{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.ZGf3tTlJ/b1/pandas_2.2.3+dfsg-8_amd64.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.ZGf3tTlJ/b2/pandas_2.2.3+dfsg-8_amd64.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,5 +1,5 @@\n \n- 6b97b409cc7646b0c8d0e963ec08c4c0 10794448 doc optional python-pandas-doc_2.2.3+dfsg-8_all.deb\n+ c40ce271b5771565565e4c5f5d9e97b6 10795780 doc optional python-pandas-doc_2.2.3+dfsg-8_all.deb\n becffddde344b2e6fa22306930989191 35987996 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-8_amd64.deb\n 69a552ffe39e45363503df097e2d5e56 4595916 python optional python3-pandas-lib_2.2.3+dfsg-8_amd64.deb\n 1e5595970bd1bbf475de7213b75d2d1d 3096900 python optional python3-pandas_2.2.3+dfsg-8_all.deb\n"}, {"source1": "python-pandas-doc_2.2.3+dfsg-8_all.deb", "source2": "python-pandas-doc_2.2.3+dfsg-8_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2025-02-01 18:39:17.000000 debian-binary\n -rw-r--r-- 0 0 0 147384 2025-02-01 18:39:17.000000 control.tar.xz\n--rw-r--r-- 0 0 0 10646872 2025-02-01 18:39:17.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 10648204 2025-02-01 18:39:17.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./control", "source2": "./control", "unified_diff": "@@ -1,13 +1,13 @@\n Package: python-pandas-doc\n Source: pandas\n Version: 2.2.3+dfsg-8\n Architecture: all\n Maintainer: Debian Science Team \n-Installed-Size: 209896\n+Installed-Size: 209901\n Depends: libjs-sphinxdoc (>= 8.1), libjs-mathjax\n Suggests: python3-pandas\n Section: doc\n Priority: optional\n Multi-Arch: foreign\n Homepage: https://pandas.pydata.org/\n Description: data structures for \"relational\" or \"labeled\" data - documentation\n"}, {"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -6256,84 +6256,84 @@\n -rw-r--r-- 0 root (0) root (0) 210184 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html\n -rw-r--r-- 0 root (0) root (0) 48665 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html\n -rw-r--r-- 0 root (0) root (0) 48657 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html\n -rw-r--r-- 0 root (0) root (0) 53295 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/release.html\n -rw-r--r-- 0 root (0) root (0) 269 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 17010 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/search.html\n--rw-r--r-- 0 root (0) root (0) 2358753 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 2358749 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n -rw-r--r-- 0 root (0) root (0) 259 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/style.html\n -rw-r--r-- 0 root (0) root (0) 255 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/text.html\n -rw-r--r-- 0 root (0) root (0) 256 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 277 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 272 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/\n -rw-r--r-- 0 root (0) root (0) 171380 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html\n--rw-r--r-- 0 root (0) root (0) 283977 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n+-rw-r--r-- 0 root (0) root (0) 283826 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n -rw-r--r-- 0 root (0) root (0) 436075 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html\n -rw-r--r-- 0 root (0) root (0) 36646 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html\n -rw-r--r-- 0 root (0) root (0) 217515 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html\n -rw-r--r-- 0 root (0) root (0) 18313 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html\n -rw-r--r-- 0 root (0) root (0) 66125 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html\n -rw-r--r-- 0 root (0) root (0) 160414 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html\n -rw-r--r-- 0 root (0) root (0) 81376 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html\n--rw-r--r-- 0 root (0) root (0) 115596 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n+-rw-r--r-- 0 root (0) root (0) 115698 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n -rw-r--r-- 0 root (0) root (0) 107882 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html\n -rw-r--r-- 0 root (0) root (0) 300850 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html\n -rw-r--r-- 0 root (0) root (0) 59715 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html\n -rw-r--r-- 0 root (0) root (0) 395484 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html\n -rw-r--r-- 0 root (0) root (0) 41778 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html\n -rw-r--r-- 0 root (0) root (0) 1145820 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html\n -rw-r--r-- 0 root (0) root (0) 208885 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html\n -rw-r--r-- 0 root (0) root (0) 178690 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html\n -rw-r--r-- 0 root (0) root (0) 112153 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html\n -rw-r--r-- 0 root (0) root (0) 147524 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html\n -rw-r--r-- 0 root (0) root (0) 162660 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html\n--rw-r--r-- 0 root (0) root (0) 115581 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n+-rw-r--r-- 0 root (0) root (0) 115574 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n -rw-r--r-- 0 root (0) root (0) 65546 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html\n -rw-r--r-- 0 root (0) root (0) 698240 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html\n--rw-r--r-- 0 root (0) root (0) 87825 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 88222 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 165302 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html\n -rw-r--r-- 0 root (0) root (0) 100947 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 486621 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 204341 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html\n -rw-r--r-- 0 root (0) root (0) 141947 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html\n -rw-r--r-- 0 root (0) root (0) 270 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/\n -rw-r--r-- 0 root (0) root (0) 107681 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html\n -rw-r--r-- 0 root (0) root (0) 10569 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz\n -rw-r--r-- 0 root (0) root (0) 83987 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html\n -rw-r--r-- 0 root (0) root (0) 66492 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html\n -rw-r--r-- 0 root (0) root (0) 82312 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html\n -rw-r--r-- 0 root (0) root (0) 104316 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html\n--rw-r--r-- 0 root (0) root (0) 222518 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n+-rw-r--r-- 0 root (0) root (0) 222514 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n -rw-r--r-- 0 root (0) root (0) 89385 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html\n -rw-r--r-- 0 root (0) root (0) 243730 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html\n -rw-r--r-- 0 root (0) root (0) 83262 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html\n -rw-r--r-- 0 root (0) root (0) 252303 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html\n -rw-r--r-- 0 root (0) root (0) 68280 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html\n -rw-r--r-- 0 root (0) root (0) 75115 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html\n -rw-r--r-- 0 root (0) root (0) 145199 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html\n -rw-r--r-- 0 root (0) root (0) 115518 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.1.html\n -rw-r--r-- 0 root (0) root (0) 64656 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.2.html\n -rw-r--r-- 0 root (0) root (0) 231394 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.0.html\n -rw-r--r-- 0 root (0) root (0) 95028 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.1.html\n -rw-r--r-- 0 root (0) root (0) 224091 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.0.html\n--rw-r--r-- 0 root (0) root (0) 171419 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.1.html\n--rw-r--r-- 0 root (0) root (0) 349360 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.0.html\n+-rw-r--r-- 0 root (0) root (0) 171888 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.1.html\n+-rw-r--r-- 0 root (0) root (0) 350916 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.0.html\n -rw-r--r-- 0 root (0) root (0) 45179 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.1.html\n -rw-r--r-- 0 root (0) root (0) 48525 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.2.html\n--rw-r--r-- 0 root (0) root (0) 406081 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.0.html\n+-rw-r--r-- 0 root (0) root (0) 407596 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.0.html\n -rw-r--r-- 0 root (0) root (0) 52898 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.2.html\n -rw-r--r-- 0 root (0) root (0) 43404 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.3.html\n--rw-r--r-- 0 root (0) root (0) 255116 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.21.0.html\n+-rw-r--r-- 0 root (0) root (0) 255811 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.21.0.html\n -rw-r--r-- 0 root (0) root (0) 61789 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.21.1.html\n--rw-r--r-- 0 root (0) root (0) 59841 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.22.0.html\n--rw-r--r-- 0 root (0) root (0) 401704 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.0.html\n+-rw-r--r-- 0 root (0) root (0) 59896 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.22.0.html\n+-rw-r--r-- 0 root (0) root (0) 402831 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.0.html\n -rw-r--r-- 0 root (0) root (0) 59871 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.1.html\n -rw-r--r-- 0 root (0) root (0) 52005 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.2.html\n -rw-r--r-- 0 root (0) root (0) 32373 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.3.html\n -rw-r--r-- 0 root (0) root (0) 35785 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.4.html\n -rw-r--r-- 0 root (0) root (0) 520683 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.24.0.html\n -rw-r--r-- 0 root (0) root (0) 44717 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.24.1.html\n -rw-r--r-- 0 root (0) root (0) 49347 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.24.2.html\n"}, {"source1": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "source2": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -21510,28 +21510,28 @@\n \"003494\": 15,\n \"003507\": [2209, 2218],\n \"003556\": 2207,\n \"00360\": 2294,\n \"003733\": 2207,\n \"003932\": 2216,\n \"003945\": 2210,\n- \"004\": [2186, 2193, 2227],\n+ \"004\": [2186, 2227],\n \"004000\": 2232,\n \"004005006\": [287, 939],\n \"004054\": 2229,\n \"004091\": [2204, 2257],\n \"004127\": 2207,\n \"004194\": 2186,\n \"004201\": 2186,\n \"004229\": 2186,\n \"004474\": 2184,\n \"004580\": 2210,\n \"00486\": 30,\n \"004956\": 2207,\n- \"005\": [2193, 2209],\n+ \"005\": 2209,\n \"005000\": 2218,\n \"005361\": 2207,\n \"005383\": 2220,\n \"005446\": 2219,\n \"005462\": 2191,\n \"005977\": 2199,\n \"005979\": 2186,\n@@ -21549,23 +21549,21 @@\n \"007200\": 2184,\n \"007207\": [2184, 2214],\n \"007717\": 2199,\n \"007824\": 15,\n \"007952\": 2207,\n \"007996\": 2186,\n \"007f\": 203,\n- \"008\": 2193,\n \"008182\": 2204,\n \"008298\": 2186,\n \"008344\": 2207,\n \"008358\": 2207,\n \"008500\": 15,\n \"008543\": [102, 1158],\n \"008943\": [102, 1158],\n- \"009\": 2193,\n \"009059\": 2191,\n \"009207\": 2207,\n \"009420\": 2195,\n \"009424\": 2207,\n \"009572\": 2207,\n \"009673\": 2195,\n \"009783\": 2207,\n@@ -21649,27 +21647,26 @@\n \"018193\": 2207,\n \"018409\": 2207,\n \"018601\": [2184, 2214],\n \"018808\": 2207,\n \"018904\": 2207,\n \"018941\": 2207,\n \"018993\": 2214,\n- \"019\": [2193, 2207],\n+ \"019\": 2207,\n \"019449\": 2207,\n \"019794\": 2197,\n \"01t00\": [2163, 2199, 2210, 2235, 2246, 2261],\n \"01t01\": 2210,\n \"01t03\": 2210,\n \"01t05\": [909, 2210, 2235],\n \"01t07\": 1280,\n \"01t10\": 1005,\n \"01t12\": 953,\n \"01t23\": [893, 2186, 2246],\n \"02\": [13, 16, 17, 19, 26, 27, 29, 31, 79, 80, 82, 133, 182, 183, 202, 207, 208, 213, 218, 230, 261, 271, 276, 277, 278, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 301, 304, 305, 306, 307, 310, 312, 313, 314, 318, 319, 320, 321, 322, 323, 324, 326, 327, 329, 330, 331, 332, 345, 362, 363, 423, 519, 534, 536, 542, 543, 544, 545, 546, 547, 548, 549, 557, 558, 562, 563, 564, 565, 566, 575, 591, 592, 593, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 656, 657, 658, 659, 665, 666, 667, 673, 674, 675, 677, 678, 679, 680, 684, 685, 686, 688, 708, 760, 761, 781, 782, 788, 793, 804, 893, 899, 902, 903, 904, 919, 939, 940, 943, 945, 948, 949, 953, 957, 970, 997, 1014, 1051, 1075, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1344, 1393, 1452, 1498, 1500, 1506, 1542, 1620, 1699, 1815, 1947, 2054, 2127, 2145, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2220, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2265, 2271, 2283, 2294, 2298, 2301, 2307],\n- \"020\": 2193,\n \"0200\": [957, 969, 970, 997, 1498, 2210],\n \"020161\": [102, 1158],\n \"020208\": 2195,\n \"020376\": 2207,\n \"020399\": 2195,\n \"020485\": 2207,\n \"020544\": 2186,\n@@ -21727,15 +21724,15 @@\n \"028152\": 2207,\n \"028166\": 15,\n \"028182\": 2207,\n \"028578\": 2207,\n \"028603\": 2195,\n \"028662\": 28,\n \"028665\": 15,\n- \"029\": [2186, 2193, 2227],\n+ \"029\": [2186, 2227],\n \"029302\": 2191,\n \"029399\": 2184,\n \"029582\": 2207,\n \"029587\": 2193,\n \"029630\": 2195,\n \"029766\": 2197,\n \"02d\": 2205,\n@@ -21907,14 +21904,15 @@\n \"050498\": 2207,\n \"051514\": 2186,\n \"051539\": 2235,\n \"051686\": 2186,\n \"051694\": 2197,\n \"051824\": 2207,\n \"051928\": 2186,\n+ \"052\": 2193,\n \"052021\": 2210,\n \"052127\": 2207,\n \"052580\": 2195,\n \"052589\": 2193,\n \"052599\": 2186,\n \"052721\": 2219,\n \"052849\": 2212,\n@@ -21924,14 +21922,15 @@\n \"053667\": 2207,\n \"053768\": 2199,\n \"053785\": 2219,\n \"054325\": 2191,\n \"0549\": 2202,\n \"054932\": 2207,\n \"054972\": 2207,\n+ \"055\": 2193,\n \"055224\": 2184,\n \"055300\": 2212,\n \"055457\": 2199,\n \"055473\": 2235,\n \"055501\": 2207,\n \"055556\": [69, 109, 129, 171, 173, 182, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 760],\n \"055758\": 2197,\n@@ -21949,29 +21948,30 @@\n \"0582\": 2202,\n \"0582158\": 2202,\n \"058373\": 2207,\n \"058534\": 2210,\n \"058615\": 2207,\n \"058664\": 2195,\n \"058837\": 2210,\n+ \"059\": 2193,\n \"059018\": 2199,\n \"059277\": [102, 1158],\n \"0593\": 2202,\n \"059318\": [182, 760],\n \"059352\": [102, 1158],\n \"059382\": 2207,\n \"059478\": 2210,\n \"059481\": 2207,\n \"059552\": 2207,\n \"059761\": 2207,\n \"059869e\": 2191,\n \"059881\": 2210,\n \"059904\": 2214,\n \"05t00\": 2261,\n- \"06\": [26, 27, 29, 30, 31, 207, 213, 218, 230, 273, 292, 294, 332, 363, 526, 534, 536, 637, 644, 646, 688, 781, 788, 793, 804, 900, 969, 993, 1075, 1344, 1441, 1442, 1449, 1450, 1452, 1489, 1497, 1500, 1506, 1524, 1598, 1677, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2226, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2264, 2271, 2298, 2302],\n+ \"06\": [26, 27, 29, 30, 31, 207, 213, 218, 230, 273, 292, 294, 332, 363, 526, 534, 536, 637, 644, 646, 688, 781, 788, 793, 804, 900, 969, 993, 1075, 1344, 1441, 1442, 1449, 1450, 1452, 1489, 1497, 1500, 1506, 1524, 1598, 1677, 2184, 2186, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2226, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2264, 2271, 2298, 2302],\n \"060015\": 2207,\n \"060074\": 2185,\n \"060603\": 2207,\n \"060654\": 2207,\n \"060777\": 2207,\n \"061019\": 2199,\n \"061068\": 2210,\n@@ -21981,15 +21981,14 @@\n \"061810\": 2204,\n \"061876\": [182, 760],\n \"061932\": 2186,\n \"062191\": 2230,\n \"062320\": 2207,\n \"062433\": 2199,\n \"062993\": 2197,\n- \"063\": 2193,\n \"0630\": 2246,\n \"063038\": 2199,\n \"063123\": 2210,\n \"0633\": 2204,\n \"063327\": [2185, 2197],\n \"063328\": 2235,\n \"063367\": 2216,\n@@ -21998,14 +21997,15 @@\n \"063850\": 2207,\n \"063922\": 2184,\n \"063933\": 2207,\n \"064\": 2207,\n \"064034\": [15, 2191],\n \"064423\": 2207,\n \"064434\": 2207,\n+ \"065\": 2193,\n \"065587\": 2218,\n \"065761\": 2207,\n \"065818\": [2204, 2207],\n \"065934\": [182, 760],\n \"066126\": 2207,\n \"066510\": 2210,\n \"066533\": 2210,\n@@ -22030,15 +22030,15 @@\n \"069486\": 2230,\n \"069546\": 2199,\n \"069718\": 2186,\n \"069887\": 2207,\n \"069908\": 2207,\n \"069949\": 2207,\n \"06t00\": 2261,\n- \"07\": [26, 27, 29, 30, 31, 187, 202, 207, 213, 230, 273, 277, 292, 294, 330, 332, 345, 644, 646, 685, 688, 763, 781, 788, 804, 900, 903, 1075, 1280, 1344, 1441, 1442, 1449, 1450, 1452, 1598, 1677, 1720, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2226, 2227, 2228, 2230, 2231, 2235, 2261, 2271, 2294, 2298],\n+ \"07\": [26, 27, 29, 30, 31, 187, 202, 207, 213, 230, 273, 277, 292, 294, 330, 332, 345, 644, 646, 685, 688, 763, 781, 788, 804, 900, 903, 1075, 1280, 1344, 1441, 1442, 1449, 1450, 1452, 1598, 1677, 1720, 2184, 2185, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2226, 2227, 2228, 2230, 2231, 2235, 2261, 2271, 2294, 2298],\n \"0700\": 995,\n \"070087\": 2218,\n \"070816\": 2235,\n \"071068\": 2222,\n \"071357\": 2191,\n \"071665\": 2219,\n \"0718\": [2184, 2186],\n@@ -22161,15 +22161,15 @@\n \"089227\": 2207,\n \"089329\": [2184, 2195, 2214],\n \"089354\": 2235,\n \"089589\": 2207,\n \"089641\": 2207,\n \"089759\": 2186,\n \"08t00\": 2261,\n- \"09\": [29, 80, 84, 88, 107, 127, 157, 213, 218, 276, 277, 278, 322, 330, 331, 345, 562, 592, 595, 600, 629, 637, 677, 685, 686, 703, 732, 788, 793, 902, 903, 904, 987, 1008, 1075, 1164, 1221, 1344, 1452, 1489, 1501, 1506, 1524, 1578, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1839, 1876, 1894, 1912, 1964, 2018, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2218, 2220, 2221, 2222, 2226, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2249, 2250, 2261, 2271],\n+ \"09\": [29, 80, 84, 88, 107, 127, 157, 213, 218, 276, 277, 278, 322, 330, 331, 345, 562, 592, 595, 600, 629, 637, 677, 685, 686, 703, 732, 788, 793, 902, 903, 904, 987, 1008, 1075, 1164, 1221, 1344, 1452, 1489, 1501, 1506, 1524, 1578, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1839, 1876, 1894, 1912, 1964, 2018, 2184, 2185, 2186, 2191, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2218, 2220, 2221, 2222, 2226, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2249, 2250, 2261, 2271],\n \"0900\": [956, 1013],\n \"090118\": 2219,\n \"090255\": 2197,\n \"090310\": 2207,\n \"090711\": 2207,\n \"091\": [2186, 2227],\n \"091000\": 2207,\n@@ -22251,33 +22251,33 @@\n \"0n\": [1489, 2298],\n \"0px\": 2207,\n \"0rc0\": 13,\n \"0th\": [26, 249, 882, 1202, 2185, 2197, 2199, 2235],\n \"0x00\": 2294,\n \"0x40\": 2294,\n \"0x7efd0c0b0690\": 3,\n- \"0x7f916af46ad0\": 2199,\n- \"0x7f919835a8f0\": 2197,\n- \"0x7f9199de19b0\": 2230,\n- \"0x7f9199e94350\": 2195,\n- \"0x7f91b0c4f060\": 2210,\n- \"0x7f91c0801590\": 2246,\n+ \"0x7f35852ddda0\": 2210,\n+ \"0x7f358fa44c10\": 2197,\n+ \"0x7f3591179490\": 2195,\n+ \"0x7f359a4d1e80\": 2230,\n+ \"0x7f359b7f0ec0\": 2246,\n+ \"0x7f359b90e710\": 2199,\n \"1\": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310],\n \"10\": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308],\n \"100\": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307],\n \"1000\": [9, 10, 15, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294],\n \"10000\": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266],\n \"100000\": [1354, 1372, 2199, 2201, 2210],\n \"1000000\": [144, 2199, 2228],\n \"1000000000000000\": 1039,\n \"100000d\": 1497,\n \"100001\": 1497,\n \"10001\": 2232,\n \"10008\": [2231, 2232],\n- \"1001\": [2195, 2199],\n+ \"1001\": [2193, 2195, 2199],\n \"100123\": 2225,\n \"1001m\": [917, 919, 922, 929],\n \"1002\": [16, 17, 18, 19, 2199, 2205, 2235],\n \"10022\": 2226,\n \"100230\": 2184,\n \"10024\": 2226,\n \"10025\": 2226,\n@@ -22386,15 +22386,15 @@\n \"102889\": 18,\n \"10289\": 2227,\n \"1029\": 2199,\n \"10291\": 2230,\n \"10292\": 2227,\n \"10295\": 2228,\n \"10299\": 2229,\n- \"103\": [139, 140, 1174, 1175, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2227, 2230, 2232, 2235, 2246, 2255],\n+ \"103\": [139, 140, 1174, 1175, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2227, 2230, 2232, 2235, 2246, 2255],\n \"1030\": 2199,\n \"10303\": 2227,\n \"1031\": 2199,\n \"103104\": 2235,\n \"10317\": 2227,\n \"10319\": 2277,\n \"103219\": 2207,\n@@ -23214,14 +23214,15 @@\n \"124124\": 2207,\n \"12424\": 2232,\n \"12425\": 2241,\n \"12448\": 2230,\n \"124518\": 2230,\n \"12467\": 2231,\n \"12468\": 2199,\n+ \"1247\": 2193,\n \"12471\": 2230,\n \"12473\": 2231,\n \"12486\": 2231,\n \"124862\": 2191,\n \"12489\": 2230,\n \"12492\": 2230,\n \"12493\": 2231,\n@@ -23256,15 +23257,15 @@\n \"12577\": 2231,\n \"125798\": 28,\n \"12585\": 2289,\n \"12588\": 2235,\n \"12591\": [2231, 2238],\n \"125929\": 2207,\n \"125934\": 2199,\n- \"126\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2204, 2208, 2210, 2211, 2220, 2225, 2232, 2283],\n+ \"126\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2204, 2208, 2210, 2211, 2220, 2225, 2232, 2283],\n \"12600\": 2231,\n \"12601\": 2246,\n \"12610\": 2231,\n \"12615\": 2231,\n \"12617\": 2231,\n \"12619\": 2246,\n \"12620\": 2231,\n@@ -23592,15 +23593,15 @@\n \"13382\": 2232,\n \"13383\": 2232,\n \"13386\": 2241,\n \"13389\": 2232,\n \"13393\": 2239,\n \"13395\": 2232,\n \"13398\": 2232,\n- \"134\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2208, 2210, 2211, 2232, 2235, 2249, 2259, 2283],\n+ \"134\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2208, 2210, 2211, 2232, 2235, 2249, 2259, 2283],\n \"13402\": 2232,\n \"13407\": 2241,\n \"13410\": 2235,\n \"134105\": 2207,\n \"13411\": 2232,\n \"13412\": 2234,\n \"134146\": 15,\n@@ -23824,33 +23825,32 @@\n \"13971\": 2238,\n \"13972\": 2232,\n \"13977\": 2232,\n \"13980\": 2232,\n \"13981\": 2232,\n \"13985\": 2232,\n \"139853\": 2207,\n+ \"139868208517392\": 2246,\n \"13988\": 2232,\n \"13990\": 2232,\n \"13994\": 2232,\n \"139976\": 2186,\n \"13999\": 2232,\n \"139999\": 1372,\n \"14\": [3, 6, 15, 16, 17, 18, 19, 25, 26, 28, 29, 30, 31, 32, 133, 187, 190, 193, 197, 208, 213, 245, 268, 277, 345, 420, 632, 708, 718, 763, 766, 768, 782, 788, 799, 879, 903, 955, 956, 957, 958, 963, 964, 965, 966, 967, 968, 970, 973, 975, 976, 977, 978, 979, 980, 981, 992, 994, 995, 997, 999, 1009, 1013, 1014, 1018, 1023, 1025, 1195, 1256, 1292, 1336, 1433, 1437, 1438, 1439, 1598, 1657, 1677, 1815, 1876, 1894, 1912, 1964, 2018, 2054, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2242, 2246, 2249, 2257, 2261, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"140\": [213, 788, 1433, 2184, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2212, 2231, 2232, 2298],\n+ \"140\": [213, 788, 1433, 2184, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2212, 2231, 2232, 2298],\n \"14000\": [2185, 2220, 2232],\n \"14001\": 2238,\n \"140069\": 2229,\n \"14007\": 2241,\n \"14012\": 2232,\n \"14013\": 2241,\n \"14015\": 2235,\n \"14021\": 2232,\n \"140249\": 2207,\n- \"140263739805968\": 2246,\n- \"140263739808464\": 2246,\n \"14039\": 2232,\n \"14041\": 2232,\n \"140528\": 2207,\n \"14058\": 2232,\n \"14065\": 2232,\n \"14066\": 2232,\n \"14068\": [2232, 2233],\n@@ -23860,15 +23860,15 @@\n \"1409\": [2185, 2197],\n \"14093\": 2283,\n \"14094\": [2232, 2246],\n \"14095\": 2232,\n \"14096\": 2241,\n \"140983\": 2207,\n \"140min\": 2210,\n- \"141\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2210, 2211, 2212, 2231, 2232, 2253, 2298],\n+ \"141\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2210, 2211, 2212, 2231, 2232, 2253, 2298],\n \"1410\": [2185, 2197],\n \"14101\": 2232,\n \"14105\": 2246,\n \"1411\": [2185, 2197],\n \"14113\": 2241,\n \"141155\": 2207,\n \"141185\": 15,\n@@ -23893,15 +23893,15 @@\n \"14173\": 2232,\n \"141809\": 2214,\n \"14187\": 2246,\n \"14189\": 2235,\n \"14190\": 2232,\n \"141915\": 2207,\n \"14194\": 2241,\n- \"142\": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2203, 2210, 2211, 2212, 2232, 2253, 2298],\n+ \"142\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2210, 2211, 2212, 2232, 2253, 2298],\n \"1420043460\": 2231,\n \"14203\": 2234,\n \"14204\": 2233,\n \"14207\": [2238, 2241],\n \"14208\": 2232,\n \"14216\": 2238,\n \"14218\": 2235,\n@@ -24042,15 +24042,15 @@\n \"14684\": 2234,\n \"14685\": 2234,\n \"14686\": 2246,\n \"14687\": 2234,\n \"14689\": 2234,\n \"14696\": 2238,\n \"14699\": 2235,\n- \"147\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2210, 2211, 2232],\n+ \"147\": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2210, 2211, 2232],\n \"1470\": [16, 17, 18, 19, 2199, 2235],\n \"14704\": 2289,\n \"14711\": 2238,\n \"14712\": 2234,\n \"14714\": 2235,\n \"1472\": [16, 17, 18, 19, 2199, 2235],\n \"14721\": 2235,\n@@ -24494,16 +24494,15 @@\n \"16059\": 2246,\n \"16063\": 2294,\n \"16071\": 2235,\n \"16073\": 2241,\n \"16078\": 2238,\n \"160910\": 2207,\n \"160915\": 2186,\n- \"16098\": 2193,\n- \"161\": [2185, 2186, 2188, 2195, 2197, 2199, 2201, 2210, 2211],\n+ \"161\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2210, 2211],\n \"161007\": 2207,\n \"161099\": 2193,\n \"16111\": 2235,\n \"16112\": 2238,\n \"161137\": 2235,\n \"16120\": 2235,\n \"16122\": 2238,\n@@ -24792,15 +24791,15 @@\n \"17060\": 2238,\n \"17066\": 2246,\n \"170667\": 2207,\n \"17095\": 2238,\n \"17097\": 2238,\n \"170972\": 2207,\n \"17099\": 2238,\n- \"171\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2210, 2211, 2283],\n+ \"171\": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2210, 2211, 2283],\n \"17105\": 2241,\n \"17108\": 2238,\n \"171092\": 2199,\n \"17116\": 2238,\n \"1712\": [139, 140, 1174, 1175],\n \"17125\": 2238,\n \"17126\": 2298,\n@@ -25059,14 +25058,15 @@\n \"18069\": 2239,\n \"18071\": 2239,\n \"18079\": 2241,\n \"1809\": 2263,\n \"18092\": 2241,\n \"18099\": 2241,\n \"181\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 259, 275, 890, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2210, 2211, 2298],\n+ \"181091\": 2228,\n \"18113\": 2241,\n \"18116\": 2239,\n \"181231\": 2195,\n \"18146\": 2246,\n \"181507\": 2207,\n \"18154\": 2239,\n \"18159\": 2239,\n@@ -25078,15 +25078,15 @@\n \"18178\": 2239,\n \"1818\": 2217,\n \"18184\": 2241,\n \"18186\": 2239,\n \"18187\": 2239,\n \"181873\": 2207,\n \"18198\": 2294,\n- \"182\": [176, 179, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2210, 2211, 2298],\n+ \"182\": [176, 179, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2210, 2211, 2298],\n \"18203\": 2239,\n \"18213\": 2241,\n \"18216\": 2239,\n \"18217\": [2241, 2265],\n \"18218\": 2241,\n \"18221\": 2241,\n \"18222\": 2265,\n@@ -25174,15 +25174,15 @@\n \"18478\": 2241,\n \"1848\": 2220,\n \"18480\": 2241,\n \"18482\": 2241,\n \"18485\": 2241,\n \"18489\": 2241,\n \"18493\": 2239,\n- \"185\": [134, 709, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2212],\n+ \"185\": [134, 709, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211, 2212],\n \"18501\": 2241,\n \"18502\": 2249,\n \"185043\": 2195,\n \"18505\": 2241,\n \"18509\": 2241,\n \"18510\": 2241,\n \"18515\": 2241,\n@@ -25524,15 +25524,15 @@\n \"196569\": 2207,\n \"196591\": 2207,\n \"19671\": 2241,\n \"19682\": 2241,\n \"19686\": 2241,\n \"196903\": 2204,\n \"19699\": 2241,\n- \"197\": [22, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211],\n+ \"197\": [22, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211],\n \"1970\": [213, 345, 788, 1498, 2166, 2199, 2201, 2204, 2210, 2215, 2218, 2232, 2235, 2238, 2271],\n \"19700\": 2246,\n \"197035\": 2210,\n \"19708\": 2302,\n \"19711\": 2265,\n \"197138\": 2207,\n \"19714\": 2241,\n@@ -25736,31 +25736,31 @@\n \"2017q4\": 2238,\n \"2018\": [13, 35, 80, 84, 88, 127, 157, 187, 213, 271, 277, 278, 288, 291, 296, 298, 302, 304, 305, 308, 309, 314, 318, 322, 327, 331, 418, 421, 445, 512, 513, 515, 517, 518, 522, 524, 529, 530, 534, 535, 536, 551, 562, 592, 595, 600, 639, 643, 652, 656, 657, 660, 661, 667, 673, 677, 681, 686, 703, 732, 763, 788, 899, 903, 904, 940, 943, 944, 948, 1109, 1145, 1272, 1275, 1286, 1296, 1344, 1452, 1498, 2185, 2199, 2210, 2212, 2213, 2238, 2246, 2298],\n \"20180101\": [1272, 1275, 1286, 1296],\n \"20180310\": [115, 681],\n \"2018q1\": [529, 2238],\n \"2018q2\": 2238,\n \"2019\": [13, 26, 27, 29, 30, 31, 418, 421, 1344, 1487, 1560, 2199, 2210, 2213, 2241, 2242, 2243, 2245, 2271, 2302],\n+ \"201922\": 2228,\n \"202\": [2184, 2185, 2186, 2188, 2195, 2197, 2199, 2207, 2210, 2211],\n \"2020\": [22, 82, 121, 218, 230, 268, 286, 287, 289, 293, 295, 298, 300, 317, 323, 324, 329, 519, 521, 523, 542, 547, 548, 549, 551, 593, 641, 645, 647, 649, 650, 651, 671, 678, 679, 684, 696, 793, 804, 939, 955, 956, 957, 958, 962, 963, 964, 965, 966, 967, 968, 970, 972, 973, 975, 976, 977, 978, 979, 980, 981, 983, 990, 992, 993, 994, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1010, 1013, 1014, 1017, 1018, 1019, 1023, 1025, 1075, 1392, 1459, 1464, 1498, 1506, 1524, 1542, 1560, 2199, 2201, 2204, 2210, 2212, 2213, 2283, 2289, 2294, 2298, 2302, 2307],\n \"20200101\": [82, 593],\n \"2020q1\": 1008,\n \"2021\": [288, 296, 318, 639, 652, 673, 940, 943, 948, 957, 970, 997, 1542, 2201, 2207, 2213, 2277, 2289, 2294],\n \"2022\": [5, 22, 523, 525, 528, 537, 982, 1185, 1246, 1288, 1491, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1542, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1560, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1578, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1598, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1620, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1637, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1657, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1677, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1699, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1720, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1758, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1776, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1793, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1815, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1839, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1857, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1876, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1894, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1912, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1930, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1947, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1964, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1982, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2018, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2036, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2054, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2108, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2127, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2145, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2186, 2203, 2213, 2227, 2298, 2302, 2307],\n \"2022a\": 2294,\n \"2023\": [34, 270, 298, 301, 320, 363, 511, 519, 526, 533, 543, 544, 545, 546, 547, 548, 549, 551, 554, 555, 556, 557, 558, 560, 563, 564, 565, 566, 567, 651, 894, 898, 954, 959, 960, 982, 984, 1000, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1024, 1122, 1141, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1501, 1620, 1930, 2090, 2127, 2145, 2213],\n \"202380\": 2207,\n \"20239\": [2241, 2265],\n \"2024\": [270, 544, 546, 555, 567, 894, 898, 2127, 2213],\n- \"2025\": [36, 544, 546, 555, 567, 894, 898],\n+ \"2025\": [36, 544, 546, 555, 567, 894, 898, 2228],\n \"20251\": 2307,\n \"2026\": 2228,\n \"202602\": 2205,\n \"202646\": 2230,\n- \"2027\": 2228,\n \"20271\": 2241,\n \"202872\": [2184, 2214],\n \"202946\": 2207,\n \"203\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2253],\n \"2030\": 2265,\n \"20303\": 2265,\n \"20306\": 2302,\n@@ -25920,15 +25920,15 @@\n \"20854\": 2243,\n \"208564\": 2207,\n \"20859\": 2241,\n \"20868\": 2294,\n \"20869\": 2246,\n \"208707\": 2199,\n \"208843\": [2184, 2214],\n- \"209\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211, 2212, 2253],\n+ \"209\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2212, 2253],\n \"209013\": 15,\n \"20902\": 2241,\n \"209097\": 2207,\n \"20911\": 2246,\n \"209138\": 2185,\n \"20920\": 2241,\n \"20921\": 2241,\n@@ -25975,15 +25975,15 @@\n \"21071\": 2242,\n \"21078\": 2242,\n \"21083\": 2242,\n \"2109\": 2264,\n \"21090\": 2271,\n \"210945\": 2195,\n \"21097\": 2242,\n- \"211\": [2185, 2186, 2188, 2195, 2197, 2199, 2203, 2210, 2211, 2212, 2254],\n+ \"211\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2203, 2210, 2211, 2212, 2254],\n \"2110\": 2264,\n \"21101\": 2242,\n \"21103\": 2242,\n \"21104\": 2243,\n \"211056\": 2197,\n \"21106\": 2242,\n \"21107\": 2242,\n@@ -26325,15 +26325,15 @@\n \"224824\": 2207,\n \"224826\": 2210,\n \"22484\": [2246, 2249],\n \"22487\": 2246,\n \"2249\": [2194, 2201, 2203, 2294, 2302, 2307],\n \"224904\": 2230,\n \"22492\": 2246,\n- \"225\": [118, 132, 135, 159, 161, 175, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2227],\n+ \"225\": [118, 132, 135, 159, 161, 175, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2227],\n \"2250\": [2194, 2201, 2203, 2294, 2302, 2307],\n \"225000\": [121, 696],\n \"22501\": 2249,\n \"22508\": 2246,\n \"2251\": [2194, 2201, 2203, 2294, 2302, 2307],\n \"22519\": 2246,\n \"2252\": [2194, 2201, 2203, 2294, 2302, 2307],\n@@ -26409,15 +26409,15 @@\n \"22818\": [2283, 2298],\n \"22835\": 2246,\n \"22858\": 2246,\n \"22860\": 2246,\n \"22862\": 2246,\n \"22880\": 2246,\n \"22887\": 2246,\n- \"229\": [2185, 2186, 2188, 2195, 2197, 2199, 2210],\n+ \"229\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210],\n \"22903\": 2246,\n \"22905\": 2246,\n \"22912\": 2246,\n \"22922\": 2246,\n \"229349\": 2207,\n \"22938\": 2246,\n \"229453\": 2197,\n@@ -26500,15 +26500,15 @@\n \"23316\": 2289,\n \"233203\": 2197,\n \"23348\": 2265,\n \"23352\": 2246,\n \"233686\": [121, 696, 2212],\n \"23372\": 2246,\n \"233881\": 2199,\n- \"234\": [233, 2185, 2186, 2188, 2195, 2197, 2199, 2203, 2210, 2220, 2254, 2298],\n+ \"234\": [233, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2203, 2210, 2220, 2254, 2298],\n \"23404\": 2246,\n \"234178\": 2207,\n \"23424\": 2246,\n \"23451\": 2246,\n \"23455\": 2246,\n \"234564\": 2195,\n \"23466\": 2246,\n@@ -26652,15 +26652,15 @@\n \"23980\": 2246,\n \"239885\": 2186,\n \"23990\": [2246, 2265],\n \"23998\": 2289,\n \"239990\": 2235,\n \"23h30min\": [213, 345, 788, 2210],\n \"24\": [3, 15, 17, 18, 19, 25, 29, 30, 31, 32, 35, 101, 133, 134, 198, 208, 213, 214, 249, 271, 282, 341, 345, 407, 411, 532, 632, 708, 745, 751, 782, 788, 882, 899, 938, 1198, 1202, 1263, 1344, 1397, 1430, 1491, 1506, 1524, 1542, 1560, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2249, 2265, 2271, 2277, 2283, 2287, 2289, 2294, 2297, 2298, 2302, 2307],\n- \"240\": [1302, 1433, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2220, 2231, 2238, 2246, 2298],\n+ \"240\": [1302, 1433, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220, 2231, 2238, 2246, 2298],\n \"24008\": 2223,\n \"24009288\": 2199,\n \"24011\": 2249,\n \"24014\": 2249,\n \"24023\": 2246,\n \"24024\": 2246,\n \"24025\": 2246,\n@@ -27435,15 +27435,15 @@\n \"2767\": 2191,\n \"27676\": 2265,\n \"27679\": 2269,\n \"276829\": 2185,\n \"27686\": 2265,\n \"27692\": 2271,\n \"276923\": 2212,\n- \"277\": [2186, 2195, 2197, 2199, 2205, 2210],\n+ \"277\": [2186, 2195, 2197, 2199, 2210],\n \"277052\": 2207,\n \"27709\": 2283,\n \"277155\": 2186,\n \"27720\": 2250,\n \"277264\": 2207,\n \"277320\": 1301,\n \"27733\": 2250,\n@@ -28274,15 +28274,15 @@\n \"320444\": 2207,\n \"3205\": 2199,\n \"3206\": 2199,\n \"320690\": 2191,\n \"32073\": 2277,\n \"3208\": 2199,\n \"3209\": 2199,\n- \"321\": [2186, 2197, 2199, 2210, 2255],\n+ \"321\": [2186, 2193, 2197, 2199, 2210, 2255],\n \"3210\": 2199,\n \"321153\": 2195,\n \"321158\": 2230,\n \"32117\": 2267,\n \"321219\": 2191,\n \"32123\": 2267,\n \"321243\": 2186,\n@@ -28308,15 +28308,15 @@\n \"32259\": 2283,\n \"32262\": 2283,\n \"32264\": 2294,\n \"32265\": 2277,\n \"32276\": 2271,\n \"32287\": 2267,\n \"32289\": 2271,\n- \"323\": [2186, 2197, 2199, 2210],\n+ \"323\": [2185, 2186, 2197, 2199, 2210],\n \"3230\": 2217,\n \"3232\": 2249,\n \"3232235777\": 2241,\n \"323321\": 2197,\n \"32334\": 2277,\n \"32346\": 2294,\n \"323510\": 2207,\n@@ -28404,15 +28404,15 @@\n \"32766\": 30,\n \"327710\": 2191,\n \"32779\": 2271,\n \"32782\": 2271,\n \"327863\": 2186,\n \"3279\": 2199,\n \"32792\": 2271,\n- \"328\": [2184, 2186, 2191, 2197, 2199, 2205, 2210, 2218, 2246],\n+ \"328\": [2184, 2186, 2191, 2197, 2199, 2205, 2210, 2246],\n \"3280\": 2199,\n \"32800\": 2269,\n \"32803\": 2289,\n \"32806\": 2271,\n \"32809\": 2271,\n \"3281\": 2199,\n \"32815\": 2271,\n@@ -28541,15 +28541,15 @@\n \"333758\": 2193,\n \"333828\": 2186,\n \"33385\": [2271, 2298],\n \"33388\": 2271,\n \"33389\": 2271,\n \"333945\": 2212,\n \"33396\": [2289, 2298],\n- \"334\": [15, 2186, 2197, 2199, 2207, 2210, 2254],\n+ \"334\": [15, 2186, 2193, 2197, 2199, 2207, 2210, 2254],\n \"33401\": 2283,\n \"334077\": [2230, 2231],\n \"33410\": 2271,\n \"3342\": 2206,\n \"3342113401317768\": 2206,\n \"33422\": 2271,\n \"33425\": 2271,\n@@ -28672,15 +28672,15 @@\n \"339770\": 2195,\n \"33980\": 2271,\n \"339846\": 2230,\n \"33987\": 2277,\n \"339969\": [2184, 2214],\n \"33ff85\": 1433,\n \"34\": [15, 17, 18, 19, 29, 1017, 1403, 1404, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2222, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2294, 2298],\n- \"340\": [2186, 2188, 2191, 2197, 2199, 2210],\n+ \"340\": [2186, 2188, 2191, 2193, 2197, 2199, 2210],\n \"34002\": 2283,\n \"3401\": 2219,\n \"34010\": 2269,\n \"3403\": 2191,\n \"3403088497993827\": 2197,\n \"340309\": [2185, 2197, 2199, 2202, 2204, 2215, 2257],\n \"3404\": 2232,\n@@ -29478,15 +29478,15 @@\n \"3807\": [2185, 2191, 2194],\n \"38071\": 2277,\n \"3808\": [2185, 2191, 2194],\n \"380863\": [2204, 2257],\n \"380871\": 2191,\n \"3809\": [2185, 2191, 2194],\n \"38098\": 2277,\n- \"381\": [2185, 2186, 2197, 2199, 2210, 2255],\n+ \"381\": [2186, 2197, 2199, 2210, 2255],\n \"3810\": [2185, 2191, 2194],\n \"38100\": 2289,\n \"3811\": [2185, 2191, 2194],\n \"38111\": 2277,\n \"381137\": 2207,\n \"381160\": 2191,\n \"3812\": [2185, 2191, 2194],\n@@ -30278,15 +30278,15 @@\n \"41647\": 2283,\n \"41653\": 2283,\n \"41662\": 2298,\n \"41670\": 2283,\n \"41673\": 2283,\n \"416988\": 2191,\n \"41699\": 2298,\n- \"417\": [2185, 2186, 2199, 2205, 2210, 2227],\n+ \"417\": [2185, 2186, 2199, 2210, 2227],\n \"4170\": 2218,\n \"41700\": 2199,\n \"41707\": 2283,\n \"41710\": 2294,\n \"417200\": 2207,\n \"41731\": 2298,\n \"41733\": 2298,\n@@ -30850,15 +30850,15 @@\n \"439872\": 2199,\n \"43988\": 2289,\n \"439895\": 2193,\n \"4399\": 2197,\n \"43997\": 2289,\n \"43999\": 2302,\n \"44\": [15, 17, 19, 28, 31, 32, 213, 345, 788, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2294],\n- \"440\": [1363, 2185, 2186, 2199, 2210],\n+ \"440\": [1363, 2186, 2199, 2210],\n \"4400\": 2197,\n \"44008\": 2302,\n \"44011\": 2289,\n \"44014\": 2294,\n \"44019\": 2289,\n \"4402\": 2218,\n \"44021\": 2289,\n@@ -31533,15 +31533,15 @@\n \"471593\": 2204,\n \"47172\": 2293,\n \"47177\": 2298,\n \"4718\": 2218,\n \"47188\": 2292,\n \"47196\": 2294,\n \"471992\": 2264,\n- \"472\": [2191, 2199, 2210],\n+ \"472\": [2191, 2193, 2199, 2210],\n \"47203\": 2294,\n \"472035\": [2185, 2197, 2199, 2202, 2204, 2215, 2257],\n \"47207\": 2292,\n \"47209\": 2294,\n \"47215\": 2294,\n \"47216\": 2294,\n \"47244\": 2298,\n@@ -32180,15 +32180,15 @@\n \"50453\": 2298,\n \"50465\": 2298,\n \"50467\": 2298,\n \"50471\": 2298,\n \"5048\": 2218,\n \"50482\": 2298,\n \"50486\": 2298,\n- \"505\": [16, 17, 18, 19, 2199, 2235],\n+ \"505\": [16, 17, 18, 19, 2185, 2199, 2235],\n \"505089\": 2207,\n \"50524\": 2298,\n \"50533\": 2298,\n \"505430\": 2220,\n \"505601\": 2186,\n \"50563\": 2298,\n \"505723\": 2197,\n@@ -32453,15 +32453,15 @@\n \"51856\": 2302,\n \"51858\": 2302,\n \"51861\": 2302,\n \"51873\": 2302,\n \"518736\": 2197,\n \"51895\": 2300,\n \"51896\": 2302,\n- \"519\": [2194, 2199, 2201, 2203, 2238, 2283, 2294, 2307],\n+ \"519\": [2193, 2194, 2199, 2201, 2203, 2238, 2283, 2294, 2307],\n \"51903\": 2302,\n \"5191\": 2218,\n \"519133\": 2207,\n \"51921\": 2302,\n \"51922\": 2302,\n \"51929\": 2307,\n \"51936\": 2302,\n@@ -33570,15 +33570,15 @@\n \"587528\": 2207,\n \"587584\": 2207,\n \"5877\": 2219,\n \"58776\": 2257,\n \"5878\": 2220,\n \"587886\": 2207,\n \"5879\": 2219,\n- \"588\": 2199,\n+ \"588\": [2193, 2199],\n \"5884\": 2222,\n \"588635\": 2230,\n \"588641\": 2207,\n \"589\": [1193, 1254, 2199],\n \"5890\": 2219,\n \"589168\": 2197,\n \"5892\": [183, 761],\n@@ -33957,15 +33957,15 @@\n \"633\": 2199,\n \"633165\": 2230,\n \"6332\": 2220,\n \"633372\": 2215,\n \"6335\": 2220,\n \"633678\": 2185,\n \"6337\": 2220,\n- \"634\": 2199,\n+ \"634\": [2185, 2199],\n \"6341\": 2220,\n \"6342\": 2220,\n \"634248\": 2199,\n \"6344\": 2220,\n \"6345\": 2220,\n \"634509\": 2191,\n \"634686\": 2207,\n@@ -34489,15 +34489,15 @@\n \"693043\": 2210,\n \"6932\": 2222,\n \"693205\": [2184, 2214],\n \"693429\": 28,\n \"6937\": 2221,\n \"693884\": 2210,\n \"6939\": 2220,\n- \"694\": [2199, 2205],\n+ \"694\": 2199,\n \"694268\": 28,\n \"6945\": 2241,\n \"694592\": 2207,\n \"695\": 2199,\n \"6951\": 2220,\n \"695148\": 2186,\n \"6952\": 2220,\n@@ -34577,15 +34577,15 @@\n \"7034\": [2199, 2220],\n \"7035\": 2199,\n \"7036\": 2199,\n \"7037\": 2199,\n \"7038\": 2199,\n \"703846\": 2201,\n \"7039\": 2199,\n- \"704\": [2199, 2203, 2205],\n+ \"704\": [2199, 2203],\n \"7040\": [2199, 2220],\n \"704118\": 2207,\n \"704261\": 2230,\n \"7043\": 2220,\n \"704581\": 2230,\n \"704907\": [1148, 1149],\n \"705\": [1193, 1254, 2199],\n@@ -34631,15 +34631,15 @@\n \"709459\": 2199,\n \"7095\": 2228,\n \"7096\": 2232,\n \"709661\": [2184, 2214],\n \"7097\": 2222,\n \"7098\": 2220,\n \"71\": [15, 17, 24, 25, 28, 29, 32, 133, 208, 708, 718, 782, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n- \"710\": 2199,\n+ \"710\": [2193, 2199],\n \"7101\": 2220,\n \"7103\": 2222,\n \"7105\": 2220,\n \"7106\": 2220,\n \"711\": 2199,\n \"711409\": 2186,\n \"7115\": 2223,\n@@ -34700,15 +34700,15 @@\n \"719369\": 2195,\n \"7195\": 2221,\n \"719541\": 2228,\n \"7196\": 2221,\n \"7198\": 2220,\n \"7199\": 2220,\n \"719915\": 2207,\n- \"72\": [17, 31, 190, 193, 766, 768, 1189, 1250, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271],\n+ \"72\": [17, 31, 190, 193, 766, 768, 1189, 1250, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271],\n \"720\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 1447, 2200, 2232],\n \"7200\": 2210,\n \"720000\": [2191, 2225],\n \"720521\": 2210,\n \"720589\": [2220, 2228, 2230, 2231],\n \"7206\": 2220,\n \"7207\": 2222,\n@@ -34765,15 +34765,15 @@\n \"729\": [16, 17, 18, 19, 2197, 2199, 2231, 2235],\n \"729161\": 2199,\n \"7292\": 2241,\n \"7297\": 2221,\n \"7299\": 2221,\n \"729907\": 2186,\n \"72hr\": 234,\n- \"73\": [15, 17, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271],\n+ \"73\": [15, 17, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271],\n \"730\": [16, 17, 18, 19, 2199, 2235],\n \"7300\": 2221,\n \"730057\": 2195,\n \"7302\": 2221,\n \"7306\": 2221,\n \"7308\": 2294,\n \"730951\": 2257,\n@@ -34995,15 +34995,15 @@\n \"759104\": 2185,\n \"7592\": 2221,\n \"759328\": 2199,\n \"759606\": 2199,\n \"759644\": 2222,\n \"7599\": 2228,\n \"75th\": [107, 629, 1164, 1221],\n- \"76\": [18, 190, 193, 766, 768, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"76\": [18, 190, 193, 766, 768, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"760\": [32, 2298],\n \"7601\": 2221,\n \"760109\": 2195,\n \"7606\": 2221,\n \"760643\": 2199,\n \"7609\": 2221,\n \"760970\": 2207,\n@@ -35051,15 +35051,15 @@\n \"7683\": 2222,\n \"768681\": 2207,\n \"7687\": [2246, 2271],\n \"7692\": 2228,\n \"769691\": 2207,\n \"7697\": 2222,\n \"769804\": [2185, 2191, 2197, 2199, 2202, 2204],\n- \"77\": [15, 81, 1447, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"77\": [15, 81, 1447, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"770\": [2193, 2207],\n \"7701\": 2221,\n \"770309\": 2207,\n \"7704\": 2222,\n \"770555\": 2204,\n \"770743\": 2207,\n \"7708\": 2222,\n@@ -35166,14 +35166,15 @@\n \"782\": 2277,\n \"7822\": 2222,\n \"782326\": 2207,\n \"782376\": 2214,\n \"7825\": [2243, 2246],\n \"7826\": 2222,\n \"782797\": 2195,\n+ \"783\": 2193,\n \"783051\": 2219,\n \"783123\": 2186,\n \"783168\": 2207,\n \"7833\": 2222,\n \"783425\": 2207,\n \"7835\": 2222,\n \"7839\": 2222,\n@@ -35455,23 +35456,23 @@\n \"8190\": 2222,\n \"819059\": 2207,\n \"8193\": 2271,\n \"819476\": 2207,\n \"819492\": 2207,\n \"8199\": 2222,\n \"82\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n- \"820\": 2199,\n+ \"820\": [2193, 2199],\n \"820223\": 2191,\n \"820408\": 2215,\n \"820750\": 2199,\n \"8208\": 2222,\n \"820801\": 2230,\n \"8209\": 2222,\n \"820952\": 2199,\n- \"821\": [2193, 2199],\n+ \"821\": 2199,\n \"821225\": 2205,\n \"821428\": 2218,\n \"8215\": 2222,\n \"8217\": 2222,\n \"822\": 2199,\n \"822162\": 2207,\n \"8222\": 2235,\n@@ -35521,15 +35522,15 @@\n \"8285\": 2225,\n \"8287\": 2232,\n \"828904\": 2191,\n \"8292\": 2232,\n \"829645\": 2207,\n \"829678\": 2191,\n \"829721\": 2212,\n- \"83\": [15, 24, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"83\": [15, 24, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"8302\": 2224,\n \"8303\": 2222,\n \"830429\": 2207,\n \"8305\": 2222,\n \"830545\": 2199,\n \"8306\": [2243, 2246],\n \"830957\": 2207,\n@@ -35636,15 +35637,15 @@\n \"848896\": 2193,\n \"848974\": 2197,\n \"849\": [16, 17, 18, 19, 2199, 2235],\n \"8494\": 2223,\n \"8496\": 2241,\n \"84960\": 2210,\n \"849980\": 2195,\n- \"85\": [182, 190, 193, 718, 760, 766, 768, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n+ \"85\": [182, 190, 193, 718, 760, 766, 768, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n \"850\": [16, 17, 18, 19, 2199, 2235],\n \"850083\": 2207,\n \"8501\": 2222,\n \"850229\": 2235,\n \"850287\": 2207,\n \"8504\": 2202,\n \"850458\": 2207,\n@@ -35713,15 +35714,15 @@\n \"8592\": 2223,\n \"8594\": 2265,\n \"859511\": 2207,\n \"859588\": [2220, 2228, 2230, 2231],\n \"8596\": 2232,\n \"859691\": 2191,\n \"85a3\": 2241,\n- \"86\": [16, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n+ \"86\": [16, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n \"860\": [182, 760, 2199],\n \"860059\": 2204,\n \"8601\": [662, 923, 983, 2199, 2209, 2210, 2230, 2235, 2241, 2271, 2277, 2283, 2298],\n \"8602\": 2224,\n \"860312\": 2199,\n \"8607\": 2223,\n \"860736\": 15,\n@@ -35949,15 +35950,15 @@\n \"8890\": [2224, 2225],\n \"889157\": 2235,\n \"889273\": 2235,\n \"889493\": 2186,\n \"889659\": 2186,\n \"889987\": 2205,\n \"89\": [207, 781, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298],\n- \"890\": [24, 25, 32, 2197, 2199],\n+ \"890\": [24, 25, 32, 2193, 2197, 2199],\n \"8904\": 2224,\n \"890546\": 2186,\n \"890819\": 2206,\n \"8909\": 2224,\n \"891\": [24, 25, 28, 32, 2197, 2199],\n \"8910\": [2243, 2246],\n \"891236\": 2193,\n@@ -36091,15 +36092,15 @@\n \"9093\": 2271,\n \"909316\": 2230,\n \"9094\": 2225,\n \"909500\": 2195,\n \"9096\": 2225,\n \"909872\": 2185,\n \"9099\": 2225,\n- \"91\": [15, 182, 760, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2294, 2298],\n+ \"91\": [15, 182, 760, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2294, 2298],\n \"9100\": 2225,\n \"910199\": 2199,\n \"910400\": 28,\n \"911055\": 2195,\n \"911128\": 2207,\n \"911385\": 2207,\n \"9114\": 2232,\n@@ -36178,27 +36179,25 @@\n \"9208\": 2246,\n \"920830\": 2216,\n \"9209\": 2202,\n \"9210\": 2225,\n \"921208\": 2207,\n \"921215\": 2207,\n \"921297\": [102, 1158],\n- \"921345\": 2228,\n \"921494\": 15,\n \"9217\": 2235,\n \"9218\": 2228,\n \"922\": [2186, 2227],\n \"9221\": 2225,\n \"922152\": 2199,\n \"9223372036854775808\": [1499, 2294],\n \"922818\": 2184,\n \"922883\": 2210,\n \"9229\": [2202, 2225],\n \"923061\": [2185, 2197, 2199, 2202, 2204, 2215, 2257],\n- \"923075\": 2228,\n \"9231\": [2191, 2225],\n \"923568\": 2204,\n \"924\": 2263,\n \"924296\": 2195,\n \"9243\": 2246,\n \"9244\": 2230,\n \"924556\": 2205,\n@@ -36291,15 +36290,15 @@\n \"938819\": 2204,\n \"939\": 2230,\n \"939036\": 2207,\n \"939145\": 2207,\n \"939470\": 2199,\n \"939652\": 2207,\n \"9398\": 2225,\n- \"94\": [15, 282, 2184, 2185, 2186, 2188, 2191, 2192, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246],\n+ \"94\": [15, 282, 2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246],\n \"9402\": 2228,\n \"941248\": 2199,\n \"9413\": 2238,\n \"941451\": 2210,\n \"9416\": 2228,\n \"9422\": 2238,\n \"942321\": 2207,\n@@ -36592,15 +36591,14 @@\n \"984017\": 2204,\n \"984435\": 2219,\n \"9847\": 2226,\n \"984729\": 2214,\n \"9848\": 2226,\n \"984810\": 2210,\n \"984960\": 2197,\n- \"985\": 2193,\n \"9850\": 2231,\n \"9852\": 2226,\n \"9853\": 2226,\n \"9856\": 2226,\n \"985655\": 2199,\n \"9861\": 2226,\n \"986137\": 2191,\n@@ -36623,15 +36621,15 @@\n \"988693\": [155, 156, 730, 731],\n \"9890\": 2226,\n \"9894\": 2228,\n \"9895\": 2235,\n \"989634\": 2204,\n \"989726\": 2207,\n \"989859\": 2185,\n- \"99\": [15, 22, 145, 163, 284, 532, 741, 912, 1447, 1456, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2230, 2232, 2235, 2246, 2294, 2307],\n+ \"99\": [15, 22, 145, 163, 284, 532, 741, 912, 1447, 1456, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2230, 2232, 2235, 2246, 2294, 2307],\n \"990\": [2199, 2230],\n \"9900\": 2199,\n \"990000\": 1894,\n \"990317\": 2199,\n \"990340\": 2207,\n \"9905\": 2226,\n \"990582\": [2184, 2195, 2214],\n@@ -37795,15 +37793,15 @@\n \"begin\": [3, 5, 13, 16, 19, 121, 233, 234, 259, 267, 270, 425, 426, 427, 502, 513, 515, 533, 535, 541, 696, 807, 808, 866, 873, 890, 896, 898, 1044, 1345, 1391, 1403, 1404, 1433, 1469, 1476, 1483, 1486, 1488, 1490, 1498, 1499, 1699, 1930, 2127, 2186, 2199, 2202, 2208, 2210, 2212, 2220, 2221, 2225, 2228, 2229, 2271, 2277, 2289],\n \"behav\": [7, 63, 134, 205, 267, 341, 709, 778, 896, 1350, 1387, 2168, 2185, 2187, 2190, 2195, 2198, 2203, 2207, 2209, 2210, 2211, 2220, 2222, 2224, 2225, 2232, 2235, 2238, 2240, 2249, 2261, 2265, 2277, 2283, 2289, 2290, 2294, 2302, 2307],\n \"behavior\": [0, 2, 3, 10, 12, 13, 14, 34, 72, 73, 74, 77, 81, 82, 94, 98, 99, 143, 146, 160, 169, 200, 201, 207, 208, 209, 210, 212, 213, 225, 226, 227, 242, 245, 255, 258, 263, 264, 270, 273, 274, 276, 277, 278, 283, 288, 296, 318, 427, 575, 581, 582, 583, 586, 593, 621, 622, 639, 652, 673, 681, 719, 720, 738, 774, 775, 781, 782, 783, 784, 787, 788, 800, 801, 802, 817, 873, 879, 880, 889, 894, 898, 900, 902, 903, 904, 910, 940, 943, 948, 957, 970, 997, 999, 1014, 1018, 1031, 1068, 1118, 1148, 1149, 1152, 1155, 1168, 1202, 1203, 1207, 1208, 1211, 1213, 1225, 1263, 1264, 1269, 1270, 1304, 1321, 1345, 1391, 1446, 1469, 1470, 1475, 1477, 1478, 1486, 1487, 1488, 1490, 1497, 1498, 2177, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2201, 2202, 2206, 2207, 2210, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2224, 2225, 2226, 2231, 2232, 2235, 2238, 2240, 2241, 2242, 2246, 2247, 2249, 2257, 2260, 2265, 2266, 2271, 2277, 2283, 2289, 2294, 2297, 2298, 2302, 2308],\n \"behaviour\": [18, 75, 77, 97, 98, 169, 205, 242, 247, 584, 620, 621, 634, 778, 808, 817, 864, 880, 1123, 1345, 1391, 1419, 1446, 1468, 1469, 1470, 1471, 1472, 1475, 1476, 1477, 1478, 1481, 1482, 1483, 1484, 1486, 1487, 1488, 1490, 1498, 1499, 2186, 2188, 2199, 2201, 2202, 2206, 2221, 2222, 2223, 2224, 2225, 2226, 2231, 2235, 2241, 2243, 2246, 2249, 2265, 2271, 2277, 2278, 2289, 2294, 2298, 2302, 2307],\n \"behind\": [2197, 2207, 2218, 2302, 2307],\n \"behr\": 32,\n \"beij\": [1145, 2207],\n- \"being\": [1, 2, 3, 4, 10, 13, 17, 141, 150, 152, 160, 188, 189, 209, 212, 214, 223, 241, 253, 257, 259, 262, 263, 269, 276, 346, 352, 375, 376, 563, 617, 699, 717, 738, 764, 765, 783, 787, 798, 830, 835, 858, 859, 864, 886, 890, 902, 1035, 1076, 1117, 1192, 1253, 1387, 1388, 1431, 1433, 1469, 1472, 1475, 1486, 1487, 1493, 1494, 1495, 1496, 1498, 2185, 2186, 2188, 2191, 2193, 2194, 2195, 2197, 2199, 2201, 2204, 2206, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2233, 2234, 2235, 2237, 2238, 2239, 2241, 2242, 2246, 2249, 2250, 2261, 2265, 2266, 2267, 2271, 2275, 2277, 2278, 2283, 2286, 2287, 2289, 2294, 2296, 2298, 2302, 2304, 2307, 2308],\n+ \"being\": [1, 2, 3, 4, 10, 13, 17, 141, 150, 152, 160, 188, 189, 209, 212, 214, 223, 241, 253, 257, 259, 262, 263, 269, 276, 346, 352, 375, 376, 563, 617, 699, 717, 738, 764, 765, 783, 787, 798, 830, 835, 858, 859, 864, 886, 890, 902, 1035, 1076, 1117, 1192, 1253, 1387, 1388, 1431, 1433, 1469, 1472, 1475, 1486, 1487, 1493, 1494, 1495, 1496, 1498, 2186, 2188, 2191, 2193, 2194, 2195, 2197, 2199, 2201, 2204, 2206, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2233, 2234, 2235, 2237, 2238, 2239, 2241, 2242, 2246, 2249, 2250, 2261, 2265, 2266, 2267, 2271, 2275, 2277, 2278, 2283, 2286, 2287, 2289, 2294, 2296, 2298, 2302, 2304, 2307, 2308],\n \"belal01\": 30,\n \"belhb23\": 30,\n \"belld01\": 30,\n \"belld02\": 30,\n \"belong\": [2, 150, 303, 445, 555, 655, 2195, 2210, 2211, 2217, 2222, 2228, 2232],\n \"below\": [1, 3, 5, 6, 9, 10, 13, 15, 16, 17, 19, 22, 79, 92, 98, 102, 107, 117, 160, 196, 213, 252, 276, 378, 380, 465, 489, 591, 616, 621, 629, 693, 738, 771, 788, 902, 1121, 1146, 1148, 1149, 1152, 1158, 1164, 1203, 1207, 1208, 1211, 1221, 1264, 1309, 1323, 1326, 1328, 1343, 1344, 1345, 1354, 1391, 1397, 1403, 1421, 1430, 1433, 1488, 1490, 1498, 1657, 1677, 1699, 1720, 1793, 1815, 2167, 2175, 2184, 2185, 2186, 2188, 2194, 2195, 2197, 2199, 2202, 2206, 2207, 2208, 2210, 2211, 2212, 2218, 2221, 2228, 2231, 2232, 2235, 2241, 2249, 2265, 2271, 2275, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n \"belr833\": 30,\n@@ -38095,15 +38093,15 @@\n \"c_parser_wrapp\": [2199, 2203, 2298],\n \"c_sum\": [1148, 1149],\n \"ca\": [824, 2208],\n \"cab\": [2185, 2226],\n \"caba\": [824, 2184, 2186, 2208],\n \"cabin\": [24, 25, 28, 29, 32],\n \"cac\": [1185, 1246, 1288],\n- \"cach\": [10, 22, 1345, 1391, 1469, 1486, 1488, 1490, 1498, 2185, 2186, 2192, 2193, 2199, 2202, 2210, 2212, 2218, 2219, 2220, 2226, 2227, 2228, 2241, 2246, 2249, 2265, 2266, 2271, 2273, 2277, 2283, 2284, 2289, 2293, 2298, 2307],\n+ \"cach\": [10, 22, 1345, 1391, 1469, 1486, 1488, 1490, 1498, 2186, 2192, 2193, 2199, 2202, 2210, 2212, 2218, 2219, 2220, 2226, 2227, 2228, 2241, 2246, 2249, 2265, 2266, 2271, 2273, 2277, 2283, 2284, 2289, 2293, 2298, 2307],\n \"cache_arrai\": 2210,\n \"cache_d\": [16, 17, 18, 19, 1469, 1486, 2199, 2203, 2232, 2235, 2249, 2298],\n \"cache_readonli\": 2255,\n \"cacheableoffset\": [2218, 2241],\n \"cacher\": 2197,\n \"cacher_needs_upd\": 2197,\n \"caeen\": 864,\n@@ -39809,15 +39807,15 @@\n \"farmer\": 2199,\n \"farthest\": [91, 1458],\n \"fashion\": [34, 39, 46, 2221, 2246, 2283],\n \"fast\": [5, 15, 34, 83, 141, 256, 351, 594, 717, 888, 1203, 1264, 1469, 1470, 1476, 1486, 2184, 2186, 2192, 2193, 2195, 2196, 2199, 2210, 2222, 2226, 2235, 2246, 2249, 2253, 2254, 2255, 2256],\n \"fast_path\": 2199,\n \"fastavro\": [1473, 2249],\n \"faster\": [4, 5, 15, 16, 34, 62, 151, 162, 251, 258, 262, 263, 265, 268, 272, 390, 615, 754, 757, 815, 884, 889, 895, 1152, 1211, 1242, 1243, 1469, 1486, 1498, 2163, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2208, 2211, 2214, 2215, 2216, 2219, 2220, 2222, 2232, 2238, 2246, 2249, 2253, 2255, 2256, 2277, 2289, 2302, 2307],\n- \"fastest\": [2185, 2186, 2193, 2197, 2199],\n+ \"fastest\": [2186, 2193, 2197, 2199],\n \"fastparquet\": [22, 263, 1345, 1391, 1478, 1488, 1490, 2184, 2199, 2202, 2205, 2238, 2246, 2249, 2265, 2271, 2277, 2278, 2283, 2286, 2289, 2294, 2298, 2302, 2307],\n \"fastparquetimpl\": 2199,\n \"fastpath\": [39, 573, 2194, 2201, 2203, 2246, 2265, 2271, 2283, 2294, 2298, 2302, 2307],\n \"fatal\": 2229,\n \"fault\": [2228, 2235, 2239, 2246, 2249, 2271, 2275, 2289],\n \"faulti\": 2220,\n \"favor\": [34, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2239, 2241, 2246, 2249, 2265, 2266, 2283, 2289, 2294, 2298],\n@@ -40889,15 +40887,15 @@\n \"interchang\": [66, 246, 916, 953, 2172, 2299, 2300, 2302, 2307, 2308],\n \"interchange_object\": [66, 1077],\n \"interest\": [1, 2, 3, 13, 23, 24, 25, 28, 29, 32, 34, 35, 789, 2186, 2193, 2197, 2199, 2207, 2210, 2212, 2217, 2219, 2307, 2308],\n \"interest_r\": 3,\n \"interf\": 2265,\n \"interfac\": [2, 10, 12, 13, 16, 17, 18, 19, 40, 77, 119, 695, 914, 1031, 1068, 1090, 2167, 2186, 2199, 2203, 2207, 2210, 2211, 2218, 2220, 2225, 2227, 2228, 2230, 2235, 2246, 2261, 2271, 2298, 2307],\n \"interleav\": 2199,\n- \"intermedi\": [7, 2172, 2185, 2193, 2195, 2205, 2210, 2212, 2253, 2307],\n+ \"intermedi\": [7, 2172, 2193, 2195, 2205, 2210, 2212, 2253, 2307],\n \"intermix\": 2186,\n \"intern\": [0, 7, 11, 22, 191, 194, 203, 268, 286, 364, 376, 430, 622, 624, 699, 767, 769, 873, 932, 938, 1031, 1044, 1123, 1124, 1140, 1148, 1149, 1203, 1207, 1208, 1213, 1215, 1264, 1280, 1345, 1361, 1364, 1388, 1391, 1422, 1423, 1433, 1469, 1486, 1488, 1490, 1493, 1494, 1495, 1496, 1499, 2186, 2188, 2193, 2194, 2195, 2197, 2202, 2207, 2210, 2213, 2216, 2217, 2219, 2220, 2230, 2232, 2235, 2238, 2246, 2249, 2253, 2261, 2263, 2265, 2267, 2271, 2274, 2277, 2280, 2289, 2293, 2298, 2307],\n \"internal_cach\": 10,\n \"internet\": 2,\n \"interoper\": [2167, 2186, 2201, 2203, 2302],\n \"interp1d\": [146, 720, 1280],\n \"interp_\": 2201,\n@@ -41064,15 +41062,15 @@\n \"isanchor\": [2265, 2298],\n \"isdecim\": [836, 837, 839, 840, 841, 842, 843, 844, 2208, 2225],\n \"isdigit\": [836, 837, 838, 840, 841, 842, 843, 844, 2208, 2225],\n \"isetitem\": [2294, 2298, 2302],\n \"isfinit\": 2289,\n \"isin\": [15, 25, 439, 2184, 2194, 2196, 2207, 2218, 2220, 2222, 2228, 2231, 2235, 2236, 2237, 2238, 2241, 2246, 2249, 2255, 2257, 2271, 2274, 2275, 2277, 2283, 2284, 2285, 2289, 2294, 2295, 2297, 2298, 2299, 2302, 2305, 2307],\n \"isinf\": 2289,\n- \"isinst\": [2, 392, 395, 1082, 1088, 1094, 1099, 1106, 1111, 1403, 1404, 2184, 2185, 2186, 2191, 2193, 2194, 2197, 2199, 2201, 2203, 2205, 2208, 2218, 2232, 2261, 2283, 2289, 2294, 2298, 2302, 2307],\n+ \"isinst\": [2, 392, 395, 1082, 1088, 1094, 1099, 1106, 1111, 1403, 1404, 2184, 2185, 2186, 2191, 2194, 2197, 2199, 2201, 2203, 2205, 2208, 2218, 2232, 2261, 2283, 2289, 2294, 2298, 2302, 2307],\n \"isleapyear\": [2232, 2241],\n \"islow\": [836, 837, 838, 839, 841, 842, 843, 844, 2208, 2225],\n \"ismethod\": 2265,\n \"isn\": [5, 13, 17, 77, 133, 708, 1348, 2186, 2190, 2192, 2193, 2197, 2207, 2208, 2210, 2220, 2221, 2232, 2241, 2246, 2250, 2265, 2289],\n \"isna\": [10, 16, 18, 19, 101, 114, 149, 177, 178, 413, 636, 726, 755, 756, 1031, 1042, 1182, 1241, 1415, 1442, 1449, 1450, 2184, 2186, 2188, 2194, 2201, 2203, 2238, 2241, 2246, 2250, 2269, 2271, 2283, 2289, 2298, 2302],\n \"isnan\": [2221, 2289],\n \"isnul\": [148, 725, 2214, 2218, 2219, 2220, 2221, 2225, 2228, 2229, 2232, 2235, 2238, 2250, 2253, 2298],\n@@ -41506,15 +41504,15 @@\n \"logx\": [186, 762, 1188, 1249, 2211, 2215, 2249],\n \"lon\": [10, 1069, 1071, 1072],\n \"london\": [26, 27, 29, 30, 31, 586, 2210, 2221, 2271],\n \"london_mg_per_cub\": 27,\n \"long\": [0, 1, 2, 3, 21, 31, 119, 123, 167, 184, 185, 230, 241, 263, 695, 698, 804, 808, 873, 1345, 1391, 1444, 1445, 1453, 1454, 1469, 1486, 1487, 1488, 1490, 2163, 2166, 2185, 2188, 2190, 2199, 2202, 2204, 2205, 2208, 2210, 2214, 2216, 2218, 2220, 2222, 2225, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2239, 2240, 2241, 2243, 2246, 2249, 2277, 2278, 2289, 2302, 2307, 2308],\n \"long_seri\": 2186,\n \"longdoubl\": 2186,\n- \"longer\": [1, 2, 5, 98, 134, 522, 533, 563, 621, 709, 873, 874, 1118, 1178, 1179, 1180, 1181, 1189, 1200, 1237, 1238, 1239, 1240, 1250, 1261, 1284, 1290, 1295, 1469, 1486, 2185, 2191, 2193, 2197, 2199, 2202, 2210, 2214, 2215, 2217, 2218, 2219, 2220, 2221, 2222, 2224, 2225, 2226, 2228, 2230, 2231, 2233, 2235, 2238, 2242, 2243, 2246, 2247, 2257, 2261, 2263, 2264, 2265, 2266, 2271, 2275, 2277, 2278, 2292, 2294, 2295, 2298, 2302],\n+ \"longer\": [1, 2, 5, 98, 134, 522, 533, 563, 621, 709, 873, 874, 1118, 1178, 1179, 1180, 1181, 1189, 1200, 1237, 1238, 1239, 1240, 1250, 1261, 1284, 1290, 1295, 1469, 1486, 2191, 2193, 2197, 2199, 2202, 2210, 2214, 2215, 2217, 2218, 2219, 2220, 2221, 2222, 2224, 2225, 2226, 2228, 2230, 2231, 2233, 2235, 2238, 2242, 2243, 2246, 2247, 2257, 2261, 2263, 2264, 2265, 2266, 2271, 2275, 2277, 2278, 2292, 2294, 2295, 2298, 2302],\n \"longest\": [32, 923, 2217, 2272],\n \"longitud\": [10, 30, 197, 1069, 1071, 1072],\n \"longlong\": 2186,\n \"longpanel\": [2228, 2246, 2257],\n \"longtabl\": [259, 890, 1345, 1391, 1433, 1488, 1490, 2202, 2220, 2230, 2239, 2277, 2289, 2291, 2298],\n \"longtablebuild\": 2277,\n \"longtim\": 2228,\n@@ -41568,15 +41566,15 @@\n \"ly\": 2210,\n \"lz4\": [256, 263, 888, 2199, 2236],\n \"lz4hc\": [256, 888, 2199, 2236],\n \"lzip\": 2218,\n \"lzma\": [251, 258, 265, 268, 272, 884, 889, 895, 1469, 1476, 1479, 1480, 1485, 1486, 1487, 2213, 2289, 2298, 2302],\n \"lzmafil\": [251, 258, 265, 268, 272, 884, 889, 895, 1469, 1476, 1479, 1480, 1485, 1486, 1487, 2302],\n \"lzo\": [256, 888, 2199],\n- \"m\": [1, 2, 5, 8, 13, 16, 17, 19, 22, 23, 24, 25, 27, 31, 32, 153, 163, 169, 241, 258, 264, 270, 273, 276, 284, 287, 298, 300, 301, 320, 322, 326, 423, 513, 515, 519, 522, 523, 525, 528, 532, 535, 537, 538, 541, 547, 548, 549, 551, 557, 558, 562, 563, 564, 566, 651, 677, 680, 741, 857, 889, 898, 900, 902, 912, 916, 917, 918, 923, 938, 939, 953, 954, 997, 999, 1000, 1008, 1017, 1051, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1338, 1339, 1340, 1341, 1393, 1397, 1430, 1433, 1446, 1452, 1459, 1464, 1469, 1476, 1482, 1483, 1484, 1486, 1492, 1497, 1498, 1500, 1501, 1578, 1657, 1677, 1699, 1720, 1741, 2186, 2188, 2193, 2197, 2199, 2200, 2201, 2203, 2207, 2208, 2209, 2210, 2214, 2216, 2218, 2220, 2221, 2222, 2227, 2228, 2230, 2231, 2232, 2238, 2246, 2249, 2257, 2264, 2265, 2271, 2277, 2294, 2298, 2302],\n+ \"m\": [1, 2, 5, 8, 13, 16, 17, 19, 22, 23, 24, 25, 27, 31, 32, 153, 163, 169, 241, 258, 264, 270, 273, 276, 284, 287, 298, 300, 301, 320, 322, 326, 423, 513, 515, 519, 522, 523, 525, 528, 532, 535, 537, 538, 541, 547, 548, 549, 551, 557, 558, 562, 563, 564, 566, 651, 677, 680, 741, 857, 889, 898, 900, 902, 912, 916, 917, 918, 923, 938, 939, 953, 954, 997, 999, 1000, 1008, 1017, 1051, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1338, 1339, 1340, 1341, 1393, 1397, 1430, 1433, 1446, 1452, 1459, 1464, 1469, 1476, 1482, 1483, 1484, 1486, 1492, 1497, 1498, 1500, 1501, 1578, 1657, 1677, 1699, 1720, 1741, 2185, 2186, 2188, 2193, 2197, 2199, 2200, 2201, 2203, 2205, 2207, 2208, 2209, 2210, 2214, 2216, 2218, 2220, 2221, 2222, 2227, 2228, 2230, 2231, 2232, 2238, 2246, 2249, 2257, 2264, 2265, 2271, 2277, 2294, 2298, 2302],\n \"m8\": [46, 1114, 2210, 2216, 2228, 2230, 2298],\n \"ma\": [2211, 2283, 2298],\n \"mac\": [6, 22],\n \"machin\": [1, 2, 4, 11, 16, 19, 22, 1491, 2193, 2194, 2199, 2289],\n \"maco\": [5, 22, 250, 883, 2246, 2249, 2250, 2278],\n \"macro\": 2277,\n \"mactch\": 2200,\n@@ -43730,15 +43728,15 @@\n \"seri\": [2, 3, 7, 8, 10, 12, 13, 14, 15, 18, 21, 24, 25, 26, 29, 32, 33, 34, 35, 41, 45, 46, 51, 52, 53, 56, 57, 61, 62, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 134, 135, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 181, 182, 183, 186, 190, 191, 193, 194, 195, 196, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 240, 241, 242, 243, 244, 245, 249, 252, 256, 258, 261, 271, 273, 275, 276, 277, 278, 279, 280, 281, 283, 284, 285, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 321, 323, 324, 325, 328, 329, 331, 332, 333, 342, 343, 344, 345, 346, 351, 355, 356, 357, 359, 360, 362, 369, 373, 376, 377, 378, 385, 392, 401, 402, 403, 405, 406, 408, 411, 412, 414, 416, 417, 419, 420, 423, 424, 427, 428, 431, 432, 433, 435, 436, 439, 441, 442, 443, 444, 465, 484, 489, 503, 519, 540, 547, 548, 549, 568, 914, 931, 940, 942, 943, 945, 946, 947, 948, 949, 950, 952, 1027, 1028, 1029, 1030, 1031, 1034, 1035, 1040, 1052, 1060, 1064, 1069, 1071, 1072, 1078, 1081, 1084, 1088, 1093, 1097, 1101, 1104, 1110, 1111, 1112, 1113, 1115, 1117, 1118, 1120, 1122, 1141, 1143, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1199, 1200, 1201, 1202, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1345, 1349, 1350, 1352, 1355, 1358, 1360, 1377, 1382, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1394, 1395, 1396, 1397, 1411, 1430, 1436, 1441, 1442, 1446, 1447, 1448, 1449, 1450, 1456, 1457, 1458, 1460, 1463, 1466, 1467, 1476, 1479, 1488, 1490, 1493, 1494, 1496, 1498, 1499, 1500, 2163, 2165, 2167, 2171, 2172, 2173, 2174, 2179, 2183, 2186, 2187, 2190, 2192, 2193, 2194, 2196, 2197, 2198, 2199, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2209, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2223, 2224, 2225, 2226, 2227, 2229, 2230, 2231, 2233, 2234, 2236, 2237, 2239, 2240, 2242, 2243, 2245, 2247, 2248, 2250, 2251, 2253, 2254, 2255, 2256, 2258, 2259, 2260, 2262, 2263, 2264, 2266, 2267, 2269, 2272, 2273, 2274, 2275, 2276, 2277, 2278, 2279, 2280, 2282, 2284, 2285, 2286, 2287, 2288, 2290, 2291, 2293, 2295, 2296, 2297, 2299, 2300, 2301, 2303, 2304, 2306, 2308, 2309],\n \"serial\": [9, 10, 16, 253, 265, 341, 352, 886, 895, 1431, 1474, 1478, 1479, 2172, 2199, 2202, 2215, 2218, 2226, 2228, 2230, 2231, 2235, 2238, 2239, 2261, 2271, 2285, 2289, 2298, 2302],\n \"serialis\": [258, 889, 2225, 2231],\n \"serializ\": 2199,\n \"series1\": 2185,\n \"series2\": [2185, 2211],\n \"series_gen\": 2194,\n- \"series_gener\": 2194,\n+ \"series_gener\": [2193, 2194],\n \"series_minut\": 2210,\n \"series_monthli\": 2210,\n \"series_second\": 2210,\n \"seriesformatt\": [1345, 1391, 1488, 1490, 2202],\n \"seriesgroupbi\": [186, 205, 223, 709, 762, 778, 798, 1147, 1150, 1151, 1157, 1160, 1161, 1162, 1163, 1165, 1166, 1170, 1171, 1176, 1178, 1180, 1181, 1185, 1186, 1188, 1189, 1195, 1196, 1197, 1199, 1200, 1204, 1205, 1268, 1273, 1277, 1278, 1279, 1284, 1287, 1288, 1292, 1293, 2172, 2195, 2220, 2221, 2228, 2232, 2238, 2241, 2246, 2249, 2265, 2266, 2267, 2269, 2271, 2275, 2276, 2277, 2278, 2284, 2286, 2287, 2288, 2289, 2297, 2299, 2302, 2304, 2307, 2308],\n \"serif\": 2207,\n \"seriou\": 2,\n@@ -43955,15 +43953,15 @@\n \"slight\": [3, 2195],\n \"slightli\": [3, 13, 203, 862, 866, 1387, 2185, 2197, 2199, 2217, 2228, 2277, 2294],\n \"slinear\": [146, 720, 1280, 2218],\n \"sln\": 2191,\n \"sloper\": 25,\n \"slow\": [2, 22, 1345, 1391, 1488, 1490, 1492, 1498, 2186, 2193, 2199, 2202, 2217, 2222, 2232, 2238, 2241, 2253, 2307],\n \"slower\": [1152, 1211, 2193, 2197, 2199, 2202, 2210, 2218, 2228],\n- \"slowest\": [2185, 2193],\n+ \"slowest\": 2193,\n \"slshape\": 1433,\n \"sm\": [1275, 2186, 2210, 2227, 2232, 2307],\n \"small\": [3, 13, 16, 17, 18, 19, 29, 111, 185, 190, 191, 194, 754, 757, 766, 767, 769, 1242, 1243, 1454, 2185, 2186, 2193, 2195, 2199, 2205, 2207, 2210, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2228, 2230, 2232, 2233, 2234, 2236, 2237, 2239, 2241, 2242, 2243, 2245, 2249, 2271, 2277, 2283, 2289, 2294, 2298, 2302],\n \"smaller\": [0, 94, 144, 268, 745, 1345, 1391, 1488, 1490, 1499, 2186, 2188, 2193, 2202, 2207, 2208, 2210, 2211, 2243, 2249],\n \"smallest\": [176, 179, 360, 588, 754, 757, 1191, 1194, 1242, 1243, 1252, 1255, 1499, 2199, 2205, 2235, 2246, 2264, 2294],\n \"smallint\": [2199, 2307],\n \"smart\": [22, 2186, 2277],\n@@ -44793,15 +44791,15 @@\n \"tolist\": [15, 432, 891, 2199, 2222, 2238, 2246, 2289, 2298, 2302],\n \"tolong\": 2241,\n \"tom\": [13, 35, 2199, 2247, 2248, 2294],\n \"tomaugsburg\": 2231,\n \"tomaugspurg\": [13, 35],\n \"toml\": [2, 22, 2238, 2265],\n \"too\": [2, 3, 233, 807, 831, 1196, 1257, 1358, 1469, 1470, 1486, 2197, 2199, 2205, 2207, 2211, 2215, 2217, 2220, 2231, 2241, 2249, 2257, 2274, 2277, 2283, 2289, 2293, 2294, 2298, 2308],\n- \"took\": [2185, 2193, 2199, 2223, 2241],\n+ \"took\": [2193, 2199, 2223, 2241],\n \"tool\": [2, 5, 6, 8, 10, 15, 21, 22, 34, 36, 1146, 1469, 1472, 1486, 2184, 2185, 2186, 2191, 2193, 2195, 2196, 2210, 2220, 2225, 2226, 2232, 2235, 2241, 2246, 2260, 2283, 2298, 2307],\n \"tooltip\": [1402, 1423, 2196, 2283],\n \"toordin\": 2302,\n \"top\": [22, 34, 91, 107, 148, 149, 177, 178, 185, 186, 203, 205, 212, 214, 241, 259, 341, 348, 376, 402, 413, 629, 699, 725, 726, 755, 756, 762, 778, 787, 890, 905, 1036, 1051, 1164, 1188, 1191, 1221, 1249, 1252, 1345, 1387, 1388, 1391, 1400, 1433, 1454, 1458, 1488, 1490, 2167, 2172, 2184, 2186, 2188, 2193, 2195, 2199, 2202, 2204, 2207, 2209, 2211, 2217, 2218, 2220, 2222, 2227, 2230, 2232, 2235, 2238, 2241, 2260, 2264, 2265, 2283, 2289, 2302],\n \"topic\": [0, 4, 13, 35, 2185, 2196],\n \"topmost\": 2204,\n \"toprul\": [259, 890, 1433, 2277],\n@@ -44960,15 +44958,15 @@\n \"tzfile\": [286, 329, 330, 331, 684, 685, 686, 953, 956, 972, 1013, 1014, 2210, 2221],\n \"tzinfo\": [277, 278, 286, 324, 329, 330, 331, 334, 575, 679, 684, 685, 686, 903, 904, 953, 983, 995, 1001, 1004, 1012, 1344, 2210, 2221, 2222, 2238, 2239, 2241, 2283, 2294, 2303],\n \"tzlocal\": [2232, 2246, 2298],\n \"tzname\": 2294,\n \"tzoffset\": 2222,\n \"tzser\": 575,\n \"tzutc\": [2210, 2246],\n- \"u\": [1, 3, 4, 5, 7, 13, 17, 18, 31, 203, 258, 287, 311, 330, 331, 532, 663, 664, 685, 686, 889, 905, 909, 916, 917, 918, 920, 921, 927, 930, 938, 939, 941, 946, 953, 954, 957, 995, 1017, 1085, 1087, 1088, 1204, 1476, 1482, 1483, 1484, 1498, 1500, 2163, 2184, 2185, 2186, 2193, 2194, 2195, 2199, 2203, 2205, 2207, 2208, 2209, 2210, 2218, 2222, 2226, 2228, 2230, 2235, 2238, 2241, 2246, 2249, 2294, 2298, 2302, 2307],\n+ \"u\": [1, 3, 4, 5, 7, 13, 17, 18, 31, 203, 258, 287, 311, 330, 331, 532, 663, 664, 685, 686, 889, 905, 909, 916, 917, 918, 920, 921, 927, 930, 938, 939, 941, 946, 953, 954, 957, 995, 1017, 1085, 1087, 1088, 1204, 1476, 1482, 1483, 1484, 1498, 1500, 2163, 2184, 2185, 2186, 2193, 2194, 2195, 2199, 2203, 2207, 2208, 2209, 2210, 2222, 2226, 2228, 2230, 2235, 2238, 2241, 2246, 2249, 2294, 2298, 2302, 2307],\n \"u1\": [131, 1118, 2185, 2186, 2199],\n \"u4\": 2197,\n \"u5\": 2197,\n \"u8\": 2186,\n \"ubuntu\": 5,\n \"udf\": [72, 73, 77, 273, 581, 582, 586, 900, 1148, 1149, 1152, 1168, 1203, 1207, 1208, 1211, 1225, 1264, 1269, 1270, 1304, 1321, 2195, 2196, 2294],\n \"ufunc\": [10, 586, 808, 1031, 2185, 2186, 2191, 2206, 2213, 2219, 2221, 2232, 2246, 2265, 2277, 2281, 2289, 2293, 2294, 2298, 2307],\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "unified_diff": "@@ -1847,26 +1847,25 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....: \n-The slowest run took 5.75 times longer than the fastest. This could mean that an intermediate result is being cached.\n-440 us +- 381 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-95.1 us +- 5.13 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+3.07 ms +- 323 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+634 us +- 212 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n \n \n
In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n    .....: %timeit ser.take(indexer)\n    .....: \n-160 us +- 8.46 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n-143 us +- 1.9 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+3.37 ms +- 505 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+3.76 ms +- 678 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n \n
\n

Index types#

\n

We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown here,\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -1245,25 +1245,23 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....:\n-The slowest run took 5.75 times longer than the fastest. This could mean that\n-an intermediate result is being cached.\n-440 us +- 381 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-95.1 us +- 5.13 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+3.07 ms +- 323 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+634 us +- 212 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n .....: %timeit ser.take(indexer)\n .....:\n-160 us +- 8.46 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n-143 us +- 1.9 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+3.37 ms +- 505 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+3.76 ms +- 678 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n *\b**\b**\b**\b**\b* I\bIn\bnd\bde\bex\bx t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b**\b*\n We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown _\bh_\be_\br_\be, and\n documentation about TimedeltaIndex is found _\bh_\be_\br_\be.\n In the following sub-sections we will highlight some other index types.\n *\b**\b**\b**\b* C\bCa\bat\bte\beg\bgo\bor\bri\bic\bca\bal\blI\bIn\bnd\bde\bex\bx_\b#\b# *\b**\b**\b**\b*\n _\bC_\ba_\bt_\be_\bg_\bo_\br_\bi_\bc_\ba_\bl_\bI_\bn_\bd_\be_\bx is a type of index that is useful for supporting indexing with\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "unified_diff": "@@ -592,31 +592,31 @@\n ...: s += f(a + i * dx)\n ...: return s * dx\n ...: \n \n \n

We achieve our result by using DataFrame.apply() (row-wise):

\n
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)\n-73.9 ms +- 3.3 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+1.06 s +- 161 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n

Let\u2019s take a look and see where the time is spent during this operation\n using the prun ipython magic function:

\n
# most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 0.240 seconds\n+         605946 function calls (605928 primitive calls) in 3.519 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.147    0.000    0.209    0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n-   552423    0.063    0.000    0.063    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n-     3000    0.005    0.000    0.020    0.000 series.py:1095(__getitem__)\n-     3000    0.003    0.000    0.009    0.000 series.py:1220(_get_value)\n+     1000    1.890    0.002    2.710    0.003 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n+   552423    0.820    0.000    0.820    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n+     3000    0.140    0.000    0.141    0.000 base.py:3777(get_loc)\n+     3000    0.134    0.000    0.321    0.000 series.py:1220(_get_value)\n 
\n
\n

By far the majority of time is spend inside either integrate_f or f,\n hence we\u2019ll concentrate our efforts cythonizing these two functions.

\n
\n
\n

Plain Cython#

\n@@ -634,15 +634,15 @@\n ...: for i in range(N):\n ...: s += f_plain(a + i * dx)\n ...: return s * dx\n ...: \n \n \n
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)\n-69.3 ms +- 225 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+783 ms +- 99.7 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n

This has improved the performance compared to the pure Python approach by one-third.

\n
\n
\n

Declaring C types#

\n

We can annotate the function variables and return types as well as use cdef\n@@ -658,36 +658,36 @@\n ....: for i in range(N):\n ....: s += f_typed(a + i * dx)\n ....: return s * dx\n ....: \n \n \n

In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-9.29 ms +- 30.4 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+185 ms +- 11.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n

Annotating the functions with C types yields an over ten times performance improvement compared to\n the original Python implementation.

\n
\n
\n

Using ndarray#

\n

When re-profiling, time is spent creating a Series from each row, and calling __getitem__ from both\n the index and the series (three times for each row). These Python function calls are expensive and\n can be improved by passing an np.ndarray.

\n
In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.029 seconds\n+         52523 function calls (52505 primitive calls) in 0.472 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.005    0.000    0.019    0.000 series.py:1095(__getitem__)\n-     3000    0.003    0.000    0.008    0.000 series.py:1220(_get_value)\n-    16098    0.003    0.000    0.004    0.000 {built-in method builtins.isinstance}\n-     3000    0.003    0.000    0.003    0.000 base.py:3777(get_loc)\n+     3000    0.065    0.000    0.065    0.000 base.py:3777(get_loc)\n+     1001    0.059    0.000    0.142    0.000 apply.py:1247(series_generator)\n+     3000    0.055    0.000    0.126    0.000 series.py:1220(_get_value)\n+     3000    0.052    0.000    0.234    0.000 series.py:1095(__getitem__)\n 
\n
\n
In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n@@ -722,33 +722,33 @@\n 
\n

This implementation creates an array of zeros and inserts the result\n of integrate_f_typed applied over each row. Looping over an ndarray is faster\n in Cython than looping over a Series object.

\n

Since apply_integrate_f is typed to accept an np.ndarray, Series.to_numpy()\n calls are needed to utilize this function.

\n
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-1.3 ms +- 12.8 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+12.4 ms +- 2.77 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

Performance has improved from the prior implementation by almost ten times.

\n
\n
\n

Disabling compiler directives#

\n

The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s boundscheck\n and wraparound checks can yield more performance.

\n
In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-         78 function calls in 0.002 seconds\n+         78 function calls in 0.003 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-        1    0.002    0.002    0.002    0.002 <string>:1(<module>)\n+        1    0.003    0.003    0.003    0.003 <string>:1(<module>)\n         1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}\n-        1    0.000    0.000    0.002    0.002 {built-in method builtins.exec}\n+        1    0.000    0.000    0.003    0.003 {built-in method builtins.exec}\n         3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n 
\n
\n
In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n@@ -782,15 +782,15 @@\n                  from /build/reproducible-path/pandas-2.2.3+dfsg/buildtmp/.cache/ipython/cython/_cython_magic_883da8958ecc60be73b28b7124368f9c7cc2d174.c:1251:\n /usr/lib/x86_64-linux-gnu/python3-numpy/numpy/_core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]\n    17 | #warning "Using deprecated NumPy API, disable it with " \\\n       |  ^~~~~~~\n 
\n
\n
In [17]: %timeit apply_integrate_f_wrap(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-985 us +- 4.28 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+8.09 ms +- 588 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

However, a loop indexer i accessing an invalid location in an array would cause a segfault because memory access isn\u2019t checked.\n For more about boundscheck and wraparound, see the Cython docs on\n compiler directives.

\n
\n \n@@ -1148,19 +1148,19 @@\n compared to standard Python syntax for large DataFrame. This engine requires the\n optional dependency numexpr to be installed.

\n

The 'python' engine is generally not useful except for testing\n other evaluation engines against it. You will achieve no performance\n benefits using eval() with engine='python' and may\n incur a performance hit.

\n
In [40]: %timeit df1 + df2 + df3 + df4\n-11.2 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+229 ms +- 37.6 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")\n-11.3 ms +- 197 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+211 ms +- 27.5 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n \n
\n

The DataFrame.eval() method#

\n

In addition to the top level pandas.eval() function you can also\n evaluate an expression in the \u201ccontext\u201d of a DataFrame.

\n@@ -1275,40 +1275,41 @@\n
In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]\n 
\n
\n

DataFrame arithmetic:

\n
In [60]: %timeit df1 + df2 + df3 + df4\n-11 ms +- 2.27 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+The slowest run took 7.23 times longer than the fastest. This could mean that an intermediate result is being cached.\n+334 ms +- 340 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")\n-4.66 ms +- 171 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+85.7 ms +- 9.65 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

DataFrame comparison:

\n
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-7.91 ms +- 1.22 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+182 ms +- 32.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")\n-7.3 ms +- 821 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+90.4 ms +- 12.8 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

DataFrame arithmetic with unaligned axes.

\n
In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-The slowest run took 12.94 times longer than the fastest. This could mean that an intermediate result is being cached.\n-103 ms +- 90.7 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+The slowest run took 15.90 times longer than the fastest. This could mean that an intermediate result is being cached.\n+2.76 s +- 1.83 s per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")\n-8.6 ms +- 3.44 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+72.7 ms +- 7.86 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
\n

Note

\n

Operations such as

\n
1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -110,32 +110,32 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f(a + i * dx)\n    ...:     return s * dx\n    ...:\n We achieve our result by using _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\ba_\bp_\bp_\bl_\by_\b(_\b) (row-wise):\n In [5]: %timeit df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]), axis=1)\n-73.9 ms +- 3.3 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+1.06 s +- 161 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n Let\u2019s take a look and see where the time is spent during this operation using\n the _\bp_\br_\bu_\bn_\b _\bi_\bp_\by_\bt_\bh_\bo_\bn_\b _\bm_\ba_\bg_\bi_\bc_\b _\bf_\bu_\bn_\bc_\bt_\bi_\bo_\bn:\n # most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 0.240 seconds\n+         605946 function calls (605928 primitive calls) in 3.519 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.147    0.000    0.209    0.000 :1\n+     1000    1.890    0.002    2.710    0.003 :1\n (integrate_f)\n-   552423    0.063    0.000    0.063    0.000 :1\n+   552423    0.820    0.000    0.820    0.000 :1\n (f)\n-     3000    0.005    0.000    0.020    0.000 series.py:1095(__getitem__)\n-     3000    0.003    0.000    0.009    0.000 series.py:1220(_get_value)\n+     3000    0.140    0.000    0.141    0.000 base.py:3777(get_loc)\n+     3000    0.134    0.000    0.321    0.000 series.py:1220(_get_value)\n By far the majority of time is spend inside either integrate_f or f, hence\n we\u2019ll concentrate our efforts cythonizing these two functions.\n *\b**\b**\b**\b* P\bPl\bla\bai\bin\bn C\bCy\byt\bth\bho\bon\bn_\b#\b# *\b**\b**\b**\b*\n First we\u2019re going to need to import the Cython magic function to IPython:\n In [7]: %load_ext Cython\n Now, let\u2019s simply copy our functions over to Cython:\n In [8]: %%cython\n@@ -146,15 +146,15 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f_plain(a + i * dx)\n    ...:     return s * dx\n    ...:\n In [9]: %timeit df.apply(lambda x: integrate_f_plain(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-69.3 ms +- 225 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+783 ms +- 99.7 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n This has improved the performance compared to the pure Python approach by one-\n third.\n *\b**\b**\b**\b* D\bDe\bec\bcl\bla\bar\bri\bin\bng\bg C\bC t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b*\n We can annotate the function variables and return types as well as use cdef and\n cpdef to improve performance:\n In [10]: %%cython\n    ....: cdef double f_typed(double x) except? -2:\n@@ -166,35 +166,34 @@\n    ....:     dx = (b - a) / N\n    ....:     for i in range(N):\n    ....:         s += f_typed(a + i * dx)\n    ....:     return s * dx\n    ....:\n In [11]: %timeit df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-9.29 ms +- 30.4 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+185 ms +- 11.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n Annotating the functions with C types yields an over ten times performance\n improvement compared to the original Python implementation.\n *\b**\b**\b**\b* U\bUs\bsi\bin\bng\bg n\bnd\bda\bar\brr\bra\bay\by_\b#\b# *\b**\b**\b**\b*\n When re-profiling, time is spent creating a _\bS_\be_\br_\bi_\be_\bs from each row, and calling\n __getitem__ from both the index and the series (three times for each row).\n These Python function calls are expensive and can be improved by passing an\n np.ndarray.\n In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x\n [\"N\"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.029 seconds\n+         52523 function calls (52505 primitive calls) in 0.472 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.005    0.000    0.019    0.000 series.py:1095(__getitem__)\n-     3000    0.003    0.000    0.008    0.000 series.py:1220(_get_value)\n-    16098    0.003    0.000    0.004    0.000 {built-in method\n-builtins.isinstance}\n-     3000    0.003    0.000    0.003    0.000 base.py:3777(get_loc)\n+     3000    0.065    0.000    0.065    0.000 base.py:3777(get_loc)\n+     1001    0.059    0.000    0.142    0.000 apply.py:1247(series_generator)\n+     3000    0.055    0.000    0.126    0.000 series.py:1220(_get_value)\n+     3000    0.052    0.000    0.234    0.000 series.py:1095(__getitem__)\n In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n    ....: cpdef double integrate_f_typed(double a, double b, int N):\n    ....:     cdef int i\n@@ -235,31 +234,31 @@\n This implementation creates an array of zeros and inserts the result of\n integrate_f_typed applied over each row. Looping over an ndarray is faster in\n Cython than looping over a _\bS_\be_\br_\bi_\be_\bs object.\n Since apply_integrate_f is typed to accept an np.ndarray, _\bS_\be_\br_\bi_\be_\bs_\b._\bt_\bo_\b__\bn_\bu_\bm_\bp_\by_\b(_\b)\n calls are needed to utilize this function.\n In [14]: %timeit apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(), df\n [\"N\"].to_numpy())\n-1.3 ms +- 12.8 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+12.4 ms +- 2.77 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n Performance has improved from the prior implementation by almost ten times.\n *\b**\b**\b**\b* D\bDi\bis\bsa\bab\bbl\bli\bin\bng\bg c\bco\bom\bmp\bpi\bil\ble\ber\br d\bdi\bir\bre\bec\bct\bti\biv\bve\bes\bs_\b#\b# *\b**\b**\b**\b*\n The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s\n boundscheck and wraparound checks can yield more performance.\n In [15]: %prun -l 4 apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n-         78 function calls in 0.002 seconds\n+         78 function calls in 0.003 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-        1    0.002    0.002    0.002    0.002 :1()\n+        1    0.003    0.003    0.003    0.003 :1()\n         1    0.000    0.000    0.000    0.000 {method 'disable' of\n '_lsprof.Profiler' objects}\n-        1    0.000    0.000    0.002    0.002 {built-in method builtins.exec}\n+        1    0.000    0.000    0.003    0.003 {built-in method builtins.exec}\n         3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:\n    ....:     return x * (x - 1)\n@@ -298,15 +297,15 @@\n /usr/lib/x86_64-linux-gnu/python3-numpy/numpy/_core/include/numpy/\n npy_1_7_deprecated_api.h:17:2: warning: #warning \"Using deprecated NumPy API,\n disable it with \" \"#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION\" [-Wcpp]\n    17 | #warning \"Using deprecated NumPy API, disable it with \" \\\n       |  ^~~~~~~\n In [17]: %timeit apply_integrate_f_wrap(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n-985 us +- 4.28 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+8.09 ms +- 588 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n However, a loop indexer i accessing an invalid location in an array would cause\n a segfault because memory access isn\u2019t checked. For more about boundscheck and\n wraparound, see the Cython docs on _\bc_\bo_\bm_\bp_\bi_\bl_\be_\br_\b _\bd_\bi_\br_\be_\bc_\bt_\bi_\bv_\be_\bs.\n *\b**\b**\b**\b**\b* N\bNu\bum\bmb\bba\ba (\b(J\bJI\bIT\bT c\bco\bom\bmp\bpi\bil\bla\bat\bti\bio\bon\bn)\b)_\b#\b# *\b**\b**\b**\b**\b*\n An alternative to statically compiling Cython code is to use a dynamic just-in-\n time (JIT) compiler with _\bN_\bu_\bm_\bb_\ba.\n Numba allows you to write a pure Python function which can be JIT compiled to\n@@ -609,17 +608,17 @@\n The 'numexpr' engine is the more performant engine that can yield performance\n improvements compared to standard Python syntax for large _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be. This\n engine requires the optional dependency numexpr to be installed.\n The 'python' engine is generally n\bno\bot\bt useful except for testing other evaluation\n engines against it. You will achieve n\bno\bo performance benefits using _\be_\bv_\ba_\bl_\b(_\b) with\n engine='python' and may incur a performance hit.\n In [40]: %timeit df1 + df2 + df3 + df4\n-11.2 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+229 ms +- 37.6 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [41]: %timeit pd.eval(\"df1 + df2 + df3 + df4\", engine=\"python\")\n-11.3 ms +- 197 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+211 ms +- 27.5 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n *\b**\b**\b**\b* T\bTh\bhe\be _\bD\bD_\ba\ba_\bt\bt_\ba\ba_\bF\bF_\br\br_\ba\ba_\bm\bm_\be\be_\b.\b._\be\be_\bv\bv_\ba\ba_\bl\bl_\b(\b(_\b)\b) m\bme\bet\bth\bho\bod\bd_\b#\b# *\b**\b**\b**\b*\n In addition to the top level _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) function you can also evaluate an\n expression in the \u201ccontext\u201d of a _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be.\n In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=[\"a\", \"b\"])\n \n In [43]: df.eval(\"a + b\")\n Out[43]:\n@@ -716,31 +715,33 @@\n _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) works well with expressions containing large arrays.\n In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for\n _ in range(4)]\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic:\n In [60]: %timeit df1 + df2 + df3 + df4\n-11 ms +- 2.27 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+The slowest run took 7.23 times longer than the fastest. This could mean that\n+an intermediate result is being cached.\n+334 ms +- 340 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [61]: %timeit pd.eval(\"df1 + df2 + df3 + df4\")\n-4.66 ms +- 171 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+85.7 ms +- 9.65 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be comparison:\n In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-7.91 ms +- 1.22 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+182 ms +- 32.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [63]: %timeit pd.eval(\"(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\")\n-7.3 ms +- 821 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+90.4 ms +- 12.8 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic with unaligned axes.\n In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-The slowest run took 12.94 times longer than the fastest. This could mean that\n+The slowest run took 15.90 times longer than the fastest. This could mean that\n an intermediate result is being cached.\n-103 ms +- 90.7 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+2.76 s +- 1.83 s per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [66]: %timeit pd.eval(\"df1 + df2 + df3 + df4 + s\")\n-8.6 ms +- 3.44 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+72.7 ms +- 7.86 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Note\n Operations such as\n 1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n ~1  # this is okay, but slower when using eval\n should be performed in Python. An exception will be raised if you try to\n perform any boolean/bitwise operations with scalar operands that are not of\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "unified_diff": "@@ -1086,16 +1086,16 @@\n    ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")\n    ....: counts = pd.Series(dtype=int)\n    ....: for path in files:\n    ....:     df = pd.read_parquet(path)\n    ....:     counts = counts.add(df["name"].value_counts(), fill_value=0)\n    ....: counts.astype(int)\n    ....: \n-CPU times: user 417 us, sys: 277 us, total: 694 us\n-Wall time: 704 us\n+CPU times: user 0 ns, sys: 2 ms, total: 2 ms\n+Wall time: 10 ms\n Out[32]: Series([], dtype: int64)\n 
\n
\n

Some readers, like pandas.read_csv(), offer parameters to control the\n chunksize when reading a single file.

\n

Manually chunking is an OK option for workflows that don\u2019t\n require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby(), are\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -644,16 +644,16 @@\n ....: files = pathlib.Path(\"data/timeseries/\").glob(\"ts*.parquet\")\n ....: counts = pd.Series(dtype=int)\n ....: for path in files:\n ....: df = pd.read_parquet(path)\n ....: counts = counts.add(df[\"name\"].value_counts(), fill_value=0)\n ....: counts.astype(int)\n ....:\n-CPU times: user 417 us, sys: 277 us, total: 694 us\n-Wall time: 704 us\n+CPU times: user 0 ns, sys: 2 ms, total: 2 ms\n+Wall time: 10 ms\n Out[32]: Series([], dtype: int64)\n Some readers, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\br_\be_\ba_\bd_\b__\bc_\bs_\bv_\b(_\b), offer parameters to control the chunksize\n when reading a single file.\n Manually chunking is an OK option for workflows that don\u2019t require too\n sophisticated of operations. Some operations, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\bg_\br_\bo_\bu_\bp_\bb_\by_\b(_\b),\n are much harder to do chunkwise. In these cases, you may be better switching to\n a different library that implements these out-of-core algorithms for you.\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "unified_diff": null, "details": [{"source1": "style.ipynb", "source2": "style.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9985610875706213%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2025-03-06T13:38:12.093316Z', \"", " \"'iopub.status.busy': '2025-03-06T13:38:12.092674Z', 'iopub.status.idle': \"", " \"'2025-03-06T13:38:16.843011Z', 'shell.execute_reply': \"", " \"'2025-03-06T13:38:16.827148Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2025-03-06T13:38:16.873338Z', 'iopub.status.busy': \"", " \"'2025-03-06T13:38:16.872585Z', 'iopub.status.idle': '2025-03-06T13:38:2 [\u2026]"], "unified_diff": "@@ -39,18 +39,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-04-08T16:41:16.089910Z\",\n- \"iopub.status.busy\": \"2026-04-08T16:41:16.089546Z\",\n- \"iopub.status.idle\": \"2026-04-08T16:41:16.537613Z\",\n- \"shell.execute_reply\": \"2026-04-08T16:41:16.536878Z\"\n+ \"iopub.execute_input\": \"2025-03-06T13:38:12.093316Z\",\n+ \"iopub.status.busy\": \"2025-03-06T13:38:12.092674Z\",\n+ \"iopub.status.idle\": \"2025-03-06T13:38:16.843011Z\",\n+ \"shell.execute_reply\": \"2025-03-06T13:38:16.827148Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot\\n\",\n \"# We have this here to trigger matplotlib's font cache stuff.\\n\",\n@@ -77,36 +77,36 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-04-08T16:41:16.540623Z\",\n- \"iopub.status.busy\": \"2026-04-08T16:41:16.540275Z\",\n- \"iopub.status.idle\": \"2026-04-08T16:41:16.791038Z\",\n- \"shell.execute_reply\": \"2026-04-08T16:41:16.790054Z\"\n+ \"iopub.execute_input\": \"2025-03-06T13:38:16.873338Z\",\n+ \"iopub.status.busy\": \"2025-03-06T13:38:16.872585Z\",\n+ \"iopub.status.idle\": \"2025-03-06T13:38:21.371109Z\",\n+ \"shell.execute_reply\": \"2025-03-06T13:38:21.354911Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import pandas as pd\\n\",\n \"import numpy as np\\n\",\n \"import matplotlib as mpl\\n\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-04-08T16:41:16.793964Z\",\n- \"iopub.status.busy\": \"2026-04-08T16:41:16.793607Z\",\n- \"iopub.status.idle\": \"2026-04-08T16:41:17.111208Z\",\n- \"shell.execute_reply\": \"2026-04-08T16:41:17.110279Z\"\n+ \"iopub.execute_input\": \"2025-03-06T13:38:21.405209Z\",\n+ \"iopub.status.busy\": \"2025-03-06T13:38:21.404404Z\",\n+ \"iopub.status.idle\": \"2025-03-06T13:38:22.862919Z\",\n+ \"shell.execute_reply\": \"2025-03-06T13:38:22.846794Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\\n\",\n \"from pandas.io.formats.style import Styler\\n\",\n@@ -123,18 +123,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-04-08T16:41:17.114950Z\",\n- \"iopub.status.busy\": \"2026-04-08T16:41:17.114568Z\",\n- \"iopub.status.idle\": \"2026-04-08T16:41:17.126077Z\",\n- \"shell.execute_reply\": \"2026-04-08T16:41:17.125185Z\"\n+ \"iopub.execute_input\": \"2025-03-06T13:38:22.889146Z\",\n+ \"iopub.status.busy\": \"2025-03-06T13:38:22.888415Z\",\n+ \"iopub.status.idle\": \"2025-03-06T13:38:22.986871Z\",\n+ \"shell.execute_reply\": \"2025-03-06T13:38:22.974773Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/html\": [\n \"