Cj3fn0vh4sOE6wN5qnRTzGh+wTPxNkYb190fPELknqV48JVb0LhoeYyb100vRl7W+8/5KsaHG/wVdW7L2qfPP0lCVAUBeXIV2gajP2mJs+h2mzYS0uxlZRiLyvFXlbmSHaKi8n5v79iLyunoT4saLXou3R1HqNWOha6VKursZ06he2Ue7U0DbHl53PgAkdCoRiNaIxGNCEhLreKsfb+6cctR464df7q3FYkut7+e9lMkrB4m6rCD6/Amr84OgjG9IaKAkdtSwtqEX7K+YkH1j9AUVURcSFx/Gvsv+gf3d+rL8HJF52wfPEL4q3mMl9cNL0Ve1vvP+SLGhxvaevNfd7mgdgVrRZtZCTayLrzTyl6Pdl/ur+hI+nyz3+6NNmoVuvphKe0Nvkpx156OhGqTYoqdu+hfPNmt1+qWl6OrbwcT3YjNz/8MDl/+QtKSAia4GA0ISFn/ByMEhxSsy8YTXBIzb5gR3JU+3jff6CUZKBRywlOOw9t6ji/JP6SsHiTrRo+mQk73nLcH3AzXPkcHFzbolqE9w+8z9M/PI1VtZIWncYLl75AnDHOyy/iDL76Juiti/KZvPBN0GcXTW/E3tb7DwXgiAa3tfXmPm/yQewR48fDv14g9+l5jrWuajTUKVbR6ZzJj76Jc5f9uIUsNxKWrv/5DyH9U7GXl2OvqHAkQBXl2MvLUSsqHPvLa25r9tvLyij57BNUW837UMfp/arFgmqxYC+qZ9LMZur29tsY/fQ5kYTFW6orYMUfHBPvKFqY8DQMm+EYitjMWgSr3co/tv6Dt/Y6Ep/Lu1/Ok6OeJFgX7MtX5NtOWN64KHtbW75otvX+QwE4oqFZ2nJznzf5KHZvzcDs7krZYaNHNf+5Mr6l+OSbZH/XmTOTEwfHcyUOLyD0/sWo8QOxV1ZiL69ArazAXlGJvbICtb59FZWOpKn258pKR9JUUYG9shJteFhL345Wk4TFG6pK4e0bHGv+6ILh+jcdc2Ocyc1ahBJLCX/e+Ge+y/4OgHsG3sOd593ZrM5ZHhOAnbACSlu+aLb1/kMBOKKh2dpqc98ZPD7XiA9jV7Ta1q9HVM854x+d03CTk6oS/+iclr1HpblEJFXCqFP1DIe3ET+o2PG4rhwSE1v4CgKLJCyeVl0B79zkSFYMETD5Xeg+qt6iNiA9JJh81UhsSDCDcZ0XIas4i3u/vpeMogyCtcE8Pfppxnf38wJxAdYJK6C09YtmW+4/1F6S6bbY3FfDK3ONtOUvATUiutYmFRH1JxVdK1t24prXHJFU2fBw+DPKtQeylpAn2arh3d/DwS8dK/reugq6Dqm36Loj61iwZQG55ae/GcQb43lk6COM6zaOLeYtzNowy9G51hjHi5e+SGp0qq9eSdPa2uRcvuLsIAj1XjQDuXNjrbb8f1vvSBgPTZjYVjWx2rQn1oRpaK6R2kWAWjwbrQ9i96oz1i9T7dSTVLQi/rb+3pzB3eu3JCyeoqqw6l7Y/pajGWjKSsfKwvVYd2Qds9bPQj3rQ6bUXNSu630dHx780Nm59l+X/otYY6zXX4LwELlo+ldbTri8xYuJtGqzcWjsuIbnBKnpp9Hrq3Uta/poy18CMr6FN69sutzUT1tWs+aj98ZbywrUksUPfW3zy45kRdE4PiQNJCs2u40FWxbUSVYA574VB1YAfuxcK1rHF6OcRMPaYodtb/Nic5/XJzBry83Q3u6D44P3xmtrFbWAJCyecGCNY54VgAnzoHfDk7il56W7NAM15He9fsfckXP907lWtJ5cNEWg8VIibc3P92i5erXVLwG+6IPjxffGq2sVtYAkLK1VeBQ+mA6oMHiqY+hyI/LL3fulHZ4wXJIVIYRneSGR1sW611ztbrkGtcUvAb7qiO+F98braxW1gKbpIqJBNqsjWakshMTBcMWzzk5mDXG3L4r0WRFCtAW1c400+LdPUdCZTBjPr38AQrtWO3oNqDu5W2CPXmtOU5+vSMLSGhsWQtZmCAqH6xaBrunVOwfHDSbe2HD1n4KCyWhicNxgT0YqhBBeUTvXiOPOWRflmvstnmukPajtZxKR4Lo/IjGgOwz7pKmvmaRJqDGNjTbI3gbfPuv4edLzEJXi1im1Gi2zhsxi9rez6zxWO0po9tDZaAMw4xZCiPpEjB8PLzxft3NmfLxfOmcGnDbYB8dnTX3NIAlLQxpb2bT3RPj4PsdihmnXwrnXuX3aI8VHWLRrUb2PxRvjmT10NuO6jWtt9EII4VPemt6+3WhjfXDcXVbAl019krDUp6nVQdOugbzdEBIFlz/j9mnXHlnLX7/7K2XVZUQFR7HwwoVoNVryy/OJNcYyOG6w1KwIIdosb0xvL/zDuazA/TMdTXtnJi1+auqThOVsTa4OCuxa6bi9fCGExjR5ympbNc9te865eOGguEH8/aK/Ex/afqZMFkII0b4EWlOfJCxnO2N1UBuQHmwgX6sl1mZjcGXV6bV+EgfDudc3ebrDhYeZs2kOe07uAeC2/rfxp8F/Qq9pamFyIYQQwr8CqalPEpaz1cw4uM4YwoLozuTqTr9Fl5eW8Uz+Sced/tc0OoTZrtp5e+/bPJ/+PFW2KiKCInhy1JOMTR7r1fCFEEIITwqUpj5JWM4WFs86Ywiz4mJcGoW0qsr0wmIAsnRakhMHNniKrOIsnvzhSX40/wjAyMSRPDnySWkCEkIIIVpIEpaz2JKGsSCmJlk5owbl6pIyzqmupkijYWZ8PCuShnF2hViVrYpFuxbx+i+vY7FbCNYGM+v8WdzU5yaZtVYIIYRoBa9NHPfKK6+QkpJCcHAwQ4YM4dtvv220/IYNGxgyZAjBwcH06NGDf//7394KrVHpJ34mV6u4JCs6VeXOwiIA/t0pgoNBOtJP/Ox83Ga38fGhj/ntR7/llR2vYLFbGJ4wnBWTVjC572RJVoQQQohW8koNy/Lly5k5cyavvPIKo0aN4j//+Q+XX345e/bsITk5uU75jIwMrrjiCqZPn85bb73Fd999x913301sbCzXXnutN0JsUH1r/fyupJQEm408rZb3wsOd5SqtlazOXM3iXYs5XHQYgNiQWB6+4GEmdJ8giYoQQgjhIYqq1jcjTOsMGzaMwYMH8+qrrzr39evXj6uvvpr58+fXKT979mxWrVrF3r17nftmzJjBzz//zObNm916zuLiYiIjIykqKiIiIqLFsf+U8xPTvpzmvK9XVT47epwEm435UZ15O9KRsIxNHsvW3K0UVTlqXiKCIrj93NuZ3HcyIbqQFj+/EEII0ZG4e/32eA2LxWJh27ZtPPLIIy77x48fz/fff1/vMZs3b2b8WeO5J0yYwBtvvEF1dTV6fd0hwFVVVVRVVTnvFxcXeyD602v95JXnoaLSv6qKNzpFkKfVst54OhH5KusrABJCE7ihzw3c2OdGwoPCPRKDEEIIIVx5PGE5ceIENpuN+HjXETHx8fHkNLDyY05OTr3lrVYrJ06cICEhoc4x8+fPZ+7cuZ4LvIZWo+WRoY8wa/0s9CpUKRqWR7gmImH6MMZ3H8/Y5LGMShwls9MKIYQQXua1Trdn999QVbXRPh31la9vf605c+ZQVFTk3I4ePdrKiE8b120cz415jihjHOWKwmWlZWjtKpFBkcwZOofvJn/H3JFzuajrRZKsCCGEED7g8RqWmJgYtFptndqUvLy8OrUotUwmU73ldTod0dHR9R5jMBgwGAyeCboe47qN45KkS0jPSye/PJ/JstaPEEII4Tcer2EJCgpiyJAhrF271mX/2rVrGTlyZL3HjBgxok75NWvWcP7559fbf8VXtBotF5gu4IoeV3CB6QJJVoQQQgg/8UqT0KxZs3j99ddZtGgRe/fu5YEHHiArK4sZM2YAjuacW2+91Vl+xowZHDlyhFmzZrF3714WLVrEG2+8wUMPPeSN8IQQQgjRxnhlHpYbb7yRkydP8uSTT2I2m0lLS+Pzzz+nW7duAJjNZrKyspzlU1JS+Pzzz3nggQd4+eWXSUxM5F//+pfP52ARQgghRGDyyjws/uCpeViEEEII4TvuXr+9NkpICCGEEMJTJGERQgghRMCThEUIIYQQAU8SFiGEEEIEPElYhBBCCBHwJGERQgghRMCThEUIIYQQAU8SFiGEEEIEPElYhBBCCBHwvDI1vz/UTthbXFzs50iEEEII4a7a63ZTE++3m4SlpKQEgKSkJD9HIoQQQojmKikpITIyssHH281aQna7nePHjxMeHo6iKB47b3FxMUlJSRw9elTWKGqCvFfNI++X++S9cp+8V+6T98p93nyvVFWlpKSExMRENJqGe6q0mxoWjUZD165dvXb+iIgI+UC7Sd6r5pH3y33yXrlP3iv3yXvlPm+9V43VrNSSTrdCCCGECHiSsAghhBAi4EnC0gSDwcDjjz+OwWDwdygBT96r5pH3y33yXrlP3iv3yXvlvkB4r9pNp1shhBBCtF9SwyKEEEKIgCcJixBCCCECniQsQgghhAh4krAIIYQQIuBJwgK88sorpKSkEBwczJAhQ/j2228bLb9hwwaGDBlCcHAwPXr04N///rePIvW/5rxX69evR1GUOtu+fft8GLF/bNy4kUmTJpGYmIiiKHz00UdNHtNRP1fNfa868udq/vz5XHDBBYSHhxMXF8fVV1/N/v37mzyuI362WvJeddTP1quvvsp5553nnBRuxIgRfPHFF40e44/PVIdPWJYvX87MmTN57LHH2L59OxdeeCGXX345WVlZ9ZbPyMjgiiuu4MILL2T79u08+uij/OlPf2LlypU+jtz3mvte1dq/fz9ms9m5nXPOOT6K2H/KysoYMGAAL730klvlO/LnqrnvVa2O+LnasGED99xzDz/88ANr167FarUyfvx4ysrKGjymo362WvJe1epon62uXbuyYMECtm7dytatW7n00kv57W9/y+7du+st77fPlNrBDR06VJ0xY4bLvr59+6qPPPJIveUffvhhtW/fvi777rzzTnX48OFeizFQNPe9+uabb1RAPXXqlA+iC1yA+uGHHzZapiN/rs7kznsln6vT8vLyVEDdsGFDg2Xks+Xgznsln63TOnfurL7++uv1Puavz1SHrmGxWCxs27aN8ePHu+wfP34833//fb3HbN68uU75CRMmsHXrVqqrq70Wq7+15L2qNWjQIBISEhg7dizffPONN8Nsszrq56o15HMFRUVFAERFRTVYRj5bDu68V7U68mfLZrPx7rvvUlZWxogRI+ot46/PVIdOWE6cOIHNZiM+Pt5lf3x8PDk5OfUek5OTU295q9XKiRMnvBarv7XkvUpISOC///0vK1eu5IMPPqBPnz6MHTuWjRs3+iLkNqWjfq5aQj5XDqqqMmvWLEaPHk1aWlqD5eSz5f571ZE/Wzt37iQsLAyDwcCMGTP48MMPSU1Nrbesvz5T7Wa15tZQFMXlvqqqdfY1Vb6+/e1Rc96rPn360KdPH+f9ESNGcPToUZ599lkuuugir8bZFnXkz1VzyOfK4d577+WXX35h06ZNTZbt6J8td9+rjvzZ6tOnDzt27KCwsJCVK1cydepUNmzY0GDS4o/PVIeuYYmJiUGr1dapIcjLy6uTPdYymUz1ltfpdERHR3stVn9ryXtVn+HDh3Pw4EFPh9fmddTPlad0tM/Vfffdx6pVq/jmm2/o2rVro2U7+merOe9VfTrKZysoKIhevXpx/vnnM3/+fAYMGMALL7xQb1l/faY6dMISFBTEkCFDWLt2rcv+tWvXMnLkyHqPGTFiRJ3ya9as4fzzz0ev13stVn9ryXtVn+3bt5OQkODp8Nq8jvq58pSO8rlSVZV7772XDz74gK+//pqUlJQmj+mon62WvFf16SifrbOpqkpVVVW9j/ntM+XVLr1twLvvvqvq9Xr1jTfeUPfs2aPOnDlTDQ0NVTMzM1VVVdVHHnlEveWWW5zlDx8+rBqNRvWBBx5Q9+zZo77xxhuqXq9X33//fX+9BJ9p7nv1z3/+U/3www/VAwcOqLt27VIfeeQRFVBXrlzpr5fgMyUlJer27dvV7du3q4D63HPPqdu3b1ePHDmiqqp8rs7U3PeqI3+u7rrrLjUyMlJdv369ajabnVt5ebmzjHy2HFryXnXUz9acOXPUjRs3qhkZGeovv/yiPvroo6pGo1HXrFmjqmrgfKY6fMKiqqr68ssvq926dVODgoLUwYMHuwx7mzp1qnrxxRe7lF+/fr06aNAgNSgoSO3evbv66quv+jhi/2nOe7Vw4UK1Z8+eanBwsNq5c2d19OjR6meffeaHqH2vdnjk2dvUqVNVVZXP1Zma+1515M9Vfe8ToC5evNhZRj5bDi15rzrqZ2vatGnOv+uxsbHq2LFjncmKqgbOZ0pR1ZqeMkIIIYQQAapD92ERQgghRNsgCYsQQgghAp4kLEIIIYQIeJKwCCGEECLgScIihBBCiIAnCYsQQgghAp4kLEIIIYQIeJKwCCGEECLgScIihBBCiIAnCYsQQgghAp4kLEIIIYQIeJKwCCGEECLg/T9ZWdRNe738IgAAAABJRU5ErkJggg==\",\n                         \"text/plain\": [\n                             \"
\"\n ]\n },\n \"metadata\": {},\n \"output_type\": \"display_data\"\n }\n"}]}]}, {"source1": "./usr/share/doc/python3-symfit/html/examples/ex_tikhonov.html", "source2": "./usr/share/doc/python3-symfit/html/examples/ex_tikhonov.html", "unified_diff": "@@ -53,15 +53,15 @@\n
\n
\n
\n
\n
\n
\n
\n-Matplotlib created a temporary cache directory at /tmp/matplotlib-tdvvp3jt because the default path (/nonexistent/first-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\n+Matplotlib created a temporary cache directory at /tmp/matplotlib-bqkesga7 because the default path (/nonexistent/second-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\n 
\n
\n

Say \\(f(t) = t * exp(- t)\\), and \\(F(s)\\) is the Laplace transform of \\(f(t)\\). Let us first evaluate this transform using sympy.

\n
\n
[2]:\n 
\n
\n@@ -105,15 +105,15 @@\n
\n
\n
[3]:\n 
\n
\n
\n
\n-<matplotlib.legend.Legend at 0xe9e0df18>\n+<matplotlib.legend.Legend at 0xe9b10d38>\n 
\n
\n
\n
\n
\n
\n \"../_images/examples_ex_tikhonov_5_1.png\"\n@@ -206,16 +206,16 @@\n
\n
\n \n Parameter Value        Standard Deviation\n a         5.449374e-02 None\n Status message         Optimization terminated successfully.\n Number of iterations   14\n-Objective              <symfit.core.objectives.LeastSquares object at 0xe9e7dea0>\n-Minimizer              <symfit.core.minimizers.BFGS object at 0xf0c4c270>\n+Objective              <symfit.core.objectives.LeastSquares object at 0xe97d1a50>\n+Minimizer              <symfit.core.minimizers.BFGS object at 0xe97d1c90>\n \n Goodness of fit qualifiers:\n chi_squared            3.272835427084002e-19\n objective_value        1.636417713542001e-19\n r_squared              -inf\n 
\n
\n@@ -256,15 +256,15 @@\n
\n
\n
[8]:\n 
\n
\n
\n
\n-<matplotlib.legend.Legend at 0xe99797c8>\n+<matplotlib.legend.Legend at 0xe9948ea0>\n 
\n
\n
\n
\n
\n
\n \"../_images/examples_ex_tikhonov_15_2.png\"\n@@ -292,15 +292,15 @@\n
\n
\n
[9]:\n 
\n
\n
\n
\n-<matplotlib.legend.Legend at 0xe9a64480>\n+<matplotlib.legend.Legend at 0xe9782bd0>\n 
\n
\n
\n
\n
\n
\n \"../_images/examples_ex_tikhonov_17_1.png\"\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -7,17 +7,17 @@\n from symfit import (\n variables, parameters, Model, Fit, exp, laplace_transform, symbols,\n MatrixSymbol, sqrt, Inverse, CallableModel\n )\n import numpy as np\n import matplotlib.pyplot as plt\n \n-Matplotlib created a temporary cache directory at /tmp/matplotlib-tdvvp3jt\n-because the default path (/nonexistent/first-build/.config/matplotlib) is not a\n-writable directory; it is highly recommended to set the MPLCONFIGDIR\n+Matplotlib created a temporary cache directory at /tmp/matplotlib-bqkesga7\n+because the default path (/nonexistent/second-build/.config/matplotlib) is not\n+a writable directory; it is highly recommended to set the MPLCONFIGDIR\n environment variable to a writable directory, in particular to speed up the\n import of Matplotlib and to better support multiprocessing.\n Say \\(f(t) = t * exp(- t)\\), and \\(F(s)\\) is the Laplace transform of \\(f(t)\\).\n Let us first evaluate this transform using sympy.\n [2]:\n t, f, s, F = variables('t, f, s, F')\n model = Model({f: t * exp(- t)})\n@@ -45,15 +45,15 @@\n = F(s)$')\n plt.xlabel(r'$s_i$')\n plt.ylabel(r'$F(s_i)$')\n plt.xlim(0, None)\n plt.legend()\n \n [3]:\n-\n+\n [../_images/examples_ex_tikhonov_5_1.png]\n We will now invert this data, using the procedure outlined in \\cite{}.\n [4]:\n N_s = symbols('N_s', integer=True) # Number of s_i points\n \n M = MatrixSymbol('M', N_s, N_s)\n W = MatrixSymbol('W', N_s, N_s)\n@@ -100,16 +100,16 @@\n \n \n Parameter Value Standard Deviation\n a 5.449374e-02 None\n Status message Optimization terminated successfully.\n Number of iterations 14\n Objective \n-Minimizer \n+0xe97d1a50>\n+Minimizer \n \n Goodness of fit qualifiers:\n chi_squared 3.272835427084002e-19\n objective_value 1.636417713542001e-19\n r_squared -inf\n /PKGBUILDDIR/symfit/core/fit_results.py:279: RuntimeWarning: divide by zero\n encountered in scalar divide\n@@ -124,15 +124,15 @@\n plt.plot(s_data[1:], F_re, label=r'$F_{re}(s)$')\n plt.xlabel(r'$x$')\n plt.xlabel(r'$F(s)$')\n plt.xlim(0, None)\n plt.legend()\n (100,) (100,)\n [8]:\n-\n+\n [../_images/examples_ex_tikhonov_15_2.png]\n Reconstruct \\(f(t)\\) and compare with the known original.\n [9]:\n t_data = np.linspace(0, 10, 101)\n f_data = model(t=t_data).f\n f_re_func = lambda x: - np.exp(- x * s_data[1:]).dot(ans.c) / fit_result.value\n (a)**2\n@@ -142,15 +142,15 @@\n plt.axvline(0, color='black')\n plt.plot(t_data, f_data, label=r'$f(t)$')\n plt.plot(t_data, f_re, label=r'$f_{re}(t)$')\n plt.xlabel(r'$t$')\n plt.xlabel(r'$f(t)$')\n plt.legend()\n [9]:\n-\n+\n [../_images/examples_ex_tikhonov_17_1.png]\n Not bad, for an ill-defined problem.\n *\b**\b**\b**\b**\b**\b* _\bs\bs_\by\by_\bm\bm_\bf\bf_\bi\bi_\bt\bt *\b**\b**\b**\b**\b**\b*\n *\b**\b**\b**\b* N\bNa\bav\bvi\big\bga\bat\bti\bio\bon\bn *\b**\b**\b**\b*\n * _\bI_\bn_\bt_\br_\bo_\bd_\bu_\bc_\bt_\bi_\bo_\bn\n * _\bI_\bn_\bs_\bt_\ba_\bl_\bl_\ba_\bt_\bi_\bo_\bn\n * _\bT_\bu_\bt_\bo_\br_\bi_\ba_\bl\n"}]}, {"source1": "./usr/share/doc/python3-symfit/html/examples/ex_tikhonov.ipynb.gz", "source2": "./usr/share/doc/python3-symfit/html/examples/ex_tikhonov.ipynb.gz", "unified_diff": null, "details": [{"source1": "ex_tikhonov.ipynb", "source2": "ex_tikhonov.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9990797305764412%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2024-09-03T04:39:05.808903Z', \"", " \"'iopub.status.busy': '2024-09-03T04:39:05.808569Z', 'iopub.status.idle': \"", " \"'2024-09-03T04:39:07.849211Z', 'shell.execute_reply': \"", " \"'2024-09-03T04:39:07.847966Z'}}, 'outputs': {0: {'text': ['Matplotlib created a \"", " 'temporary cache directory at /tmp/matplotlib-bqkesga7 because the default path '", " '(/nonexistent/second-build/.config/matplotlib) is no [\u2026]"], "unified_diff": "@@ -14,29 +14,29 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:18.550118Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:18.549617Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:19.700982Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:19.700356Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:39:05.808903Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:39:05.808569Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:39:07.849211Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:39:07.847966Z\"\n },\n \"pycharm\": {\n \"is_executing\": false\n }\n },\n \"outputs\": [\n {\n \"name\": \"stderr\",\n \"output_type\": \"stream\",\n \"text\": [\n- \"Matplotlib created a temporary cache directory at /tmp/matplotlib-tdvvp3jt because the default path (/nonexistent/first-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\\n\"\n+ \"Matplotlib created a temporary cache directory at /tmp/matplotlib-bqkesga7 because the default path (/nonexistent/second-build/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.\\n\"\n ]\n }\n ],\n \"source\": [\n \"from symfit import (\\n\",\n \"\\tvariables, parameters, Model, Fit, exp, laplace_transform, symbols, \\n\",\n \"\\tMatrixSymbol, sqrt, Inverse, CallableModel\\n\",\n@@ -58,18 +58,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:19.704135Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:19.703633Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:20.076855Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:20.076271Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:39:07.855118Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:39:07.854217Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:39:08.498197Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:39:08.496182Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n@@ -107,30 +107,30 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:20.080011Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:20.079778Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:20.331381Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:20.330829Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:39:08.505228Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:39:08.504859Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:39:08.909496Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:39:08.908225Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n- \"\"\n+ \"\"\n ]\n },\n \"execution_count\": 3,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n },\n {\n@@ -173,18 +173,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:20.334894Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:20.334431Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:20.345411Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:20.344848Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:39:08.916450Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:39:08.916035Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:39:08.937727Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:39:08.936433Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n@@ -244,18 +244,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 5,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:20.348723Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:20.348255Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:20.352904Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:20.352379Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:39:08.941671Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:39:08.941363Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:39:08.948972Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:39:08.947776Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n@@ -289,18 +289,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 6,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:20.356075Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:20.355666Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:20.358878Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:20.358346Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:39:08.952805Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:39:08.952527Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:39:08.958072Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:39:08.956994Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n@@ -315,18 +315,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 7,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:20.362074Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:20.361610Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:20.427024Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:20.426442Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:39:08.961566Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:39:08.961242Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:39:09.072341Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:39:09.071147Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n@@ -336,16 +336,16 @@\n \"output_type\": \"stream\",\n \"text\": [\n \"\\n\",\n \"Parameter Value Standard Deviation\\n\",\n \"a 5.449374e-02 None\\n\",\n \"Status message Optimization terminated successfully.\\n\",\n \"Number of iterations 14\\n\",\n- \"Objective \\n\",\n- \"Minimizer \\n\",\n+ \"Objective \\n\",\n+ \"Minimizer \\n\",\n \"\\n\",\n \"Goodness of fit qualifiers:\\n\",\n \"chi_squared 3.272835427084002e-19\\n\",\n \"objective_value 1.636417713542001e-19\\n\",\n \"r_squared -inf\\n\"\n ]\n },\n@@ -378,18 +378,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 8,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:20.430843Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:20.430416Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:20.619686Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:20.619135Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:39:09.076387Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:39:09.076005Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:39:09.357165Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:39:09.355945Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n@@ -400,15 +400,15 @@\n \"text\": [\n \"(100,) (100,)\\n\"\n ]\n },\n {\n \"data\": {\n \"text/plain\": [\n- \"\"\n+ \"\"\n ]\n },\n \"execution_count\": 8,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n },\n {\n@@ -449,30 +449,30 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 9,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-10-06T10:54:20.622391Z\",\n- \"iopub.status.busy\": \"2025-10-06T10:54:20.622154Z\",\n- \"iopub.status.idle\": \"2025-10-06T10:54:20.827706Z\",\n- \"shell.execute_reply\": \"2025-10-06T10:54:20.827147Z\"\n+ \"iopub.execute_input\": \"2024-09-03T04:39:09.361029Z\",\n+ \"iopub.status.busy\": \"2024-09-03T04:39:09.360712Z\",\n+ \"iopub.status.idle\": \"2024-09-03T04:39:09.665207Z\",\n+ \"shell.execute_reply\": \"2024-09-03T04:39:09.664133Z\"\n },\n \"pycharm\": {\n \"is_executing\": false,\n \"metadata\": false,\n \"name\": \"#%%\\n\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n- \"\"\n+ \"\"\n ]\n },\n \"execution_count\": 9,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n },\n {\n"}]}]}, {"source1": "./usr/share/doc/python3-symfit/html/searchindex.js", "source2": "./usr/share/doc/python3-symfit/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -1358,35 +1358,35 @@\n \"0324\": [4, 7],\n \"0393\": [4, 7],\n \"04\": 5,\n \"05\": [5, 14],\n \"051163e\": 13,\n \"053\": 22,\n \"0546\": [4, 7],\n- \"065111e\": 12,\n+ \"065101e\": 12,\n \"0697\": [4, 7],\n \"075395e\": 6,\n \"08\": 22,\n \"080979e\": 6,\n \"086\": [4, 7],\n \"0875\": [4, 7],\n \"09\": 22,\n \"0939\": [4, 7],\n \"09866205647752\": 10,\n \"09866205722533\": 10,\n- \"0xe99797c8\": 15,\n- \"0xe9a64480\": 15,\n- \"0xe9c60ed0\": 12,\n- \"0xe9c60f60\": 12,\n- \"0xe9e0df18\": 15,\n- \"0xe9e7dea0\": 15,\n- \"0xe9eaaaf8\": 10,\n- \"0xeaf56e70\": 5,\n- \"0xf0bd2630\": 5,\n- \"0xf0c4c270\": 15,\n+ \"0xe9782bd0\": 15,\n+ \"0xe97d1a50\": 15,\n+ \"0xe97d1c90\": 15,\n+ \"0xe9948ea0\": 15,\n+ \"0xe998a4b0\": 12,\n+ \"0xe998a570\": 12,\n+ \"0xe9b10d38\": 15,\n+ \"0xe9bbdb10\": 10,\n+ \"0xe9c38990\": 5,\n+ \"0xf0b4b570\": 5,\n \"1\": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 26],\n \"10\": [2, 3, 8, 10, 12, 14, 15, 17, 22, 23],\n \"100\": [5, 10, 15, 17, 26],\n \"1000\": [3, 9, 11, 12, 17],\n \"10000\": 23,\n \"100000\": 5,\n \"100898e\": 5,\n@@ -1404,22 +1404,23 @@\n \"132108e\": 6,\n \"14\": [15, 17, 22, 26],\n \"1495\": [4, 7],\n \"15\": [17, 26],\n \"150\": 17,\n \"150556e\": 5,\n \"16\": 12,\n- \"165776e\": 12,\n+ \"165687e\": 12,\n \"17\": [4, 7],\n \"1761\": [4, 7],\n \"18\": 13,\n \"180\": 17,\n \"19\": [15, 26],\n \"197889e\": 6,\n \"1e\": 22,\n+ \"1jn2rwew\": 5,\n \"2\": [3, 5, 6, 9, 10, 12, 13, 14, 15, 17, 20, 22, 24, 26],\n \"20\": [12, 17],\n \"200\": [17, 22],\n \"2000\": 11,\n \"201\": 10,\n \"2014\": [7, 8, 9],\n \"2020\": [7, 8, 9],\n@@ -1445,37 +1446,38 @@\n \"283990e\": 5,\n \"2_\": 22,\n \"2d\": 14,\n \"2x\": 17,\n \"2xy\": 17,\n \"2y\": 17,\n \"3\": [2, 3, 5, 6, 8, 10, 12, 13, 14, 15, 17, 20, 22, 24, 26],\n+ \"30\": 12,\n \"303400e\": 5,\n- \"305094e\": 12,\n- \"31\": [4, 7, 12],\n+ \"305083e\": 12,\n+ \"31\": [4, 7],\n \"31e29e235407e4913dc0ec403af7ed524372b612\": 23,\n \"325068e\": 6,\n \"33\": 12,\n \"3367571\": 26,\n \"34\": 17,\n \"35\": [4, 7],\n \"35191046133532\": 10,\n- \"351910461335324\": 10,\n- \"356519816345737\": 10,\n+ \"351910461335322\": 10,\n+ \"3555865214239358\": 10,\n \"3718\": [4, 7],\n \"39\": 5,\n \"3922\": [4, 7],\n \"3rd\": 19,\n \"4\": [2, 5, 6, 10, 12, 13, 15, 17, 22, 26],\n \"40\": 22,\n \"400000e\": 13,\n \"42\": [4, 5, 7, 11, 12, 17],\n \"423\": 22,\n \"44\": [6, 17],\n- \"440702e\": 12,\n+ \"440666e\": 12,\n \"449374e\": 15,\n \"459\": 5,\n \"46\": [4, 7],\n \"461684e\": 5,\n \"4747\": [4, 7],\n \"481346e\": 5,\n \"485\": 5,\n@@ -1483,46 +1485,44 @@\n \"5\": [0, 2, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 22, 23, 26],\n \"50\": [4, 7, 8, 9, 13, 22],\n \"500\": 17,\n \"5014170\": 23,\n \"5156\": [4, 7],\n \"5255\": [4, 7],\n \"54\": 17,\n- \"540415e\": 12,\n+ \"540412e\": 12,\n \"546980e\": 6,\n \"55\": [4, 7],\n \"555\": 22,\n \"5622\": [4, 7],\n \"59\": 5,\n \"599999973796809\": 3,\n \"6\": [3, 5, 6, 10, 11, 13, 14, 15, 17, 22, 26],\n \"60\": 26,\n \"61\": [4, 7],\n- \"633638e\": 12,\n+ \"633634e\": 12,\n \"636417713542001e\": 15,\n \"637273e\": 6,\n- \"647281e\": 12,\n+ \"647270e\": 12,\n \"65\": [4, 7],\n \"6555\": [4, 7],\n \"6558\": 26,\n \"6603\": [4, 7],\n \"66946\": 26,\n \"671471e\": 6,\n \"69\": 17,\n- \"6tc_pvm1\": 5,\n \"7\": [5, 10, 12, 15, 17, 22],\n \"70\": [4, 7, 17],\n- \"706139e\": 12,\n+ \"706136e\": 12,\n \"71\": 17,\n \"725019e\": 6,\n \"73\": 17,\n \"736484e\": 14,\n \"780338e\": 13,\n \"7949\": [4, 7],\n- \"7den1jfx\": 10,\n \"8\": [5, 6, 7, 8, 9, 13, 15, 17],\n \"80\": 4,\n \"827\": [4, 7],\n \"846406e\": 6,\n \"8558226069368662\": 13,\n \"857033e\": 6,\n \"8739\": [4, 7],\n@@ -1537,19 +1537,19 @@\n \"9401712713086535\": 6,\n \"95\": 22,\n \"950890866472\": 26,\n \"973\": [4, 7],\n \"973489e\": 14,\n \"9783\": [4, 7],\n \"9849188499599985\": 13,\n- \"98549453535547\": 12,\n+ \"98549453602719\": 12,\n \"986491e\": 6,\n \"99\": 17,\n- \"992747267677736\": 12,\n- \"9936568366399678\": 12,\n+ \"992747268013595\": 12,\n+ \"9936568366398425\": 12,\n \"9952824293713467\": 14,\n \"996901e\": 14,\n \"9993\": [4, 7],\n \"A\": [4, 7, 14, 15, 17, 20, 22, 26],\n \"And\": [0, 20, 22, 23],\n \"As\": [0, 6, 13, 17, 20, 22, 23],\n \"At\": 0,\n@@ -1730,15 +1730,14 @@\n \"basemodel\": [0, 22],\n \"basenumericalmodel\": 22,\n \"baseobject\": [0, 22],\n \"basi\": [0, 22],\n \"basic\": [0, 17, 22],\n \"basin\": [18, 22],\n \"basinhop\": [17, 22],\n- \"bcfu571m\": 3,\n \"beauti\": 20,\n \"beautifulli\": 1,\n \"becaus\": [0, 3, 5, 10, 12, 15, 16, 17, 20, 22],\n \"becom\": [17, 20, 24],\n \"been\": [0, 10, 13, 17, 20, 21, 22, 26],\n \"befor\": 22,\n \"begin\": [6, 13],\n@@ -1762,14 +1761,15 @@\n \"black\": [10, 15, 17],\n \"block\": 22,\n \"blue\": [17, 22],\n \"bool\": 22,\n \"both\": [0, 11, 17, 20, 22],\n \"bound\": [0, 1, 13, 17, 20, 22],\n \"boundedminim\": 22,\n+ \"bqkesga7\": 15,\n \"buffer\": 22,\n \"build\": [0, 3, 5, 10, 12, 15, 17, 22, 23],\n \"bullet\": 23,\n \"c\": [12, 15, 17, 19],\n \"c1\": [14, 17],\n \"c2\": [14, 17],\n \"c_1\": 17,\n@@ -1882,15 +1882,14 @@\n \"covari\": 22,\n \"covariance_matrix\": 22,\n \"cover\": 22,\n \"creat\": [3, 5, 10, 12, 15, 17, 20, 22],\n \"creation\": 22,\n \"credit\": 18,\n \"critic\": 17,\n- \"ctf0_1nl\": 12,\n \"current\": [0, 22],\n \"curve_fit\": [17, 22, 23],\n \"custom\": [0, 2, 22],\n \"d\": [2, 3, 4, 7, 12, 15, 17, 22],\n \"da\": 17,\n \"dampen\": 17,\n \"data\": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 22, 23, 24, 26],\n@@ -1978,14 +1977,15 @@\n \"download\": 19,\n \"draw\": [5, 11, 17, 22],\n \"drawn\": 22,\n \"drop\": 22,\n \"dt\": 17,\n \"ducktyp\": 22,\n \"due\": [1, 3, 17, 23],\n+ \"duj97rbb\": 10,\n \"dummymodel\": 22,\n \"duplic\": 0,\n \"dure\": [17, 22, 26],\n \"dx\": 22,\n \"e\": [0, 3, 17, 22],\n \"each\": [11, 17, 22],\n \"eas\": [10, 11, 17],\n@@ -2071,24 +2071,25 @@\n \"famou\": 22,\n \"far\": 17,\n \"fed\": 17,\n \"feed\": 0,\n \"feel\": 22,\n \"few\": 23,\n \"ff\": 12,\n+ \"ffgb4lfg\": 12,\n \"field\": 22,\n \"fig\": 14,\n \"figur\": 22,\n \"filecopyrighttext\": [7, 8, 9],\n \"fill\": 22,\n \"final\": [5, 20],\n \"find\": [10, 15, 16, 17, 22],\n \"finit\": 22,\n \"finite_differ\": 22,\n- \"first\": [3, 4, 5, 7, 10, 11, 12, 13, 15, 17, 22],\n+ \"first\": [4, 7, 10, 11, 12, 13, 15, 17, 22],\n \"firstli\": 17,\n \"fit\": [2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 20, 23, 24, 25, 26],\n \"fit_no_sigma\": 23,\n \"fit_result\": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 22, 23, 26],\n \"fit_result_no_sigma\": 23,\n \"fitmodelswithmeasurementerror\": 23,\n \"fitresult\": [0, 17, 22, 26],\n@@ -2290,14 +2291,15 @@\n \"k2_r\": 12,\n \"keep\": 22,\n \"kei\": 22,\n \"key2str\": [12, 22],\n \"keyword\": [0, 17, 22, 26],\n \"kind\": [22, 26],\n \"kinet\": [7, 16, 17],\n+ \"kmcy1dh2\": 3,\n \"know\": [0, 15, 17, 22],\n \"knowledg\": [17, 22],\n \"known\": [15, 23],\n \"kwarg\": [0, 22],\n \"l\": [6, 15, 17, 21, 22],\n \"label\": [2, 4, 10, 12, 15, 17],\n \"lack\": 12,\n@@ -2730,15 +2732,15 @@\n \"scipyhessianminim\": 22,\n \"scipyminim\": [0, 22],\n \"screenshot\": [7, 8, 9],\n \"script\": 13,\n \"seaborn\": [1, 14],\n \"seamlessli\": 22,\n \"search\": 18,\n- \"second\": 22,\n+ \"second\": [3, 5, 10, 12, 15, 22],\n \"secondli\": 17,\n \"secretli\": 15,\n \"section\": 17,\n \"see\": [5, 8, 10, 11, 12, 17, 19, 22, 23, 26],\n \"seed\": [5, 11, 12, 13, 15, 22, 23],\n \"seem\": 17,\n \"select\": [17, 22, 23],\n@@ -2887,15 +2889,14 @@\n \"taken\": [4, 7, 8, 22],\n \"takesdata\": 22,\n \"taldcroft\": 23,\n \"target\": 22,\n \"taxi\": 12,\n \"tbuli\": 19,\n \"tdata\": [4, 7, 12, 17],\n- \"tdvvp3jt\": 15,\n \"technic\": 18,\n \"tell\": [10, 12, 17, 22],\n \"temperatur\": 17,\n \"temporari\": [3, 5, 10, 12, 15],\n \"term\": [6, 17, 22],\n \"termin\": [6, 13, 14, 15, 19],\n \"test\": [22, 23],\n"}]}]}]}]}]}