{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.t98XxlKw/b1/sfepy_2025.2-1_amd64.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.t98XxlKw/b2/sfepy_2025.2-1_amd64.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,4 +1,4 @@\n \n- 11fa288f600ecb9c535c5ddc4bdc0c46 12573936 doc optional python-sfepy-doc_2025.2-1_all.deb\n+ c6f9a9a7700630c2323cd50c363d60e1 12576660 doc optional python-sfepy-doc_2025.2-1_all.deb\n 8fe6dbc6ad6247324558933d88f7793a 5804920 debug optional python3-sfepy-dbgsym_2025.2-1_amd64.deb\n 1d19454bc79e57729ad3d81c5faff2d3 4695044 python optional python3-sfepy_2025.2-1_amd64.deb\n"}, {"source1": "python-sfepy-doc_2025.2-1_all.deb", "source2": "python-sfepy-doc_2025.2-1_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2025-07-07 22:05:05.000000 debian-binary\n -rw-r--r-- 0 0 0 27988 2025-07-07 22:05:05.000000 control.tar.xz\n--rw-r--r-- 0 0 0 12545756 2025-07-07 22:05:05.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 12548480 2025-07-07 22:05:05.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,13 +1,13 @@\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./usr/\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./usr/share/\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./usr/share/doc/\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/\n--rw-r--r-- 0 root (0) root (0) 3849324 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/SfePy.pdf.gz\n+-rw-r--r-- 0 root (0) root (0) 3849236 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/SfePy.pdf.gz\n -rw-r--r-- 0 root (0) root (0) 2125 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/changelog.Debian.gz\n -rw-r--r-- 0 root (0) root (0) 1802 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/copyright\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/examples/\n -rw-r--r-- 0 root (0) root (0) 0 2025-07-06 21:11:10.000000 ./usr/share/doc/python-sfepy-doc/examples/__init__.py\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/examples/acoustics/\n -rw-r--r-- 0 root (0) root (0) 0 2025-07-06 21:11:10.000000 ./usr/share/doc/python-sfepy-doc/examples/acoustics/__init__.py\n -rw-r--r-- 0 root (0) root (0) 1751 2025-07-06 21:11:10.000000 ./usr/share/doc/python-sfepy-doc/examples/acoustics/acoustics.py\n"}, {"source1": "./usr/share/doc/python-sfepy-doc/SfePy.pdf.gz", "source2": "./usr/share/doc/python-sfepy-doc/SfePy.pdf.gz", "unified_diff": null, "details": [{"source1": "SfePy.pdf", "source2": "SfePy.pdf", "unified_diff": null, "details": [{"source1": "pdftotext {} -", "source2": "pdftotext {} -", "unified_diff": "@@ -1313,64 +1313,64 @@\n \n basis\n \n region kind\n \n description\n \n-L2\n H1\n \n-constant\n bernstein\n \n cell, facet\n-cell, facet\n \n H1\n \n iga\n \n cell\n \n H1\n H1\n H1\n H1\n H1\n H1\n+L2\n DG\n \n lagrange\n lagrange_discontinuous\n lobatto\n sem\n serendipity\n shell10x\n+constant\n legendre_discontinuous\n \n cell, facet\n cell\n cell\n cell, facet\n cell, facet\n cell\n+cell, facet\n cell\n \n-The L2 constant-in-a-region approximation.\n Bernstein basis approximation with positive-only basis function\n values.\n Bezier extraction based NURBS approximation for isogeometric\n analysis.\n Lagrange basis nodal approximation.\n The C0 constant-per-cell approximation.\n Hierarchical basis approximation with Lobatto polynomials.\n Spectral element method approximation.\n Lagrange basis nodal serendipity approximation with order <= 3.\n The approximation for the shell10x element.\n+The L2 constant-in-a-region approximation.\n Discontinuous Galerkin method approximation with Legendre\n basis.\n \n Variables\n Variables use the FE approximation given by the specified field:\n variables = {\n : (, , , [])\n@@ -5126,20 +5126,19 @@\n \n \u03a9\n \n \u222b\ufe01\n \ud835\udc5e \ud835\udefc\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\n \u03a9\n \n-bio.npb,\n-bio,\n+bio, bio.sho.syn,\n+bio.npb.lag,\n the.ela,\n the.ela.ess,\n-bio.sho.syn,\n-bio.npb.lag\n+bio.npb\n \n \u222b\ufe01\n \u2212\n \n \ud835\udefc\ud835\udc56\ud835\udc57 \ud835\udc5d\n \u03a9\n \n@@ -5225,16 +5224,17 @@\n \u0393\n \n ela.con.sph\n \u222b\ufe01\n \ud835\udc63 \u00b7 \ud835\udc53 (\ud835\udc51(\ud835\udc62))\ud835\udc5b(\ud835\udc62)\n \u0393\n \n+nav.sto,\n nav.sto.iga,\n-nav.sto, nav.sto\n+nav.sto\n \n \u222b\ufe01\n ((\ud835\udc62 \u00b7 \u2207)\ud835\udc62) \u00b7 \ud835\udc63\n \u03a9\n \n dw_convect_v_grad_s\n ,\n@@ -5263,19 +5263,20 @@\n dw_dg_advect_laxfrie_flux\n ,\n AdvectionDGFluxTerm\n ,\n ,\n \n \n-adv.dif.2D,\n-adv.2D, adv.1D\n-\n \u222b\ufe01\n \n+adv.2D,\n+adv.dif.2D,\n+adv.1D\n+\n \ud835\udc5b \u00b7 \ud835\udc53 * (\ud835\udc5d\ud835\udc56\ud835\udc5b , \ud835\udc5d\ud835\udc5c\ud835\udc62\ud835\udc61 )\ud835\udc5e\n \n \ud835\udf15\ud835\udc47\ud835\udc3e\n \n where\n \ud835\udc53 * (\ud835\udc5d\ud835\udc56\ud835\udc5b , \ud835\udc5d\ud835\udc5c\ud835\udc62\ud835\udc61 ) = \ud835\udc4e\n dw_dg_diffusion_flux\n@@ -5402,22 +5403,22 @@\n \n \u222b\ufe01\n \n \ud835\udc5d\ud835\udc3e\ud835\udc57 \u2207\ud835\udc57 \ud835\udc5e ,\n \n \u03a9\n \n-bio.npb, pie.ela,\n vib.aco,\n bio,\n-pie.ela,\n-dar.flo.mul,\n poi.neu,\n bio.sho.syn,\n-bio.npb.lag\n+bio.npb.lag,\n+dar.flo.mul,\n+bio.npb, pie.ela,\n+pie.ela\n \n \u222b\ufe01\n \ud835\udc5e\ud835\udc3e\ud835\udc57 \u2207\ud835\udc57 \ud835\udc5d\n \u03a9\n \n \u222b\ufe01\n \ud835\udc3e\ud835\udc57 \u2207\ud835\udc57 \ud835\udc5e\n@@ -5547,37 +5548,40 @@\n \n \ud835\udc9f\n \n \ud835\udc9f\n \n \ud835\udc9f\n \n-nav.sto,\n-nav.sto.iga,\n sto.sli.bc, nav.sto,\n-sto, sta.nav.sto\n-pie.ela, vib.aco,\n-wel, lin.ela.up,\n-hyd, tim.poi.exp,\n+nav.sto.iga,\n+sto,\n+nav.sto,\n+sta.nav.sto\n+tim.poi, ref.evp,\n+adv.2D, hel.apa,\n+aco,\n+poi.fun,\n+mod.ana.dec,\n poi.per.bou.con,\n+sto.sli.bc,\n+bor,\n+vib.aco,\n+tim.poi.exp,\n pie.ela,\n+the.ele, pie.ela,\n+lin.ela.dam,\n+lin.ela.up,\n+bal,\n aco,\n-mod.ana.dec,\n-tim.poi, adv.1D,\n-dar.flo.mul,\n-ref.evp,\n+bur.2D,\n+dar.flo.mul, hyd,\n tim.hea.equ.mul.mat,\n-bur.2D, hel.apa,\n-poi.fun, bal, bor,\n osc, tim.adv.dif,\n-adv.2D,\n-sto.sli.bc,\n-aco,\n-the.ele,\n-lin.ela.dam\n+wel, adv.1D\n \n \u222b\ufe01\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc54\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc54\ud835\udc58\ud835\udc59 (\ud835\udc62)\n \u03a9\n \n \u222b\ufe01\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc54\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n@@ -5682,20 +5686,21 @@\n IntegrateMatTerm\n \n \ud835\udc66,\n \n \ud835\udc9f\n \n vib.aco,\n+aco,\n+aco,\n+poi.neu,\n poi.per.bou.con,\n dar.flo.mul,\n-poi.neu,\n-aco,\n tim.hea.equ.mul.mat,\n-hel.apa, aco\n+hel.apa\n \n \u222b\ufe01\n \ud835\udc50\n \ud835\udc9f\n \n dw_jump\n ,\n@@ -5729,37 +5734,41 @@\n ,\n ,\n \n \n examples\n-lap.tim.ebc,\n+lap.1d, tim.poi,\n+poi.fie.dep.mat,\n+ref.evp,\n+cub,\n+poi.iga, hel.apa,\n+poi, aco, poi.fun,\n+sin,\n+lap.2D,\n+poi.per.bou.con,\n+sto.sli.bc,\n+bor,\n vib.aco,\n-lap.cou.lcb,\n-wel, poi, hyd,\n tim.poi.exp,\n-poi.per.bou.con,\n-poi.fie.dep.mat,\n-aco,\n-tim.poi,\n-poi.par.stu, sin,\n+lap.tim.ebc,\n+poi.par.stu,\n+lap.flu.2d,\n+lap.cou.lcb,\n+the.ela.ess,\n adv.dif.2D,\n-ref.evp,\n-tim.hea.equ.mul.mat,\n-poi.iga, bur.2D,\n-hel.apa,\n+the.ele,\n+aco,\n+bur.2D,\n+hyd,\n poi.sho.syn,\n-cub, poi.fun, bor,\n+tim.hea.equ.mul.mat,\n osc, tim.adv.dif,\n-the.ela.ess,\n-sto.sli.bc,\n-lap.flu.2d, aco,\n-lap.2D, the.ele,\n-lap.1d\n+wel\n sta.nav.sto\n \n \u222b\ufe01\n \ud835\udc50\u2207\ud835\udc5e \u00b7 \u2207\ud835\udc5d\n \u03a9\n \n dw_lin_convect\n@@ -5866,45 +5875,48 @@\n param_2>\n dw_lin_prestress\n ,\n LinearPrestressTerm\n \n \n-pie.ela, vib.aco,\n-bio,\n-the.ela,\n-ela.con.sph,\n-mul.poi.con,\n-sei.loa, lin.ela.up,\n-pie.ela.mac,\n-bio.npb.lag, its.1,\n+its.4,\n+mat.non,\n+nod.lcb,\n+lin.ela.mM,\n two.bod.con,\n-bio.npb,\n-its.3,\n-lin.ela.opt,\n-pie.ela,\n-lin.ela.tra,\n wed.mes,\n mix.mes,\n-ela.con.pla, its.2,\n+bio,\n+mul.poi.con,\n+lin.ela.iga,\n mod.ana.dec,\n-lin.vis, nod.lcb,\n-lin.ela.mM, its.4,\n+lin.ela,\n bio.sho.syn,\n-pre.fib,\n+lin.ela.tra,\n+bio.npb.lag,\n mul.nod.lcb,\n-ela.shi.per,\n-ela,\n-tru.bri,\n+ela.con.sph, its.3,\n+ela.con.pla,\n+vib.aco,\n+lin.ela.opt, its.1,\n+its.2,\n+pre.fib,\n the.ela.ess,\n-lin.ela, mat.non,\n-lin.ela.iga,\n+com.ela.mat,\n+pie.ela,\n+ela,\n+pie.ela.mac,\n+pie.ela,\n lin.ela.dam,\n-com.ela.mat\n+lin.ela.up,\n+the.ela, lin.vis,\n+bio.npb, tru.bri,\n+ela.shi.per,\n+sei.loa\n \n \u222b\ufe01\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n \u03a9\n \n \u222b\ufe01\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n@@ -5919,15 +5931,14 @@\n pre.fib,\n pie.ela.mac,\n non.hyp.mM\n \n \u03a9\n \n continues on next page\n-\n 1.8. Term Overview\n \n 107\n \n \fSfePy Documentation, Release version: 2025.2\n \n Table 5 \u2013 continued from previous page\n@@ -6133,19 +6144,19 @@\n \ud835\udc53 \ud835\udc56 = \u2212\ud835\udc58\ud835\udc62\ud835\udc56\n \n dw_s_dot_grad_i_s ,\n ScalarDotGradIScalarTerm\n ,\n \n \n-its.1,\n-she.can,\n-its.3,\n its.4,\n-tru.bri, its.2\n+tru.bri,\n+its.1,\n+its.2,\n+she.can, its.3\n \n \u2200 FE node \ud835\udc56 in a region\n \n \ud835\udc56\n \n \u222b\ufe01\n \n@@ -6163,19 +6174,21 @@\n \n \n \u222b\ufe01\n \u03a9\n \n \ud835\udc5e\ud835\udc66 \u00b7 \u2207\ud835\udc5d ,\n \n-adv.dif.2D,\n-adv.2D, adv.1D\n-\n \u222b\ufe01\n \ud835\udc5d\ud835\udc66 \u00b7 \u2207\ud835\udc5e\n+\n+adv.2D,\n+adv.dif.2D,\n+adv.1D\n+\n \u03a9\n \n continues on next page\n \n 1.8. Term Overview\n \n 109\n@@ -6227,21 +6240,23 @@\n \u222b\ufe01 \u03a9\n \u222b\ufe01 \u03a9\n or\n \ud835\udc50\ud835\udc5d\u2207\u00b7\ud835\udc63,\n \ud835\udc50\ud835\udc5e\u2207\u00b7\ud835\udc62\n \u03a9\n \n+\u03a9\n+\n+sto.sli.bc,\n+lin.ela.up,\n nav.sto,\n nav.sto.iga,\n-sto.sli.bc, nav.sto,\n-sto, sta.nav.sto,\n-lin.ela.up\n-\n-\u03a9\n+sto,\n+nav.sto,\n+sta.nav.sto\n \n \u222b\ufe01\n (\ud835\udf05 \u00b7 \ud835\udc63)(\ud835\udf05 \u00b7 \ud835\udc62)\n \u03a9\n \n dw_stokes_wave_div,\n StokesWaveDivTerm\n@@ -6297,28 +6312,28 @@\n ev_surface_moment ,\n SurfaceMomentTerm\n \n \n \ud835\udc63 \u00b7 \ud835\udc5b,\n \u0393\n \n-lin.vis, nod.lcb,\n-lin.ela.opt,\n-lin.ela.tra, tru.bri,\n-wed.mes,\n mix.mes,\n-ela.shi.per,\n-com.ela.mat\n+lin.ela.opt,\n+lin.ela.tra,\n+nod.lcb,\n+wed.mes, lin.vis,\n+com.ela.mat,\n+tru.bri,\n+ela.shi.per\n \n \u222b\ufe01\n \ud835\udc5b(\ud835\udc65 \u2212 \ud835\udc650 )\n \u0393\n \n continues on next page\n-\n 110\n \n Chapter 1. Documentation\n \n \fSfePy Documentation, Release version: 2025.2\n \n Table 5 \u2013 continued from previous page\n@@ -6425,22 +6440,22 @@\n NonlinearVolumeForceTerm\n ,\n ,\n \n \n \u222b\ufe01\n \ud835\udc53\ud835\udc5e\n-\u03a9\n \n-bur.2D,\n-adv.dif.2D,\n+bur.2D, poi.iga,\n poi.par.stu,\n-poi.iga\n-poi.non.mat\n+adv.dif.2D\n \n+\u03a9\n+\n+poi.non.mat\n \u222b\ufe01\n \ud835\udc5e\ud835\udc53 (\ud835\udc5d)\n \u03a9\n \n ev_volume_surface \n VolumeSurfaceTerm\n \n@@ -6520,18 +6535,20 @@\n \n \ud835\udc64\ud835\udeff\ud835\udc62 \u03a8(\ud835\udc62) \u2218 \ud835\udc63\n \n \u222b\ufe01\n [\ud835\udc62\ud835\udc58\n \u03a9\n \n-ev_sd_diffusion\n+de_sd_diffusion\n ,\n-SDDiffusionTerm ,\n-,\n+ESDDiffusionTerm,\n+,\n \n \n \ud835\udf15\ud835\udc62\ud835\udc56\n \ud835\udf15\ud835\udcb1\ud835\udc57 \ud835\udf15\ud835\udc62\ud835\udc56\n \ud835\udc64\ud835\udc56 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc62\ud835\udc58\n \ud835\udc64\ud835\udc56 ]\n \ud835\udf15\ud835\udc65\ud835\udc58\n@@ -6549,25 +6566,18 @@\n \ud835\udf15\ud835\udcb1\ud835\udc56\n \ud835\udf15\ud835\udcb1\ud835\udc57\n \u02c6\n \ud835\udc3e\ud835\udc56\ud835\udc57 = \ud835\udc3e\ud835\udc56\ud835\udc57 \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc59 \u2207 \u00b7 \ud835\udcb1 \u2212 \ud835\udeff\ud835\udc56\ud835\udc58\n \u2212 \ud835\udeff\ud835\udc57\ud835\udc59\n \ud835\udf15\ud835\udc65\ud835\udc59\n \ud835\udf15\ud835\udc65\ud835\udc58\n-de_sd_diffusion\n-,\n-ESDDiffusionTerm,\n-,\n-\n-ev_sd_div\n-SDDivTerm\n \n-,\n+ev_sd_diffusion\n+,\n+SDDiffusionTerm ,\n ,\n \n \n \u222b\ufe01\n \n \u02c6 \ud835\udc56\ud835\udc57 \u2207\ud835\udc56 \ud835\udc5e \u2207\ud835\udc57 \ud835\udc5d\n \ud835\udc3e\n@@ -6576,14 +6586,20 @@\n \n (\ufe02\n )\ufe02\n \u02c6 \ud835\udc56\ud835\udc57 = \ud835\udc3e\ud835\udc56\ud835\udc57 \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc59 \u2207 \u00b7 \ud835\udcb1 \u2212 \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udf15\ud835\udcb1\ud835\udc57 \u2212 \ud835\udeff\ud835\udc57\ud835\udc59 \ud835\udf15\ud835\udcb1\ud835\udc56\n \ud835\udc3e\n \ud835\udf15\ud835\udc65\ud835\udc59\n \ud835\udf15\ud835\udc65\ud835\udc58\n+ev_sd_div\n+SDDivTerm\n+\n+,\n+,\n+\n \n \u222b\ufe01\n \ud835\udc5d[(\u2207 \u00b7 \ud835\udc64)(\u2207 \u00b7 \ud835\udcb1) \u2212\n \u03a9\n \n \ud835\udf15\ud835\udcb1\ud835\udc58 \ud835\udf15\ud835\udc64\ud835\udc56\n ]\n@@ -6599,24 +6615,22 @@\n Table 6 \u2013 continued from previous page\n name/class\n \n arguments\n \n definition\n \n-de_sd_div_grad\n-,\n-ESDDivGradTerm ,\n-,\n-\n ev_sd_div_grad\n SDDivGradTerm\n \n+,\n+,\n+,\n+\n+\n examples\n \n \u222b\ufe01\n \n \u02c6\n : \u2207\ud835\udc62 ,\n \ud835\udc3c\u2207\ud835\udc63\n@@ -6633,18 +6647,29 @@\n \n \ud835\udf15\ud835\udcb1\ud835\udc59\n \ud835\udf15\ud835\udcb1\ud835\udc58\n \ud835\udc3c\u02c6\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 = \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc59 \u2207 \u00b7 \ud835\udcb1 \u2212 \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc60\n \u2212 \ud835\udeff\ud835\udc56\ud835\udc60 \ud835\udeff\ud835\udc57\ud835\udc59\n \ud835\udf15\ud835\udc65\ud835\udc60\n \ud835\udf15\ud835\udc65\ud835\udc60\n+de_sd_div_grad\n+,\n+ESDDivGradTerm ,\n+,\n+\n+de_sd_dot\n+ESDDotTerm\n \n ,\n-,\n-,\n+,\n+,\n \n \n \u222b\ufe01\n \n \u02c6\n : \u2207\ud835\udc62 ,\n \ud835\udc3c\u2207\ud835\udc63\n@@ -6661,23 +6686,14 @@\n \n \ud835\udf15\ud835\udcb1\ud835\udc59\n \ud835\udf15\ud835\udcb1\ud835\udc58\n \ud835\udc3c\u02c6\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 = \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc59 \u2207 \u00b7 \ud835\udcb1 \u2212 \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc60\n \u2212 \ud835\udeff\ud835\udc56\ud835\udc60 \ud835\udeff\ud835\udc57\ud835\udc59\n \ud835\udf15\ud835\udc65\ud835\udc60\n \ud835\udf15\ud835\udc65\ud835\udc60\n-de_sd_dot\n-ESDDotTerm\n-\n-,\n-,\n-,\n-\n \n \u222b\ufe01\n \n \u222b\ufe01\n \n \ud835\udc5e\ud835\udc5d(\u2207 \u00b7 \ud835\udcb1) ,\n (\ud835\udc63 \u00b7 \ud835\udc62)(\u2207 \u00b7 \ud835\udcb1)\n@@ -6702,48 +6718,48 @@\n \n \u222b\ufe01\n \n \ud835\udc5d\ud835\udc5e(\u2207 \u00b7 \ud835\udcb1) ,\n \n \u03a9\n \n+de_sd_lin_elastic ,\n+ESDLinearElasticTerm\n+,\n+,\n+\n ev_sd_lin_elastic ,\n SDLinearElasticTerm\n ,\n ,\n \n \n \u222b\ufe01\n (\ud835\udc62 \u00b7 \ud835\udc64)(\u2207 \u00b7 \ud835\udcb1)\n \u03a9\n \n \u222b\ufe01\n \n-\u02c6 \ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n+\u02c6 \ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udf15\ud835\udc63\ud835\udc56 \ud835\udf15\ud835\udc62\ud835\udc58\n \ud835\udc37\n-\n+\ud835\udf15\ud835\udc65\ud835\udc57 \ud835\udf15\ud835\udc65\ud835\udc59\n \u03a9\n \n \u02c6 \ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 = \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc5e \ud835\udf15\ud835\udcb1\ud835\udc59 \u2212 \ud835\udc37\ud835\udc56\ud835\udc5e\ud835\udc58\ud835\udc59 \ud835\udf15\ud835\udcb1\ud835\udc57\n \ud835\udc37\n \ud835\udf15\ud835\udc65\ud835\udc5e\n \ud835\udf15\ud835\udc65\ud835\udc5e\n-de_sd_lin_elastic ,\n-ESDLinearElasticTerm\n-,\n-,\n-\n \n \u222b\ufe01\n \n-\u02c6 \ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udf15\ud835\udc63\ud835\udc56 \ud835\udf15\ud835\udc62\ud835\udc58\n+\u02c6 \ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n \ud835\udc37\n-\ud835\udf15\ud835\udc65\ud835\udc57 \ud835\udf15\ud835\udc65\ud835\udc59\n+\n \u03a9\n \n \u02c6 \ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 = \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc5e \ud835\udf15\ud835\udcb1\ud835\udc59 \u2212 \ud835\udc37\ud835\udc56\ud835\udc5e\ud835\udc58\ud835\udc59 \ud835\udf15\ud835\udcb1\ud835\udc57\n \ud835\udc37\n \ud835\udf15\ud835\udc65\ud835\udc5e\n \ud835\udf15\ud835\udc65\ud835\udc5e\n continues on next page\n@@ -6757,96 +6773,93 @@\n Table 6 \u2013 continued from previous page\n name/class\n \n arguments\n \n definition\n \n+examples\n+\n+ev_sd_piezo_coupling\n+,\n+SDPiezoCouplingTerm\n+,\n+,\n+\n+\n+\u222b\ufe01\n+\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\u2207\ud835\udc58 \ud835\udc5d\n+\u03a9\n+\n+\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 = \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc59\n de_sd_piezo_coupling\n ,\n ESDPiezoCouplingTerm\n ,\n ,\n \n ,\n ,\n ,\n \n-ev_sd_piezo_coupling\n-,\n-SDPiezoCouplingTerm\n-,\n-,\n+de_sd_stokes\n+,\n+ESDStokesTerm ,\n+,\n+\n+,\n+,\n+,\n+\n+ev_sd_surface_integrate\n+,\n+SDSufaceIntegrateTerm\n \n-\n-examples\n \n \u222b\ufe01\n \n \ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\u2207\ud835\udc58 \ud835\udc5d ,\n \n-\u222b\ufe01\n-\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\u2207\ud835\udc58 \ud835\udc5e\n-\n-\u03a9\n-\n-\u03a9\n-\n-\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 = \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc59\n-\n \ud835\udf15\ud835\udcb1\ud835\udc57\n \ud835\udf15\ud835\udcb1\ud835\udc58\n \u2212 \ud835\udc54\ud835\udc59\ud835\udc56\ud835\udc57\n \ud835\udf15\ud835\udc65\ud835\udc59\n \ud835\udf15\ud835\udc65\ud835\udc59\n \n \u222b\ufe01\n-\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\u2207\ud835\udc58 \ud835\udc5d\n-\u03a9\n-\n-\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 = \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc59\n+\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\u2207\ud835\udc58 \ud835\udc5e\n \n-\ud835\udf15\ud835\udcb1\ud835\udc58\n-\ud835\udf15\ud835\udcb1\ud835\udc57\n-\u2212 \ud835\udc54\ud835\udc59\ud835\udc56\ud835\udc57\n-\ud835\udf15\ud835\udc65\ud835\udc59\n-\ud835\udf15\ud835\udc65\ud835\udc59\n+\u03a9\n \n-de_sd_stokes\n-ESDStokesTerm\n+\u03a9\n \n-,\n-,\n-,\n-\n-,\n-,\n-,\n-\n-ev_sd_surface_integrate\n-,\n-SDSufaceIntegrateTerm\n-\n+\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 = \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc59\n \n \u222b\ufe01\n \n \ud835\udc5d \ud835\udc3c\u02c6\ud835\udc56\ud835\udc57\n \n \u03a9\n \n \ud835\udf15\ud835\udc63\ud835\udc56\n ,\n \ud835\udf15\ud835\udc65\ud835\udc57\n \n \u222b\ufe01\n \n+\ud835\udf15\ud835\udcb1\ud835\udc57\n+\ud835\udf15\ud835\udcb1\ud835\udc58\n+\u2212 \ud835\udc54\ud835\udc59\ud835\udc56\ud835\udc57\n+\ud835\udf15\ud835\udc65\ud835\udc59\n+\ud835\udf15\ud835\udc65\ud835\udc59\n+\n \ud835\udc5e \ud835\udc3c\u02c6\ud835\udc56\ud835\udc57\n \n \u03a9\n \n \ud835\udf15\ud835\udc62\ud835\udc56\n \ud835\udf15\ud835\udc65\ud835\udc57\n \n@@ -6854,50 +6867,50 @@\n \ud835\udc3c\u02c6\ud835\udc56\ud835\udc57 = \ud835\udeff\ud835\udc56\ud835\udc57 \u2207 \u00b7 \ud835\udcb1 \u2212\n \ud835\udf15\ud835\udc65\ud835\udc56\n \n \u222b\ufe01\n \ud835\udc5d\u2207 \u00b7 \ud835\udcb1\n \u0393\n \n+ev_sd_surface_ltr ,\n+SDLinearTractionTerm\n+,\n+\n+\n+\u222b\ufe01\n+\n+\u222b\ufe01\n+\ud835\udc63 \u00b7 (\ud835\udf0e \ud835\udc5b),\n+\n+\u0393\n+\n de_sd_surface_ltr ,\n ESDLinearTractionTerm\n ,\n \n \n \u222b\ufe01\n \ud835\udc63\u00b7\n \n+\ud835\udc63 \u00b7 \ud835\udc5b,\n+\u0393\n+\n [\ufe00(\ufe00\n )\ufe00 ]\ufe00\n \ud835\udf0e\n \u02c6\u2207\u00b7\ud835\udcb1 \u2212\ud835\udf0e\n \u02c6 \u2207\ud835\udcb1 \ud835\udc5b\n \n \u0393\n \n \ud835\udf0e\n \u02c6 =\ud835\udc3c ,\ud835\udf0e\n \u02c6 = \ud835\udc50 \ud835\udc3c or \ud835\udf0e\n \u02c6=\ud835\udf0e\n-ev_sd_surface_ltr ,\n-SDLinearTractionTerm\n-,\n-\n-\n-\u222b\ufe01\n-\n-\u222b\ufe01\n-\ud835\udc63 \u00b7 (\ud835\udf0e \ud835\udc5b),\n-\n-\u0393\n-\n-\ud835\udc63 \u00b7 \ud835\udc5b,\n-\u0393\n-\n continues on next page\n \n 1.8. Term Overview\n \n 115\n \n \fSfePy Documentation, Release version: 2025.2\n@@ -6983,15 +6996,15 @@\n \u03a9\n \n dw_tl_bulk_pressure,\n BulkPressureTLTerm\n ,\n \n \n-bal, per.tl\n+per.tl, bal\n \u222b\ufe01\n \ud835\udc46\ud835\udc56\ud835\udc57 (\ud835\udc5d)\ud835\udeff\ud835\udc38\ud835\udc56\ud835\udc57 (\ud835\udc62; \ud835\udc63)\n \u03a9\n \n dw_tl_diffusion\n ,\n DiffusionTLTerm ,\n@@ -7073,31 +7086,28 @@\n dw_tl_he_mooney_rivlin\n ,\n MooneyRivlinTLTerm\n ,\n \n \n examples\n-bal,\n hyp,\n+bal,\n com.ela.mat\n \n \u222b\ufe01\n \ud835\udc46\ud835\udc56\ud835\udc57 (\ud835\udc62)\ud835\udeff\ud835\udc38\ud835\udc56\ud835\udc57 (\ud835\udc62; \ud835\udc63)\n \u03a9\n \n dw_tl_he_neohook ,\n NeoHookeanTLTerm,\n \n \n-bal,\n-hyp,\n-act.fib,\n-per.tl,\n-com.ela.mat\n+per.tl, bal, act.fib,\n+hyp, com.ela.mat\n \n \u222b\ufe01\n \ud835\udc46\ud835\udc56\ud835\udc57 (\ud835\udc62)\ud835\udeff\ud835\udc38\ud835\udc56\ud835\udc57 (\ud835\udc62; \ud835\udc63)\n \u03a9\n \n dw_tl_he_ogden\n OgdenTLTerm\n@@ -7144,15 +7154,15 @@\n \ud835\udf08 \u00b7 \ud835\udc39 \u22121 \u00b7 \ud835\udf0e \u00b7 \ud835\udc63\ud835\udc3d\n \n \u0393\n \n dw_tl_volume\n VolumeTLTerm\n \n-bal, per.tl\n+per.tl, bal\n \n ,\n \n \u222b\ufe00\n \n \ud835\udc5e\ud835\udc3d(\ud835\udc62)\n \u03a9\n"}]}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/_sources/field_table.rst.txt", "source2": "./usr/share/doc/python-sfepy-doc/html/_sources/field_table.rst.txt", "comments": ["Ordering differences only"], "unified_diff": "@@ -5,18 +5,14 @@\n :widths: 5 15 15 65\n :header-rows: 1\n \n * - space\n - basis\n - region kind\n - description\n- * - L2\n- - constant\n- - :class:`cell `, :class:`facet `\n- - The L2 constant-in-a-region approximation.\n * - H1\n - bernstein\n - :class:`cell `, :class:`facet `\n - Bernstein basis approximation with positive-only basis function values.\n * - H1\n - iga\n - :class:`cell `\n@@ -41,12 +37,16 @@\n - serendipity\n - :class:`cell `, :class:`facet `\n - Lagrange basis nodal serendipity approximation with order <= 3.\n * - H1\n - shell10x\n - :class:`cell `\n - The approximation for the shell10x element.\n+ * - L2\n+ - constant\n+ - :class:`cell `, :class:`facet `\n+ - The L2 constant-in-a-region approximation.\n * - DG\n - legendre_discontinuous\n - :class:`cell `\n - Discontinuous Galerkin method approximation with Legendre basis.\n \n"}, {"source1": "./usr/share/doc/python-sfepy-doc/html/_sources/term_table.rst.txt", "source2": "./usr/share/doc/python-sfepy-doc/html/_sources/term_table.rst.txt", "unified_diff": "@@ -37,15 +37,15 @@\n :class:`BiotTerm `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n \\int_{\\Omega} p\\ \\alpha_{ij} e_{ij}(\\ul{v}) \\mbox{ , }\n \\int_{\\Omega} q\\ \\alpha_{ij} e_{ij}(\\ul{u})\n- - :ref:`bio.npb.lag `, :ref:`the.ela.ess `, :ref:`bio.npb `, :ref:`the.ela `, :ref:`bio.sho.syn `, :ref:`bio `\n+ - :ref:`the.ela `, :ref:`the.ela.ess `, :ref:`bio.npb `, :ref:`bio `, :ref:`bio.sho.syn `, :ref:`bio.npb.lag `\n * - ev_biot_stress\n \n :class:`BiotStressTerm `\n - ````, ````\n - .. math::\n - \\int_{\\Omega} \\alpha_{ij} p\n - \n@@ -94,15 +94,15 @@\n - :ref:`ela.con.sph `\n * - dw_convect\n \n :class:`ConvectTerm `\n - ````, ````\n - .. math::\n \\int_{\\Omega} ((\\ul{u} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}\n- - :ref:`nav.sto.iga `, :ref:`nav.sto `, :ref:`nav.sto `\n+ - :ref:`nav.sto `, :ref:`nav.sto `, :ref:`nav.sto.iga `\n * - dw_convect_v_grad_s\n \n :class:`ConvectVGradSTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} q (\\ul{u} \\cdot \\nabla p)\n - :ref:`poi.fun `\n@@ -125,15 +125,15 @@\n \n where\n \n \n .. math::\n \\ul{f}^{*}(p_{in}, p_{out}) = \\ul{a} \\frac{p_{in} +\n p_{out}}{2} + (1 - \\alpha) \\ul{n} C \\frac{ p_{in} - p_{out}}{2},\n- - :ref:`adv.dif.2D `, :ref:`adv.2D `, :ref:`adv.1D `\n+ - :ref:`adv.1D `, :ref:`adv.dif.2D `, :ref:`adv.2D `\n * - dw_dg_diffusion_flux\n \n :class:`DiffusionDGFluxTerm `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n@@ -145,29 +145,29 @@\n \n .. math::\n \\langle \\nabla \\phi \\rangle = \\frac{\\nabla\\phi_{in} +\n \\nabla\\phi_{out}}{2}\n \n .. math::\n [\\phi] = \\phi_{in} - \\phi_{out}\n- - :ref:`adv.dif.2D `, :ref:`bur.2D `, :ref:`lap.2D `\n+ - :ref:`lap.2D `, :ref:`adv.dif.2D `, :ref:`bur.2D `\n * - dw_dg_interior_penalty\n \n :class:`DiffusionInteriorPenaltyTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\partial{T_K}} \\bar{D} C_w\n \\frac{Ord^2}{d(\\partial{T_K})}[p][q]\n \n where\n \n \n .. math::\n [\\phi] = \\phi_{in} - \\phi_{out}\n- - :ref:`adv.dif.2D `, :ref:`bur.2D `, :ref:`lap.2D `\n+ - :ref:`lap.2D `, :ref:`adv.dif.2D `, :ref:`bur.2D `\n * - dw_dg_nonlinear_laxfrie_flux\n \n :class:`NonlinearHyperbolicDGFluxTerm `\n - ````, ````, ````, ````, ````\n - .. math::\n \\int_{\\partial{T_K}} \\ul{n} \\cdot f^{*} (p_{in}, p_{out})q\n \n@@ -181,15 +181,15 @@\n - :ref:`bur.2D `\n * - dw_diffusion\n \n :class:`DiffusionTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} K_{ij} \\nabla_i q \\nabla_j p\n- - :ref:`bio.npb.lag `, :ref:`pie.ela `, :ref:`vib.aco `, :ref:`bio.npb `, :ref:`dar.flo.mul `, :ref:`poi.neu `, :ref:`bio.sho.syn `, :ref:`bio `, :ref:`pie.ela `\n+ - :ref:`dar.flo.mul `, :ref:`vib.aco `, :ref:`pie.ela `, :ref:`poi.neu `, :ref:`pie.ela `, :ref:`bio.npb `, :ref:`bio `, :ref:`bio.sho.syn `, :ref:`bio.npb.lag `\n * - dw_diffusion_coupling\n \n :class:`DiffusionCoupling `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n@@ -206,49 +206,49 @@\n * - ev_diffusion_velocity\n \n :class:`DiffusionVelocityTerm `\n - ````, ````\n - .. math::\n - \\int_{\\cal{D}} K_{ij} \\nabla_j p\n - \n- * - dw_div\n-\n- :class:`DivOperatorTerm `\n- - ````, ````\n- - .. math::\n- \\int_{\\Omega} \\nabla \\cdot \\ul{v} \\mbox { or }\n- \\int_{\\Omega} c \\nabla \\cdot \\ul{v}\n- - \n * - ev_div\n \n :class:`DivTerm `\n - ````, ````\n - .. math::\n \\int_{\\cal{D}} \\nabla \\cdot \\ul{u} \\mbox { , }\n \\int_{\\cal{D}} c \\nabla \\cdot \\ul{u}\n - \n+ * - dw_div\n+\n+ :class:`DivOperatorTerm `\n+ - ````, ````\n+ - .. math::\n+ \\int_{\\Omega} \\nabla \\cdot \\ul{v} \\mbox { or }\n+ \\int_{\\Omega} c \\nabla \\cdot \\ul{v}\n+ - \n * - dw_div_grad\n \n :class:`DivGradTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\nu\\ \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{ ,\n } \\int_{\\Omega} \\nabla \\ul{v} : \\nabla \\ul{u}\n- - :ref:`sto `, :ref:`nav.sto.iga `, :ref:`sto.sli.bc `, :ref:`nav.sto `, :ref:`sta.nav.sto `, :ref:`nav.sto `\n+ - :ref:`nav.sto.iga `, :ref:`nav.sto `, :ref:`sto `, :ref:`nav.sto `, :ref:`sta.nav.sto `, :ref:`sto.sli.bc `\n * - dw_dot\n \n :class:`DotProductTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\cal{D}} q p \\mbox{ , } \\int_{\\cal{D}} \\ul{v} \\cdot\n \\ul{u}\\\\ \\int_\\Gamma \\ul{v} \\cdot \\ul{n} p \\mbox{ , } \\int_\\Gamma\n q \\ul{n} \\cdot \\ul{u} \\mbox{ , }\\\\ \\int_{\\cal{D}} c q p \\mbox{ , }\n \\int_{\\cal{D}} c \\ul{v} \\cdot \\ul{u} \\mbox{ , } \\int_{\\cal{D}}\n \\ul{v} \\cdot \\ull{c} \\cdot \\ul{u}\n- - :ref:`pie.ela `, :ref:`wel `, :ref:`tim.hea.equ.mul.mat `, :ref:`bal `, :ref:`pie.ela `, :ref:`poi.fun `, :ref:`tim.poi.exp `, :ref:`aco `, :ref:`bor `, :ref:`mod.ana.dec `, :ref:`hel.apa `, :ref:`tim.adv.dif `, :ref:`aco `, :ref:`osc `, :ref:`tim.poi `, :ref:`lin.ela.dam `, :ref:`adv.2D `, :ref:`bur.2D `, :ref:`ref.evp `, :ref:`poi.per.bou.con `, :ref:`lin.ela.up `, :ref:`vib.aco `, :ref:`the.ele `, :ref:`sto.sli.bc `, :ref:`dar.flo.mul `, :ref:`adv.1D `, :ref:`hyd `\n+ - :ref:`the.ele `, :ref:`bal `, :ref:`tim.poi.exp `, :ref:`bor `, :ref:`dar.flo.mul `, :ref:`pie.ela `, :ref:`osc `, :ref:`sto.sli.bc `, :ref:`tim.poi `, :ref:`vib.aco `, :ref:`adv.1D `, :ref:`lin.ela.dam `, :ref:`adv.2D `, :ref:`hyd `, :ref:`mod.ana.dec `, :ref:`lin.ela.up `, :ref:`wel `, :ref:`tim.adv.dif `, :ref:`tim.hea.equ.mul.mat `, :ref:`ref.evp `, :ref:`aco `, :ref:`poi.per.bou.con `, :ref:`aco `, :ref:`hel.apa `, :ref:`poi.fun `, :ref:`pie.ela `, :ref:`bur.2D `\n * - dw_elastic_wave\n \n :class:`ElasticWaveTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} D_{ijkl}\\ g_{ij}(\\ul{v}) g_{kl}(\\ul{u})\n - \n@@ -290,15 +290,15 @@\n - \n * - dw_integrate\n \n :class:`IntegrateOperatorTerm `\n - ````, ````\n - .. math::\n \\int_{\\cal{D}} q \\mbox{ or } \\int_{\\cal{D}} c q\n- - :ref:`poi.per.bou.con `, :ref:`vib.aco `, :ref:`aco `, :ref:`dar.flo.mul `, :ref:`poi.neu `, :ref:`aco `, :ref:`tim.hea.equ.mul.mat `, :ref:`hel.apa `\n+ - :ref:`dar.flo.mul `, :ref:`vib.aco `, :ref:`aco `, :ref:`hel.apa `, :ref:`poi.neu `, :ref:`tim.hea.equ.mul.mat `, :ref:`poi.per.bou.con `, :ref:`aco `\n * - ev_integrate_mat\n \n :class:`IntegrateMatTerm `\n - ````, ````\n - .. math::\n \\int_{\\cal{D}} c\n - \n@@ -311,15 +311,15 @@\n - :ref:`aco `\n * - dw_laplace\n \n :class:`LaplaceTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} c \\nabla q \\cdot \\nabla p\n- - :ref:`sin `, :ref:`wel `, :ref:`lap.flu.2d `, :ref:`poi.sho.syn `, :ref:`lap.1d `, :ref:`tim.hea.equ.mul.mat `, :ref:`poi.par.stu `, :ref:`poi.iga `, :ref:`poi.fie.dep.mat `, :ref:`cub `, :ref:`poi.fun `, :ref:`tim.poi.exp `, :ref:`aco `, :ref:`bor `, :ref:`poi `, :ref:`hel.apa `, :ref:`the.ela.ess `, :ref:`tim.adv.dif `, :ref:`aco `, :ref:`lap.2D `, :ref:`osc `, :ref:`tim.poi `, :ref:`adv.dif.2D `, :ref:`lap.tim.ebc `, :ref:`lap.cou.lcb `, :ref:`bur.2D `, :ref:`ref.evp `, :ref:`poi.per.bou.con `, :ref:`vib.aco `, :ref:`the.ele `, :ref:`sto.sli.bc `, :ref:`hyd `\n+ - :ref:`the.ele `, :ref:`lap.tim.ebc `, :ref:`tim.poi.exp `, :ref:`cub `, :ref:`bor `, :ref:`lap.cou.lcb `, :ref:`osc `, :ref:`lap.flu.2d `, :ref:`tim.poi `, :ref:`poi.fie.dep.mat `, :ref:`sto.sli.bc `, :ref:`vib.aco `, :ref:`poi `, :ref:`hyd `, :ref:`poi.iga `, :ref:`sin `, :ref:`wel `, :ref:`tim.adv.dif `, :ref:`tim.hea.equ.mul.mat `, :ref:`poi.sho.syn `, :ref:`the.ela.ess `, :ref:`ref.evp `, :ref:`aco `, :ref:`poi.per.bou.con `, :ref:`aco `, :ref:`lap.2D `, :ref:`hel.apa `, :ref:`poi.fun `, :ref:`adv.dif.2D `, :ref:`lap.1d `, :ref:`bur.2D `, :ref:`poi.par.stu `\n * - dw_lin_convect\n \n :class:`LinearConvectTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} ((\\ul{w} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}\n \n@@ -356,15 +356,15 @@\n - :ref:`mul.poi.con `\n * - dw_lin_elastic\n \n :class:`LinearElasticTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\n- - :ref:`bio.npb.lag `, :ref:`pie.ela `, :ref:`mat.non `, :ref:`its.4 `, :ref:`com.ela.mat `, :ref:`ela.con.pla `, :ref:`its.2 `, :ref:`sei.loa `, :ref:`pie.ela `, :ref:`lin.ela.mM `, :ref:`lin.ela.opt `, :ref:`ela.con.sph `, :ref:`lin.ela.iga `, :ref:`pie.ela.mac `, :ref:`mod.ana.dec `, :ref:`the.ela.ess `, :ref:`wed.mes `, :ref:`mul.nod.lcb `, :ref:`lin.ela `, :ref:`lin.ela.tra `, :ref:`ela `, :ref:`the.ela `, :ref:`lin.ela.dam `, :ref:`pre.fib `, :ref:`bio `, :ref:`lin.ela.up `, :ref:`vib.aco `, :ref:`bio.npb `, :ref:`nod.lcb `, :ref:`ela.shi.per `, :ref:`its.1 `, :ref:`lin.vis `, :ref:`mix.mes `, :ref:`mul.poi.con `, :ref:`two.bod.con `, :ref:`its.3 `, :ref:`tru.bri `, :ref:`bio.sho.syn `\n+ - :ref:`lin.ela.iga `, :ref:`its.4 `, :ref:`pre.fib `, :ref:`lin.ela.mM `, :ref:`mat.non `, :ref:`ela.con.pla `, :ref:`com.ela.mat `, :ref:`mix.mes `, :ref:`the.ela `, :ref:`pie.ela `, :ref:`sei.loa `, :ref:`lin.ela.opt `, :ref:`lin.ela `, :ref:`mul.nod.lcb `, :ref:`two.bod.con `, :ref:`vib.aco `, :ref:`ela `, :ref:`lin.ela.dam `, :ref:`its.2 `, :ref:`its.3 `, :ref:`mod.ana.dec `, :ref:`lin.ela.up `, :ref:`wed.mes `, :ref:`the.ela.ess `, :ref:`ela.con.sph `, :ref:`pie.ela.mac `, :ref:`nod.lcb `, :ref:`its.1 `, :ref:`bio.npb.lag `, :ref:`tru.bri `, :ref:`lin.vis `, :ref:`mul.poi.con `, :ref:`pie.ela `, :ref:`lin.ela.tra `, :ref:`ela.shi.per `, :ref:`bio.npb `, :ref:`bio `, :ref:`bio.sho.syn `\n * - dw_lin_elastic_iso\n \n :class:`LinearElasticIsotropicTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\\\\\n \\mbox{ with } \\\\ D_{ijkl} = \\mu (\\delta_{ik}\n@@ -373,15 +373,15 @@\n - \n * - dw_lin_prestress\n \n :class:`LinearPrestressTerm `\n - ````, ````\n - .. math::\n \\int_{\\Omega} \\sigma_{ij} e_{ij}(\\ul{v})\n- - :ref:`non.hyp.mM `, :ref:`pre.fib `, :ref:`pie.ela.mac `\n+ - :ref:`pre.fib `, :ref:`pie.ela.mac `, :ref:`non.hyp.mM `\n * - dw_lin_spring\n \n :class:`LinearSpringTerm `\n - ````, ````, ````\n - .. math::\n \\ul{f}^{(i)} = - \\ul{f}^{(j)} = k (\\ul{u}^{(j)} -\n \\ul{u}^{(i)})\\\\ \\quad \\forall \\mbox{ elements } T_K^{i,j}\\\\ \\mbox{\n@@ -398,15 +398,15 @@\n \n :class:`LinearTrussTerm `\n - ````, ````, ````\n - .. math::\n F^{(i)} = -F^{(j)} = EA / l (U^{(j)} - U^{(i)})\\\\ \\quad\n \\forall \\mbox{ elements } T_K^{i,j}\\\\ \\mbox{ in a region\n connecting nodes } i, j\n- - :ref:`tru.bri `, :ref:`tru.bri `\n+ - :ref:`tru.bri `, :ref:`tru.bri `\n * - ev_lin_truss_force\n \n :class:`LinearTrussInternalForceTerm `\n - ````, ````\n - .. math::\n F = EA / l (U^{(j)} - U^{(i)})\\\\ \\quad \\forall \\mbox{\n elements } T_K^{i,j}\\\\ \\mbox{ in a region connecting nodes } i, j\n@@ -461,15 +461,15 @@\n :class:`PiezoCouplingTerm `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n \\int_{\\Omega} g_{kij}\\ e_{ij}(\\ul{v}) \\nabla_k p\\\\\n \\int_{\\Omega} g_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k q\n- - :ref:`pie.ela `, :ref:`pie.ela `\n+ - :ref:`pie.ela `, :ref:`pie.ela `\n * - ev_piezo_strain\n \n :class:`PiezoStrainTerm `\n - ````, ````\n - .. math::\n \\int_{\\Omega} g_{kij} e_{ij}(\\ul{u})\n - \n@@ -483,15 +483,15 @@\n * - dw_point_load\n \n :class:`ConcentratedPointLoadTerm `\n - ````, ````\n - .. math::\n \\ul{f}^i = \\ul{\\bar f}^i \\quad \\forall \\mbox{ FE node } i\n \\mbox{ in a region }\n- - :ref:`she.can `, :ref:`tru.bri `, :ref:`its.4 `, :ref:`its.1 `, :ref:`its.2 `, :ref:`its.3 `\n+ - :ref:`its.2 `, :ref:`its.3 `, :ref:`its.4 `, :ref:`she.can `, :ref:`tru.bri `, :ref:`its.1 `\n * - dw_point_lspring\n \n :class:`LinearPointSpringTerm `\n - ````, ````, ````\n - .. math::\n \\ul{f}^i = -k \\ul{u}^i \\quad \\forall \\mbox{ FE node } i\n \\mbox{ in a region }\n@@ -508,15 +508,15 @@\n :class:`ScalarDotMGradScalarTerm `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n \\int_{\\Omega} q \\ul{y} \\cdot \\nabla p \\mbox{ , }\n \\int_{\\Omega} p \\ul{y} \\cdot \\nabla q\n- - :ref:`adv.dif.2D `, :ref:`adv.2D `, :ref:`adv.1D `\n+ - :ref:`adv.1D `, :ref:`adv.dif.2D `, :ref:`adv.2D `\n * - dw_shell10x\n \n :class:`Shell10XTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\n - :ref:`she.can `\n@@ -527,15 +527,15 @@\n \n ````, ````, ````\n - .. math::\n \\int_{\\Omega} p\\ \\nabla \\cdot \\ul{v} \\mbox{ , }\n \\int_{\\Omega} q\\ \\nabla \\cdot \\ul{u}\\\\ \\mbox{ or } \\int_{\\Omega}\n c\\ p\\ \\nabla \\cdot \\ul{v} \\mbox{ , } \\int_{\\Omega} c\\ q\\ \\nabla\n \\cdot \\ul{u}\n- - :ref:`sto `, :ref:`lin.ela.up `, :ref:`nav.sto.iga `, :ref:`sto.sli.bc `, :ref:`nav.sto `, :ref:`sta.nav.sto `, :ref:`nav.sto `\n+ - :ref:`nav.sto.iga `, :ref:`lin.ela.up `, :ref:`nav.sto `, :ref:`sto `, :ref:`nav.sto `, :ref:`sta.nav.sto `, :ref:`sto.sli.bc `\n * - dw_stokes_wave\n \n :class:`StokesWaveTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} (\\ul{\\kappa} \\cdot \\ul{v}) (\\ul{\\kappa}\n \\cdot \\ul{u})\n@@ -574,15 +574,15 @@\n * - dw_surface_ltr\n \n :class:`LinearTractionTerm `\n - ````, ````\n - .. math::\n \\int_{\\Gamma} \\ul{v} \\cdot \\ull{\\sigma} \\cdot \\ul{n},\n \\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},\n- - :ref:`wed.mes `, :ref:`nod.lcb `, :ref:`com.ela.mat `, :ref:`lin.ela.tra `, :ref:`ela.shi.per `, :ref:`lin.vis `, :ref:`mix.mes `, :ref:`lin.ela.opt `, :ref:`tru.bri `\n+ - :ref:`com.ela.mat `, :ref:`mix.mes `, :ref:`lin.vis `, :ref:`tru.bri `, :ref:`wed.mes `, :ref:`lin.ela.tra `, :ref:`lin.ela.opt `, :ref:`ela.shi.per `, :ref:`nod.lcb `\n * - ev_surface_moment\n \n :class:`SurfaceMomentTerm `\n - ````, ````\n - .. math::\n \\int_{\\Gamma} \\ul{n} (\\ul{x} - \\ul{x}_0)\n - \n@@ -633,15 +633,15 @@\n * - dw_volume_lvf\n \n :class:`LinearVolumeForceTerm `\n - ````, ````\n - .. math::\n \\int_{\\Omega} \\ul{f} \\cdot \\ul{v} \\mbox{ or }\n \\int_{\\Omega} f q\n- - :ref:`adv.dif.2D `, :ref:`bur.2D `, :ref:`poi.iga `, :ref:`poi.par.stu `\n+ - :ref:`adv.dif.2D `, :ref:`bur.2D `, :ref:`poi.par.stu `, :ref:`poi.iga `\n * - dw_volume_nvf\n \n :class:`NonlinearVolumeForceTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} q f(p)\n - :ref:`poi.non.mat `\n@@ -703,30 +703,30 @@\n \n :class:`SDConvectTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} [ u_k \\pdiff{u_i}{x_k} w_i (\\nabla \\cdot\n \\Vcal) - u_k \\pdiff{\\Vcal_j}{x_k} \\pdiff{u_i}{x_j} w_i ]\n - \n- * - ev_sd_diffusion\n+ * - de_sd_diffusion\n \n- :class:`SDDiffusionTerm `\n- - ````, ````, ````, ````\n+ :class:`ESDDiffusionTerm `\n+ - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\hat{K}_{ij} \\nabla_i q\\, \\nabla_j p\n \n .. math::\n \\hat{K}_{ij} = K_{ij}\\left( \\delta_{ik}\\delta_{jl} \\nabla\n \\cdot \\ul{\\Vcal} - \\delta_{ik}{\\partial \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}{\\partial \\Vcal_i \\over \\partial x_k}\\right)\n - \n- * - de_sd_diffusion\n+ * - ev_sd_diffusion\n \n- :class:`ESDDiffusionTerm `\n- - ````, ````, ````, ````\n+ :class:`SDDiffusionTerm `\n+ - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\hat{K}_{ij} \\nabla_i q\\, \\nabla_j p\n \n .. math::\n \\hat{K}_{ij} = K_{ij}\\left( \\delta_{ik}\\delta_{jl} \\nabla\n \\cdot \\ul{\\Vcal} - \\delta_{ik}{\\partial \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}{\\partial \\Vcal_i \\over \\partial x_k}\\right)\n@@ -735,32 +735,32 @@\n \n :class:`SDDivTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} p [ (\\nabla \\cdot \\ul{w}) (\\nabla \\cdot\n \\ul{\\Vcal}) - \\pdiff{\\Vcal_k}{x_i} \\pdiff{w_i}{x_k} ]\n - \n- * - de_sd_div_grad\n+ * - ev_sd_div_grad\n \n- :class:`ESDDivGradTerm `\n- - ````, ````, ````, ````\n+ :class:`SDDivGradTerm `\n+ - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{\n , } \\int_{\\Omega} \\nu \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u}\n \n .. math::\n \\hat{I}_{ijkl} = \\delta_{ik}\\delta_{jl} \\nabla \\cdot\n \\ul{\\Vcal} - \\delta_{ik}\\delta_{js} {\\partial \\Vcal_l \\over\n \\partial x_s} - \\delta_{is}\\delta_{jl} {\\partial \\Vcal_k \\over\n \\partial x_s}\n - \n- * - ev_sd_div_grad\n+ * - de_sd_div_grad\n \n- :class:`SDDivGradTerm `\n- - ````, ````, ````, ````\n+ :class:`ESDDivGradTerm `\n+ - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{\n , } \\int_{\\Omega} \\nu \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u}\n \n .. math::\n \\hat{I}_{ijkl} = \\delta_{ik}\\delta_{jl} \\nabla \\cdot\n \\ul{\\Vcal} - \\delta_{ik}\\delta_{js} {\\partial \\Vcal_l \\over\n@@ -782,39 +782,51 @@\n \n :class:`SDDotTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} p q (\\nabla \\cdot \\ul{\\Vcal}) \\mbox{ , }\n \\int_{\\Omega} (\\ul{u} \\cdot \\ul{w}) (\\nabla \\cdot \\ul{\\Vcal})\n - \n+ * - de_sd_lin_elastic\n+\n+ :class:`ESDLinearElasticTerm `\n+ - ````, ````, ````, ````\n+ - .. math::\n+ \\int_{\\Omega} \\hat{D}_{ijkl} {\\partial v_i \\over \\partial\n+ x_j} {\\partial u_k \\over \\partial x_l}\n+\n+ .. math::\n+ \\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n+ D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n+ \\Vcal_j \\over \\partial x_q}\n+ - \n * - ev_sd_lin_elastic\n \n :class:`SDLinearElasticTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\hat{D}_{ijkl}\\ e_{ij}(\\ul{v})\n e_{kl}(\\ul{u})\n \n .. math::\n \\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n \\Vcal_j \\over \\partial x_q}\n - \n- * - de_sd_lin_elastic\n+ * - ev_sd_piezo_coupling\n \n- :class:`ESDLinearElasticTerm `\n- - ````, ````, ````, ````\n+ :class:`SDPiezoCouplingTerm `\n+ - ````, ````, ````, ````\n - .. math::\n- \\int_{\\Omega} \\hat{D}_{ijkl} {\\partial v_i \\over \\partial\n- x_j} {\\partial u_k \\over \\partial x_l}\n+ \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k p\n \n .. math::\n- \\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n- D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n- \\Vcal_j \\over \\partial x_q}\n+ \\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n+ g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n+ \\Vcal_k \\over \\partial x_l}\n - \n * - de_sd_piezo_coupling\n \n :class:`ESDPiezoCouplingTerm `\n - ````, ````, ````, ````\n \n ````, ````, ````, ````\n@@ -823,26 +835,14 @@\n \\mbox{ , } \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k q\n \n .. math::\n \\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n \\Vcal_k \\over \\partial x_l}\n - \n- * - ev_sd_piezo_coupling\n-\n- :class:`SDPiezoCouplingTerm `\n- - ````, ````, ````, ````\n- - .. math::\n- \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k p\n-\n- .. math::\n- \\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n- g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n- \\Vcal_k \\over \\partial x_l}\n- - \n * - de_sd_stokes\n \n :class:`ESDStokesTerm `\n - ````, ````, ````, ````\n \n ````, ````, ````, ````\n - .. math::\n@@ -857,35 +857,35 @@\n * - ev_sd_surface_integrate\n \n :class:`SDSufaceIntegrateTerm `\n - ````, ````\n - .. math::\n \\int_{\\Gamma} p \\nabla \\cdot \\ul{\\Vcal}\n - \n+ * - ev_sd_surface_ltr\n+\n+ :class:`SDLinearTractionTerm `\n+ - ````, ````, ````\n+ - .. math::\n+ \\int_{\\Gamma} \\ul{v} \\cdot (\\ull{\\sigma}\\, \\ul{n}),\n+ \\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},\n+ - \n * - de_sd_surface_ltr\n \n :class:`ESDLinearTractionTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Gamma} \\ul{v} \\cdot\n \\left[\\left(\\ull{\\hat{\\sigma}}\\, \\nabla \\cdot \\ul{\\cal{V}} -\n \\ull{{\\hat\\sigma}}\\, \\nabla \\ul{\\cal{V}} \\right)\\ul{n}\\right]\n \n .. math::\n \\ull{\\hat\\sigma} = \\ull{I} \\mbox{ , } \\ull{\\hat\\sigma} =\n c\\,\\ull{I} \\mbox{ or } \\ull{\\hat\\sigma} = \\ull{\\sigma}\n - \n- * - ev_sd_surface_ltr\n-\n- :class:`SDLinearTractionTerm `\n- - ````, ````, ````\n- - .. math::\n- \\int_{\\Gamma} \\ul{v} \\cdot (\\ull{\\sigma}\\, \\ul{n}),\n- \\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},\n- - \n * - de_sd_v_dot_grad_s\n \n :class:`ESDVectorDotGradScalarTerm `\n - ````, ````, ````, ````\n \n ````, ````, ````, ````\n - .. math::\n@@ -925,22 +925,22 @@\n - \n * - dw_tl_bulk_penalty\n \n :class:`BulkPenaltyTLTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})\n- - :ref:`act.fib `, :ref:`com.ela.mat `, :ref:`hyp `\n+ - :ref:`com.ela.mat `, :ref:`hyp `, :ref:`act.fib `\n * - dw_tl_bulk_pressure\n \n :class:`BulkPressureTLTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} S_{ij}(p) \\delta E_{ij}(\\ul{u};\\ul{v})\n- - :ref:`bal `, :ref:`per.tl `\n+ - :ref:`per.tl `, :ref:`bal `\n * - dw_tl_diffusion\n \n :class:`DiffusionTLTerm `\n - ````, ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\ull{K}(\\ul{u}^{(n-1)}) : \\pdiff{q}{\\ul{X}}\n \\pdiff{p}{\\ul{X}}\n@@ -975,22 +975,22 @@\n - \n * - dw_tl_he_mooney_rivlin\n \n :class:`MooneyRivlinTLTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})\n- - :ref:`bal `, :ref:`hyp `, :ref:`com.ela.mat `\n+ - :ref:`com.ela.mat `, :ref:`bal `, :ref:`hyp `\n * - dw_tl_he_neohook\n \n :class:`NeoHookeanTLTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})\n- - :ref:`act.fib `, :ref:`com.ela.mat `, :ref:`per.tl `, :ref:`bal `, :ref:`hyp `\n+ - :ref:`com.ela.mat `, :ref:`per.tl `, :ref:`bal `, :ref:`act.fib `, :ref:`hyp `\n * - dw_tl_he_ogden\n \n :class:`OgdenTLTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})\n - \n@@ -1021,15 +1021,15 @@\n :class:`VolumeTLTerm `\n - ````, ````\n - .. math::\n \\begin{array}{l} \\int_{\\Omega} q J(\\ul{u}) \\\\ \\mbox{volume\n mode: vector for } K \\from \\Ical_h: \\int_{T_K} J(\\ul{u}) \\\\\n \\mbox{rel\\_volume mode: vector for } K \\from \\Ical_h: \\int_{T_K}\n J(\\ul{u}) / \\int_{T_K} 1 \\end{array}\n- - :ref:`bal `, :ref:`per.tl `\n+ - :ref:`per.tl `, :ref:`bal `\n * - ev_tl_volume_surface\n \n :class:`VolumeSurfaceTLTerm `\n - ````\n - .. math::\n 1 / D \\int_{\\Gamma} \\ul{\\nu} \\cdot \\ull{F}^{-1} \\cdot\n \\ul{x} J\n@@ -1068,23 +1068,23 @@\n * - dw_ul_he_mooney_rivlin\n \n :class:`MooneyRivlinULTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\mathcal{L}\\tau_{ij}(\\ul{u})\n e_{ij}(\\delta\\ul{v})/J\n- - :ref:`hyp.ul `, :ref:`hyp.ul.up `\n+ - :ref:`hyp.ul.up `, :ref:`hyp.ul `\n * - dw_ul_he_neohook\n \n :class:`NeoHookeanULTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\mathcal{L}\\tau_{ij}(\\ul{u})\n e_{ij}(\\delta\\ul{v})/J\n- - :ref:`hyp.ul `, :ref:`hyp.ul.up `\n+ - :ref:`hyp.ul.up `, :ref:`hyp.ul `\n * - dw_ul_volume\n \n :class:`VolumeULTerm `\n - ````, ````\n - .. math::\n \\begin{array}{l} \\int_{\\Omega} q J(\\ul{u}) \\\\ \\mbox{volume\n mode: vector for } K \\from \\Ical_h: \\int_{T_K} J(\\ul{u}) \\\\\n@@ -1440,15 +1440,15 @@\n \n :class:`MassTerm `\n - ````, ````, ````, ````, ````\n - .. math::\n M^C = \\int_{\\cal{D}} \\rho \\ul{v} \\cdot \\ul{u} \\\\ M^L =\n \\mathrm{lumping}(M^C) \\\\ M^A = (1 - \\beta) M^C + \\beta M^L \\\\ A =\n \\sum_e A_e \\\\ C = \\sum_e A_e^T (M_e^A)^{-1} A_e\n- - :ref:`sei.loa `, :ref:`ela `\n+ - :ref:`ela `, :ref:`sei.loa `\n * - de_non_penetration_p\n \n :class:`ENonPenetrationPenaltyTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Gamma} c (\\ul{n} \\cdot \\ul{v}) (\\ul{n} \\cdot\n \\ul{u})\n"}, {"source1": "./usr/share/doc/python-sfepy-doc/html/field_table.html", "source2": "./usr/share/doc/python-sfepy-doc/html/field_table.html", "comments": ["Ordering differences only"], "unified_diff": "@@ -137,59 +137,59 @@\n

space

\n

basis

\n

region kind

\n

description

\n \n \n \n-

L2

\n-

constant

\n-

cell, facet

\n-

The L2 constant-in-a-region approximation.

\n-\n-

H1

\n+

H1

\n

bernstein

\n

cell, facet

\n

Bernstein basis approximation with positive-only basis function values.

\n \n-

H1

\n+

H1

\n

iga

\n

cell

\n

Bezier extraction based NURBS approximation for isogeometric analysis.

\n \n-

H1

\n+

H1

\n

lagrange

\n

cell, facet

\n

Lagrange basis nodal approximation.

\n \n-

H1

\n+

H1

\n

lagrange_discontinuous

\n

cell

\n

The C0 constant-per-cell approximation.

\n \n-

H1

\n+

H1

\n

lobatto

\n

cell

\n

Hierarchical basis approximation with Lobatto polynomials.

\n \n-

H1

\n+

H1

\n

sem

\n

cell, facet

\n

Spectral element method approximation.

\n \n-

H1

\n+

H1

\n

serendipity

\n

cell, facet

\n

Lagrange basis nodal serendipity approximation with order <= 3.

\n \n-

H1

\n+

H1

\n

shell10x

\n

cell

\n

The approximation for the shell10x element.

\n \n+

L2

\n+

constant

\n+

cell, facet

\n+

The L2 constant-in-a-region approximation.

\n+\n

DG

\n

legendre_discontinuous

\n

cell

\n

Discontinuous Galerkin method approximation with Legendre basis.

\n \n \n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -14,16 +14,14 @@\n _\b[_\b__\bs_\bt_\ba_\bt_\bi_\bc_\b/_\bu_\bw_\bb_\b__\bl_\bo_\bg_\bo_\b._\bp_\bn_\bg_\b]\n _\bS_\bf_\be_\bP_\by\n * \n * _\bV_\bi_\be_\bw_\b _\bp_\ba_\bg_\be_\b _\bs_\bo_\bu_\br_\bc_\be\n ===============================================================================\n F\bFi\bie\bel\bld\bds\bs_\b?\b\u00b6\n s\bsp\bpa\bac\bce\be b\bba\bas\bsi\bis\bs r\bre\beg\bgi\bio\bon\bn k\bki\bin\bnd\bd d\bde\bes\bsc\bcr\bri\bip\bpt\bti\bio\bon\bn\n-L2 constant _\bc_\be_\bl_\bl, _\bf_\ba_\bc_\be_\bt The L2 constant-in-a-region\n- approximation.\n H1 bernstein _\bc_\be_\bl_\bl, _\bf_\ba_\bc_\be_\bt Bernstein basis approximation with\n positive-only basis function values.\n Bezier extraction based NURBS\n H1 iga _\bc_\be_\bl_\bl approximation for isogeometric\n analysis.\n H1 lagrange _\bc_\be_\bl_\bl, _\bf_\ba_\bc_\be_\bt Lagrange basis nodal approximation.\n H1 lagrange_discontinuous _\bc_\be_\bl_\bl The C0 constant-per-cell\n@@ -31,12 +29,14 @@\n H1 lobatto _\bc_\be_\bl_\bl Hierarchical basis approximation with\n Lobatto polynomials.\n H1 sem _\bc_\be_\bl_\bl, _\bf_\ba_\bc_\be_\bt Spectral element method approximation.\n H1 serendipity _\bc_\be_\bl_\bl, _\bf_\ba_\bc_\be_\bt Lagrange basis nodal serendipity\n approximation with order <= 3.\n H1 shell10x _\bc_\be_\bl_\bl The approximation for the shell10x\n element.\n+L2 constant _\bc_\be_\bl_\bl, _\bf_\ba_\bc_\be_\bt The L2 constant-in-a-region\n+ approximation.\n DG legendre_discontinuous _\bc_\be_\bl_\bl Discontinuous Galerkin method\n approximation with Legendre basis.\n ===============================================================================\n \u00a9 Copyright 2020, Robert Cimrman and SfePy developers.\n Built with _\bS_\bp_\bh_\bi_\bn_\bx using a _\bt_\bh_\be_\bm_\be provided by _\bR_\be_\ba_\bd_\b _\bt_\bh_\be_\b _\bD_\bo_\bc_\bs.\n"}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/searchindex.js", "source2": "./usr/share/doc/python-sfepy-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -20326,15 +20326,15 @@\n \"09666\": 11,\n \"099\": [20, 290],\n \"099999\": 288,\n \"0_1\": 26,\n \"0d\": 26,\n \"0e3\": 20,\n \"0e9\": [20, 289],\n- \"0x7f4c08dd4a40\": 180,\n+ \"0x7f4bfbb714e0\": 180,\n \"1\": [0, 1, 5, 7, 8, 11, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 34, 35, 39, 40, 41, 42, 44, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 72, 77, 78, 80, 81, 83, 84, 87, 89, 90, 91, 93, 94, 95, 99, 100, 102, 107, 108, 112, 113, 114, 115, 116, 118, 122, 123, 124, 127, 128, 131, 132, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 149, 150, 156, 171, 179, 180, 181, 182, 183, 184, 186, 187, 188, 189, 191, 192, 193, 194, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 227, 229, 258, 272, 285, 286, 288, 289],\n \"10\": [0, 11, 23, 24, 25, 26, 30, 65, 67, 70, 91, 93, 111, 120, 130, 142, 146, 147, 151, 154, 156, 179, 180, 181, 182, 184, 187, 188, 189, 206, 208, 215, 288, 289, 290],\n \"100\": [39, 40, 41, 105, 134, 142, 143, 179, 180, 227],\n \"1000\": [24, 91, 142, 147],\n \"100000\": [111, 179],\n \"1000000\": [142, 289],\n \"10000000000000001\": 142,\n"}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/src/sfepy/solvers/nls.html", "source2": "./usr/share/doc/python-sfepy-doc/html/src/sfepy/solvers/nls.html", "unified_diff": "@@ -173,15 +173,15 @@\n
lin_precisionfloat or None

If not None, the linear system solution tolerances are set in each\n nonlinear iteration relative to the current residual norm by the\n lin_precision factor. Ignored for direct linear solvers.

\n
\n
step_red0.0 < float <= 1.0 (default: 1.0)

Step reduction factor. Equivalent to the mixing parameter a:\n (1 - a) x + a (x + dx) = x + a dx

\n
\n-
line_search_funfunction(it, vec_x0, vec_r0, vec_dx0, err_last, conf, fun, apply_lin_solver, timers, log=None) (default: <function apply_line_search_bt at 0x7f4c08dd4a40>)

The line search function.

\n+
line_search_funfunction(it, vec_x0, vec_r0, vec_dx0, err_last, conf, fun, apply_lin_solver, timers, log=None) (default: <function apply_line_search_bt at 0x7f4bfbb714e0>)

The line search function.

\n
\n
ls_mode\u2018residual\u2019 or \u2018error\u2019 (default: \u2018residual\u2019)

The line search mode: when it is \u2018residual\u2019, the solver tries to\n make the iteration residuals decreasing while for \u2018error\u2019 the solution error\n estimates should decrease.

\n
\n
ls_onfloat (default: 0.99999)

Start the backtracking line-search by reducing the step, if\n ||d(x^i)|| / ||d(x^{i-1})|| is larger than ls_on, where d\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -64,15 +64,15 @@\n norm by thelin_precisionfactor. Ignored for direct linear\n solvers.\n s\bst\bte\bep\bp_\b_r\bre\bed\bd0.0 < float <= 1.0 (default: 1.0)\n Step reduction factor. Equivalent to the mixing parameter a:\n (1 - a) x + a (x + dx) = x + a dx\n l\bli\bin\bne\be_\b_s\bse\bea\bar\brc\bch\bh_\b_f\bfu\bun\bnfunction(it, vec_x0, vec_r0, vec_dx0, err_last,\n conf, fun, apply_lin_solver, timers, log=None) (default:\n- )\n+ )\n The line search function.\n l\bls\bs_\b_m\bmo\bod\bde\be\u2018residual\u2019 or \u2018error\u2019 (default: \u2018residual\u2019)\n The line search mode: when it is \u2018residual\u2019, the solver tries\n to make the iteration residuals decreasing while for \u2018error\u2019\n the solution error estimates should decrease.\n l\bls\bs_\b_o\bon\bnfloat (default: 0.99999)\n Start the backtracking line-search by reducing the step, if\n"}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/term_table.html", "source2": "./usr/share/doc/python-sfepy-doc/html/term_table.html", "unified_diff": "@@ -169,15 +169,15 @@\n

<material>, <virtual/param_v>, <state/param_s>

\n

<material>, <state>, <virtual>

\n \n
\n

\\int_{\\Omega} p\\ \\alpha_{ij} e_{ij}(\\ul{v}) \\mbox{ , }\n \\int_{\\Omega} q\\ \\alpha_{ij} e_{ij}(\\ul{u})

\n
\n-

bio.npb.lag, the.ela.ess, bio.npb, the.ela, bio.sho.syn, bio

\n+

the.ela, the.ela.ess, bio.npb, bio, bio.sho.syn, bio.npb.lag

\n \n

ev_biot_stress

\n

BiotStressTerm

\n \n

<material>, <parameter>

\n
\n

- \\int_{\\Omega} \\alpha_{ij} p

\n@@ -242,15 +242,15 @@\n

dw_convect

\n

ConvectTerm

\n \n

<virtual>, <state>

\n
\n

\\int_{\\Omega} ((\\ul{u} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}

\n
\n-

nav.sto.iga, nav.sto, nav.sto

\n+

nav.sto, nav.sto, nav.sto.iga

\n \n

dw_convect_v_grad_s

\n

ConvectVGradSTerm

\n \n

<virtual>, <state_v>, <state_s>

\n
\n

\\int_{\\Omega} q (\\ul{u} \\cdot \\nabla p)

\n@@ -276,15 +276,15 @@\n

\\int_{\\partial{T_K}} \\ul{n} \\cdot \\ul{f}^{*} (p_{in},\n p_{out})q

\n

where

\n
\n

\\ul{f}^{*}(p_{in}, p_{out}) = \\ul{a} \\frac{p_{in} +\n p_{out}}{2} + (1 - \\alpha) \\ul{n} C \\frac{ p_{in} - p_{out}}{2},

\n
\n-

adv.dif.2D, adv.2D, adv.1D

\n+

adv.1D, adv.dif.2D, adv.2D

\n \n

dw_dg_diffusion_flux

\n

DiffusionDGFluxTerm

\n \n

<material>, <state>, <virtual>

\n

<material>, <virtual>, <state>

\n \n@@ -294,28 +294,28 @@\n

where

\n
\n

\\langle \\nabla \\phi \\rangle = \\frac{\\nabla\\phi_{in} +\n \\nabla\\phi_{out}}{2}

\n
\n

[\\phi] = \\phi_{in} - \\phi_{out}

\n
\n-

adv.dif.2D, bur.2D, lap.2D

\n+

lap.2D, adv.dif.2D, bur.2D

\n \n

dw_dg_interior_penalty

\n

DiffusionInteriorPenaltyTerm

\n \n

<material>, <material_Cw>, <virtual>, <state>

\n
\n

\\int_{\\partial{T_K}} \\bar{D} C_w\n \\frac{Ord^2}{d(\\partial{T_K})}[p][q]

\n

where

\n
\n

[\\phi] = \\phi_{in} - \\phi_{out}

\n
\n-

adv.dif.2D, bur.2D, lap.2D

\n+

lap.2D, adv.dif.2D, bur.2D

\n \n

dw_dg_nonlinear_laxfrie_flux

\n

NonlinearHyperbolicDGFluxTerm

\n \n

<opt_material>, <fun>, <fun_d>, <virtual>, <state>

\n
\n

\\int_{\\partial{T_K}} \\ul{n} \\cdot f^{*} (p_{in}, p_{out})q

\n@@ -330,15 +330,15 @@\n

dw_diffusion

\n

DiffusionTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} K_{ij} \\nabla_i q \\nabla_j p

\n
\n-

bio.npb.lag, pie.ela, vib.aco, bio.npb, dar.flo.mul, poi.neu, bio.sho.syn, bio, pie.ela

\n+

dar.flo.mul, vib.aco, pie.ela, poi.neu, pie.ela, bio.npb, bio, bio.sho.syn, bio.npb.lag

\n \n

dw_diffusion_coupling

\n

DiffusionCoupling

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n

<material>, <state>, <virtual>

\n \n@@ -362,56 +362,56 @@\n \n

<material>, <parameter>

\n
\n

- \\int_{\\cal{D}} K_{ij} \\nabla_j p

\n
\n \n \n-

dw_div

\n-

DivOperatorTerm

\n+

ev_div

\n+

DivTerm

\n \n-

<opt_material>, <virtual>

\n+

<opt_material>, <parameter>

\n
\n-

\\int_{\\Omega} \\nabla \\cdot \\ul{v} \\mbox { or }\n-\\int_{\\Omega} c \\nabla \\cdot \\ul{v}

\n+

\\int_{\\cal{D}} \\nabla \\cdot \\ul{u} \\mbox { , }\n+\\int_{\\cal{D}} c \\nabla \\cdot \\ul{u}

\n
\n \n \n-

ev_div

\n-

DivTerm

\n+

dw_div

\n+

DivOperatorTerm

\n \n-

<opt_material>, <parameter>

\n+

<opt_material>, <virtual>

\n
\n-

\\int_{\\cal{D}} \\nabla \\cdot \\ul{u} \\mbox { , }\n-\\int_{\\cal{D}} c \\nabla \\cdot \\ul{u}

\n+

\\int_{\\Omega} \\nabla \\cdot \\ul{v} \\mbox { or }\n+\\int_{\\Omega} c \\nabla \\cdot \\ul{v}

\n
\n \n \n

dw_div_grad

\n

DivGradTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} \\nu\\ \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{ ,\n } \\int_{\\Omega} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n-

sto, nav.sto.iga, sto.sli.bc, nav.sto, sta.nav.sto, nav.sto

\n+

nav.sto.iga, nav.sto, sto, nav.sto, sta.nav.sto, sto.sli.bc

\n \n

dw_dot

\n

DotProductTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\cal{D}} q p \\mbox{ , } \\int_{\\cal{D}} \\ul{v} \\cdot\n \\ul{u}\\\\ \\int_\\Gamma \\ul{v} \\cdot \\ul{n} p \\mbox{ , } \\int_\\Gamma\n q \\ul{n} \\cdot \\ul{u} \\mbox{ , }\\\\ \\int_{\\cal{D}} c q p \\mbox{ , }\n \\int_{\\cal{D}} c \\ul{v} \\cdot \\ul{u} \\mbox{ , } \\int_{\\cal{D}}\n \\ul{v} \\cdot \\ull{c} \\cdot \\ul{u}

\n
\n-

pie.ela, wel, tim.hea.equ.mul.mat, bal, pie.ela, poi.fun, tim.poi.exp, aco, bor, mod.ana.dec, hel.apa, tim.adv.dif, aco, osc, tim.poi, lin.ela.dam, adv.2D, bur.2D, ref.evp, poi.per.bou.con, lin.ela.up, vib.aco, the.ele, sto.sli.bc, dar.flo.mul, adv.1D, hyd

\n+

the.ele, bal, tim.poi.exp, bor, dar.flo.mul, pie.ela, osc, sto.sli.bc, tim.poi, vib.aco, adv.1D, lin.ela.dam, adv.2D, hyd, mod.ana.dec, lin.ela.up, wel, tim.adv.dif, tim.hea.equ.mul.mat, ref.evp, aco, poi.per.bou.con, aco, hel.apa, poi.fun, pie.ela, bur.2D

\n \n

dw_elastic_wave

\n

ElasticWaveTerm

\n \n

<material_1>, <material_2>, <virtual>, <state>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ g_{ij}(\\ul{v}) g_{kl}(\\ul{u})

\n@@ -465,15 +465,15 @@\n

dw_integrate

\n

IntegrateOperatorTerm

\n \n

<opt_material>, <virtual>

\n
\n

\\int_{\\cal{D}} q \\mbox{ or } \\int_{\\cal{D}} c q

\n
\n-

poi.per.bou.con, vib.aco, aco, dar.flo.mul, poi.neu, aco, tim.hea.equ.mul.mat, hel.apa

\n+

dar.flo.mul, vib.aco, aco, hel.apa, poi.neu, tim.hea.equ.mul.mat, poi.per.bou.con, aco

\n \n

ev_integrate_mat

\n

IntegrateMatTerm

\n \n

<material>, <parameter>

\n
\n

\\int_{\\cal{D}} c

\n@@ -492,15 +492,15 @@\n

dw_laplace

\n

LaplaceTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} c \\nabla q \\cdot \\nabla p

\n
\n-

sin, wel, lap.flu.2d, poi.sho.syn, lap.1d, tim.hea.equ.mul.mat, poi.par.stu, poi.iga, poi.fie.dep.mat, cub, poi.fun, tim.poi.exp, aco, bor, poi, hel.apa, the.ela.ess, tim.adv.dif, aco, lap.2D, osc, tim.poi, adv.dif.2D, lap.tim.ebc, lap.cou.lcb, bur.2D, ref.evp, poi.per.bou.con, vib.aco, the.ele, sto.sli.bc, hyd

\n+

the.ele, lap.tim.ebc, tim.poi.exp, cub, bor, lap.cou.lcb, osc, lap.flu.2d, tim.poi, poi.fie.dep.mat, sto.sli.bc, vib.aco, poi, hyd, poi.iga, sin, wel, tim.adv.dif, tim.hea.equ.mul.mat, poi.sho.syn, the.ela.ess, ref.evp, aco, poi.per.bou.con, aco, lap.2D, hel.apa, poi.fun, adv.dif.2D, lap.1d, bur.2D, poi.par.stu

\n \n

dw_lin_convect

\n

LinearConvectTerm

\n \n

<virtual>, <parameter>, <state>

\n
\n

\\int_{\\Omega} ((\\ul{w} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}

\n@@ -545,15 +545,15 @@\n

dw_lin_elastic

\n

LinearElasticTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})

\n
\n-

bio.npb.lag, pie.ela, mat.non, its.4, com.ela.mat, ela.con.pla, its.2, sei.loa, pie.ela, lin.ela.mM, lin.ela.opt, ela.con.sph, lin.ela.iga, pie.ela.mac, mod.ana.dec, the.ela.ess, wed.mes, mul.nod.lcb, lin.ela, lin.ela.tra, ela, the.ela, lin.ela.dam, pre.fib, bio, lin.ela.up, vib.aco, bio.npb, nod.lcb, ela.shi.per, its.1, lin.vis, mix.mes, mul.poi.con, two.bod.con, its.3, tru.bri, bio.sho.syn

\n+

lin.ela.iga, its.4, pre.fib, lin.ela.mM, mat.non, ela.con.pla, com.ela.mat, mix.mes, the.ela, pie.ela, sei.loa, lin.ela.opt, lin.ela, mul.nod.lcb, two.bod.con, vib.aco, ela, lin.ela.dam, its.2, its.3, mod.ana.dec, lin.ela.up, wed.mes, the.ela.ess, ela.con.sph, pie.ela.mac, nod.lcb, its.1, bio.npb.lag, tru.bri, lin.vis, mul.poi.con, pie.ela, lin.ela.tra, ela.shi.per, bio.npb, bio, bio.sho.syn

\n \n

dw_lin_elastic_iso

\n

LinearElasticIsotropicTerm

\n \n

<material_1>, <material_2>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\\\\\n@@ -566,15 +566,15 @@\n

dw_lin_prestress

\n

LinearPrestressTerm

\n \n

<material>, <virtual/param>

\n
\n

\\int_{\\Omega} \\sigma_{ij} e_{ij}(\\ul{v})

\n
\n-

non.hyp.mM, pre.fib, pie.ela.mac

\n+

pre.fib, pie.ela.mac, non.hyp.mM

\n \n

dw_lin_spring

\n

LinearSpringTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\ul{f}^{(i)} = - \\ul{f}^{(j)} = k (\\ul{u}^{(j)} -\n@@ -702,15 +702,15 @@\n

ConcentratedPointLoadTerm

\n \n

<material>, <virtual>

\n
\n

\\ul{f}^i = \\ul{\\bar f}^i \\quad \\forall \\mbox{ FE node } i\n \\mbox{ in a region }

\n
\n-

she.can, tru.bri, its.4, its.1, its.2, its.3

\n+

its.2, its.3, its.4, she.can, tru.bri, its.1

\n \n

dw_point_lspring

\n

LinearPointSpringTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\ul{f}^i = -k \\ul{u}^i \\quad \\forall \\mbox{ FE node } i\n@@ -733,15 +733,15 @@\n

<material>, <virtual>, <state>

\n

<material>, <state>, <virtual>

\n \n
\n

\\int_{\\Omega} q \\ul{y} \\cdot \\nabla p \\mbox{ , }\n \\int_{\\Omega} p \\ul{y} \\cdot \\nabla q

\n
\n-

adv.dif.2D, adv.2D, adv.1D

\n+

adv.1D, adv.dif.2D, adv.2D

\n \n

dw_shell10x

\n

Shell10XTerm

\n \n

<material_d>, <material_drill>, <virtual>, <state>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})

\n@@ -756,15 +756,15 @@\n \n
\n

\\int_{\\Omega} p\\ \\nabla \\cdot \\ul{v} \\mbox{ , }\n \\int_{\\Omega} q\\ \\nabla \\cdot \\ul{u}\\\\ \\mbox{ or } \\int_{\\Omega}\n c\\ p\\ \\nabla \\cdot \\ul{v} \\mbox{ , } \\int_{\\Omega} c\\ q\\ \\nabla\n \\cdot \\ul{u}

\n
\n-

sto, lin.ela.up, nav.sto.iga, sto.sli.bc, nav.sto, sta.nav.sto, nav.sto

\n+

nav.sto.iga, lin.ela.up, nav.sto, sto, nav.sto, sta.nav.sto, sto.sli.bc

\n \n

dw_stokes_wave

\n

StokesWaveTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} (\\ul{\\kappa} \\cdot \\ul{v}) (\\ul{\\kappa}\n@@ -814,15 +814,15 @@\n

LinearTractionTerm

\n \n

<opt_material>, <virtual/param>

\n
\n

\\int_{\\Gamma} \\ul{v} \\cdot \\ull{\\sigma} \\cdot \\ul{n},\n \\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n
\n-

wed.mes, nod.lcb, com.ela.mat, lin.ela.tra, ela.shi.per, lin.vis, mix.mes, lin.ela.opt, tru.bri

\n+

com.ela.mat, mix.mes, lin.vis, tru.bri, wed.mes, lin.ela.tra, lin.ela.opt, ela.shi.per, nod.lcb

\n \n

ev_surface_moment

\n

SurfaceMomentTerm

\n \n

<material>, <parameter>

\n
\n

\\int_{\\Gamma} \\ul{n} (\\ul{x} - \\ul{x}_0)

\n@@ -887,15 +887,15 @@\n

LinearVolumeForceTerm

\n \n

<material>, <virtual>

\n
\n

\\int_{\\Omega} \\ul{f} \\cdot \\ul{v} \\mbox{ or }\n \\int_{\\Omega} f q

\n
\n-

adv.dif.2D, bur.2D, poi.iga, poi.par.stu

\n+

adv.dif.2D, bur.2D, poi.par.stu, poi.iga

\n \n

dw_volume_nvf

\n

NonlinearVolumeForceTerm

\n \n

<fun>, <dfun>, <virtual>, <state>

\n
\n

\\int_{\\Omega} q f(p)

\n@@ -974,31 +974,31 @@\n

<parameter_u>, <parameter_w>, <parameter_mv>

\n
\n

\\int_{\\Omega} [ u_k \\pdiff{u_i}{x_k} w_i (\\nabla \\cdot\n \\Vcal) - u_k \\pdiff{\\Vcal_j}{x_k} \\pdiff{u_i}{x_j} w_i ]

\n
\n \n \n-

ev_sd_diffusion

\n-

SDDiffusionTerm

\n+

de_sd_diffusion

\n+

ESDDiffusionTerm

\n \n-

<material>, <parameter_q>, <parameter_p>, <parameter_mv>

\n+

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{K}_{ij} \\nabla_i q\\, \\nabla_j p

\n
\n

\\hat{K}_{ij} = K_{ij}\\left( \\delta_{ik}\\delta_{jl} \\nabla\n \\cdot \\ul{\\Vcal} - \\delta_{ik}{\\partial \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}{\\partial \\Vcal_i \\over \\partial x_k}\\right)

\n
\n \n \n-

de_sd_diffusion

\n-

ESDDiffusionTerm

\n+

ev_sd_diffusion

\n+

SDDiffusionTerm

\n \n-

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n+

<material>, <parameter_q>, <parameter_p>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{K}_{ij} \\nabla_i q\\, \\nabla_j p

\n
\n

\\hat{K}_{ij} = K_{ij}\\left( \\delta_{ik}\\delta_{jl} \\nabla\n \\cdot \\ul{\\Vcal} - \\delta_{ik}{\\partial \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}{\\partial \\Vcal_i \\over \\partial x_k}\\right)

\n
\n@@ -1010,33 +1010,33 @@\n

<parameter_u>, <parameter_p>, <parameter_mv>

\n
\n

\\int_{\\Omega} p [ (\\nabla \\cdot \\ul{w}) (\\nabla \\cdot\n \\ul{\\Vcal}) - \\pdiff{\\Vcal_k}{x_i} \\pdiff{w_i}{x_k} ]

\n
\n \n \n-

de_sd_div_grad

\n-

ESDDivGradTerm

\n+

ev_sd_div_grad

\n+

SDDivGradTerm

\n \n-

<opt_material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n+

<opt_material>, <parameter_u>, <parameter_w>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{\n , } \\int_{\\Omega} \\nu \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n

\\hat{I}_{ijkl} = \\delta_{ik}\\delta_{jl} \\nabla \\cdot\n \\ul{\\Vcal} - \\delta_{ik}\\delta_{js} {\\partial \\Vcal_l \\over\n \\partial x_s} - \\delta_{is}\\delta_{jl} {\\partial \\Vcal_k \\over\n \\partial x_s}

\n
\n \n \n-

ev_sd_div_grad

\n-

SDDivGradTerm

\n+

de_sd_div_grad

\n+

ESDDivGradTerm

\n \n-

<opt_material>, <parameter_u>, <parameter_w>, <parameter_mv>

\n+

<opt_material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{\n , } \\int_{\\Omega} \\nu \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n

\\hat{I}_{ijkl} = \\delta_{ik}\\delta_{jl} \\nabla \\cdot\n \\ul{\\Vcal} - \\delta_{ik}\\delta_{js} {\\partial \\Vcal_l \\over\n \\partial x_s} - \\delta_{is}\\delta_{jl} {\\partial \\Vcal_k \\over\n@@ -1063,64 +1063,64 @@\n

<parameter_1>, <parameter_2>, <parameter_mv>

\n
\n

\\int_{\\Omega} p q (\\nabla \\cdot \\ul{\\Vcal}) \\mbox{ , }\n \\int_{\\Omega} (\\ul{u} \\cdot \\ul{w}) (\\nabla \\cdot \\ul{\\Vcal})

\n
\n \n \n-

ev_sd_lin_elastic

\n-

SDLinearElasticTerm

\n+

de_sd_lin_elastic

\n+

ESDLinearElasticTerm

\n \n-

<material>, <parameter_w>, <parameter_u>, <parameter_mv>

\n+

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{D}_{ijkl}\\ e_{ij}(\\ul{v})\n-e_{kl}(\\ul{u})

\n+

\\int_{\\Omega} \\hat{D}_{ijkl} {\\partial v_i \\over \\partial\n+x_j} {\\partial u_k \\over \\partial x_l}

\n
\n

\\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n \\Vcal_j \\over \\partial x_q}

\n
\n \n \n-

de_sd_lin_elastic

\n-

ESDLinearElasticTerm

\n+

ev_sd_lin_elastic

\n+

SDLinearElasticTerm

\n \n-

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n+

<material>, <parameter_w>, <parameter_u>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{D}_{ijkl} {\\partial v_i \\over \\partial\n-x_j} {\\partial u_k \\over \\partial x_l}

\n+

\\int_{\\Omega} \\hat{D}_{ijkl}\\ e_{ij}(\\ul{v})\n+e_{kl}(\\ul{u})

\n
\n

\\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n \\Vcal_j \\over \\partial x_q}

\n
\n \n \n-

de_sd_piezo_coupling

\n-

ESDPiezoCouplingTerm

\n-\n-

<material>, <virtual/param_v>, <state/param_s>, <parameter_mv>

\n-

<material>, <state>, <virtual>, <parameter_mv>

\n+

ev_sd_piezo_coupling

\n+

SDPiezoCouplingTerm

\n \n+

<material>, <parameter_u>, <parameter_p>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{v}) \\nabla_k p\n-\\mbox{ , } \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k q

\n+

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k p

\n
\n

\\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n \\Vcal_k \\over \\partial x_l}

\n
\n \n \n-

ev_sd_piezo_coupling

\n-

SDPiezoCouplingTerm

\n+

de_sd_piezo_coupling

\n+

ESDPiezoCouplingTerm

\n+\n+

<material>, <virtual/param_v>, <state/param_s>, <parameter_mv>

\n+

<material>, <state>, <virtual>, <parameter_mv>

\n \n-

<material>, <parameter_u>, <parameter_p>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k p

\n+

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{v}) \\nabla_k p\n+\\mbox{ , } \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k q

\n
\n

\\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n \\Vcal_k \\over \\partial x_l}

\n
\n \n \n@@ -1145,38 +1145,38 @@\n \n

<parameter>, <parameter_mv>

\n
\n

\\int_{\\Gamma} p \\nabla \\cdot \\ul{\\Vcal}

\n
\n \n \n-

de_sd_surface_ltr

\n+

ev_sd_surface_ltr

\n+

SDLinearTractionTerm

\n+\n+

<opt_material>, <parameter>, <parameter_mv>

\n+
\n+

\\int_{\\Gamma} \\ul{v} \\cdot (\\ull{\\sigma}\\, \\ul{n}),\n+\\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n+
\n+\n+\n+

de_sd_surface_ltr

\n

ESDLinearTractionTerm

\n \n

<opt_material>, <virtual/param>, <parameter_mv>

\n
\n

\\int_{\\Gamma} \\ul{v} \\cdot\n \\left[\\left(\\ull{\\hat{\\sigma}}\\, \\nabla \\cdot \\ul{\\cal{V}} -\n \\ull{{\\hat\\sigma}}\\, \\nabla \\ul{\\cal{V}} \\right)\\ul{n}\\right]

\n
\n

\\ull{\\hat\\sigma} = \\ull{I} \\mbox{ , } \\ull{\\hat\\sigma} =\n c\\,\\ull{I} \\mbox{ or } \\ull{\\hat\\sigma} = \\ull{\\sigma}

\n
\n \n \n-

ev_sd_surface_ltr

\n-

SDLinearTractionTerm

\n-\n-

<opt_material>, <parameter>, <parameter_mv>

\n-
\n-

\\int_{\\Gamma} \\ul{v} \\cdot (\\ull{\\sigma}\\, \\ul{n}),\n-\\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n-
\n-\n-\n

de_sd_v_dot_grad_s

\n

ESDVectorDotGradScalarTerm

\n \n

<opt_material>, <virtual/param_v>, <state/param_s>, <parameter_mv>

\n

<opt_material>, <state>, <virtual>, <parameter_mv>

\n \n
\n@@ -1222,24 +1222,24 @@\n

dw_tl_bulk_penalty

\n

BulkPenaltyTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

act.fib, com.ela.mat, hyp

\n+

com.ela.mat, hyp, act.fib

\n \n

dw_tl_bulk_pressure

\n

BulkPressureTLTerm

\n \n

<virtual>, <state>, <state_p>

\n
\n

\\int_{\\Omega} S_{ij}(p) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

bal, per.tl

\n+

per.tl, bal

\n \n

dw_tl_diffusion

\n

DiffusionTLTerm

\n \n

<material_1>, <material_2>, <virtual>, <state>, <parameter>

\n
\n

\\int_{\\Omega} \\ull{K}(\\ul{u}^{(n-1)}) : \\pdiff{q}{\\ul{X}}\n@@ -1286,24 +1286,24 @@\n

dw_tl_he_mooney_rivlin

\n

MooneyRivlinTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

bal, hyp, com.ela.mat

\n+

com.ela.mat, bal, hyp

\n \n

dw_tl_he_neohook

\n

NeoHookeanTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

act.fib, com.ela.mat, per.tl, bal, hyp

\n+

com.ela.mat, per.tl, bal, act.fib, hyp

\n \n

dw_tl_he_ogden

\n

OgdenTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n@@ -1343,15 +1343,15 @@\n

<virtual>, <state>

\n
\n

\\begin{array}{l} \\int_{\\Omega} q J(\\ul{u}) \\\\ \\mbox{volume\n mode: vector for } K \\from \\Ical_h: \\int_{T_K} J(\\ul{u}) \\\\\n \\mbox{rel\\_volume mode: vector for } K \\from \\Ical_h: \\int_{T_K}\n J(\\ul{u}) / \\int_{T_K} 1 \\end{array}

\n
\n-

bal, per.tl

\n+

per.tl, bal

\n \n

ev_tl_volume_surface

\n

VolumeSurfaceTLTerm

\n \n

<parameter>

\n
\n

1 / D \\int_{\\Gamma} \\ul{\\nu} \\cdot \\ull{F}^{-1} \\cdot\n@@ -1402,25 +1402,25 @@\n

MooneyRivlinULTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} \\mathcal{L}\\tau_{ij}(\\ul{u})\n e_{ij}(\\delta\\ul{v})/J

\n
\n-

hyp.ul, hyp.ul.up

\n+

hyp.ul.up, hyp.ul

\n \n

dw_ul_he_neohook

\n

NeoHookeanULTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} \\mathcal{L}\\tau_{ij}(\\ul{u})\n e_{ij}(\\delta\\ul{v})/J

\n
\n-

hyp.ul, hyp.ul.up

\n+

hyp.ul.up, hyp.ul

\n \n

dw_ul_volume

\n

VolumeULTerm

\n \n

<virtual>, <state>

\n
\n

\\begin{array}{l} \\int_{\\Omega} q J(\\ul{u}) \\\\ \\mbox{volume\n@@ -1856,15 +1856,15 @@\n \n

<material_rho>, <material_lumping>, <material_beta>, <virtual>, <state>

\n
\n

M^C = \\int_{\\cal{D}} \\rho \\ul{v} \\cdot \\ul{u} \\\\ M^L =\n \\mathrm{lumping}(M^C) \\\\ M^A = (1 - \\beta) M^C + \\beta M^L \\\\ A =\n \\sum_e A_e \\\\ C = \\sum_e A_e^T (M_e^A)^{-1} A_e

\n
\n-

sei.loa, ela

\n+

ela, sei.loa

\n \n

de_non_penetration_p

\n

ENonPenetrationPenaltyTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Gamma} c (\\ul{n} \\cdot \\ul{v}) (\\ul{n} \\cdot\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -32,19 +32,19 @@\n \\nabla) p) q\n , \\int_{\\Gamma}\n dw_bc_newton , \\alpha q (p - tim.hea.equ.mul.mat\n _\bB_\bC_\bN_\be_\bw_\bt_\bo_\bn_\bT_\be_\br_\bm , p_{\\rm\n outer})\n \\int_{\\Omega}\n p\\ \\alpha_\n- , {ij} e_{ij} bio.npb.lag,\n+ , {ij} e_{ij} the.ela,\n dw_biot , (\\ul{v}) the.ela.ess,\n-_\bB_\bi_\bo_\bt_\bT_\be_\br_\bm \\mbox{ , } bio.npb, the.ela,\n- , \\int_{\\Omega} bio.sho.syn, bio\n- , q\\ \\alpha_\n+_\bB_\bi_\bo_\bt_\bT_\be_\br_\bm \\mbox{ , } bio.npb, bio,\n+ , \\int_{\\Omega} bio.sho.syn,\n+ , q\\ \\alpha_ bio.npb.lag\n {ij} e_{ij}\n (\\ul{u})\n ev_biot_stress , - \\int_\n _\bB_\bi_\bo_\bt_\bS_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm {\\Omega}\n \\alpha_{ij} p\n ev_cauchy_strain \\int_{\\cal\n _\bC_\ba_\bu_\bc_\bh_\by_\bS_\bt_\br_\ba_\bi_\bn_\bT_\be_\br_\bm {D}} \\ull{e}\n@@ -72,16 +72,16 @@\n , \n , \\int_{\\Gamma}\n dw_contact_sphere , \\ul{v} \\cdot\n _\bC_\bo_\bn_\bt_\ba_\bc_\bt_\bS_\bp_\bh_\be_\br_\be_\bT_\be_\br_\bm , f(d(\\ul{u})) ela.con.sph\n , \\ul{n}(\\ul\n {u})\n \\int_{\\Omega}\n-dw_convect ((\\ul{u} nav.sto.iga,\n-_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm , \\cdot \\nabla) nav.sto, nav.sto\n+dw_convect ((\\ul{u} nav.sto, nav.sto,\n+_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm , \\cdot \\nabla) nav.sto.iga\n \\ul{u}) \\cdot\n \\ul{v}\n , \\int_{\\Omega}\n dw_convect_v_grad_s , q (\\ul{u} poi.fun\n _\bC_\bo_\bn_\bv_\be_\bc_\bt_\bV_\bG_\br_\ba_\bd_\bS_\bT_\be_\br_\bm \\cdot \\nabla\n p)\n \\ull{F} =\n@@ -101,16 +101,16 @@\n {\\partial\n {T_K}} \\ul{n}\n \\cdot \\ul{f}^\n {*} (p_{in},\n p_{out})q\n where\n , \\ul{f}^{*}(p_\n-dw_dg_advect_laxfrie_flux , {in}, p_ adv.dif.2D, adv.2D,\n-_\bA_\bd_\bv_\be_\bc_\bt_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , {out}) = \\ul adv.1D\n+dw_dg_advect_laxfrie_flux , {in}, p_ adv.1D, adv.dif.2D,\n+_\bA_\bd_\bv_\be_\bc_\bt_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , {out}) = \\ul adv.2D\n {a} \\frac{p_\n {in} + p_\n {out}}{2} +\n (1 - \\alpha)\n \\ul{n} C\n \\frac{ p_{in}\n - p_{out}}\n@@ -122,16 +122,16 @@\n \\nabla p\n \\rangle [q]\n \\mbox{ , }\n \\int_\n {\\partial\n {T_K}} D\n , \\langle\n-dw_dg_diffusion_flux , \\nabla q adv.dif.2D, bur.2D,\n-_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , \\rangle [p] lap.2D\n+dw_dg_diffusion_flux , \\nabla q lap.2D, adv.dif.2D,\n+_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , \\rangle [p] bur.2D\n , where\n \\langle\n \\nabla \\phi\n \\rangle =\n \\frac\n {\\nabla\\phi_\n {in} +\n@@ -140,16 +140,16 @@\n [\\phi] =\n \\phi_{in} -\n \\phi_{out}\n \\int_\n {\\partial\n {T_K}} \\bar\n {D} C_w \\frac\n-dw_dg_interior_penalty , {Ord^2}{d adv.dif.2D, bur.2D,\n-_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bI_\bn_\bt_\be_\br_\bi_\bo_\br_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\be_\br_\bm , (\\partial lap.2D\n+dw_dg_interior_penalty , {Ord^2}{d lap.2D, adv.dif.2D,\n+_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bI_\bn_\bt_\be_\br_\bi_\bo_\br_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\be_\br_\bm , (\\partial bur.2D\n , {T_K})}[p][q]\n where\n [\\phi] =\n \\phi_{in} -\n \\phi_{out}\n \\int_\n {\\partial\n@@ -166,77 +166,76 @@\n \\ul{f}(p_\n {out})}{2} +\n (1 - \\alpha)\n \\ul{n} C\n \\frac{ p_{in}\n - p_{out}}\n {2},\n- bio.npb.lag,\n- \\int_{\\Omega} pie.ela, vib.aco,\n-dw_diffusion , K_{ij} bio.npb,\n-_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\be_\br_\bm , \\nabla_i q dar.flo.mul,\n- \\nabla_j p poi.neu,\n- bio.sho.syn, bio,\n- pie.ela\n+ dar.flo.mul,\n+ , \\int_{\\Omega} vib.aco, pie.ela,\n+dw_diffusion , K_{ij} poi.neu, pie.ela,\n+_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\be_\br_\bm \\nabla_i q bio.npb, bio,\n+ \\nabla_j p bio.sho.syn,\n+ bio.npb.lag\n \\int_{\\Omega}\n , p K_{j}\n dw_diffusion_coupling , \\nabla_j q\n _\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bC_\bo_\bu_\bp_\bl_\bi_\bn_\bg \\mbox{ , }\n , \\int_{\\Omega}\n , q K_{j}\n \\nabla_j p\n dw_diffusion_r , \\int_{\\Omega}\n _\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bR_\bT_\be_\br_\bm K_{j}\n \\nabla_j q\n ev_diffusion_velocity , - \\int_{\\cal\n _\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bV_\be_\bl_\bo_\bc_\bi_\bt_\by_\bT_\be_\br_\bm {D}} K_{ij}\n \\nabla_j p\n- \\int_{\\Omega}\n- \\nabla \\cdot\n-dw_div , \\ul{v} \\mbox\n-_\bD_\bi_\bv_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_\n- {\\Omega} c\n- \\nabla \\cdot\n- \\ul{v}\n \\int_{\\cal\n {D}} \\nabla\n ev_div , \\cdot \\ul{u}\n _\bD_\bi_\bv_\bT_\be_\br_\bm \\mbox { , }\n \\int_{\\cal\n {D}} c \\nabla\n \\cdot \\ul{u}\n \\int_{\\Omega}\n+ \\nabla \\cdot\n+dw_div , \\ul{v} \\mbox\n+_\bD_\bi_\bv_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_\n+ {\\Omega} c\n+ \\nabla \\cdot\n+ \\ul{v}\n+ \\int_{\\Omega}\n \\nu\\ \\nabla\n- \\ul{v} :\n-dw_div_grad , \\nabla \\ul{u} sto, nav.sto.iga,\n-_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , \\mbox{ , } sto.sli.bc, nav.sto,\n- \\int_{\\Omega} sta.nav.sto, nav.sto\n- \\nabla \\ul{v}\n+ \\ul{v} : nav.sto.iga,\n+dw_div_grad , \\nabla \\ul{u} nav.sto, sto,\n+_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , \\mbox{ , } nav.sto,\n+ \\int_{\\Omega} sta.nav.sto,\n+ \\nabla \\ul{v} sto.sli.bc\n : \\nabla \\ul\n {u}\n \\int_{\\cal\n {D}} q p\n \\mbox{ , }\n \\int_{\\cal\n- {D}} \\ul{v} pie.ela, wel,\n- \\cdot \\ul tim.hea.equ.mul.mat,\n- {u}\\\\ bal, pie.ela,\n- \\int_\\Gamma poi.fun,\n- \\ul{v} \\cdot tim.poi.exp, aco,\n- \\ul{n} p bor, mod.ana.dec,\n- \\mbox{ , } hel.apa,\n-dw_dot , \\int_\\Gamma q tim.adv.dif, aco,\n-_\bD_\bo_\bt_\bP_\br_\bo_\bd_\bu_\bc_\bt_\bT_\be_\br_\bm , \\ul{n} \\cdot osc, tim.poi,\n- \\ul{u} \\mbox lin.ela.dam, adv.2D,\n- { , }\\\\ \\int_ bur.2D, ref.evp,\n- {\\cal{D}} c q poi.per.bou.con,\n- p \\mbox{ , } lin.ela.up, vib.aco,\n- \\int_{\\cal the.ele, sto.sli.bc,\n- {D}} c \\ul{v} dar.flo.mul, adv.1D,\n- \\cdot \\ul{u} hyd\n+ {D}} \\ul{v} the.ele, bal,\n+ \\cdot \\ul tim.poi.exp, bor,\n+ {u}\\\\ dar.flo.mul,\n+ \\int_\\Gamma pie.ela, osc,\n+ \\ul{v} \\cdot sto.sli.bc, tim.poi,\n+ \\ul{n} p vib.aco, adv.1D,\n+ \\mbox{ , } lin.ela.dam, adv.2D,\n+dw_dot , \\int_\\Gamma q hyd, mod.ana.dec,\n+_\bD_\bo_\bt_\bP_\br_\bo_\bd_\bu_\bc_\bt_\bT_\be_\br_\bm , \\ul{n} \\cdot lin.ela.up, wel,\n+ \\ul{u} \\mbox tim.adv.dif,\n+ { , }\\\\ \\int_ tim.hea.equ.mul.mat,\n+ {\\cal{D}} c q ref.evp, aco,\n+ p \\mbox{ , } poi.per.bou.con,\n+ \\int_{\\cal aco, hel.apa,\n+ {D}} c \\ul{v} poi.fun, pie.ela,\n+ \\cdot \\ul{u} bur.2D\n \\mbox{ , }\n \\int_{\\cal\n {D}} \\ul{v}\n \\cdot \\ull{c}\n \\cdot \\ul{u}\n \\int_{\\Omega}\n dw_elastic_wave , D_{ijkl}\\ g_\n@@ -282,46 +281,45 @@\n \\int_{\\cal\n {D}} c \\ul{y}\n \\mbox{ , }\n \\int_\\Gamma c\n \\ul{y} \\cdot\n \\ul{n} \\mbox\n { flux }\n- poi.per.bou.con,\n- \\int_{\\cal vib.aco, aco,\n-dw_integrate , {D}} q \\mbox dar.flo.mul,\n-_\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_ poi.neu, aco,\n+ \\int_{\\cal dar.flo.mul,\n+dw_integrate , {D}} q \\mbox vib.aco, aco,\n+_\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_ hel.apa, poi.neu,\n {\\cal{D}} c q tim.hea.equ.mul.mat,\n- hel.apa\n+ poi.per.bou.con, aco\n ev_integrate_mat , \\int_{\\cal\n _\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bM_\ba_\bt_\bT_\be_\br_\bm {D}} c\n , \\int_{\\Gamma}\n dw_jump , c\\, q (p_1 - aco\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bJ_\bu_\bm_\bp_\bT_\be_\br_\bm , p_2)\n \n- sin, wel,\n- lap.flu.2d,\n- poi.sho.syn, lap.1d,\n- tim.hea.equ.mul.mat,\n- poi.par.stu,\n- poi.iga,\n- poi.fie.dep.mat,\n- cub, poi.fun,\n- , \\int_{\\Omega} tim.poi.exp, aco,\n-dw_laplace , c \\nabla q bor, poi, hel.apa,\n-_\bL_\ba_\bp_\bl_\ba_\bc_\be_\bT_\be_\br_\bm \\cdot \\nabla the.ela.ess,\n- p tim.adv.dif, aco,\n- lap.2D, osc,\n- tim.poi, adv.dif.2D,\n+ the.ele,\n lap.tim.ebc,\n- lap.cou.lcb, bur.2D,\n- ref.evp,\n+ tim.poi.exp, cub,\n+ bor, lap.cou.lcb,\n+ osc, lap.flu.2d,\n+ tim.poi,\n+ poi.fie.dep.mat,\n+ sto.sli.bc, vib.aco,\n+ , \\int_{\\Omega} poi, hyd, poi.iga,\n+dw_laplace , c \\nabla q sin, wel,\n+_\bL_\ba_\bp_\bl_\ba_\bc_\be_\bT_\be_\br_\bm \\cdot \\nabla tim.adv.dif,\n+ p tim.hea.equ.mul.mat,\n+ poi.sho.syn,\n+ the.ela.ess,\n+ ref.evp, aco,\n poi.per.bou.con,\n- vib.aco, the.ele,\n- sto.sli.bc, hyd\n+ aco, lap.2D,\n+ hel.apa, poi.fun,\n+ adv.dif.2D, lap.1d,\n+ bur.2D, poi.par.stu\n \\int_{\\Omega}\n ((\\ul{w}\n , \\cdot \\nabla)\n dw_lin_convect , \\ul{u}) \\cdot sta.nav.sto\n _\bL_\bi_\bn_\be_\ba_\br_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm \\ul{v}\n ((\\ul{w}\n \\cdot \\nabla)\n@@ -356,40 +354,41 @@\n _\bL_\bi_\bn_\be_\ba_\br_\bD_\bR_\bo_\bt_\bS_\bp_\br_\bi_\bn_\bg_\bT_\be_\br_\bm , \\mbox mul.poi.con\n , { elements }\n T_K^{i,j}\\\\\n \\mbox{ in a\n region\n connecting\n nodes } i, j\n- bio.npb.lag,\n- pie.ela, mat.non,\n- its.4, com.ela.mat,\n- ela.con.pla, its.2,\n- sei.loa, pie.ela,\n- lin.ela.mM,\n+ lin.ela.iga, its.4,\n+ pre.fib, lin.ela.mM,\n+ mat.non,\n+ ela.con.pla,\n+ com.ela.mat,\n+ mix.mes, the.ela,\n+ pie.ela, sei.loa,\n lin.ela.opt,\n+ lin.ela,\n+ mul.nod.lcb,\n+ two.bod.con,\n+ \\int_{\\Omega} vib.aco, ela,\n+dw_lin_elastic , D_{ijkl}\\ e_ lin.ela.dam, its.2,\n+_\bL_\bi_\bn_\be_\ba_\br_\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bT_\be_\br_\bm , {ij}(\\ul{v}) its.3, mod.ana.dec,\n+ e_{kl}(\\ul lin.ela.up, wed.mes,\n+ {u}) the.ela.ess,\n ela.con.sph,\n- lin.ela.iga,\n pie.ela.mac,\n- \\int_{\\Omega} mod.ana.dec,\n- , D_{ijkl}\\ e_ the.ela.ess,\n-dw_lin_elastic , {ij}(\\ul{v}) wed.mes,\n-_\bL_\bi_\bn_\be_\ba_\br_\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bT_\be_\br_\bm e_{kl}(\\ul mul.nod.lcb,\n- {u}) lin.ela,\n- lin.ela.tra, ela,\n- the.ela,\n- lin.ela.dam,\n- pre.fib, bio,\n- lin.ela.up, vib.aco,\n- bio.npb, nod.lcb,\n- ela.shi.per, its.1,\n- lin.vis, mix.mes,\n+ nod.lcb, its.1,\n+ bio.npb.lag,\n+ tru.bri, lin.vis,\n mul.poi.con,\n- two.bod.con, its.3,\n- tru.bri, bio.sho.syn\n+ pie.ela,\n+ lin.ela.tra,\n+ ela.shi.per,\n+ bio.npb, bio,\n+ bio.sho.syn\n \\int_{\\Omega}\n D_{ijkl}\\ e_\n {ij}(\\ul{v})\n e_{kl}(\\ul\n {u})\\\\ \\mbox\n , { with } \\\\\n dw_lin_elastic_iso , D_{ijkl} =\n@@ -397,17 +396,17 @@\n {ik} \\delta_\n {jl}+\\delta_\n {il} \\delta_\n {jk}) +\n \\lambda \\\n \\delta_{ij}\n \\delta_{kl}\n- \\int_{\\Omega}\n-dw_lin_prestress , \\sigma_{ij} non.hyp.mM, pre.fib,\n-_\bL_\bi_\bn_\be_\ba_\br_\bP_\br_\be_\bs_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm e_{ij}(\\ul pie.ela.mac\n+ \\int_{\\Omega} pre.fib,\n+dw_lin_prestress , \\sigma_{ij} pie.ela.mac,\n+_\bL_\bi_\bn_\be_\ba_\br_\bP_\br_\be_\bs_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm e_{ij}(\\ul non.hyp.mM\n {v})\n \\ul{f}^{(i)}\n = - \\ul{f}^{\n (j)} = k (\\ul\n {u}^{(j)} -\n \\ul{u}^{\n dw_lin_spring , (i)})\\\\ \\quad\n@@ -502,17 +501,17 @@\n _\bP_\bi_\be_\bz_\bo_\bS_\bt_\br_\ba_\bi_\bn_\bT_\be_\br_\bm g_{kij} e_\n {ij}(\\ul{u})\n ev_piezo_stress , \\int_{\\Omega}\n _\bP_\bi_\be_\bz_\bo_\bS_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm g_{kij}\n \\nabla_k p\n \\ul{f}^i =\n \\ul{\\bar f}^i\n-dw_point_load , \\quad \\forall she.can, tru.bri,\n-_\bC_\bo_\bn_\bc_\be_\bn_\bt_\br_\ba_\bt_\be_\bd_\bP_\bo_\bi_\bn_\bt_\bL_\bo_\ba_\bd_\bT_\be_\br_\bm \\mbox{ FE its.4, its.1, its.2,\n- node } i its.3\n+dw_point_load , \\quad \\forall its.2, its.3, its.4,\n+_\bC_\bo_\bn_\bc_\be_\bn_\bt_\br_\ba_\bt_\be_\bd_\bP_\bo_\bi_\bn_\bt_\bL_\bo_\ba_\bd_\bT_\be_\br_\bm \\mbox{ FE she.can, tru.bri,\n+ node } i its.1\n \\mbox{ in a\n region }\n \\ul{f}^i = -\n k \\ul{u}^i\n dw_point_lspring , \\quad \\forall\n _\bL_\bi_\bn_\be_\ba_\br_\bP_\bo_\bi_\bn_\bt_\bS_\bp_\br_\bi_\bn_\bg_\bT_\be_\br_\bm , \\mbox{ FE\n node } i\n@@ -520,34 +519,34 @@\n region }\n dw_s_dot_grad_i_s , Z^i = \\int_\n _\bS_\bc_\ba_\bl_\ba_\br_\bD_\bo_\bt_\bG_\br_\ba_\bd_\bI_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , {\\Omega} q\n \\nabla_i p\n \\int_{\\Omega}\n q \\ul{y}\n , \\cdot \\nabla\n-dw_s_dot_mgrad_s , p \\mbox{ , } adv.dif.2D, adv.2D,\n-_\bS_\bc_\ba_\bl_\ba_\br_\bD_\bo_\bt_\bM_\bG_\br_\ba_\bd_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , \\int_{\\Omega} adv.1D\n+dw_s_dot_mgrad_s , p \\mbox{ , } adv.1D, adv.dif.2D,\n+_\bS_\bc_\ba_\bl_\ba_\br_\bD_\bo_\bt_\bM_\bG_\br_\ba_\bd_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , \\int_{\\Omega} adv.2D\n , p \\ul{y}\n \\cdot \\nabla\n q\n \\int_{\\Omega}\n dw_shell10x , D_{ijkl}\\ e_\n _\bS_\bh_\be_\bl_\bl_\b1_\b0_\bX_\bT_\be_\br_\bm , {ij}(\\ul{v}) she.can\n , e_{kl}(\\ul\n {u})\n \\int_{\\Omega}\n p\\ \\nabla\n \\cdot \\ul{v}\n \\mbox{ , }\n \\int_{\\Omega}\n- , q\\ \\nabla\n- , \\cdot \\ul sto, lin.ela.up,\n-dw_stokes {u}\\\\ \\mbox nav.sto.iga,\n-_\bS_\bt_\bo_\bk_\be_\bs_\bT_\be_\br_\bm , { or } \\int_ sto.sli.bc, nav.sto,\n- , {\\Omega} c\\ sta.nav.sto, nav.sto\n+ , q\\ \\nabla nav.sto.iga,\n+ , \\cdot \\ul lin.ela.up, nav.sto,\n+dw_stokes {u}\\\\ \\mbox sto, nav.sto,\n+_\bS_\bt_\bo_\bk_\be_\bs_\bT_\be_\br_\bm , { or } \\int_ sta.nav.sto,\n+ , {\\Omega} c\\ sto.sli.bc\n p\\ \\nabla\n \\cdot \\ul{v}\n \\mbox{ , }\n \\int_{\\Omega}\n c\\ q\\ \\nabla\n \\cdot \\ul{u}\n \\int_{\\Omega}\n@@ -572,20 +571,20 @@\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm , \\cdot \\ull{K}\n \\cdot \\nabla\n p\n \\int_{\\Gamma}\n ev_surface_flux , \\ul{n} \\cdot\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm K_{ij}\n \\nabla_j p\n- \\int_{\\Gamma} wed.mes, nod.lcb,\n- \\ul{v} \\cdot com.ela.mat,\n-dw_surface_ltr , \\ull{\\sigma} lin.ela.tra,\n-_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm \\cdot \\ul{n}, ela.shi.per,\n- \\int_{\\Gamma} lin.vis, mix.mes,\n- \\ul{v} \\cdot lin.ela.opt, tru.bri\n+ \\int_{\\Gamma} com.ela.mat,\n+ \\ul{v} \\cdot mix.mes, lin.vis,\n+dw_surface_ltr , \\ull{\\sigma} tru.bri, wed.mes,\n+_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm \\cdot \\ul{n}, lin.ela.tra,\n+ \\int_{\\Gamma} lin.ela.opt,\n+ \\ul{v} \\cdot ela.shi.per, nod.lcb\n \\ul{n},\n \\int_{\\Gamma}\n ev_surface_moment , \\ul{n} (\\ul\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bM_\bo_\bm_\be_\bn_\bt_\bT_\be_\br_\bm {x} - \\ul\n {x}_0)\n dw_surface_ndot , \\int_{\\Gamma}\n _\bS_\bu_\bf_\ba_\bc_\be_\bN_\bo_\br_\bm_\ba_\bl_\bD_\bo_\bt_\bT_\be_\br_\bm q \\ul{c} lap.flu.2d\n@@ -625,15 +624,15 @@\n , \\int_{\\Omega}\n , \\ul{u} \\cdot\n \\ul{c} q\\\\\n ev_volume \\int_{\\cal\n _\bV_\bo_\bl_\bu_\bm_\be_\bT_\be_\br_\bm {D}} 1\n \\int_{\\Omega}\n dw_volume_lvf , \\ul{f} \\cdot adv.dif.2D, bur.2D,\n-_\bL_\bi_\bn_\be_\ba_\br_\bV_\bo_\bl_\bu_\bm_\be_\bF_\bo_\br_\bc_\be_\bT_\be_\br_\bm \\ul{v} \\mbox poi.iga, poi.par.stu\n+_\bL_\bi_\bn_\be_\ba_\br_\bV_\bo_\bl_\bu_\bm_\be_\bF_\bo_\br_\bc_\be_\bT_\be_\br_\bm \\ul{v} \\mbox poi.par.stu, poi.iga\n { or } \\int_\n {\\Omega} f q\n dw_volume_nvf , , \\int_{\\Omega} poi.non.mat\n _\bN_\bo_\bn_\bl_\bi_\bn_\be_\ba_\br_\bV_\bo_\bl_\bu_\bm_\be_\bF_\bo_\br_\bc_\be_\bT_\be_\br_\bm , q f(p)\n 1 / D\n ev_volume_surface \\int_\\Gamma\n _\bV_\bo_\bl_\bu_\bm_\be_\bS_\bu_\br_\bf_\ba_\bc_\be_\bT_\be_\br_\bm \\ul{x} \\cdot\n@@ -659,30 +658,30 @@\n _\bS_\bD_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm - u_k \\pdiff{\\Vcal_j}\n {x_k} \\pdiff{u_i}\n {x_j} w_i ]\n \\int_{\\Omega} \\hat\n {K}_{ij} \\nabla_i q\\,\n \\nabla_j p\n \\hat{K}_{ij} = K_\n- , {ij}\\left( \\delta_\n-ev_sd_diffusion , {ik}\\delta_{jl}\n-_\bS_\bD_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\be_\br_\bm , \\nabla \\cdot \\ul\n+ , , , \\nabla \\cdot \\ul\n {\\Vcal} - \\delta_{ik}\n {\\partial \\Vcal_j\n \\over \\partial x_l} -\n \\delta_{jl}{\\partial\n \\Vcal_i \\over\n \\partial x_k}\\right)\n \\int_{\\Omega} \\hat\n {K}_{ij} \\nabla_i q\\,\n \\nabla_j p\n \\hat{K}_{ij} = K_\n- , , , \\nabla \\cdot \\ul\n+ , {ij}\\left( \\delta_\n+ev_sd_diffusion , {ik}\\delta_{jl}\n+_\bS_\bD_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\be_\br_\bm , \\nabla \\cdot \\ul\n {\\Vcal} - \\delta_{ik}\n {\\partial \\Vcal_j\n \\over \\partial x_l} -\n \\delta_{jl}{\\partial\n \\Vcal_i \\over\n \\partial x_k}\\right)\n \\int_{\\Omega} p [\n@@ -695,16 +694,16 @@\n \\nabla \\ul{v} :\n \\nabla \\ul{u} \\mbox\n { , } \\int_{\\Omega}\n \\nu \\hat{I} \\nabla\n \\ul{v} : \\nabla \\ul\n {u}\n , \\hat{I}_{ijkl} =\n-de_sd_div_grad , \\delta_{ik}\\delta_\n-_\bE_\bS_\bD_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , {jl} \\nabla \\cdot \\ul\n+ev_sd_div_grad , \\delta_{ik}\\delta_\n+_\bS_\bD_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , {jl} \\nabla \\cdot \\ul\n {\\Vcal} - \\delta_\n {ik}\\delta_{js}\n {\\partial \\Vcal_l\n \\over \\partial x_s} -\n \\delta_{is}\\delta_\n {jl} {\\partial\n \\Vcal_k \\over\n@@ -713,16 +712,16 @@\n \\nabla \\ul{v} :\n \\nabla \\ul{u} \\mbox\n { , } \\int_{\\Omega}\n \\nu \\hat{I} \\nabla\n \\ul{v} : \\nabla \\ul\n {u}\n , \\hat{I}_{ijkl} =\n-ev_sd_div_grad , \\delta_{ik}\\delta_\n-_\bS_\bD_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , {jl} \\nabla \\cdot \\ul\n+de_sd_div_grad , \\delta_{ik}\\delta_\n+_\bE_\bS_\bD_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , {jl} \\nabla \\cdot \\ul\n {\\Vcal} - \\delta_\n {ik}\\delta_{js}\n {\\partial \\Vcal_l\n \\over \\partial x_s} -\n \\delta_{is}\\delta_\n {jl} {\\partial\n \\Vcal_k \\over\n@@ -746,60 +745,60 @@\n \\int_{\\Omega} p q\n , (\\nabla \\cdot \\ul\n ev_sd_dot , {\\Vcal}) \\mbox{ , }\n _\bS_\bD_\bD_\bo_\bt_\bT_\be_\br_\bm \\int_{\\Omega} (\\ul{u}\n \\cdot \\ul{w}) (\\nabla\n \\cdot \\ul{\\Vcal})\n \\int_{\\Omega} \\hat\n- {D}_{ijkl}\\ e_{ij}\n- (\\ul{v}) e_{kl}(\\ul\n- {u})\n- , \\hat{D}_{ijkl} = D_\n-ev_sd_lin_elastic , {ijkl}(\\nabla \\cdot\n-_\bS_\bD_\bL_\bi_\bn_\be_\ba_\br_\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bT_\be_\br_\bm , \\ul{\\Vcal}) - D_\n- {ijkq}{\\partial\n- \\Vcal_l \\over\n- \\partial x_q} - D_\n- {iqkl}{\\partial\n- \\Vcal_j \\over\n- \\partial x_q}\n- \\int_{\\Omega} \\hat\n {D}_{ijkl} {\\partial\n v_i \\over \\partial\n x_j} {\\partial u_k\n \\over \\partial x_l}\n , , , \\ul{\\Vcal}) - D_\n {ijkq}{\\partial\n \\Vcal_l \\over\n \\partial x_q} - D_\n {iqkl}{\\partial\n \\Vcal_j \\over\n \\partial x_q}\n \\int_{\\Omega} \\hat\n+ {D}_{ijkl}\\ e_{ij}\n+ (\\ul{v}) e_{kl}(\\ul\n+ {u})\n+ , \\hat{D}_{ijkl} = D_\n+ev_sd_lin_elastic , {ijkl}(\\nabla \\cdot\n+_\bS_\bD_\bL_\bi_\bn_\be_\ba_\br_\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bT_\be_\br_\bm , \\ul{\\Vcal}) - D_\n+ {ijkq}{\\partial\n+ \\Vcal_l \\over\n+ \\partial x_q} - D_\n+ {iqkl}{\\partial\n+ \\Vcal_j \\over\n+ \\partial x_q}\n+ \\int_{\\Omega} \\hat\n {g}_{kij}\\ e_{ij}(\\ul\n- {v}) \\nabla_k p \\mbox\n- , , , (\\ul{u}) \\nabla_k q\n-de_sd_piezo_coupling \\hat{g}_{kij} = g_\n-_\bE_\bS_\bD_\bP_\bi_\be_\bz_\bo_\bC_\bo_\bu_\bp_\bl_\bi_\bn_\bg_\bT_\be_\br_\bm , , {kij}(\\nabla \\cdot\n- , \\ul{\\Vcal}) - g_{kil}\n+ {u}) \\nabla_k p\n+ , \\hat{g}_{kij} = g_\n+ev_sd_piezo_coupling , {kij}(\\nabla \\cdot\n+_\bS_\bD_\bP_\bi_\be_\bz_\bo_\bC_\bo_\bu_\bp_\bl_\bi_\bn_\bg_\bT_\be_\br_\bm , \\ul{\\Vcal}) - g_{kil}\n {\\partial \\Vcal_j\n \\over \\partial x_l} -\n g_{lij}{\\partial\n \\Vcal_k \\over\n \\partial x_l}\n \\int_{\\Omega} \\hat\n {g}_{kij}\\ e_{ij}(\\ul\n- {u}) \\nabla_k p\n- , \\hat{g}_{kij} = g_\n-ev_sd_piezo_coupling , {kij}(\\nabla \\cdot\n-_\bS_\bD_\bP_\bi_\be_\bz_\bo_\bC_\bo_\bu_\bp_\bl_\bi_\bn_\bg_\bT_\be_\br_\bm , \\ul{\\Vcal}) - g_{kil}\n+ {v}) \\nabla_k p \\mbox\n+ , , , (\\ul{u}) \\nabla_k q\n+de_sd_piezo_coupling \\hat{g}_{kij} = g_\n+_\bE_\bS_\bD_\bP_\bi_\be_\bz_\bo_\bC_\bo_\bu_\bp_\bl_\bi_\bn_\bg_\bT_\be_\br_\bm , , {kij}(\\nabla \\cdot\n+ , \\ul{\\Vcal}) - g_{kil}\n {\\partial \\Vcal_j\n \\over \\partial x_l} -\n g_{lij}{\\partial\n \\Vcal_k \\over\n \\partial x_l}\n \\int_{\\Omega} p\\,\n \\hat{I}_{ij}\n@@ -814,32 +813,32 @@\n \\cdot \\Vcal -\n {\\partial \\Vcal_j\n \\over \\partial x_i}\n ev_sd_surface_integrate , \\int_{\\Gamma} p\n _\bS_\bD_\bS_\bu_\bf_\ba_\bc_\be_\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bT_\be_\br_\bm \\nabla \\cdot \\ul\n {\\Vcal}\n \\int_{\\Gamma} \\ul{v}\n+ev_sd_surface_ltr , \\cdot (\\ull{\\sigma}\\,\n+_\bS_\bD_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm , \\ul{n}), \\int_\n+ {\\Gamma} \\ul{v} \\cdot\n+ \\ul{n},\n+ \\int_{\\Gamma} \\ul{v}\n \\cdot \\left[\\left\n (\\ull{\\hat{\\sigma}}\\,\n \\nabla \\cdot \\ul{\\cal\n {V}} - \\ull{\n , {\\hat\\sigma}}\\,\n de_sd_surface_ltr , \\nabla \\ul{\\cal{V}}\n _\bE_\bS_\bD_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm \\right)\\ul{n}\\right]\n \\ull{\\hat\\sigma} =\n \\ull{I} \\mbox{ , }\n \\ull{\\hat\\sigma} =\n c\\,\\ull{I} \\mbox{ or\n } \\ull{\\hat\\sigma} =\n \\ull{\\sigma}\n- \\int_{\\Gamma} \\ul{v}\n-ev_sd_surface_ltr , \\cdot (\\ull{\\sigma}\\,\n-_\bS_\bD_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm , \\ul{n}), \\int_\n- {\\Gamma} \\ul{v} \\cdot\n- \\ul{n},\n \\int_{\\Omega} \\hat\n {I}_{ij} {\\partial p\n , \\over \\partial x_j}\\,\n , v_i \\mbox{ , } \\int_\n , {\\Omega} \\hat{I}_{ij}\n de_sd_v_dot_grad_s {\\partial q \\over\n _\bE_\bS_\bD_\bV_\be_\bc_\bt_\bo_\br_\bD_\bo_\bt_\bG_\br_\ba_\bd_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , \\partial x_j}\\, u_i\n@@ -851,20 +850,20 @@\n *\b**\b**\b**\b**\b**\b* T\bTa\bab\bbl\ble\be o\bof\bf l\bla\bar\brg\bge\be d\bde\bef\bfo\bor\brm\bma\bat\bti\bio\bon\bn t\bte\ber\brm\bms\bs_\b?\b\u00b6 *\b**\b**\b**\b**\b**\b*\n L\bLa\bar\brg\bge\be d\bde\bef\bfo\bor\brm\bma\bat\bti\bio\bon\bn t\bte\ber\brm\bms\bs_\b?\b\u00b6\n n\bna\bam\bme\be/\b/c\bcl\bla\bas\bss\bs a\bar\brg\bgu\bum\bme\ben\bnt\bts\bs d\bde\bef\bfi\bin\bni\bit\bti\bio\bon\bn e\bex\bxa\bam\bmp\bpl\ble\bes\bs\n , \\int_{\\Omega}\n dw_tl_bulk_active , S_{ij}(\\ul{u})\n _\bB_\bu_\bl_\bk_\bA_\bc_\bt_\bi_\bv_\be_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n (\\ul{u};\\ul{v})\n- , \\int_{\\Omega} act.fib,\n+ , \\int_{\\Omega}\n dw_tl_bulk_penalty , S_{ij}(\\ul{u}) com.ela.mat,\n-_\bB_\bu_\bl_\bk_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} hyp\n+_\bB_\bu_\bl_\bk_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} hyp, act.fib\n (\\ul{u};\\ul{v})\n , \\int_{\\Omega}\n-dw_tl_bulk_pressure , S_{ij}(p) bal, per.tl\n+dw_tl_bulk_pressure , S_{ij}(p) per.tl, bal\n _\bB_\bu_\bl_\bk_\bP_\br_\be_\bs_\bs_\bu_\br_\be_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n (\\ul{u};\\ul{v})\n , \\int_{\\Omega}\n , \\ull{K}(\\ul{u}^\n dw_tl_diffusion , {(n-1)}) : per.tl\n _\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\bL_\bT_\be_\br_\bm , \\pdiff{q}{\\ul\n {X}} \\pdiff{p}\n@@ -890,21 +889,21 @@\n ,\n \n , \\int_{\\Omega}\n dw_tl_he_genyeoh , S_{ij}(\\ul{u})\n _\bG_\be_\bn_\bY_\be_\bo_\bh_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n (\\ul{u};\\ul{v})\n , \\int_{\\Omega}\n-dw_tl_he_mooney_rivlin , S_{ij}(\\ul{u}) bal, hyp,\n-_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} com.ela.mat\n+dw_tl_he_mooney_rivlin , S_{ij}(\\ul{u}) com.ela.mat,\n+_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} bal, hyp\n+ (\\ul{u};\\ul{v})\n+ , \\int_{\\Omega} com.ela.mat,\n+dw_tl_he_neohook , S_{ij}(\\ul{u}) per.tl, bal,\n+_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} act.fib, hyp\n (\\ul{u};\\ul{v})\n- , \\int_{\\Omega} act.fib,\n-dw_tl_he_neohook , S_{ij}(\\ul{u}) com.ela.mat,\n-_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} per.tl, bal,\n- (\\ul{u};\\ul{v}) hyp\n , \\int_{\\Omega}\n dw_tl_he_ogden , S_{ij}(\\ul{u})\n _\bO_\bg_\bd_\be_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n (\\ul{u};\\ul{v})\n ,\n dw_tl_membrane ,\n _\bT_\bL_\bM_\be_\bm_\bb_\br_\ba_\bn_\be_\bT_\be_\br_\bm , bal\n@@ -925,15 +924,15 @@\n {l} \\int_\n {\\Omega} q J\n (\\ul{u}) \\\\\n \\mbox{volume\n mode: vector\n for } K \\from\n dw_tl_volume , \\Ical_h: \\int_\n-_\bV_\bo_\bl_\bu_\bm_\be_\bT_\bL_\bT_\be_\br_\bm {T_K} J(\\ul{u}) bal, per.tl\n+_\bV_\bo_\bl_\bu_\bm_\be_\bT_\bL_\bT_\be_\br_\bm {T_K} J(\\ul{u}) per.tl, bal\n \\\\ \\mbox\n {rel\\_volume\n mode: vector\n for } K \\from\n \\Ical_h: \\int_\n {T_K} J(\\ul{u})\n / \\int_{T_K} 1\n@@ -963,22 +962,22 @@\n \\mathcal\n dw_ul_he_by_fun , , {L}\\tau_{ij} hyp.ul.by.fun\n _\bH_\by_\bp_\be_\br_\be_\bl_\ba_\bs_\bt_\bi_\bc_\bB_\by_\bF_\bu_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij}\n (\\delta\\ul{v})/\n J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_he_mooney_rivlin , {L}\\tau_{ij} hyp.ul,\n-_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij} hyp.ul.up\n+dw_ul_he_mooney_rivlin , {L}\\tau_{ij} hyp.ul.up,\n+_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij} hyp.ul\n (\\delta\\ul{v})/\n J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_he_neohook , {L}\\tau_{ij} hyp.ul,\n-_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij} hyp.ul.up\n+dw_ul_he_neohook , {L}\\tau_{ij} hyp.ul.up,\n+_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij} hyp.ul\n (\\delta\\ul{v})/\n J\n \\begin{array}\n {l} \\int_\n {\\Omega} q J\n (\\ul{u}) \\\\\n \\mbox{volume\n@@ -1279,15 +1278,15 @@\n {\\delta w}) \\ e_\n {lm,n}(\\ull{w})\n M^C = \\int_{\\cal\n {D}} \\rho \\ul{v}\n \\cdot \\ul{u} \\\\\n , M^L = \\mathrm\n de_mass , {lumping}(M^C) \\\\\n-_\bM_\ba_\bs_\bs_\bT_\be_\br_\bm , M^A = (1 - \\beta) sei.loa, ela\n+_\bM_\ba_\bs_\bs_\bT_\be_\br_\bm , M^A = (1 - \\beta) ela, sei.loa\n , M^C + \\beta M^L\n \\\\ A = \\sum_e A_e\n \\\\ C = \\sum_e\n A_e^T (M_e^A)^{-\n 1} A_e\n \\int_{\\Gamma} c\n de_non_penetration_p , (\\ul{n} \\cdot \\ul\n"}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/terms_overview.html", "source2": "./usr/share/doc/python-sfepy-doc/html/terms_overview.html", "unified_diff": "@@ -373,15 +373,15 @@\n

<material>, <virtual/param_v>, <state/param_s>

\n

<material>, <state>, <virtual>

\n \n
\n

\\int_{\\Omega} p\\ \\alpha_{ij} e_{ij}(\\ul{v}) \\mbox{ , }\n \\int_{\\Omega} q\\ \\alpha_{ij} e_{ij}(\\ul{u})

\n
\n-

bio.npb.lag, the.ela.ess, bio.npb, the.ela, bio.sho.syn, bio

\n+

the.ela, the.ela.ess, bio.npb, bio, bio.sho.syn, bio.npb.lag

\n \n

ev_biot_stress

\n

BiotStressTerm

\n \n

<material>, <parameter>

\n
\n

- \\int_{\\Omega} \\alpha_{ij} p

\n@@ -446,15 +446,15 @@\n

dw_convect

\n

ConvectTerm

\n \n

<virtual>, <state>

\n
\n

\\int_{\\Omega} ((\\ul{u} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}

\n
\n-

nav.sto.iga, nav.sto, nav.sto

\n+

nav.sto, nav.sto, nav.sto.iga

\n \n

dw_convect_v_grad_s

\n

ConvectVGradSTerm

\n \n

<virtual>, <state_v>, <state_s>

\n
\n

\\int_{\\Omega} q (\\ul{u} \\cdot \\nabla p)

\n@@ -480,15 +480,15 @@\n

\\int_{\\partial{T_K}} \\ul{n} \\cdot \\ul{f}^{*} (p_{in},\n p_{out})q

\n

where

\n
\n

\\ul{f}^{*}(p_{in}, p_{out}) = \\ul{a} \\frac{p_{in} +\n p_{out}}{2} + (1 - \\alpha) \\ul{n} C \\frac{ p_{in} - p_{out}}{2},

\n
\n-

adv.dif.2D, adv.2D, adv.1D

\n+

adv.1D, adv.dif.2D, adv.2D

\n \n

dw_dg_diffusion_flux

\n

DiffusionDGFluxTerm

\n \n

<material>, <state>, <virtual>

\n

<material>, <virtual>, <state>

\n \n@@ -498,28 +498,28 @@\n

where

\n
\n

\\langle \\nabla \\phi \\rangle = \\frac{\\nabla\\phi_{in} +\n \\nabla\\phi_{out}}{2}

\n
\n

[\\phi] = \\phi_{in} - \\phi_{out}

\n
\n-

adv.dif.2D, bur.2D, lap.2D

\n+

lap.2D, adv.dif.2D, bur.2D

\n \n

dw_dg_interior_penalty

\n

DiffusionInteriorPenaltyTerm

\n \n

<material>, <material_Cw>, <virtual>, <state>

\n
\n

\\int_{\\partial{T_K}} \\bar{D} C_w\n \\frac{Ord^2}{d(\\partial{T_K})}[p][q]

\n

where

\n
\n

[\\phi] = \\phi_{in} - \\phi_{out}

\n
\n-

adv.dif.2D, bur.2D, lap.2D

\n+

lap.2D, adv.dif.2D, bur.2D

\n \n

dw_dg_nonlinear_laxfrie_flux

\n

NonlinearHyperbolicDGFluxTerm

\n \n

<opt_material>, <fun>, <fun_d>, <virtual>, <state>

\n
\n

\\int_{\\partial{T_K}} \\ul{n} \\cdot f^{*} (p_{in}, p_{out})q

\n@@ -534,15 +534,15 @@\n

dw_diffusion

\n

DiffusionTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} K_{ij} \\nabla_i q \\nabla_j p

\n
\n-

bio.npb.lag, pie.ela, vib.aco, bio.npb, dar.flo.mul, poi.neu, bio.sho.syn, bio, pie.ela

\n+

dar.flo.mul, vib.aco, pie.ela, poi.neu, pie.ela, bio.npb, bio, bio.sho.syn, bio.npb.lag

\n \n

dw_diffusion_coupling

\n

DiffusionCoupling

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n

<material>, <state>, <virtual>

\n \n@@ -566,56 +566,56 @@\n \n

<material>, <parameter>

\n
\n

- \\int_{\\cal{D}} K_{ij} \\nabla_j p

\n
\n \n \n-

dw_div

\n-

DivOperatorTerm

\n+

ev_div

\n+

DivTerm

\n \n-

<opt_material>, <virtual>

\n+

<opt_material>, <parameter>

\n
\n-

\\int_{\\Omega} \\nabla \\cdot \\ul{v} \\mbox { or }\n-\\int_{\\Omega} c \\nabla \\cdot \\ul{v}

\n+

\\int_{\\cal{D}} \\nabla \\cdot \\ul{u} \\mbox { , }\n+\\int_{\\cal{D}} c \\nabla \\cdot \\ul{u}

\n
\n \n \n-

ev_div

\n-

DivTerm

\n+

dw_div

\n+

DivOperatorTerm

\n \n-

<opt_material>, <parameter>

\n+

<opt_material>, <virtual>

\n
\n-

\\int_{\\cal{D}} \\nabla \\cdot \\ul{u} \\mbox { , }\n-\\int_{\\cal{D}} c \\nabla \\cdot \\ul{u}

\n+

\\int_{\\Omega} \\nabla \\cdot \\ul{v} \\mbox { or }\n+\\int_{\\Omega} c \\nabla \\cdot \\ul{v}

\n
\n \n \n

dw_div_grad

\n

DivGradTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} \\nu\\ \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{ ,\n } \\int_{\\Omega} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n-

sto, nav.sto.iga, sto.sli.bc, nav.sto, sta.nav.sto, nav.sto

\n+

nav.sto.iga, nav.sto, sto, nav.sto, sta.nav.sto, sto.sli.bc

\n \n

dw_dot

\n

DotProductTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\cal{D}} q p \\mbox{ , } \\int_{\\cal{D}} \\ul{v} \\cdot\n \\ul{u}\\\\ \\int_\\Gamma \\ul{v} \\cdot \\ul{n} p \\mbox{ , } \\int_\\Gamma\n q \\ul{n} \\cdot \\ul{u} \\mbox{ , }\\\\ \\int_{\\cal{D}} c q p \\mbox{ , }\n \\int_{\\cal{D}} c \\ul{v} \\cdot \\ul{u} \\mbox{ , } \\int_{\\cal{D}}\n \\ul{v} \\cdot \\ull{c} \\cdot \\ul{u}

\n
\n-

pie.ela, wel, tim.hea.equ.mul.mat, bal, pie.ela, poi.fun, tim.poi.exp, aco, bor, mod.ana.dec, hel.apa, tim.adv.dif, aco, osc, tim.poi, lin.ela.dam, adv.2D, bur.2D, ref.evp, poi.per.bou.con, lin.ela.up, vib.aco, the.ele, sto.sli.bc, dar.flo.mul, adv.1D, hyd

\n+

the.ele, bal, tim.poi.exp, bor, dar.flo.mul, pie.ela, osc, sto.sli.bc, tim.poi, vib.aco, adv.1D, lin.ela.dam, adv.2D, hyd, mod.ana.dec, lin.ela.up, wel, tim.adv.dif, tim.hea.equ.mul.mat, ref.evp, aco, poi.per.bou.con, aco, hel.apa, poi.fun, pie.ela, bur.2D

\n \n

dw_elastic_wave

\n

ElasticWaveTerm

\n \n

<material_1>, <material_2>, <virtual>, <state>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ g_{ij}(\\ul{v}) g_{kl}(\\ul{u})

\n@@ -669,15 +669,15 @@\n

dw_integrate

\n

IntegrateOperatorTerm

\n \n

<opt_material>, <virtual>

\n
\n

\\int_{\\cal{D}} q \\mbox{ or } \\int_{\\cal{D}} c q

\n
\n-

poi.per.bou.con, vib.aco, aco, dar.flo.mul, poi.neu, aco, tim.hea.equ.mul.mat, hel.apa

\n+

dar.flo.mul, vib.aco, aco, hel.apa, poi.neu, tim.hea.equ.mul.mat, poi.per.bou.con, aco

\n \n

ev_integrate_mat

\n

IntegrateMatTerm

\n \n

<material>, <parameter>

\n
\n

\\int_{\\cal{D}} c

\n@@ -696,15 +696,15 @@\n

dw_laplace

\n

LaplaceTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} c \\nabla q \\cdot \\nabla p

\n
\n-

sin, wel, lap.flu.2d, poi.sho.syn, lap.1d, tim.hea.equ.mul.mat, poi.par.stu, poi.iga, poi.fie.dep.mat, cub, poi.fun, tim.poi.exp, aco, bor, poi, hel.apa, the.ela.ess, tim.adv.dif, aco, lap.2D, osc, tim.poi, adv.dif.2D, lap.tim.ebc, lap.cou.lcb, bur.2D, ref.evp, poi.per.bou.con, vib.aco, the.ele, sto.sli.bc, hyd

\n+

the.ele, lap.tim.ebc, tim.poi.exp, cub, bor, lap.cou.lcb, osc, lap.flu.2d, tim.poi, poi.fie.dep.mat, sto.sli.bc, vib.aco, poi, hyd, poi.iga, sin, wel, tim.adv.dif, tim.hea.equ.mul.mat, poi.sho.syn, the.ela.ess, ref.evp, aco, poi.per.bou.con, aco, lap.2D, hel.apa, poi.fun, adv.dif.2D, lap.1d, bur.2D, poi.par.stu

\n \n

dw_lin_convect

\n

LinearConvectTerm

\n \n

<virtual>, <parameter>, <state>

\n
\n

\\int_{\\Omega} ((\\ul{w} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}

\n@@ -749,15 +749,15 @@\n

dw_lin_elastic

\n

LinearElasticTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})

\n
\n-

bio.npb.lag, pie.ela, mat.non, its.4, com.ela.mat, ela.con.pla, its.2, sei.loa, pie.ela, lin.ela.mM, lin.ela.opt, ela.con.sph, lin.ela.iga, pie.ela.mac, mod.ana.dec, the.ela.ess, wed.mes, mul.nod.lcb, lin.ela, lin.ela.tra, ela, the.ela, lin.ela.dam, pre.fib, bio, lin.ela.up, vib.aco, bio.npb, nod.lcb, ela.shi.per, its.1, lin.vis, mix.mes, mul.poi.con, two.bod.con, its.3, tru.bri, bio.sho.syn

\n+

lin.ela.iga, its.4, pre.fib, lin.ela.mM, mat.non, ela.con.pla, com.ela.mat, mix.mes, the.ela, pie.ela, sei.loa, lin.ela.opt, lin.ela, mul.nod.lcb, two.bod.con, vib.aco, ela, lin.ela.dam, its.2, its.3, mod.ana.dec, lin.ela.up, wed.mes, the.ela.ess, ela.con.sph, pie.ela.mac, nod.lcb, its.1, bio.npb.lag, tru.bri, lin.vis, mul.poi.con, pie.ela, lin.ela.tra, ela.shi.per, bio.npb, bio, bio.sho.syn

\n \n

dw_lin_elastic_iso

\n

LinearElasticIsotropicTerm

\n \n

<material_1>, <material_2>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\\\\\n@@ -770,15 +770,15 @@\n

dw_lin_prestress

\n

LinearPrestressTerm

\n \n

<material>, <virtual/param>

\n
\n

\\int_{\\Omega} \\sigma_{ij} e_{ij}(\\ul{v})

\n
\n-

non.hyp.mM, pre.fib, pie.ela.mac

\n+

pre.fib, pie.ela.mac, non.hyp.mM

\n \n

dw_lin_spring

\n

LinearSpringTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\ul{f}^{(i)} = - \\ul{f}^{(j)} = k (\\ul{u}^{(j)} -\n@@ -906,15 +906,15 @@\n

ConcentratedPointLoadTerm

\n \n

<material>, <virtual>

\n
\n

\\ul{f}^i = \\ul{\\bar f}^i \\quad \\forall \\mbox{ FE node } i\n \\mbox{ in a region }

\n
\n-

she.can, tru.bri, its.4, its.1, its.2, its.3

\n+

its.2, its.3, its.4, she.can, tru.bri, its.1

\n \n

dw_point_lspring

\n

LinearPointSpringTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\ul{f}^i = -k \\ul{u}^i \\quad \\forall \\mbox{ FE node } i\n@@ -937,15 +937,15 @@\n

<material>, <virtual>, <state>

\n

<material>, <state>, <virtual>

\n \n
\n

\\int_{\\Omega} q \\ul{y} \\cdot \\nabla p \\mbox{ , }\n \\int_{\\Omega} p \\ul{y} \\cdot \\nabla q

\n
\n-

adv.dif.2D, adv.2D, adv.1D

\n+

adv.1D, adv.dif.2D, adv.2D

\n \n

dw_shell10x

\n

Shell10XTerm

\n \n

<material_d>, <material_drill>, <virtual>, <state>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})

\n@@ -960,15 +960,15 @@\n \n
\n

\\int_{\\Omega} p\\ \\nabla \\cdot \\ul{v} \\mbox{ , }\n \\int_{\\Omega} q\\ \\nabla \\cdot \\ul{u}\\\\ \\mbox{ or } \\int_{\\Omega}\n c\\ p\\ \\nabla \\cdot \\ul{v} \\mbox{ , } \\int_{\\Omega} c\\ q\\ \\nabla\n \\cdot \\ul{u}

\n
\n-

sto, lin.ela.up, nav.sto.iga, sto.sli.bc, nav.sto, sta.nav.sto, nav.sto

\n+

nav.sto.iga, lin.ela.up, nav.sto, sto, nav.sto, sta.nav.sto, sto.sli.bc

\n \n

dw_stokes_wave

\n

StokesWaveTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} (\\ul{\\kappa} \\cdot \\ul{v}) (\\ul{\\kappa}\n@@ -1018,15 +1018,15 @@\n

LinearTractionTerm

\n \n

<opt_material>, <virtual/param>

\n
\n

\\int_{\\Gamma} \\ul{v} \\cdot \\ull{\\sigma} \\cdot \\ul{n},\n \\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n
\n-

wed.mes, nod.lcb, com.ela.mat, lin.ela.tra, ela.shi.per, lin.vis, mix.mes, lin.ela.opt, tru.bri

\n+

com.ela.mat, mix.mes, lin.vis, tru.bri, wed.mes, lin.ela.tra, lin.ela.opt, ela.shi.per, nod.lcb

\n \n

ev_surface_moment

\n

SurfaceMomentTerm

\n \n

<material>, <parameter>

\n
\n

\\int_{\\Gamma} \\ul{n} (\\ul{x} - \\ul{x}_0)

\n@@ -1091,15 +1091,15 @@\n

LinearVolumeForceTerm

\n \n

<material>, <virtual>

\n
\n

\\int_{\\Omega} \\ul{f} \\cdot \\ul{v} \\mbox{ or }\n \\int_{\\Omega} f q

\n
\n-

adv.dif.2D, bur.2D, poi.iga, poi.par.stu

\n+

adv.dif.2D, bur.2D, poi.par.stu, poi.iga

\n \n

dw_volume_nvf

\n

NonlinearVolumeForceTerm

\n \n

<fun>, <dfun>, <virtual>, <state>

\n
\n

\\int_{\\Omega} q f(p)

\n@@ -1178,31 +1178,31 @@\n

<parameter_u>, <parameter_w>, <parameter_mv>

\n
\n

\\int_{\\Omega} [ u_k \\pdiff{u_i}{x_k} w_i (\\nabla \\cdot\n \\Vcal) - u_k \\pdiff{\\Vcal_j}{x_k} \\pdiff{u_i}{x_j} w_i ]

\n
\n \n \n-

ev_sd_diffusion

\n-

SDDiffusionTerm

\n+

de_sd_diffusion

\n+

ESDDiffusionTerm

\n \n-

<material>, <parameter_q>, <parameter_p>, <parameter_mv>

\n+

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{K}_{ij} \\nabla_i q\\, \\nabla_j p

\n
\n

\\hat{K}_{ij} = K_{ij}\\left( \\delta_{ik}\\delta_{jl} \\nabla\n \\cdot \\ul{\\Vcal} - \\delta_{ik}{\\partial \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}{\\partial \\Vcal_i \\over \\partial x_k}\\right)

\n
\n \n \n-

de_sd_diffusion

\n-

ESDDiffusionTerm

\n+

ev_sd_diffusion

\n+

SDDiffusionTerm

\n \n-

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n+

<material>, <parameter_q>, <parameter_p>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{K}_{ij} \\nabla_i q\\, \\nabla_j p

\n
\n

\\hat{K}_{ij} = K_{ij}\\left( \\delta_{ik}\\delta_{jl} \\nabla\n \\cdot \\ul{\\Vcal} - \\delta_{ik}{\\partial \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}{\\partial \\Vcal_i \\over \\partial x_k}\\right)

\n
\n@@ -1214,33 +1214,33 @@\n

<parameter_u>, <parameter_p>, <parameter_mv>

\n
\n

\\int_{\\Omega} p [ (\\nabla \\cdot \\ul{w}) (\\nabla \\cdot\n \\ul{\\Vcal}) - \\pdiff{\\Vcal_k}{x_i} \\pdiff{w_i}{x_k} ]

\n
\n \n \n-

de_sd_div_grad

\n-

ESDDivGradTerm

\n+

ev_sd_div_grad

\n+

SDDivGradTerm

\n \n-

<opt_material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n+

<opt_material>, <parameter_u>, <parameter_w>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{\n , } \\int_{\\Omega} \\nu \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n

\\hat{I}_{ijkl} = \\delta_{ik}\\delta_{jl} \\nabla \\cdot\n \\ul{\\Vcal} - \\delta_{ik}\\delta_{js} {\\partial \\Vcal_l \\over\n \\partial x_s} - \\delta_{is}\\delta_{jl} {\\partial \\Vcal_k \\over\n \\partial x_s}

\n
\n \n \n-

ev_sd_div_grad

\n-

SDDivGradTerm

\n+

de_sd_div_grad

\n+

ESDDivGradTerm

\n \n-

<opt_material>, <parameter_u>, <parameter_w>, <parameter_mv>

\n+

<opt_material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{\n , } \\int_{\\Omega} \\nu \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n

\\hat{I}_{ijkl} = \\delta_{ik}\\delta_{jl} \\nabla \\cdot\n \\ul{\\Vcal} - \\delta_{ik}\\delta_{js} {\\partial \\Vcal_l \\over\n \\partial x_s} - \\delta_{is}\\delta_{jl} {\\partial \\Vcal_k \\over\n@@ -1267,64 +1267,64 @@\n

<parameter_1>, <parameter_2>, <parameter_mv>

\n
\n

\\int_{\\Omega} p q (\\nabla \\cdot \\ul{\\Vcal}) \\mbox{ , }\n \\int_{\\Omega} (\\ul{u} \\cdot \\ul{w}) (\\nabla \\cdot \\ul{\\Vcal})

\n
\n \n \n-

ev_sd_lin_elastic

\n-

SDLinearElasticTerm

\n+

de_sd_lin_elastic

\n+

ESDLinearElasticTerm

\n \n-

<material>, <parameter_w>, <parameter_u>, <parameter_mv>

\n+

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{D}_{ijkl}\\ e_{ij}(\\ul{v})\n-e_{kl}(\\ul{u})

\n+

\\int_{\\Omega} \\hat{D}_{ijkl} {\\partial v_i \\over \\partial\n+x_j} {\\partial u_k \\over \\partial x_l}

\n
\n

\\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n \\Vcal_j \\over \\partial x_q}

\n
\n \n \n-

de_sd_lin_elastic

\n-

ESDLinearElasticTerm

\n+

ev_sd_lin_elastic

\n+

SDLinearElasticTerm

\n \n-

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n+

<material>, <parameter_w>, <parameter_u>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{D}_{ijkl} {\\partial v_i \\over \\partial\n-x_j} {\\partial u_k \\over \\partial x_l}

\n+

\\int_{\\Omega} \\hat{D}_{ijkl}\\ e_{ij}(\\ul{v})\n+e_{kl}(\\ul{u})

\n
\n

\\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n \\Vcal_j \\over \\partial x_q}

\n
\n \n \n-

de_sd_piezo_coupling

\n-

ESDPiezoCouplingTerm

\n-\n-

<material>, <virtual/param_v>, <state/param_s>, <parameter_mv>

\n-

<material>, <state>, <virtual>, <parameter_mv>

\n+

ev_sd_piezo_coupling

\n+

SDPiezoCouplingTerm

\n \n+

<material>, <parameter_u>, <parameter_p>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{v}) \\nabla_k p\n-\\mbox{ , } \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k q

\n+

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k p

\n
\n

\\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n \\Vcal_k \\over \\partial x_l}

\n
\n \n \n-

ev_sd_piezo_coupling

\n-

SDPiezoCouplingTerm

\n+

de_sd_piezo_coupling

\n+

ESDPiezoCouplingTerm

\n+\n+

<material>, <virtual/param_v>, <state/param_s>, <parameter_mv>

\n+

<material>, <state>, <virtual>, <parameter_mv>

\n \n-

<material>, <parameter_u>, <parameter_p>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k p

\n+

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{v}) \\nabla_k p\n+\\mbox{ , } \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k q

\n
\n

\\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n \\Vcal_k \\over \\partial x_l}

\n
\n \n \n@@ -1349,38 +1349,38 @@\n \n

<parameter>, <parameter_mv>

\n
\n

\\int_{\\Gamma} p \\nabla \\cdot \\ul{\\Vcal}

\n
\n \n \n-

de_sd_surface_ltr

\n+

ev_sd_surface_ltr

\n+

SDLinearTractionTerm

\n+\n+

<opt_material>, <parameter>, <parameter_mv>

\n+
\n+

\\int_{\\Gamma} \\ul{v} \\cdot (\\ull{\\sigma}\\, \\ul{n}),\n+\\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n+
\n+\n+\n+

de_sd_surface_ltr

\n

ESDLinearTractionTerm

\n \n

<opt_material>, <virtual/param>, <parameter_mv>

\n
\n

\\int_{\\Gamma} \\ul{v} \\cdot\n \\left[\\left(\\ull{\\hat{\\sigma}}\\, \\nabla \\cdot \\ul{\\cal{V}} -\n \\ull{{\\hat\\sigma}}\\, \\nabla \\ul{\\cal{V}} \\right)\\ul{n}\\right]

\n
\n

\\ull{\\hat\\sigma} = \\ull{I} \\mbox{ , } \\ull{\\hat\\sigma} =\n c\\,\\ull{I} \\mbox{ or } \\ull{\\hat\\sigma} = \\ull{\\sigma}

\n
\n \n \n-

ev_sd_surface_ltr

\n-

SDLinearTractionTerm

\n-\n-

<opt_material>, <parameter>, <parameter_mv>

\n-
\n-

\\int_{\\Gamma} \\ul{v} \\cdot (\\ull{\\sigma}\\, \\ul{n}),\n-\\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n-
\n-\n-\n

de_sd_v_dot_grad_s

\n

ESDVectorDotGradScalarTerm

\n \n

<opt_material>, <virtual/param_v>, <state/param_s>, <parameter_mv>

\n

<opt_material>, <state>, <virtual>, <parameter_mv>

\n \n
\n@@ -1426,24 +1426,24 @@\n

dw_tl_bulk_penalty

\n

BulkPenaltyTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

act.fib, com.ela.mat, hyp

\n+

com.ela.mat, hyp, act.fib

\n \n

dw_tl_bulk_pressure

\n

BulkPressureTLTerm

\n \n

<virtual>, <state>, <state_p>

\n
\n

\\int_{\\Omega} S_{ij}(p) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

bal, per.tl

\n+

per.tl, bal

\n \n

dw_tl_diffusion

\n

DiffusionTLTerm

\n \n

<material_1>, <material_2>, <virtual>, <state>, <parameter>

\n
\n

\\int_{\\Omega} \\ull{K}(\\ul{u}^{(n-1)}) : \\pdiff{q}{\\ul{X}}\n@@ -1490,24 +1490,24 @@\n

dw_tl_he_mooney_rivlin

\n

MooneyRivlinTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

bal, hyp, com.ela.mat

\n+

com.ela.mat, bal, hyp

\n \n

dw_tl_he_neohook

\n

NeoHookeanTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

act.fib, com.ela.mat, per.tl, bal, hyp

\n+

com.ela.mat, per.tl, bal, act.fib, hyp

\n \n

dw_tl_he_ogden

\n

OgdenTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n@@ -1547,15 +1547,15 @@\n

<virtual>, <state>

\n
\n

\\begin{array}{l} \\int_{\\Omega} q J(\\ul{u}) \\\\ \\mbox{volume\n mode: vector for } K \\from \\Ical_h: \\int_{T_K} J(\\ul{u}) \\\\\n \\mbox{rel\\_volume mode: vector for } K \\from \\Ical_h: \\int_{T_K}\n J(\\ul{u}) / \\int_{T_K} 1 \\end{array}

\n
\n-

bal, per.tl

\n+

per.tl, bal

\n \n

ev_tl_volume_surface

\n

VolumeSurfaceTLTerm

\n \n

<parameter>

\n
\n

1 / D \\int_{\\Gamma} \\ul{\\nu} \\cdot \\ull{F}^{-1} \\cdot\n@@ -1606,25 +1606,25 @@\n

MooneyRivlinULTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} \\mathcal{L}\\tau_{ij}(\\ul{u})\n e_{ij}(\\delta\\ul{v})/J

\n
\n-

hyp.ul, hyp.ul.up

\n+

hyp.ul.up, hyp.ul

\n \n

dw_ul_he_neohook

\n

NeoHookeanULTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} \\mathcal{L}\\tau_{ij}(\\ul{u})\n e_{ij}(\\delta\\ul{v})/J

\n
\n-

hyp.ul, hyp.ul.up

\n+

hyp.ul.up, hyp.ul

\n \n

dw_ul_volume

\n

VolumeULTerm

\n \n

<virtual>, <state>

\n
\n

\\begin{array}{l} \\int_{\\Omega} q J(\\ul{u}) \\\\ \\mbox{volume\n@@ -2060,15 +2060,15 @@\n \n

<material_rho>, <material_lumping>, <material_beta>, <virtual>, <state>

\n
\n

M^C = \\int_{\\cal{D}} \\rho \\ul{v} \\cdot \\ul{u} \\\\ M^L =\n \\mathrm{lumping}(M^C) \\\\ M^A = (1 - \\beta) M^C + \\beta M^L \\\\ A =\n \\sum_e A_e \\\\ C = \\sum_e A_e^T (M_e^A)^{-1} A_e

\n
\n-

sei.loa, ela

\n+

ela, sei.loa

\n \n

de_non_penetration_p

\n

ENonPenetrationPenaltyTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Gamma} c (\\ul{n} \\cdot \\ul{v}) (\\ul{n} \\cdot\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -119,19 +119,19 @@\n \\nabla) p) q\n , \\int_{\\Gamma}\n dw_bc_newton , \\alpha q (p - tim.hea.equ.mul.mat\n _\bB_\bC_\bN_\be_\bw_\bt_\bo_\bn_\bT_\be_\br_\bm , p_{\\rm\n outer})\n \\int_{\\Omega}\n p\\ \\alpha_\n- , {ij} e_{ij} bio.npb.lag,\n+ , {ij} e_{ij} the.ela,\n dw_biot , (\\ul{v}) the.ela.ess,\n-_\bB_\bi_\bo_\bt_\bT_\be_\br_\bm \\mbox{ , } bio.npb, the.ela,\n- , \\int_{\\Omega} bio.sho.syn, bio\n- , q\\ \\alpha_\n+_\bB_\bi_\bo_\bt_\bT_\be_\br_\bm \\mbox{ , } bio.npb, bio,\n+ , \\int_{\\Omega} bio.sho.syn,\n+ , q\\ \\alpha_ bio.npb.lag\n {ij} e_{ij}\n (\\ul{u})\n ev_biot_stress , - \\int_\n _\bB_\bi_\bo_\bt_\bS_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm {\\Omega}\n \\alpha_{ij} p\n ev_cauchy_strain \\int_{\\cal\n _\bC_\ba_\bu_\bc_\bh_\by_\bS_\bt_\br_\ba_\bi_\bn_\bT_\be_\br_\bm {D}} \\ull{e}\n@@ -159,16 +159,16 @@\n , \n , \\int_{\\Gamma}\n dw_contact_sphere , \\ul{v} \\cdot\n _\bC_\bo_\bn_\bt_\ba_\bc_\bt_\bS_\bp_\bh_\be_\br_\be_\bT_\be_\br_\bm , f(d(\\ul{u})) ela.con.sph\n , \\ul{n}(\\ul\n {u})\n \\int_{\\Omega}\n-dw_convect ((\\ul{u} nav.sto.iga,\n-_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm , \\cdot \\nabla) nav.sto, nav.sto\n+dw_convect ((\\ul{u} nav.sto, nav.sto,\n+_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm , \\cdot \\nabla) nav.sto.iga\n \\ul{u}) \\cdot\n \\ul{v}\n , \\int_{\\Omega}\n dw_convect_v_grad_s , q (\\ul{u} poi.fun\n _\bC_\bo_\bn_\bv_\be_\bc_\bt_\bV_\bG_\br_\ba_\bd_\bS_\bT_\be_\br_\bm \\cdot \\nabla\n p)\n \\ull{F} =\n@@ -188,16 +188,16 @@\n {\\partial\n {T_K}} \\ul{n}\n \\cdot \\ul{f}^\n {*} (p_{in},\n p_{out})q\n where\n , \\ul{f}^{*}(p_\n-dw_dg_advect_laxfrie_flux , {in}, p_ adv.dif.2D, adv.2D,\n-_\bA_\bd_\bv_\be_\bc_\bt_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , {out}) = \\ul adv.1D\n+dw_dg_advect_laxfrie_flux , {in}, p_ adv.1D, adv.dif.2D,\n+_\bA_\bd_\bv_\be_\bc_\bt_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , {out}) = \\ul adv.2D\n {a} \\frac{p_\n {in} + p_\n {out}}{2} +\n (1 - \\alpha)\n \\ul{n} C\n \\frac{ p_{in}\n - p_{out}}\n@@ -209,16 +209,16 @@\n \\nabla p\n \\rangle [q]\n \\mbox{ , }\n \\int_\n {\\partial\n {T_K}} D\n , \\langle\n-dw_dg_diffusion_flux , \\nabla q adv.dif.2D, bur.2D,\n-_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , \\rangle [p] lap.2D\n+dw_dg_diffusion_flux , \\nabla q lap.2D, adv.dif.2D,\n+_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , \\rangle [p] bur.2D\n , where\n \\langle\n \\nabla \\phi\n \\rangle =\n \\frac\n {\\nabla\\phi_\n {in} +\n@@ -227,16 +227,16 @@\n [\\phi] =\n \\phi_{in} -\n \\phi_{out}\n \\int_\n {\\partial\n {T_K}} \\bar\n {D} C_w \\frac\n-dw_dg_interior_penalty , {Ord^2}{d adv.dif.2D, bur.2D,\n-_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bI_\bn_\bt_\be_\br_\bi_\bo_\br_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\be_\br_\bm , (\\partial lap.2D\n+dw_dg_interior_penalty , {Ord^2}{d lap.2D, adv.dif.2D,\n+_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bI_\bn_\bt_\be_\br_\bi_\bo_\br_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\be_\br_\bm , (\\partial bur.2D\n , {T_K})}[p][q]\n where\n [\\phi] =\n \\phi_{in} -\n \\phi_{out}\n \\int_\n {\\partial\n@@ -253,77 +253,76 @@\n \\ul{f}(p_\n {out})}{2} +\n (1 - \\alpha)\n \\ul{n} C\n \\frac{ p_{in}\n - p_{out}}\n {2},\n- bio.npb.lag,\n- \\int_{\\Omega} pie.ela, vib.aco,\n-dw_diffusion , K_{ij} bio.npb,\n-_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\be_\br_\bm , \\nabla_i q dar.flo.mul,\n- \\nabla_j p poi.neu,\n- bio.sho.syn, bio,\n- pie.ela\n+ dar.flo.mul,\n+ , \\int_{\\Omega} vib.aco, pie.ela,\n+dw_diffusion , K_{ij} poi.neu, pie.ela,\n+_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\be_\br_\bm \\nabla_i q bio.npb, bio,\n+ \\nabla_j p bio.sho.syn,\n+ bio.npb.lag\n \\int_{\\Omega}\n , p K_{j}\n dw_diffusion_coupling , \\nabla_j q\n _\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bC_\bo_\bu_\bp_\bl_\bi_\bn_\bg \\mbox{ , }\n , \\int_{\\Omega}\n , q K_{j}\n \\nabla_j p\n dw_diffusion_r , \\int_{\\Omega}\n _\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bR_\bT_\be_\br_\bm K_{j}\n \\nabla_j q\n ev_diffusion_velocity , - \\int_{\\cal\n _\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bV_\be_\bl_\bo_\bc_\bi_\bt_\by_\bT_\be_\br_\bm {D}} K_{ij}\n \\nabla_j p\n- \\int_{\\Omega}\n- \\nabla \\cdot\n-dw_div , \\ul{v} \\mbox\n-_\bD_\bi_\bv_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_\n- {\\Omega} c\n- \\nabla \\cdot\n- \\ul{v}\n \\int_{\\cal\n {D}} \\nabla\n ev_div , \\cdot \\ul{u}\n _\bD_\bi_\bv_\bT_\be_\br_\bm \\mbox { , }\n \\int_{\\cal\n {D}} c \\nabla\n \\cdot \\ul{u}\n \\int_{\\Omega}\n+ \\nabla \\cdot\n+dw_div , \\ul{v} \\mbox\n+_\bD_\bi_\bv_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_\n+ {\\Omega} c\n+ \\nabla \\cdot\n+ \\ul{v}\n+ \\int_{\\Omega}\n \\nu\\ \\nabla\n- \\ul{v} :\n-dw_div_grad , \\nabla \\ul{u} sto, nav.sto.iga,\n-_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , \\mbox{ , } sto.sli.bc, nav.sto,\n- \\int_{\\Omega} sta.nav.sto, nav.sto\n- \\nabla \\ul{v}\n+ \\ul{v} : nav.sto.iga,\n+dw_div_grad , \\nabla \\ul{u} nav.sto, sto,\n+_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , \\mbox{ , } nav.sto,\n+ \\int_{\\Omega} sta.nav.sto,\n+ \\nabla \\ul{v} sto.sli.bc\n : \\nabla \\ul\n {u}\n \\int_{\\cal\n {D}} q p\n \\mbox{ , }\n \\int_{\\cal\n- {D}} \\ul{v} pie.ela, wel,\n- \\cdot \\ul tim.hea.equ.mul.mat,\n- {u}\\\\ bal, pie.ela,\n- \\int_\\Gamma poi.fun,\n- \\ul{v} \\cdot tim.poi.exp, aco,\n- \\ul{n} p bor, mod.ana.dec,\n- \\mbox{ , } hel.apa,\n-dw_dot , \\int_\\Gamma q tim.adv.dif, aco,\n-_\bD_\bo_\bt_\bP_\br_\bo_\bd_\bu_\bc_\bt_\bT_\be_\br_\bm , \\ul{n} \\cdot osc, tim.poi,\n- \\ul{u} \\mbox lin.ela.dam, adv.2D,\n- { , }\\\\ \\int_ bur.2D, ref.evp,\n- {\\cal{D}} c q poi.per.bou.con,\n- p \\mbox{ , } lin.ela.up, vib.aco,\n- \\int_{\\cal the.ele, sto.sli.bc,\n- {D}} c \\ul{v} dar.flo.mul, adv.1D,\n- \\cdot \\ul{u} hyd\n+ {D}} \\ul{v} the.ele, bal,\n+ \\cdot \\ul tim.poi.exp, bor,\n+ {u}\\\\ dar.flo.mul,\n+ \\int_\\Gamma pie.ela, osc,\n+ \\ul{v} \\cdot sto.sli.bc, tim.poi,\n+ \\ul{n} p vib.aco, adv.1D,\n+ \\mbox{ , } lin.ela.dam, adv.2D,\n+dw_dot , \\int_\\Gamma q hyd, mod.ana.dec,\n+_\bD_\bo_\bt_\bP_\br_\bo_\bd_\bu_\bc_\bt_\bT_\be_\br_\bm , \\ul{n} \\cdot lin.ela.up, wel,\n+ \\ul{u} \\mbox tim.adv.dif,\n+ { , }\\\\ \\int_ tim.hea.equ.mul.mat,\n+ {\\cal{D}} c q ref.evp, aco,\n+ p \\mbox{ , } poi.per.bou.con,\n+ \\int_{\\cal aco, hel.apa,\n+ {D}} c \\ul{v} poi.fun, pie.ela,\n+ \\cdot \\ul{u} bur.2D\n \\mbox{ , }\n \\int_{\\cal\n {D}} \\ul{v}\n \\cdot \\ull{c}\n \\cdot \\ul{u}\n \\int_{\\Omega}\n dw_elastic_wave , D_{ijkl}\\ g_\n@@ -369,46 +368,45 @@\n \\int_{\\cal\n {D}} c \\ul{y}\n \\mbox{ , }\n \\int_\\Gamma c\n \\ul{y} \\cdot\n \\ul{n} \\mbox\n { flux }\n- poi.per.bou.con,\n- \\int_{\\cal vib.aco, aco,\n-dw_integrate , {D}} q \\mbox dar.flo.mul,\n-_\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_ poi.neu, aco,\n+ \\int_{\\cal dar.flo.mul,\n+dw_integrate , {D}} q \\mbox vib.aco, aco,\n+_\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_ hel.apa, poi.neu,\n {\\cal{D}} c q tim.hea.equ.mul.mat,\n- hel.apa\n+ poi.per.bou.con, aco\n ev_integrate_mat , \\int_{\\cal\n _\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bM_\ba_\bt_\bT_\be_\br_\bm {D}} c\n , \\int_{\\Gamma}\n dw_jump , c\\, q (p_1 - aco\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bJ_\bu_\bm_\bp_\bT_\be_\br_\bm , p_2)\n \n- sin, wel,\n- lap.flu.2d,\n- poi.sho.syn, lap.1d,\n- tim.hea.equ.mul.mat,\n- poi.par.stu,\n- poi.iga,\n- poi.fie.dep.mat,\n- cub, poi.fun,\n- , \\int_{\\Omega} tim.poi.exp, aco,\n-dw_laplace , c \\nabla q bor, poi, hel.apa,\n-_\bL_\ba_\bp_\bl_\ba_\bc_\be_\bT_\be_\br_\bm \\cdot \\nabla the.ela.ess,\n- p tim.adv.dif, aco,\n- lap.2D, osc,\n- tim.poi, adv.dif.2D,\n+ the.ele,\n lap.tim.ebc,\n- lap.cou.lcb, bur.2D,\n- ref.evp,\n+ tim.poi.exp, cub,\n+ bor, lap.cou.lcb,\n+ osc, lap.flu.2d,\n+ tim.poi,\n+ poi.fie.dep.mat,\n+ sto.sli.bc, vib.aco,\n+ , \\int_{\\Omega} poi, hyd, poi.iga,\n+dw_laplace , c \\nabla q sin, wel,\n+_\bL_\ba_\bp_\bl_\ba_\bc_\be_\bT_\be_\br_\bm \\cdot \\nabla tim.adv.dif,\n+ p tim.hea.equ.mul.mat,\n+ poi.sho.syn,\n+ the.ela.ess,\n+ ref.evp, aco,\n poi.per.bou.con,\n- vib.aco, the.ele,\n- sto.sli.bc, hyd\n+ aco, lap.2D,\n+ hel.apa, poi.fun,\n+ adv.dif.2D, lap.1d,\n+ bur.2D, poi.par.stu\n \\int_{\\Omega}\n ((\\ul{w}\n , \\cdot \\nabla)\n dw_lin_convect , \\ul{u}) \\cdot sta.nav.sto\n _\bL_\bi_\bn_\be_\ba_\br_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm \\ul{v}\n ((\\ul{w}\n \\cdot \\nabla)\n@@ -443,40 +441,41 @@\n _\bL_\bi_\bn_\be_\ba_\br_\bD_\bR_\bo_\bt_\bS_\bp_\br_\bi_\bn_\bg_\bT_\be_\br_\bm , \\mbox mul.poi.con\n , { elements }\n T_K^{i,j}\\\\\n \\mbox{ in a\n region\n connecting\n nodes } i, j\n- bio.npb.lag,\n- pie.ela, mat.non,\n- its.4, com.ela.mat,\n- ela.con.pla, its.2,\n- sei.loa, pie.ela,\n- lin.ela.mM,\n+ lin.ela.iga, its.4,\n+ pre.fib, lin.ela.mM,\n+ mat.non,\n+ ela.con.pla,\n+ com.ela.mat,\n+ mix.mes, the.ela,\n+ pie.ela, sei.loa,\n lin.ela.opt,\n+ lin.ela,\n+ mul.nod.lcb,\n+ two.bod.con,\n+ \\int_{\\Omega} vib.aco, ela,\n+dw_lin_elastic , D_{ijkl}\\ e_ lin.ela.dam, its.2,\n+_\bL_\bi_\bn_\be_\ba_\br_\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bT_\be_\br_\bm , {ij}(\\ul{v}) its.3, mod.ana.dec,\n+ e_{kl}(\\ul lin.ela.up, wed.mes,\n+ {u}) the.ela.ess,\n ela.con.sph,\n- lin.ela.iga,\n pie.ela.mac,\n- \\int_{\\Omega} mod.ana.dec,\n- , D_{ijkl}\\ e_ the.ela.ess,\n-dw_lin_elastic , {ij}(\\ul{v}) wed.mes,\n-_\bL_\bi_\bn_\be_\ba_\br_\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bT_\be_\br_\bm e_{kl}(\\ul mul.nod.lcb,\n- {u}) lin.ela,\n- lin.ela.tra, ela,\n- the.ela,\n- lin.ela.dam,\n- pre.fib, bio,\n- lin.ela.up, vib.aco,\n- bio.npb, nod.lcb,\n- ela.shi.per, its.1,\n- lin.vis, mix.mes,\n+ nod.lcb, its.1,\n+ bio.npb.lag,\n+ tru.bri, lin.vis,\n mul.poi.con,\n- two.bod.con, its.3,\n- tru.bri, bio.sho.syn\n+ pie.ela,\n+ lin.ela.tra,\n+ ela.shi.per,\n+ bio.npb, bio,\n+ bio.sho.syn\n \\int_{\\Omega}\n D_{ijkl}\\ e_\n {ij}(\\ul{v})\n e_{kl}(\\ul\n {u})\\\\ \\mbox\n , { with } \\\\\n dw_lin_elastic_iso , D_{ijkl} =\n@@ -484,17 +483,17 @@\n {ik} \\delta_\n {jl}+\\delta_\n {il} \\delta_\n {jk}) +\n \\lambda \\\n \\delta_{ij}\n \\delta_{kl}\n- \\int_{\\Omega}\n-dw_lin_prestress , \\sigma_{ij} non.hyp.mM, pre.fib,\n-_\bL_\bi_\bn_\be_\ba_\br_\bP_\br_\be_\bs_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm e_{ij}(\\ul pie.ela.mac\n+ \\int_{\\Omega} pre.fib,\n+dw_lin_prestress , \\sigma_{ij} pie.ela.mac,\n+_\bL_\bi_\bn_\be_\ba_\br_\bP_\br_\be_\bs_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm e_{ij}(\\ul non.hyp.mM\n {v})\n \\ul{f}^{(i)}\n = - \\ul{f}^{\n (j)} = k (\\ul\n {u}^{(j)} -\n \\ul{u}^{\n dw_lin_spring , (i)})\\\\ \\quad\n@@ -589,17 +588,17 @@\n _\bP_\bi_\be_\bz_\bo_\bS_\bt_\br_\ba_\bi_\bn_\bT_\be_\br_\bm g_{kij} e_\n {ij}(\\ul{u})\n ev_piezo_stress , \\int_{\\Omega}\n _\bP_\bi_\be_\bz_\bo_\bS_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm g_{kij}\n \\nabla_k p\n \\ul{f}^i =\n \\ul{\\bar f}^i\n-dw_point_load , \\quad \\forall she.can, tru.bri,\n-_\bC_\bo_\bn_\bc_\be_\bn_\bt_\br_\ba_\bt_\be_\bd_\bP_\bo_\bi_\bn_\bt_\bL_\bo_\ba_\bd_\bT_\be_\br_\bm \\mbox{ FE its.4, its.1, its.2,\n- node } i its.3\n+dw_point_load , \\quad \\forall its.2, its.3, its.4,\n+_\bC_\bo_\bn_\bc_\be_\bn_\bt_\br_\ba_\bt_\be_\bd_\bP_\bo_\bi_\bn_\bt_\bL_\bo_\ba_\bd_\bT_\be_\br_\bm \\mbox{ FE she.can, tru.bri,\n+ node } i its.1\n \\mbox{ in a\n region }\n \\ul{f}^i = -\n k \\ul{u}^i\n dw_point_lspring , \\quad \\forall\n _\bL_\bi_\bn_\be_\ba_\br_\bP_\bo_\bi_\bn_\bt_\bS_\bp_\br_\bi_\bn_\bg_\bT_\be_\br_\bm , \\mbox{ FE\n node } i\n@@ -607,34 +606,34 @@\n region }\n dw_s_dot_grad_i_s , Z^i = \\int_\n _\bS_\bc_\ba_\bl_\ba_\br_\bD_\bo_\bt_\bG_\br_\ba_\bd_\bI_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , {\\Omega} q\n \\nabla_i p\n \\int_{\\Omega}\n q \\ul{y}\n , \\cdot \\nabla\n-dw_s_dot_mgrad_s , p \\mbox{ , } adv.dif.2D, adv.2D,\n-_\bS_\bc_\ba_\bl_\ba_\br_\bD_\bo_\bt_\bM_\bG_\br_\ba_\bd_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , \\int_{\\Omega} adv.1D\n+dw_s_dot_mgrad_s , p \\mbox{ , } adv.1D, adv.dif.2D,\n+_\bS_\bc_\ba_\bl_\ba_\br_\bD_\bo_\bt_\bM_\bG_\br_\ba_\bd_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , \\int_{\\Omega} adv.2D\n , p \\ul{y}\n \\cdot \\nabla\n q\n \\int_{\\Omega}\n dw_shell10x , D_{ijkl}\\ e_\n _\bS_\bh_\be_\bl_\bl_\b1_\b0_\bX_\bT_\be_\br_\bm , {ij}(\\ul{v}) she.can\n , e_{kl}(\\ul\n {u})\n \\int_{\\Omega}\n p\\ \\nabla\n \\cdot \\ul{v}\n \\mbox{ , }\n \\int_{\\Omega}\n- , q\\ \\nabla\n- , \\cdot \\ul sto, lin.ela.up,\n-dw_stokes {u}\\\\ \\mbox nav.sto.iga,\n-_\bS_\bt_\bo_\bk_\be_\bs_\bT_\be_\br_\bm , { or } \\int_ sto.sli.bc, nav.sto,\n- , {\\Omega} c\\ sta.nav.sto, nav.sto\n+ , q\\ \\nabla nav.sto.iga,\n+ , \\cdot \\ul lin.ela.up, nav.sto,\n+dw_stokes {u}\\\\ \\mbox sto, nav.sto,\n+_\bS_\bt_\bo_\bk_\be_\bs_\bT_\be_\br_\bm , { or } \\int_ sta.nav.sto,\n+ , {\\Omega} c\\ sto.sli.bc\n p\\ \\nabla\n \\cdot \\ul{v}\n \\mbox{ , }\n \\int_{\\Omega}\n c\\ q\\ \\nabla\n \\cdot \\ul{u}\n \\int_{\\Omega}\n@@ -659,20 +658,20 @@\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm , \\cdot \\ull{K}\n \\cdot \\nabla\n p\n \\int_{\\Gamma}\n ev_surface_flux , \\ul{n} \\cdot\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm K_{ij}\n \\nabla_j p\n- \\int_{\\Gamma} wed.mes, nod.lcb,\n- \\ul{v} \\cdot com.ela.mat,\n-dw_surface_ltr , \\ull{\\sigma} lin.ela.tra,\n-_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm \\cdot \\ul{n}, ela.shi.per,\n- \\int_{\\Gamma} lin.vis, mix.mes,\n- \\ul{v} \\cdot lin.ela.opt, tru.bri\n+ \\int_{\\Gamma} com.ela.mat,\n+ \\ul{v} \\cdot mix.mes, lin.vis,\n+dw_surface_ltr , \\ull{\\sigma} tru.bri, wed.mes,\n+_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm \\cdot \\ul{n}, lin.ela.tra,\n+ \\int_{\\Gamma} lin.ela.opt,\n+ \\ul{v} \\cdot ela.shi.per, nod.lcb\n \\ul{n},\n \\int_{\\Gamma}\n ev_surface_moment , \\ul{n} (\\ul\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bM_\bo_\bm_\be_\bn_\bt_\bT_\be_\br_\bm {x} - \\ul\n {x}_0)\n dw_surface_ndot , \\int_{\\Gamma}\n _\bS_\bu_\bf_\ba_\bc_\be_\bN_\bo_\br_\bm_\ba_\bl_\bD_\bo_\bt_\bT_\be_\br_\bm q \\ul{c} lap.flu.2d\n@@ -712,15 +711,15 @@\n , \\int_{\\Omega}\n , \\ul{u} \\cdot\n \\ul{c} q\\\\\n ev_volume \\int_{\\cal\n _\bV_\bo_\bl_\bu_\bm_\be_\bT_\be_\br_\bm {D}} 1\n \\int_{\\Omega}\n dw_volume_lvf , \\ul{f} \\cdot adv.dif.2D, bur.2D,\n-_\bL_\bi_\bn_\be_\ba_\br_\bV_\bo_\bl_\bu_\bm_\be_\bF_\bo_\br_\bc_\be_\bT_\be_\br_\bm \\ul{v} \\mbox poi.iga, poi.par.stu\n+_\bL_\bi_\bn_\be_\ba_\br_\bV_\bo_\bl_\bu_\bm_\be_\bF_\bo_\br_\bc_\be_\bT_\be_\br_\bm \\ul{v} \\mbox poi.par.stu, poi.iga\n { or } \\int_\n {\\Omega} f q\n dw_volume_nvf , , \\int_{\\Omega} poi.non.mat\n _\bN_\bo_\bn_\bl_\bi_\bn_\be_\ba_\br_\bV_\bo_\bl_\bu_\bm_\be_\bF_\bo_\br_\bc_\be_\bT_\be_\br_\bm , q f(p)\n 1 / D\n ev_volume_surface \\int_\\Gamma\n _\bV_\bo_\bl_\bu_\bm_\be_\bS_\bu_\br_\bf_\ba_\bc_\be_\bT_\be_\br_\bm \\ul{x} \\cdot\n@@ -746,30 +745,30 @@\n _\bS_\bD_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm - u_k \\pdiff{\\Vcal_j}\n {x_k} \\pdiff{u_i}\n {x_j} w_i ]\n \\int_{\\Omega} \\hat\n {K}_{ij} \\nabla_i q\\,\n \\nabla_j p\n \\hat{K}_{ij} = K_\n- , {ij}\\left( \\delta_\n-ev_sd_diffusion , {ik}\\delta_{jl}\n-_\bS_\bD_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\be_\br_\bm , \\nabla \\cdot \\ul\n+ , , , \\nabla \\cdot \\ul\n {\\Vcal} - \\delta_{ik}\n {\\partial \\Vcal_j\n \\over \\partial x_l} -\n \\delta_{jl}{\\partial\n \\Vcal_i \\over\n \\partial x_k}\\right)\n \\int_{\\Omega} \\hat\n {K}_{ij} \\nabla_i q\\,\n \\nabla_j p\n \\hat{K}_{ij} = K_\n- , , , \\nabla \\cdot \\ul\n+ , {ij}\\left( \\delta_\n+ev_sd_diffusion , {ik}\\delta_{jl}\n+_\bS_\bD_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\be_\br_\bm , \\nabla \\cdot \\ul\n {\\Vcal} - \\delta_{ik}\n {\\partial \\Vcal_j\n \\over \\partial x_l} -\n \\delta_{jl}{\\partial\n \\Vcal_i \\over\n \\partial x_k}\\right)\n \\int_{\\Omega} p [\n@@ -782,16 +781,16 @@\n \\nabla \\ul{v} :\n \\nabla \\ul{u} \\mbox\n { , } \\int_{\\Omega}\n \\nu \\hat{I} \\nabla\n \\ul{v} : \\nabla \\ul\n {u}\n , \\hat{I}_{ijkl} =\n-de_sd_div_grad , \\delta_{ik}\\delta_\n-_\bE_\bS_\bD_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , {jl} \\nabla \\cdot \\ul\n+ev_sd_div_grad , \\delta_{ik}\\delta_\n+_\bS_\bD_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , {jl} \\nabla \\cdot \\ul\n {\\Vcal} - \\delta_\n {ik}\\delta_{js}\n {\\partial \\Vcal_l\n \\over \\partial x_s} -\n \\delta_{is}\\delta_\n {jl} {\\partial\n \\Vcal_k \\over\n@@ -800,16 +799,16 @@\n \\nabla \\ul{v} :\n \\nabla \\ul{u} \\mbox\n { , } \\int_{\\Omega}\n \\nu \\hat{I} \\nabla\n \\ul{v} : \\nabla \\ul\n {u}\n , \\hat{I}_{ijkl} =\n-ev_sd_div_grad , \\delta_{ik}\\delta_\n-_\bS_\bD_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , {jl} \\nabla \\cdot \\ul\n+de_sd_div_grad , \\delta_{ik}\\delta_\n+_\bE_\bS_\bD_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , {jl} \\nabla \\cdot \\ul\n {\\Vcal} - \\delta_\n {ik}\\delta_{js}\n {\\partial \\Vcal_l\n \\over \\partial x_s} -\n \\delta_{is}\\delta_\n {jl} {\\partial\n \\Vcal_k \\over\n@@ -833,60 +832,60 @@\n \\int_{\\Omega} p q\n , (\\nabla \\cdot \\ul\n ev_sd_dot , {\\Vcal}) \\mbox{ , }\n _\bS_\bD_\bD_\bo_\bt_\bT_\be_\br_\bm \\int_{\\Omega} (\\ul{u}\n \\cdot \\ul{w}) (\\nabla\n \\cdot \\ul{\\Vcal})\n \\int_{\\Omega} \\hat\n- {D}_{ijkl}\\ e_{ij}\n- (\\ul{v}) e_{kl}(\\ul\n- {u})\n- , \\hat{D}_{ijkl} = D_\n-ev_sd_lin_elastic , {ijkl}(\\nabla \\cdot\n-_\bS_\bD_\bL_\bi_\bn_\be_\ba_\br_\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bT_\be_\br_\bm , \\ul{\\Vcal}) - D_\n- {ijkq}{\\partial\n- \\Vcal_l \\over\n- \\partial x_q} - D_\n- {iqkl}{\\partial\n- \\Vcal_j \\over\n- \\partial x_q}\n- \\int_{\\Omega} \\hat\n {D}_{ijkl} {\\partial\n v_i \\over \\partial\n x_j} {\\partial u_k\n \\over \\partial x_l}\n , , , \\ul{\\Vcal}) - D_\n {ijkq}{\\partial\n \\Vcal_l \\over\n \\partial x_q} - D_\n {iqkl}{\\partial\n \\Vcal_j \\over\n \\partial x_q}\n \\int_{\\Omega} \\hat\n+ {D}_{ijkl}\\ e_{ij}\n+ (\\ul{v}) e_{kl}(\\ul\n+ {u})\n+ , \\hat{D}_{ijkl} = D_\n+ev_sd_lin_elastic , {ijkl}(\\nabla \\cdot\n+_\bS_\bD_\bL_\bi_\bn_\be_\ba_\br_\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bT_\be_\br_\bm , \\ul{\\Vcal}) - D_\n+ {ijkq}{\\partial\n+ \\Vcal_l \\over\n+ \\partial x_q} - D_\n+ {iqkl}{\\partial\n+ \\Vcal_j \\over\n+ \\partial x_q}\n+ \\int_{\\Omega} \\hat\n {g}_{kij}\\ e_{ij}(\\ul\n- {v}) \\nabla_k p \\mbox\n- , , , (\\ul{u}) \\nabla_k q\n-de_sd_piezo_coupling \\hat{g}_{kij} = g_\n-_\bE_\bS_\bD_\bP_\bi_\be_\bz_\bo_\bC_\bo_\bu_\bp_\bl_\bi_\bn_\bg_\bT_\be_\br_\bm , , {kij}(\\nabla \\cdot\n- , \\ul{\\Vcal}) - g_{kil}\n+ {u}) \\nabla_k p\n+ , \\hat{g}_{kij} = g_\n+ev_sd_piezo_coupling , {kij}(\\nabla \\cdot\n+_\bS_\bD_\bP_\bi_\be_\bz_\bo_\bC_\bo_\bu_\bp_\bl_\bi_\bn_\bg_\bT_\be_\br_\bm , \\ul{\\Vcal}) - g_{kil}\n {\\partial \\Vcal_j\n \\over \\partial x_l} -\n g_{lij}{\\partial\n \\Vcal_k \\over\n \\partial x_l}\n \\int_{\\Omega} \\hat\n {g}_{kij}\\ e_{ij}(\\ul\n- {u}) \\nabla_k p\n- , \\hat{g}_{kij} = g_\n-ev_sd_piezo_coupling , {kij}(\\nabla \\cdot\n-_\bS_\bD_\bP_\bi_\be_\bz_\bo_\bC_\bo_\bu_\bp_\bl_\bi_\bn_\bg_\bT_\be_\br_\bm , \\ul{\\Vcal}) - g_{kil}\n+ {v}) \\nabla_k p \\mbox\n+ , , , (\\ul{u}) \\nabla_k q\n+de_sd_piezo_coupling \\hat{g}_{kij} = g_\n+_\bE_\bS_\bD_\bP_\bi_\be_\bz_\bo_\bC_\bo_\bu_\bp_\bl_\bi_\bn_\bg_\bT_\be_\br_\bm , , {kij}(\\nabla \\cdot\n+ , \\ul{\\Vcal}) - g_{kil}\n {\\partial \\Vcal_j\n \\over \\partial x_l} -\n g_{lij}{\\partial\n \\Vcal_k \\over\n \\partial x_l}\n \\int_{\\Omega} p\\,\n \\hat{I}_{ij}\n@@ -901,32 +900,32 @@\n \\cdot \\Vcal -\n {\\partial \\Vcal_j\n \\over \\partial x_i}\n ev_sd_surface_integrate , \\int_{\\Gamma} p\n _\bS_\bD_\bS_\bu_\bf_\ba_\bc_\be_\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bT_\be_\br_\bm \\nabla \\cdot \\ul\n {\\Vcal}\n \\int_{\\Gamma} \\ul{v}\n+ev_sd_surface_ltr , \\cdot (\\ull{\\sigma}\\,\n+_\bS_\bD_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm , \\ul{n}), \\int_\n+ {\\Gamma} \\ul{v} \\cdot\n+ \\ul{n},\n+ \\int_{\\Gamma} \\ul{v}\n \\cdot \\left[\\left\n (\\ull{\\hat{\\sigma}}\\,\n \\nabla \\cdot \\ul{\\cal\n {V}} - \\ull{\n , {\\hat\\sigma}}\\,\n de_sd_surface_ltr , \\nabla \\ul{\\cal{V}}\n _\bE_\bS_\bD_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm \\right)\\ul{n}\\right]\n \\ull{\\hat\\sigma} =\n \\ull{I} \\mbox{ , }\n \\ull{\\hat\\sigma} =\n c\\,\\ull{I} \\mbox{ or\n } \\ull{\\hat\\sigma} =\n \\ull{\\sigma}\n- \\int_{\\Gamma} \\ul{v}\n-ev_sd_surface_ltr , \\cdot (\\ull{\\sigma}\\,\n-_\bS_\bD_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm , \\ul{n}), \\int_\n- {\\Gamma} \\ul{v} \\cdot\n- \\ul{n},\n \\int_{\\Omega} \\hat\n {I}_{ij} {\\partial p\n , \\over \\partial x_j}\\,\n , v_i \\mbox{ , } \\int_\n , {\\Omega} \\hat{I}_{ij}\n de_sd_v_dot_grad_s {\\partial q \\over\n _\bE_\bS_\bD_\bV_\be_\bc_\bt_\bo_\br_\bD_\bo_\bt_\bG_\br_\ba_\bd_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , \\partial x_j}\\, u_i\n@@ -938,20 +937,20 @@\n *\b**\b**\b**\b* T\bTa\bab\bbl\ble\be o\bof\bf l\bla\bar\brg\bge\be d\bde\bef\bfo\bor\brm\bma\bat\bti\bio\bon\bn t\bte\ber\brm\bms\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n L\bLa\bar\brg\bge\be d\bde\bef\bfo\bor\brm\bma\bat\bti\bio\bon\bn t\bte\ber\brm\bms\bs_\b?\b\u00b6\n n\bna\bam\bme\be/\b/c\bcl\bla\bas\bss\bs a\bar\brg\bgu\bum\bme\ben\bnt\bts\bs d\bde\bef\bfi\bin\bni\bit\bti\bio\bon\bn e\bex\bxa\bam\bmp\bpl\ble\bes\bs\n , \\int_{\\Omega}\n dw_tl_bulk_active , S_{ij}(\\ul{u})\n _\bB_\bu_\bl_\bk_\bA_\bc_\bt_\bi_\bv_\be_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n (\\ul{u};\\ul{v})\n- , \\int_{\\Omega} act.fib,\n+ , \\int_{\\Omega}\n dw_tl_bulk_penalty , S_{ij}(\\ul{u}) com.ela.mat,\n-_\bB_\bu_\bl_\bk_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} hyp\n+_\bB_\bu_\bl_\bk_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} hyp, act.fib\n (\\ul{u};\\ul{v})\n , \\int_{\\Omega}\n-dw_tl_bulk_pressure , S_{ij}(p) bal, per.tl\n+dw_tl_bulk_pressure , S_{ij}(p) per.tl, bal\n _\bB_\bu_\bl_\bk_\bP_\br_\be_\bs_\bs_\bu_\br_\be_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n (\\ul{u};\\ul{v})\n , \\int_{\\Omega}\n , \\ull{K}(\\ul{u}^\n dw_tl_diffusion , {(n-1)}) : per.tl\n _\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\bL_\bT_\be_\br_\bm , \\pdiff{q}{\\ul\n {X}} \\pdiff{p}\n@@ -977,21 +976,21 @@\n ,\n \n , \\int_{\\Omega}\n dw_tl_he_genyeoh , S_{ij}(\\ul{u})\n _\bG_\be_\bn_\bY_\be_\bo_\bh_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n (\\ul{u};\\ul{v})\n , \\int_{\\Omega}\n-dw_tl_he_mooney_rivlin , S_{ij}(\\ul{u}) bal, hyp,\n-_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} com.ela.mat\n+dw_tl_he_mooney_rivlin , S_{ij}(\\ul{u}) com.ela.mat,\n+_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} bal, hyp\n+ (\\ul{u};\\ul{v})\n+ , \\int_{\\Omega} com.ela.mat,\n+dw_tl_he_neohook , S_{ij}(\\ul{u}) per.tl, bal,\n+_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} act.fib, hyp\n (\\ul{u};\\ul{v})\n- , \\int_{\\Omega} act.fib,\n-dw_tl_he_neohook , S_{ij}(\\ul{u}) com.ela.mat,\n-_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} per.tl, bal,\n- (\\ul{u};\\ul{v}) hyp\n , \\int_{\\Omega}\n dw_tl_he_ogden , S_{ij}(\\ul{u})\n _\bO_\bg_\bd_\be_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n (\\ul{u};\\ul{v})\n ,\n dw_tl_membrane ,\n _\bT_\bL_\bM_\be_\bm_\bb_\br_\ba_\bn_\be_\bT_\be_\br_\bm , bal\n@@ -1012,15 +1011,15 @@\n {l} \\int_\n {\\Omega} q J\n (\\ul{u}) \\\\\n \\mbox{volume\n mode: vector\n for } K \\from\n dw_tl_volume , \\Ical_h: \\int_\n-_\bV_\bo_\bl_\bu_\bm_\be_\bT_\bL_\bT_\be_\br_\bm {T_K} J(\\ul{u}) bal, per.tl\n+_\bV_\bo_\bl_\bu_\bm_\be_\bT_\bL_\bT_\be_\br_\bm {T_K} J(\\ul{u}) per.tl, bal\n \\\\ \\mbox\n {rel\\_volume\n mode: vector\n for } K \\from\n \\Ical_h: \\int_\n {T_K} J(\\ul{u})\n / \\int_{T_K} 1\n@@ -1050,22 +1049,22 @@\n \\mathcal\n dw_ul_he_by_fun , , {L}\\tau_{ij} hyp.ul.by.fun\n _\bH_\by_\bp_\be_\br_\be_\bl_\ba_\bs_\bt_\bi_\bc_\bB_\by_\bF_\bu_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij}\n (\\delta\\ul{v})/\n J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_he_mooney_rivlin , {L}\\tau_{ij} hyp.ul,\n-_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij} hyp.ul.up\n+dw_ul_he_mooney_rivlin , {L}\\tau_{ij} hyp.ul.up,\n+_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij} hyp.ul\n (\\delta\\ul{v})/\n J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_he_neohook , {L}\\tau_{ij} hyp.ul,\n-_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij} hyp.ul.up\n+dw_ul_he_neohook , {L}\\tau_{ij} hyp.ul.up,\n+_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij} hyp.ul\n (\\delta\\ul{v})/\n J\n \\begin{array}\n {l} \\int_\n {\\Omega} q J\n (\\ul{u}) \\\\\n \\mbox{volume\n@@ -1366,15 +1365,15 @@\n {\\delta w}) \\ e_\n {lm,n}(\\ull{w})\n M^C = \\int_{\\cal\n {D}} \\rho \\ul{v}\n \\cdot \\ul{u} \\\\\n , M^L = \\mathrm\n de_mass , {lumping}(M^C) \\\\\n-_\bM_\ba_\bs_\bs_\bT_\be_\br_\bm , M^A = (1 - \\beta) sei.loa, ela\n+_\bM_\ba_\bs_\bs_\bT_\be_\br_\bm , M^A = (1 - \\beta) ela, sei.loa\n , M^C + \\beta M^L\n \\\\ A = \\sum_e A_e\n \\\\ C = \\sum_e\n A_e^T (M_e^A)^{-\n 1} A_e\n \\int_{\\Gamma} c\n de_non_penetration_p , (\\ul{n} \\cdot \\ul\n"}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/users_guide.html", "source2": "./usr/share/doc/python-sfepy-doc/html/users_guide.html", "comments": ["Ordering differences only"], "unified_diff": "@@ -726,59 +726,59 @@\n

space

\n

basis

\n

region kind

\n

description

\n \n \n \n-

L2

\n-

constant

\n-

cell, facet

\n-

The L2 constant-in-a-region approximation.

\n-\n-

H1

\n+

H1

\n

bernstein

\n

cell, facet

\n

Bernstein basis approximation with positive-only basis function values.

\n \n-

H1

\n+

H1

\n

iga

\n

cell

\n

Bezier extraction based NURBS approximation for isogeometric analysis.

\n \n-

H1

\n+

H1

\n

lagrange

\n

cell, facet

\n

Lagrange basis nodal approximation.

\n \n-

H1

\n+

H1

\n

lagrange_discontinuous

\n

cell

\n

The C0 constant-per-cell approximation.

\n \n-

H1

\n+

H1

\n

lobatto

\n

cell

\n

Hierarchical basis approximation with Lobatto polynomials.

\n \n-

H1

\n+

H1

\n

sem

\n

cell, facet

\n

Spectral element method approximation.

\n \n-

H1

\n+

H1

\n

serendipity

\n

cell, facet

\n

Lagrange basis nodal serendipity approximation with order <= 3.

\n \n-

H1

\n+

H1

\n

shell10x

\n

cell

\n

The approximation for the shell10x element.

\n \n+

L2

\n+

constant

\n+

cell, facet

\n+

The L2 constant-in-a-region approximation.

\n+\n

DG

\n

legendre_discontinuous

\n

cell

\n

Discontinuous Galerkin method approximation with Legendre basis.

\n \n \n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -328,16 +328,14 @@\n * tensor product elements: 0, 1, \u20181B\u2019\n Optional bubble function enrichment is marked by \u2018B\u2019.\n The implemented combinations of spaces and bases are listed below, the space\n column corresponds to , the basis column to and\n region type to the field region type.\n F\bFi\bie\bel\bld\bds\bs_\b?\b\u00b6\n s\bsp\bpa\bac\bce\be b\bba\bas\bsi\bis\bs r\bre\beg\bgi\bio\bon\bn k\bki\bin\bnd\bd d\bde\bes\bsc\bcr\bri\bip\bpt\bti\bio\bon\bn\n-L2 constant _\bc_\be_\bl_\bl, _\bf_\ba_\bc_\be_\bt The L2 constant-in-a-region\n- approximation.\n H1 bernstein _\bc_\be_\bl_\bl, _\bf_\ba_\bc_\be_\bt Bernstein basis approximation with\n positive-only basis function values.\n Bezier extraction based NURBS\n H1 iga _\bc_\be_\bl_\bl approximation for isogeometric\n analysis.\n H1 lagrange _\bc_\be_\bl_\bl, _\bf_\ba_\bc_\be_\bt Lagrange basis nodal approximation.\n H1 lagrange_discontinuous _\bc_\be_\bl_\bl The C0 constant-per-cell\n@@ -345,14 +343,16 @@\n H1 lobatto _\bc_\be_\bl_\bl Hierarchical basis approximation with\n Lobatto polynomials.\n H1 sem _\bc_\be_\bl_\bl, _\bf_\ba_\bc_\be_\bt Spectral element method approximation.\n H1 serendipity _\bc_\be_\bl_\bl, _\bf_\ba_\bc_\be_\bt Lagrange basis nodal serendipity\n approximation with order <= 3.\n H1 shell10x _\bc_\be_\bl_\bl The approximation for the shell10x\n element.\n+L2 constant _\bc_\be_\bl_\bl, _\bf_\ba_\bc_\be_\bt The L2 constant-in-a-region\n+ approximation.\n DG legendre_discontinuous _\bc_\be_\bl_\bl Discontinuous Galerkin method\n approximation with Legendre basis.\n *\b**\b**\b**\b* _\bV\bV_\ba\ba_\br\br_\bi\bi_\ba\ba_\bb\bb_\bl\bl_\be\be_\bs\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n Variables use the FE approximation given by the specified field:\n variables = {\n : (, , , [])\n }\n"}]}]}]}]}]}