{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.1EgJyYrm/b1/sfepy_2025.3-1_amd64.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.1EgJyYrm/b2/sfepy_2025.3-1_amd64.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,4 +1,4 @@\n \n- 81aa7b41d145fb77ee72ee4593c1de1d 12531404 doc optional python-sfepy-doc_2025.3-1_all.deb\n+ 843a189eb8d291c5d01d0c5c02812398 12521152 doc optional python-sfepy-doc_2025.3-1_all.deb\n f072cfe8d310db312a1d700fd92f2f07 5666192 debug optional python3-sfepy-dbgsym_2025.3-1_amd64.deb\n e1cf97f4f37c67b71b97be854f52f922 4613280 python optional python3-sfepy_2025.3-1_amd64.deb\n"}, {"source1": "python-sfepy-doc_2025.3-1_all.deb", "source2": "python-sfepy-doc_2025.3-1_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2025-10-04 11:36:36.000000 debian-binary\n--rw-r--r-- 0 0 0 27944 2025-10-04 11:36:36.000000 control.tar.xz\n--rw-r--r-- 0 0 0 12503268 2025-10-04 11:36:36.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 27952 2025-10-04 11:36:36.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 12493008 2025-10-04 11:36:36.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,13 +1,13 @@\n drwxr-xr-x 0 root (0) root (0) 0 2025-10-04 11:36:36.000000 ./\n drwxr-xr-x 0 root (0) root (0) 0 2025-10-04 11:36:36.000000 ./usr/\n drwxr-xr-x 0 root (0) root (0) 0 2025-10-04 11:36:36.000000 ./usr/share/\n drwxr-xr-x 0 root (0) root (0) 0 2025-10-04 11:36:36.000000 ./usr/share/doc/\n drwxr-xr-x 0 root (0) root (0) 0 2025-10-04 11:36:36.000000 ./usr/share/doc/python-sfepy-doc/\n--rw-r--r-- 0 root (0) root (0) 3826806 2025-10-04 11:36:36.000000 ./usr/share/doc/python-sfepy-doc/SfePy.pdf.gz\n+-rw-r--r-- 0 root (0) root (0) 3827360 2025-10-04 11:36:36.000000 ./usr/share/doc/python-sfepy-doc/SfePy.pdf.gz\n -rw-r--r-- 0 root (0) root (0) 2277 2025-10-04 11:36:36.000000 ./usr/share/doc/python-sfepy-doc/changelog.Debian.gz\n -rw-r--r-- 0 root (0) root (0) 1802 2025-10-04 11:02:51.000000 ./usr/share/doc/python-sfepy-doc/copyright\n drwxr-xr-x 0 root (0) root (0) 0 2025-10-04 11:36:36.000000 ./usr/share/doc/python-sfepy-doc/examples/\n -rw-r--r-- 0 root (0) root (0) 0 2025-09-29 09:50:41.000000 ./usr/share/doc/python-sfepy-doc/examples/__init__.py\n drwxr-xr-x 0 root (0) root (0) 0 2025-10-04 11:36:36.000000 ./usr/share/doc/python-sfepy-doc/examples/acoustics/\n -rw-r--r-- 0 root (0) root (0) 0 2025-09-29 09:50:41.000000 ./usr/share/doc/python-sfepy-doc/examples/acoustics/__init__.py\n -rw-r--r-- 0 root (0) root (0) 1751 2025-09-29 09:50:41.000000 ./usr/share/doc/python-sfepy-doc/examples/acoustics/acoustics.py\n"}, {"source1": "./usr/share/doc/python-sfepy-doc/SfePy.pdf.gz", "source2": "./usr/share/doc/python-sfepy-doc/SfePy.pdf.gz", "unified_diff": null, "details": [{"source1": "SfePy.pdf", "source2": "SfePy.pdf", "unified_diff": null, "details": [{"source1": "pdftotext {} -", "source2": "pdftotext {} -", "unified_diff": "@@ -1313,64 +1313,64 @@\n \n basis\n \n region kind\n \n description\n \n-L2\n H1\n \n-constant\n bernstein\n \n cell, facet\n-cell, facet\n \n H1\n \n iga\n \n cell\n \n H1\n H1\n H1\n H1\n H1\n H1\n+L2\n DG\n \n lagrange\n lagrange_discontinuous\n lobatto\n sem\n serendipity\n shell10x\n+constant\n legendre_discontinuous\n \n cell, facet\n cell\n cell\n cell, facet\n cell, facet\n cell\n+cell, facet\n cell\n \n-The L2 constant-in-a-region approximation.\n Bernstein basis approximation with positive-only basis function\n values.\n Bezier extraction based NURBS approximation for isogeometric\n analysis.\n Lagrange basis nodal approximation.\n The C0 constant-per-cell approximation.\n Hierarchical basis approximation with Lobatto polynomials.\n Spectral element method approximation.\n Lagrange basis nodal serendipity approximation with order <= 3.\n The approximation for the shell10x element.\n+The L2 constant-in-a-region approximation.\n Discontinuous Galerkin method approximation with Legendre\n basis.\n \n Variables\n Variables use the FE approximation given by the specified field:\n variables = {\n : (, , , [])\n@@ -5126,20 +5126,19 @@\n \n \u03a9\n \n \u222b\ufe01\n \ud835\udc5e \ud835\udefc\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\n \u03a9\n \n-the.ela,\n-bio,\n the.ela.ess,\n bio.npb,\n bio.npb.lag,\n-bio.sho.syn\n+bio.sho.syn, bio,\n+the.ela\n \n \u222b\ufe01\n \u2212\n \n \ud835\udefc\ud835\udc56\ud835\udc57 \ud835\udc5d\n \u03a9\n \n@@ -5225,17 +5224,16 @@\n \u0393\n \n ela.con.sph\n \u222b\ufe01\n \ud835\udc63 \u00b7 \ud835\udc53 (\ud835\udc51(\ud835\udc62))\ud835\udc5b(\ud835\udc62)\n \u0393\n \n-nav.sto,\n nav.sto.iga,\n-nav.sto\n+nav.sto, nav.sto\n \n \u222b\ufe01\n ((\ud835\udc62 \u00b7 \u2207)\ud835\udc62) \u00b7 \ud835\udc63\n \u03a9\n \n dw_convect_v_grad_s\n ,\n@@ -5266,17 +5264,17 @@\n AdvectionDGFluxTerm\n ,\n ,\n \n \n \u222b\ufe01\n \n-adv.1D,\n+adv.2D,\n adv.dif.2D,\n-adv.2D\n+adv.1D\n \n \ud835\udc5b \u00b7 \ud835\udc53 * (\ud835\udc5d\ud835\udc56\ud835\udc5b , \ud835\udc5d\ud835\udc5c\ud835\udc62\ud835\udc61 )\ud835\udc5e\n \n \ud835\udf15\ud835\udc47\ud835\udc3e\n \n where\n \ud835\udc53 * (\ud835\udc5d\ud835\udc56\ud835\udc5b , \ud835\udc5d\ud835\udc5c\ud835\udc62\ud835\udc61 ) = \ud835\udc4e\n@@ -5299,16 +5297,16 @@\n 2\n 2\n \n \ud835\udc37\u27e8\u2207\ud835\udc5d\u27e9[\ud835\udc5e] ,\n \n \ud835\udf15\ud835\udc47\ud835\udc3e\n \n-adv.dif.2D,\n-bur.2D, lap.2D\n+lap.2D, bur.2D,\n+adv.dif.2D\n \n \u222b\ufe01\n \ud835\udc37\u27e8\u2207\ud835\udc5e\u27e9[\ud835\udc5d]\n \ud835\udf15\ud835\udc47\ud835\udc3e\n \n \u27e8\u2207\ud835\udf11\u27e9 =\n \n@@ -5334,16 +5332,16 @@\n ,\n DiffusionInteriorPenaltyTerm\n ,\n ,\n \n \n examples\n-adv.dif.2D,\n-bur.2D, lap.2D\n+lap.2D, bur.2D,\n+adv.dif.2D\n \n 2\n \n \u222b\ufe01\n \n \u00af \ud835\udc64 \ud835\udc42\ud835\udc5f\ud835\udc51 [\ud835\udc5d][\ud835\udc5e]\n \ud835\udc37\ud835\udc36\n@@ -5402,22 +5400,22 @@\n \ud835\udc3e\ud835\udc56\ud835\udc57 \u2207\ud835\udc56 \ud835\udc5e\u2207\ud835\udc57 \ud835\udc5d\n \u03a9\n \n \u222b\ufe01\n \n \ud835\udc5d\ud835\udc3e\ud835\udc57 \u2207\ud835\udc57 \ud835\udc5e ,\n \n-pie.ela,\n-bio,\n-poi.neu, pie.ela,\n-dar.flo.mul,\n+pie.ela, pie.ela,\n bio.npb,\n bio.npb.lag,\n+poi.neu,\n+bio.sho.syn,\n+bio,\n vib.aco,\n-bio.sho.syn\n+dar.flo.mul\n \n \u222b\ufe01\n \ud835\udc5e\ud835\udc3e\ud835\udc57 \u2207\ud835\udc57 \ud835\udc5d\n \n \u03a9\n \n \u03a9\n@@ -5551,42 +5549,38 @@\n \n \u03a9\n \n \ud835\udc9f\n \n \ud835\udc9f\n \n-nav.sto,\n nav.sto.iga,\n+nav.sto, sto.sli.bc,\n sta.nav.sto, sto,\n-sto.sli.bc, nav.sto\n-adv.1D,\n-mod.ana.dec,\n-tim.adv.dif,\n-bal,\n-pie.ela,\n-tim.poi.exp,\n-hel.apa, vib.aco,\n-adv.2D, pie.ela,\n-tim.hea.equ.mul.mat,\n-bor,\n+nav.sto\n the.ele,\n-dar.flo.mul,\n-lin.ela.dam,\n-bur.2D, tim.poi,\n-hyd,\n-aco,\n-osc,\n-poi.fun,\n-ref.evp,\n+poi.per.bou.con,\n+vib.aco,\n wel,\n-aco,\n+aco, lin.ela.dam,\n+adv.2D, bur.2D,\n+lin.ela.up,\n+mod.ana.dec,\n+adv.1D,\n sto.sli.bc,\n-poi.per.bou.con,\n-lin.ela.up\n+hyd,\n+tim.hea.equ.mul.mat,\n+pie.ela, pie.ela,\n+hel.apa, tim.poi,\n+osc, ref.evp, bor,\n+tim.adv.dif, aco,\n+tim.poi.exp,\n+poi.fun,\n+dar.flo.mul,\n+bal\n \n \u222b\ufe01\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc54\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc54\ud835\udc58\ud835\udc59 (\ud835\udc62)\n \u03a9\n \n \u222b\ufe01\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc54\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n@@ -5634,76 +5628,78 @@\n \ud835\udc50\u2207\ud835\udc5d or\n \ud835\udc50\u2207\ud835\udc62\n \ud835\udc9f\n \n \u222b\ufe01\n \ud835\udc9f\n \n-dw_integrate\n+ev_integrate\n+IntegrateTerm\n+\n ,\n-IntegrateOperatorTerm\n-\n+\n \n \ud835\udc9f\n \n \u222b\ufe01\n-\n \u222b\ufe01\n \n-\ud835\udc5e or\n+\ud835\udc50\ud835\udc66 ,\n \n-\ud835\udc50\ud835\udc5e\n+\u222b\ufe01 \ud835\udc9f\n \n \ud835\udc9f\n \n-ev_integrate\n-IntegrateTerm\n-\n+dw_integrate\n ,\n-\n+IntegrateOperatorTerm\n+\n+\n+\ud835\udc66,\n \n-\u222b\ufe01\n \u222b\ufe01\n \n \ud835\udc50\ud835\udc66 ,\n \n-\ud835\udc9f\n+\u222b\ufe01\ud835\udc9f\n \n \ud835\udc9f\n \n-\ud835\udc66,\n-\n-\u222b\ufe01 \ud835\udc9f\n+\u222b\ufe01\n \n \u222b\ufe01\n+\ud835\udc66\u00b7\ud835\udc5b\n+\u0393\n \n-\ud835\udc50\ud835\udc66 ,\n+\ud835\udc50\ud835\udc66 \u00b7 \ud835\udc5b flux\n \n-\ud835\udc66,\n+\u0393\n \n-\u222b\ufe01\ud835\udc9f\n+\ud835\udc5e or\n+\n+\u222b\ufe01\n+\ud835\udc50\ud835\udc5e\n \n \ud835\udc9f\n \n ev_integrate_mat ,\n IntegrateMatTerm\n \n-aco,\n-tim.hea.equ.mul.mat,\n-poi.neu,\n-dar.flo.mul, aco,\n-hel.apa, vib.aco,\n-poi.per.bou.con\n-\u222b\ufe01\n-\ud835\udc66\u00b7\ud835\udc5b\n-\u0393\n+\ud835\udc66,\n \n-\ud835\udc50\ud835\udc66 \u00b7 \ud835\udc5b flux\n+\ud835\udc9f\n \n-\u0393\n+hel.apa,\n+aco,\n+poi.neu,\n+aco,\n+tim.hea.equ.mul.mat,\n+poi.per.bou.con,\n+vib.aco,\n+dar.flo.mul\n \n \u222b\ufe01\n \ud835\udc50\n \ud835\udc9f\n \n dw_jump\n ,\n@@ -5737,38 +5733,41 @@\n ,\n ,\n \n \n examples\n-tim.adv.dif,\n-sin, poi.par.stu,\n-tim.poi.exp,\n-hel.apa, vib.aco,\n-tim.hea.equ.mul.mat,\n-the.ela.ess,\n-poi.iga,\n-poi.fie.dep.mat,\n-bor,\n+cub,\n the.ele,\n-poi, lap.flu.2d,\n+poi.per.bou.con,\n+vib.aco,\n+poi,\n+the.ela.ess, wel,\n+aco, lap.tim.ebc,\n+bur.2D, poi.iga,\n+sin, lap.cou.lcb,\n+lap.2D,\n+lap.flu.2d,\n+sto.sli.bc,\n+hyd,\n+adv.dif.2D,\n+lap.1d,\n+tim.hea.equ.mul.mat,\n poi.sho.syn,\n-bur.2D,\n-tim.poi, lap.1d,\n-lap.cou.lcb, hyd,\n-aco, lap.2D, osc,\n-cub,\n-poi.fun,\n+poi.par.stu,\n+hel.apa,\n+poi.fie.dep.mat,\n+tim.poi,\n+osc,\n ref.evp,\n-wel,\n-adv.dif.2D, aco,\n-lap.tim.ebc,\n-sto.sli.bc,\n-poi.per.bou.con\n+bor,\n+tim.adv.dif, aco,\n+tim.poi.exp,\n+poi.fun\n sta.nav.sto\n \n \u222b\ufe01\n \ud835\udc50\u2207\ud835\udc5e \u00b7 \u2207\ud835\udc5d\n \u03a9\n \n dw_lin_convect\n@@ -5813,20 +5812,36 @@\n \n \u2212 \ud835\udc62\ud835\udc59 )\n \n \ud835\udc56,\ud835\udc57\n \u2200 elements \ud835\udc47\ud835\udc3e\n \n in a region connecting nodes \ud835\udc56, \ud835\udc57\n+continues on next page\n+\n+106\n+\n+Chapter 1. Documentation\n+\n+\fSfePy Documentation, Release version: 2025.3\n+\n+Table 5 \u2013 continued from previous page\n+name/class\n+\n+arguments\n+\n+definition\n+\n dw_lin_dspring_rot ,\n LinearDRotSpringTerm\n ,\n ,\n \n \n+examples\n mul.poi.con\n (\ud835\udc56)\n \n (\ud835\udc57)\n \n \ud835\udc53\ud835\udc58 = \u2212\ud835\udc53\ud835\udc58\n \n@@ -5838,28 +5853,14 @@\n \n \u2212 \ud835\udc62\ud835\udc59 )\n \n \ud835\udc56,\ud835\udc57\n \u2200 elements \ud835\udc47\ud835\udc3e\n \n in a region connecting nodes \ud835\udc56, \ud835\udc57\n-continues on next page\n-106\n-\n-Chapter 1. Documentation\n-\n-\fSfePy Documentation, Release version: 2025.3\n-\n-Table 5 \u2013 continued from previous page\n-name/class\n-\n-arguments\n-\n-definition\n-\n dw_lin_elastic\n ,\n LinearElasticTerm\n ,\n \n@@ -5873,48 +5874,45 @@\n param_2>\n dw_lin_prestress\n ,\n LinearPrestressTerm\n \n \n-examples\n-ela.con.pla,\n-mod.ana.dec,\n-ela,\n-its.1,\n+bio.npb,\n mul.poi.con,\n-bio.sho.syn, its.2,\n-the.ela, tru.bri,\n-bio,\n-pre.fib,\n-mul.nod.lcb,\n-pie.ela, mix.mes,\n-pie.ela.mac,\n+lin.ela.tra,\n bio.npb.lag,\n-vib.aco,\n-nod.lcb, pie.ela,\n-lin.ela.mM,\n+lin.ela.iga,\n+mix.mes,\n+lin.ela, vib.aco,\n+ela.con.pla,\n the.ela.ess,\n+ela.shi.per,\n+lin.ela.dam,\n+lin.ela.up,\n+ela.con.sph, bio,\n+mod.ana.dec,\n+the.ela,\n+mul.nod.lcb,\n two.bod.con,\n-wed.mes,\n+its.4, wed.mes,\n+pie.ela.mac,\n+its.3,\n+pre.fib,\n lin.ela.opt,\n-lin.ela.dam,\n+tru.bri,\n lin.vis,\n-lin.ela,\n-lin.ela.tra,\n-ela.shi.per,\n-sei.loa,\n-ela.con.sph,\n-mat.non,\n-its.3,\n+pie.ela,\n+lin.ela.mM,\n+pie.ela, ela, its.2,\n+sei.loa, mat.non,\n+its.1, bio.sho.syn,\n com.ela.mat,\n-lin.ela.iga,\n-bio.npb,\n-lin.ela.up, its.4\n+nod.lcb\n \n \u222b\ufe01\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n \u03a9\n \n \u222b\ufe01\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n@@ -5923,29 +5921,19 @@\n with\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 = \ud835\udf07(\ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc59 + \ud835\udeff\ud835\udc56\ud835\udc59 \ud835\udeff\ud835\udc57\ud835\udc58 ) + \ud835\udf06 \ud835\udeff\ud835\udc56\ud835\udc57 \ud835\udeff\ud835\udc58\ud835\udc59\n \n \u222b\ufe01\n \ud835\udf0e\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\n \n non.hyp.mM,\n-pre.fib,\n-pie.ela.mac\n+pie.ela.mac,\n+pre.fib\n \n \u03a9\n \n-dw_lin_spring\n-,\n-LinearSpringTerm,\n-\n-\n-\ud835\udc53 (\ud835\udc56) = \u2212\ud835\udc53 (\ud835\udc57) = \ud835\udc58(\ud835\udc62(\ud835\udc57) \u2212 \ud835\udc62(\ud835\udc56) )\n-\ud835\udc56,\ud835\udc57\n-\u2200 elements \ud835\udc47\ud835\udc3e\n-\n-in a region connecting nodes \ud835\udc56, \ud835\udc57\n continues on next page\n \n 1.8. Term Overview\n \n 107\n \n \fSfePy Documentation, Release version: 2025.3\n@@ -5953,16 +5941,26 @@\n Table 5 \u2013 continued from previous page\n name/class\n \n arguments\n \n definition\n \n+dw_lin_spring\n+,\n+LinearSpringTerm,\n+\n+\n examples\n \n+\ud835\udc53 (\ud835\udc56) = \u2212\ud835\udc53 (\ud835\udc57) = \ud835\udc58(\ud835\udc62(\ud835\udc57) \u2212 \ud835\udc62(\ud835\udc56) )\n+\ud835\udc56,\ud835\udc57\n+\u2200 elements \ud835\udc47\ud835\udc3e\n+\n+in a region connecting nodes \ud835\udc56, \ud835\udc57\n dw_lin_strain_fib ,\n LinearStrainFiberTerm\n ,\n \n \n pre.fib\n \u222b\ufe01\n@@ -5990,127 +5988,131 @@\n in a region connecting nodes \ud835\udc56, \ud835\udc57\n dw_nl_diffusion\n ,\n NonlinearDiffusionTerm\n ,\n ,\n \n-\n-poi.non.mat\n-\u222b\ufe01\n-\u2207\ud835\udc5e \u00b7 \u2207\ud835\udc5d\ud835\udc53 (\ud835\udc5d)\n-\u03a9\n-\n dw_non_penetration ,\n NonPenetrationTerm\n ,\n \n ,\n ,\n \n+dw_non_penetration_p\n+,\n+NonPenetrationPenaltyTerm\n+,\n+\n+\n+poi.non.mat\n+\u222b\ufe01\n+\u2207\ud835\udc5e \u00b7 \u2207\ud835\udc5d\ud835\udc53 (\ud835\udc5d)\n+\u03a9\n \n bio.npb.lag\n \u222b\ufe01\n \n \u222b\ufe01\n+\n \u02c6 \u00b7\ud835\udc62\n \ud835\udc50\ud835\udf06\ud835\udc5b \u00b7 \ud835\udc63 ,\n \ud835\udc50\ud835\udf06\ud835\udc5b\n \u0393\n-\u0393\n \u222b\ufe01\n \u222b\ufe01\n \u02c6 \u00b7\ud835\udc62\n-\ud835\udf06\ud835\udc5b\n \ud835\udf06\ud835\udc5b \u00b7 \ud835\udc63 ,\n+\ud835\udf06\ud835\udc5b\n+\n \u0393\n \n \u0393\n \n-dw_non_penetration_p\n-,\n-NonPenetrationPenaltyTerm\n-,\n-\n+\u0393\n \n bio.sho.syn\n \u222b\ufe01\n \ud835\udc50(\ud835\udc5b \u00b7 \ud835\udc63)(\ud835\udc5b \u00b7 \ud835\udc62)\n \u0393\n \n dw_nonsym_elastic ,\n NonsymElasticTerm\n ,\n \n-dw_ns_dot_grad_s ,\n-NonlinearScalarDotGradTerm\n-,\n-,\n-\n-,\n-,\n-,\n-\n \n non.hyp.mM\n \u222b\ufe01\n \ud835\udc37\u2207\ud835\udc62 : \u2207\ud835\udc63\n \u03a9\n \n-bur.2D\n-\u222b\ufe01\n-\n-\u222b\ufe01\n-\ud835\udc5e \u00b7 \u2207 \u00b7 \ud835\udc53 (\ud835\udc5d) =\n-\n-\u03a9\n-\n-\u03a9\n-\n-\ud835\udc5e \u00b7 div\ud835\udc53 (\ud835\udc5d) ,\n-\n-\u222b\ufe01\n-\ud835\udc53 (\ud835\udc5d) \u00b7 \u2207\ud835\udc5e\n-\u03a9\n-\n continues on next page\n+\n 108\n \n Chapter 1. Documentation\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table 5 \u2013 continued from previous page\n name/class\n \n arguments\n \n-definition\n-\n-examples\n-\n+dw_ns_dot_grad_s ,\n+NonlinearScalarDotGradTerm\n+,\n+,\n+\n+,\n+,\n+,\n+\n dw_piezo_coupling ,\n PiezoCouplingTerm\n ,\n \n ,\n ,\n \n ev_piezo_strain\n ,\n PiezoStrainTerm \n \n+definition\n+\n+examples\n+bur.2D\n+\u222b\ufe01\n+\n+\u222b\ufe01\n+\n+\ud835\udc5e \u00b7 div\ud835\udc53 (\ud835\udc5d) ,\n+\n+\ud835\udc5e \u00b7 \u2207 \u00b7 \ud835\udc53 (\ud835\udc5d) =\n+\u03a9\n+\n+\u222b\ufe01\n+\n+\u03a9\n+\n+\ud835\udc53 (\ud835\udc5d) \u00b7 \u2207\ud835\udc5e\n+\u03a9\n+\n pie.ela, pie.ela\n \u222b\ufe01\n \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\u2207\ud835\udc58 \ud835\udc5d\n-\u222b\ufe01 \u03a9\n+\u03a9\n+\n+\u222b\ufe01\n \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\u2207\ud835\udc58 \ud835\udc5e\n \u03a9\n \n \u222b\ufe01\n \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\n \u03a9\n \n@@ -6139,19 +6141,19 @@\n \ud835\udc53 \ud835\udc56 = \u2212\ud835\udc58\ud835\udc62\ud835\udc56\n \n dw_s_dot_grad_i_s ,\n ScalarDotGradIScalarTerm\n ,\n \n \n-its.3,\n-its.1,\n tru.bri,\n+its.4,\n its.2,\n-its.4, she.can\n+she.can,\n+its.1, its.3\n \n \u2200 FE node \ud835\udc56 in a region\n \n \ud835\udc56\n \n \u222b\ufe01\n \n@@ -6163,41 +6165,29 @@\n dw_s_dot_mgrad_s ,\n ScalarDotMGradScalarTerm\n ,\n \n ,\n ,\n \n-dw_shell10x\n-,\n-Shell10XTerm\n-,\n-,\n-\n \n \u222b\ufe01\n+\u03a9\n \n \ud835\udc5e\ud835\udc66 \u00b7 \u2207\ud835\udc5d ,\n \n-\u03a9\n-\n \u222b\ufe01\n \ud835\udc5d\ud835\udc66 \u00b7 \u2207\ud835\udc5e\n \n-adv.1D,\n+adv.2D,\n adv.dif.2D,\n-adv.2D\n+adv.1D\n \n \u03a9\n \n-she.can\n-\u222b\ufe01\n-\ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n-\u03a9\n-\n continues on next page\n \n 1.8. Term Overview\n \n 109\n \n \fSfePy Documentation, Release version: 2025.3\n@@ -6205,15 +6195,27 @@\n Table 5 \u2013 continued from previous page\n name/class\n \n arguments\n \n definition\n \n+dw_shell10x\n+Shell10XTerm\n+\n+,\n+,\n+,\n+\n+\n examples\n+she.can\n+\u222b\ufe01\n+\ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n+\u03a9\n \n dw_stokes\n StokesTerm\n \n ,\n ,\n@@ -6226,32 +6228,26 @@\n ,\n StokesWaveTerm ,\n \n \n \u222b\ufe01\n \n \u222b\ufe01\n-\n \ud835\udc5d\u2207\u00b7\ud835\udc63,\n \ud835\udc5e\u2207\u00b7\ud835\udc62\n \u222b\ufe01 \u03a9\n+\u222b\ufe01 \u03a9\n+or\n \ud835\udc50\ud835\udc5d\u2207\u00b7\ud835\udc63,\n \ud835\udc50\ud835\udc5e\u2207\u00b7\ud835\udc62\n \u03a9\n \n-or\n-\n-\u222b\ufe01\n-\u03a9\n-\n-nav.sto,\n nav.sto.iga,\n-sta.nav.sto,\n-sto,\n-sto.sli.bc,\n+nav.sto, sto.sli.bc,\n+sta.nav.sto, sto,\n lin.ela.up, nav.sto\n \n \u03a9\n \n \u222b\ufe01\n (\ud835\udf05 \u00b7 \ud835\udc63)(\ud835\udf05 \u00b7 \ud835\udc62)\n \u03a9\n@@ -6310,38 +6306,28 @@\n ev_surface_moment ,\n SurfaceMomentTerm\n \n \n \ud835\udc63 \u00b7 \ud835\udc5b,\n \u0393\n \n-tru.bri, wed.mes,\n+lin.vis, wed.mes,\n+ela.shi.per,\n+lin.ela.tra,\n com.ela.mat,\n+mix.mes,\n+nod.lcb,\n lin.ela.opt,\n-mix.mes, lin.vis,\n-lin.ela.tra,\n-ela.shi.per,\n-nod.lcb\n+tru.bri\n \n \u222b\ufe01\n \ud835\udc5b(\ud835\udc65 \u2212 \ud835\udc650 )\n \u0393\n \n-dw_surface_ndot ,\n-SufaceNormalDotTerm\n-\n-\n-lap.flu.2d\n-\u222b\ufe01\n-\ud835\udc5e\ud835\udc50 \u00b7 \ud835\udc5b\n-\u0393\n-\n continues on next page\n-\n 110\n \n Chapter 1. Documentation\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table 5 \u2013 continued from previous page\n@@ -6349,14 +6335,24 @@\n \n arguments\n \n definition\n \n examples\n \n+dw_surface_ndot ,\n+SufaceNormalDotTerm\n+\n+\n+lap.flu.2d\n+\u222b\ufe01\n+\ud835\udc5e\ud835\udc50 \u00b7 \ud835\udc5b\n+\u0393\n+\n ev_surface_piezo_flux\n ,\n SurfacePiezoFluxTerm\n \n \n \u222b\ufe01\n \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\ud835\udc5b\ud835\udc58\n@@ -6385,36 +6381,39 @@\n \n VolumeTerm\n \n vib.aco\n \u222b\ufe01\n \n \u222b\ufe01\n+\n \ud835\udc63 \u00b7 \u2207\ud835\udc5d ,\n \ud835\udc62 \u00b7 \u2207\ud835\udc5e\n-\u222b\ufe01 \u03a9\n-\u222b\ufe01 \u03a9\n+\u03a9\n+\u222b\ufe01\n+\u222b\ufe01\n \ud835\udc50\ud835\udc63 \u00b7 \u2207\ud835\udc5d ,\n \ud835\udc50\ud835\udc62 \u00b7 \u2207\ud835\udc5e\n \u03a9\n \u222b\ufe01 \u03a9\n \u222b\ufe01\n \ud835\udc62 \u00b7 (\ud835\udc50\u2207\ud835\udc5e)\n \ud835\udc63 \u00b7 (\ud835\udc50\u2207\ud835\udc5d) ,\n \u03a9\n \n \u03a9\n \n+\u03a9\n+\n \u222b\ufe01\n \n \ud835\udc63 \u00b7 \ud835\udc50\ud835\udc5d ,\n \n \u222b\ufe01\n \ud835\udc62 \u00b7 \ud835\udc50\ud835\udc5e\n-\n \u03a9\n \n \u03a9\n \n \u222b\ufe01\n 1\n \ud835\udc9f\n@@ -6437,18 +6436,18 @@\n ,\n \n \n \u222b\ufe01\n \ud835\udc53\ud835\udc5e\n \u03a9\n \n-poi.par.stu,\n poi.iga,\n-adv.dif.2D,\n-bur.2D\n+poi.par.stu,\n+bur.2D,\n+adv.dif.2D\n poi.non.mat\n \n \u222b\ufe01\n \ud835\udc5e\ud835\udc53 (\ud835\udc5d)\n \u03a9\n \n ev_volume_surface \n@@ -6456,26 +6455,42 @@\n \n \u222b\ufe01\n \ud835\udc65\u00b7\ud835\udc5b\n \n 1/\ud835\udc37\n \u0393\n \n+continues on next page\n+\n+1.8. Term Overview\n+\n+111\n+\n+\fSfePy Documentation, Release version: 2025.3\n+\n+Table 5 \u2013 continued from previous page\n+name/class\n+\n+arguments\n+\n dw_zero\n ZeroTerm\n \n-ela\n-\n ,\n \n+\n+definition\n+\n+examples\n+ela\n 0\n \n-1.8. Term Overview\n+112\n \n-111\n+Chapter 1. Documentation\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table of sensitivity terms\n Table 6: Sensitivity terms\n name/class\n \n@@ -6514,18 +6529,20 @@\n \n \ud835\udc64\ud835\udeff\ud835\udc62 \u03a8(\ud835\udc62) \u2218 \ud835\udc63\n \n \u222b\ufe01\n [\ud835\udc62\ud835\udc58\n \u03a9\n \n-ev_sd_diffusion\n+de_sd_diffusion\n ,\n-SDDiffusionTerm ,\n-,\n+ESDDiffusionTerm,\n+,\n \n \n \ud835\udf15\ud835\udc62\ud835\udc56\n \ud835\udf15\ud835\udcb1\ud835\udc57 \ud835\udf15\ud835\udc62\ud835\udc56\n \ud835\udc64\ud835\udc56 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc62\ud835\udc58\n \ud835\udc64\ud835\udc56 ]\n \ud835\udf15\ud835\udc65\ud835\udc58\n@@ -6543,25 +6560,18 @@\n \ud835\udf15\ud835\udcb1\ud835\udc56\n \ud835\udf15\ud835\udcb1\ud835\udc57\n \u02c6\n \ud835\udc3e\ud835\udc56\ud835\udc57 = \ud835\udc3e\ud835\udc56\ud835\udc57 \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc59 \u2207 \u00b7 \ud835\udcb1 \u2212 \ud835\udeff\ud835\udc56\ud835\udc58\n \u2212 \ud835\udeff\ud835\udc57\ud835\udc59\n \ud835\udf15\ud835\udc65\ud835\udc59\n \ud835\udf15\ud835\udc65\ud835\udc58\n-de_sd_diffusion\n-,\n-ESDDiffusionTerm,\n-,\n-\n-ev_sd_div\n-SDDivTerm\n \n-,\n+ev_sd_diffusion\n+,\n+SDDiffusionTerm ,\n ,\n \n \n \u222b\ufe01\n \n \u02c6 \ud835\udc56\ud835\udc57 \u2207\ud835\udc56 \ud835\udc5e \u2207\ud835\udc57 \ud835\udc5d\n \ud835\udc3e\n@@ -6570,47 +6580,51 @@\n \n (\ufe02\n )\ufe02\n \u02c6 \ud835\udc56\ud835\udc57 = \ud835\udc3e\ud835\udc56\ud835\udc57 \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc59 \u2207 \u00b7 \ud835\udcb1 \u2212 \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udf15\ud835\udcb1\ud835\udc57 \u2212 \ud835\udeff\ud835\udc57\ud835\udc59 \ud835\udf15\ud835\udcb1\ud835\udc56\n \ud835\udc3e\n \ud835\udf15\ud835\udc65\ud835\udc59\n \ud835\udf15\ud835\udc65\ud835\udc58\n+ev_sd_div\n+SDDivTerm\n+\n+,\n+,\n+\n \n \u222b\ufe01\n \ud835\udc5d[(\u2207 \u00b7 \ud835\udc64)(\u2207 \u00b7 \ud835\udcb1) \u2212\n \u03a9\n \n \ud835\udf15\ud835\udcb1\ud835\udc58 \ud835\udf15\ud835\udc64\ud835\udc56\n ]\n \ud835\udf15\ud835\udc65\ud835\udc56 \ud835\udf15\ud835\udc65\ud835\udc58\n continues on next page\n \n-112\n+1.8. Term Overview\n \n-Chapter 1. Documentation\n+113\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table 6 \u2013 continued from previous page\n name/class\n \n arguments\n \n definition\n \n-de_sd_div_grad\n-,\n-ESDDivGradTerm ,\n-,\n-\n ev_sd_div_grad\n SDDivGradTerm\n \n+,\n+,\n+,\n+\n+\n examples\n \n \u222b\ufe01\n \n \u02c6\n : \u2207\ud835\udc62 ,\n \ud835\udc3c\u2207\ud835\udc63\n@@ -6627,18 +6641,29 @@\n \n \ud835\udf15\ud835\udcb1\ud835\udc59\n \ud835\udf15\ud835\udcb1\ud835\udc58\n \ud835\udc3c\u02c6\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 = \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc59 \u2207 \u00b7 \ud835\udcb1 \u2212 \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc60\n \u2212 \ud835\udeff\ud835\udc56\ud835\udc60 \ud835\udeff\ud835\udc57\ud835\udc59\n \ud835\udf15\ud835\udc65\ud835\udc60\n \ud835\udf15\ud835\udc65\ud835\udc60\n+de_sd_div_grad\n+,\n+ESDDivGradTerm ,\n+,\n+\n+de_sd_dot\n+ESDDotTerm\n \n ,\n-,\n-,\n+,\n+,\n \n \n \u222b\ufe01\n \n \u02c6\n : \u2207\ud835\udc62 ,\n \ud835\udc3c\u2207\ud835\udc63\n@@ -6655,23 +6680,14 @@\n \n \ud835\udf15\ud835\udcb1\ud835\udc59\n \ud835\udf15\ud835\udcb1\ud835\udc58\n \ud835\udc3c\u02c6\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 = \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc59 \u2207 \u00b7 \ud835\udcb1 \u2212 \ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc60\n \u2212 \ud835\udeff\ud835\udc56\ud835\udc60 \ud835\udeff\ud835\udc57\ud835\udc59\n \ud835\udf15\ud835\udc65\ud835\udc60\n \ud835\udf15\ud835\udc65\ud835\udc60\n-de_sd_dot\n-ESDDotTerm\n-\n-,\n-,\n-,\n-\n \n \u222b\ufe01\n \n \u222b\ufe01\n \n \ud835\udc5e\ud835\udc5d(\u2207 \u00b7 \ud835\udcb1) ,\n (\ud835\udc63 \u00b7 \ud835\udc62)(\u2207 \u00b7 \ud835\udcb1)\n@@ -6696,151 +6712,148 @@\n \n \u222b\ufe01\n \n \ud835\udc5d\ud835\udc5e(\u2207 \u00b7 \ud835\udcb1) ,\n \n \u03a9\n \n+de_sd_lin_elastic ,\n+ESDLinearElasticTerm\n+,\n+,\n+\n ev_sd_lin_elastic ,\n SDLinearElasticTerm\n ,\n ,\n \n \n \u222b\ufe01\n (\ud835\udc62 \u00b7 \ud835\udc64)(\u2207 \u00b7 \ud835\udcb1)\n \u03a9\n \n \u222b\ufe01\n \n-\u02c6 \ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n+\u02c6 \ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udf15\ud835\udc63\ud835\udc56 \ud835\udf15\ud835\udc62\ud835\udc58\n \ud835\udc37\n-\n+\ud835\udf15\ud835\udc65\ud835\udc57 \ud835\udf15\ud835\udc65\ud835\udc59\n \u03a9\n \n \u02c6 \ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 = \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc5e \ud835\udf15\ud835\udcb1\ud835\udc59 \u2212 \ud835\udc37\ud835\udc56\ud835\udc5e\ud835\udc58\ud835\udc59 \ud835\udf15\ud835\udcb1\ud835\udc57\n \ud835\udc37\n \ud835\udf15\ud835\udc65\ud835\udc5e\n \ud835\udf15\ud835\udc65\ud835\udc5e\n-de_sd_lin_elastic ,\n-ESDLinearElasticTerm\n-,\n-,\n-\n \n \u222b\ufe01\n \n-\u02c6 \ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udf15\ud835\udc63\ud835\udc56 \ud835\udf15\ud835\udc62\ud835\udc58\n+\u02c6 \ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n \ud835\udc37\n-\ud835\udf15\ud835\udc65\ud835\udc57 \ud835\udf15\ud835\udc65\ud835\udc59\n+\n \u03a9\n \n \u02c6 \ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 = \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc5e \ud835\udf15\ud835\udcb1\ud835\udc59 \u2212 \ud835\udc37\ud835\udc56\ud835\udc5e\ud835\udc58\ud835\udc59 \ud835\udf15\ud835\udcb1\ud835\udc57\n \ud835\udc37\n \ud835\udf15\ud835\udc65\ud835\udc5e\n \ud835\udf15\ud835\udc65\ud835\udc5e\n continues on next page\n \n-1.8. Term Overview\n+114\n \n-113\n+Chapter 1. Documentation\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table 6 \u2013 continued from previous page\n name/class\n \n arguments\n \n definition\n \n+examples\n+\n+ev_sd_piezo_coupling\n+,\n+SDPiezoCouplingTerm\n+,\n+,\n+\n+\n+\u222b\ufe01\n+\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\u2207\ud835\udc58 \ud835\udc5d\n+\u03a9\n+\n+\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 = \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc59\n de_sd_piezo_coupling\n ,\n ESDPiezoCouplingTerm\n ,\n ,\n \n ,\n ,\n ,\n \n-ev_sd_piezo_coupling\n-,\n-SDPiezoCouplingTerm\n-,\n-,\n+de_sd_stokes\n+,\n+ESDStokesTerm ,\n+,\n+\n+,\n+,\n+,\n+\n+ev_sd_surface_integrate\n+,\n+SDSufaceIntegrateTerm\n \n-\n-examples\n \n \u222b\ufe01\n \n \ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\u2207\ud835\udc58 \ud835\udc5d ,\n \n-\u222b\ufe01\n-\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\u2207\ud835\udc58 \ud835\udc5e\n-\n-\u03a9\n-\n-\u03a9\n-\n-\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 = \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc59\n-\n \ud835\udf15\ud835\udcb1\ud835\udc57\n \ud835\udf15\ud835\udcb1\ud835\udc58\n \u2212 \ud835\udc54\ud835\udc59\ud835\udc56\ud835\udc57\n \ud835\udf15\ud835\udc65\ud835\udc59\n \ud835\udf15\ud835\udc65\ud835\udc59\n \n \u222b\ufe01\n-\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\u2207\ud835\udc58 \ud835\udc5d\n-\u03a9\n-\n-\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 = \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc59\n+\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\u2207\ud835\udc58 \ud835\udc5e\n \n-\ud835\udf15\ud835\udcb1\ud835\udc58\n-\ud835\udf15\ud835\udcb1\ud835\udc57\n-\u2212 \ud835\udc54\ud835\udc59\ud835\udc56\ud835\udc57\n-\ud835\udf15\ud835\udc65\ud835\udc59\n-\ud835\udf15\ud835\udc65\ud835\udc59\n+\u03a9\n \n-de_sd_stokes\n-ESDStokesTerm\n+\u03a9\n \n-,\n-,\n-,\n-\n-,\n-,\n-,\n-\n-ev_sd_surface_integrate\n-,\n-SDSufaceIntegrateTerm\n-\n+\ud835\udc54\u02c6\ud835\udc58\ud835\udc56\ud835\udc57 = \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 (\u2207 \u00b7 \ud835\udcb1) \u2212 \ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc59\n \n \u222b\ufe01\n \n \ud835\udc5d \ud835\udc3c\u02c6\ud835\udc56\ud835\udc57\n \n \u03a9\n \n \ud835\udf15\ud835\udc63\ud835\udc56\n ,\n \ud835\udf15\ud835\udc65\ud835\udc57\n \n \u222b\ufe01\n \n+\ud835\udf15\ud835\udcb1\ud835\udc57\n+\ud835\udf15\ud835\udcb1\ud835\udc58\n+\u2212 \ud835\udc54\ud835\udc59\ud835\udc56\ud835\udc57\n+\ud835\udf15\ud835\udc65\ud835\udc59\n+\ud835\udf15\ud835\udc65\ud835\udc59\n+\n \ud835\udc5e \ud835\udc3c\u02c6\ud835\udc56\ud835\udc57\n \n \u03a9\n \n \ud835\udf15\ud835\udc62\ud835\udc56\n \ud835\udf15\ud835\udc65\ud835\udc57\n \n@@ -6848,55 +6861,55 @@\n \ud835\udc3c\u02c6\ud835\udc56\ud835\udc57 = \ud835\udeff\ud835\udc56\ud835\udc57 \u2207 \u00b7 \ud835\udcb1 \u2212\n \ud835\udf15\ud835\udc65\ud835\udc56\n \n \u222b\ufe01\n \ud835\udc5d\u2207 \u00b7 \ud835\udcb1\n \u0393\n \n+ev_sd_surface_ltr ,\n+SDLinearTractionTerm\n+,\n+\n+\n+\u222b\ufe01\n+\n+\u222b\ufe01\n+\ud835\udc63 \u00b7 (\ud835\udf0e \ud835\udc5b),\n+\n+\u0393\n+\n de_sd_surface_ltr ,\n ESDLinearTractionTerm\n ,\n \n \n \u222b\ufe01\n \ud835\udc63\u00b7\n \n+\ud835\udc63 \u00b7 \ud835\udc5b,\n+\u0393\n+\n [\ufe00(\ufe00\n )\ufe00 ]\ufe00\n \ud835\udf0e\n \u02c6\u2207\u00b7\ud835\udcb1 \u2212\ud835\udf0e\n \u02c6 \u2207\ud835\udcb1 \ud835\udc5b\n \n \u0393\n \n \ud835\udf0e\n \u02c6 =\ud835\udc3c ,\ud835\udf0e\n \u02c6 = \ud835\udc50 \ud835\udc3c or \ud835\udf0e\n \u02c6=\ud835\udf0e\n-ev_sd_surface_ltr ,\n-SDLinearTractionTerm\n-,\n-\n-\n-\u222b\ufe01\n-\n-\u222b\ufe01\n-\ud835\udc63 \u00b7 (\ud835\udf0e \ud835\udc5b),\n-\n-\u0393\n-\n-\ud835\udc63 \u00b7 \ud835\udc5b,\n-\u0393\n-\n continues on next page\n \n-114\n+1.8. Term Overview\n \n-Chapter 1. Documentation\n+115\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table 6 \u2013 continued from previous page\n name/class\n \n arguments\n@@ -6911,15 +6924,15 @@\n param_s>,\n \n ,\n ,\n ,\n \n \n-1.8. Term Overview\n+116\n \n examples\n \n \u222b\ufe01\n \n \ud835\udf15\ud835\udc5d\n \ud835\udc3c\u02c6\ud835\udc56\ud835\udc57\n@@ -6937,15 +6950,15 @@\n \ud835\udc57\n \u03a9\n \n \ud835\udf15\ud835\udcb1\ud835\udc57\n \ud835\udc3c\u02c6\ud835\udc56\ud835\udc57 = \ud835\udeff\ud835\udc56\ud835\udc57 \u2207 \u00b7 \ud835\udcb1 \u2212\n \ud835\udf15\ud835\udc65\ud835\udc56\n \n-115\n+Chapter 1. Documentation\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table of large deformation terms\n Table 7: Large deformation terms\n name/class\n \n@@ -6978,15 +6991,15 @@\n \u03a9\n \n dw_tl_bulk_pressure,\n BulkPressureTLTerm\n ,\n \n \n-bal, per.tl\n+per.tl, bal\n \u222b\ufe01\n \ud835\udc46\ud835\udc56\ud835\udc57 (\ud835\udc5d)\ud835\udeff\ud835\udc38\ud835\udc56\ud835\udc57 (\ud835\udc62; \ud835\udc63)\n \u03a9\n \n dw_tl_diffusion\n ,\n DiffusionTLTerm ,\n@@ -7048,17 +7061,17 @@\n \n \u222b\ufe01\n \ud835\udc46\ud835\udc56\ud835\udc57 (\ud835\udc62)\ud835\udeff\ud835\udc38\ud835\udc56\ud835\udc57 (\ud835\udc62; \ud835\udc63)\n \u03a9\n \n continues on next page\n \n-116\n+1.8. Term Overview\n \n-Chapter 1. Documentation\n+117\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table 7 \u2013 continued from previous page\n name/class\n \n arguments\n@@ -7068,27 +7081,29 @@\n dw_tl_he_mooney_rivlin\n ,\n MooneyRivlinTLTerm\n ,\n \n \n examples\n-bal, com.ela.mat,\n-hyp\n+com.ela.mat, hyp,\n+bal\n \n \u222b\ufe01\n \ud835\udc46\ud835\udc56\ud835\udc57 (\ud835\udc62)\ud835\udeff\ud835\udc38\ud835\udc56\ud835\udc57 (\ud835\udc62; \ud835\udc63)\n \u03a9\n \n dw_tl_he_neohook ,\n NeoHookeanTLTerm,\n \n \n-bal, com.ela.mat,\n-per.tl, hyp, act.fib\n+per.tl,\n+act.fib,\n+hyp, com.ela.mat,\n+bal\n \n \u222b\ufe01\n \ud835\udc46\ud835\udc56\ud835\udc57 (\ud835\udc62)\ud835\udeff\ud835\udc38\ud835\udc56\ud835\udc57 (\ud835\udc62; \ud835\udc63)\n \u03a9\n \n dw_tl_he_ogden\n OgdenTLTerm\n@@ -7135,15 +7150,15 @@\n \ud835\udf08 \u00b7 \ud835\udc39 \u22121 \u00b7 \ud835\udf0e \u00b7 \ud835\udc63\ud835\udc3d\n \n \u0393\n \n dw_tl_volume\n VolumeTLTerm\n \n-bal, per.tl\n+per.tl, bal\n \n ,\n \n \u222b\ufe00\n \n \ud835\udc5e\ud835\udc3d(\ud835\udc62)\n \u03a9\n@@ -7170,17 +7185,17 @@\n hyp.ul\n \u222b\ufe01\n \u2112\ud835\udf0f\ud835\udc56\ud835\udc57 (\ud835\udc62)\ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udeff\ud835\udc63)/\ud835\udc3d\n \u03a9\n \n continues on next page\n \n-1.8. Term Overview\n+118\n \n-117\n+Chapter 1. Documentation\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table 7 \u2013 continued from previous page\n name/class\n \n arguments\n@@ -7253,17 +7268,17 @@\n \ud835\udc5e\ud835\udc3d(\ud835\udc62)\n \u03a9\n \u222b\ufe00\n volume mode: vector for \ud835\udc3e \u2190 \u2110\u210e : \ud835\udc47\ud835\udc3e \u222b\ufe00\ud835\udc3d(\ud835\udc62)\n \u222b\ufe00\n rel_volume mode: vector for \ud835\udc3e \u2190 \u2110\u210e : \ud835\udc47\ud835\udc3e \ud835\udc3d(\ud835\udc62)/ \ud835\udc47\ud835\udc3e 1\n \n-118\n+1.8. Term Overview\n \n-Chapter 1. Documentation\n+119\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table of special terms\n Table 8: Special terms\n name/class\n \n@@ -7424,17 +7439,17 @@\n )\ufe02\n \ud835\udc4f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc60\ud835\udc60\n \n \u0393\ud835\udc5c\ud835\udc62\ud835\udc61\n \n continues on next page\n \n-1.8. Term Overview\n+120\n \n-119\n+Chapter 1. Documentation\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table 8 \u2013 continued from previous page\n name/class\n \n arguments\n@@ -7569,17 +7584,17 @@\n (\u2207 \u00b7 \ud835\udc62) \u00b7 (\u2207 \u00b7 \ud835\udc63)\n \n \ud835\udefe\n \u03a9\n \n continues on next page\n \n-120\n+1.8. Term Overview\n \n-Chapter 1. Documentation\n+121\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table 8 \u2013 continued from previous page\n name/class\n \n arguments\n@@ -7627,15 +7642,15 @@\n dw_volume_dot_w_scalar_th\n ,\n DotSProductVolumeOperatorWTHTerm\n ,\n ,\n \n \n-1.8. Term Overview\n+122\n \n \ud835\udf0f\ud835\udc3e ((\ud835\udc4f \u00b7 \u2207)\ud835\udc62) \u00b7 \u2207\ud835\udc5e\n \n \ud835\udc47\ud835\udc3e\n \n sta.nav.sto\n \u2211\ufe01 \u222b\ufe01\n@@ -7676,15 +7691,15 @@\n ]\ufe02\n \ud835\udca2(\ud835\udc61 \u2212 \ud835\udf0f )\ud835\udc5d(\ud835\udf0f ) d\ud835\udf0f \ud835\udc5e\n \n \u03a9\n \n 0\n \n-121\n+Chapter 1. Documentation\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table of multi-linear terms\n Table 9: Multi-linear terms\n name/class\n \n@@ -7825,17 +7840,17 @@\n \n \u222b\ufe01\n \ud835\udc50\ud835\udc5e\n \ud835\udc9f\n \n continues on next page\n \n-122\n+1.8. Term Overview\n \n-Chapter 1. Documentation\n+123\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table 9 \u2013 continued from previous page\n name/class\n \n arguments\n@@ -7929,15 +7944,15 @@\n \ud835\udc53\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc52\ud835\udc57\ud835\udc58,\ud835\udc59 (\ud835\udc64)\u2207\ud835\udc56 \ud835\udc5e\n \u03a9\n \n \u222b\ufe01\n \ud835\udc4e\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59\ud835\udc5a\ud835\udc5b \ud835\udc52\ud835\udc56\ud835\udc57,\ud835\udc58 (\ud835\udeff\ud835\udc64) \ud835\udc52\ud835\udc59\ud835\udc5a,\ud835\udc5b (\ud835\udc64)\n \u03a9\n \n-sei.loa, ela\n+ela, sei.loa\n \ud835\udc40\ud835\udc36 =\n \n \u222b\ufe01\n \ud835\udf0c\ud835\udc63 \u00b7 \ud835\udc62\n \ud835\udc9f\n \n \ud835\udc40 \ud835\udc3f = lumping(\ud835\udc40 \ud835\udc36 )\n@@ -7953,17 +7968,17 @@\n \n \ud835\udc34\ud835\udc47\ud835\udc52 (\ud835\udc40\ud835\udc52\ud835\udc34 )\u22121 \ud835\udc34\ud835\udc52\n \n \ud835\udc52\n \n continues on next page\n \n-1.8. Term Overview\n+124\n \n-123\n+Chapter 1. Documentation\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table 9 \u2013 continued from previous page\n name/class\n \n arguments\n@@ -8094,17 +8109,17 @@\n \n \u222b\ufe01\n \ud835\udc63\u00b7\ud835\udc53\n \u0393\n \n continues on next page\n \n-124\n+1.8. Term Overview\n \n-Chapter 1. Documentation\n+125\n \n \fSfePy Documentation, Release version: 2025.3\n \n Table 9 \u2013 continued from previous page\n name/class\n \n arguments\n@@ -8118,33 +8133,27 @@\n param_1>,\n \n ,\n ,\n \n \n-1.8. Term Overview\n+126\n \n examples\n \n \u222b\ufe01\n \u0393\n \n \ud835\udc5e\ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\ud835\udc5b\ud835\udc58 ,\n \n \u222b\ufe01\n \ud835\udc5d\ud835\udc54\ud835\udc58\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc5b\ud835\udc58\n \u0393\n \n-125\n-\n-\fSfePy Documentation, Release version: 2025.3\n-\n-126\n-\n Chapter 1. Documentation\n \n \fCHAPTER\n \n TWO\n \n DEVELOPMENT\n"}]}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/_sources/field_table.rst.txt", "source2": "./usr/share/doc/python-sfepy-doc/html/_sources/field_table.rst.txt", "comments": ["Ordering differences only"], "unified_diff": "@@ -5,18 +5,14 @@\n :widths: 5 15 15 65\n :header-rows: 1\n \n * - space\n - basis\n - region kind\n - description\n- * - L2\n- - constant\n- - :class:`cell `, :class:`facet `\n- - The L2 constant-in-a-region approximation.\n * - H1\n - bernstein\n - :class:`cell `, :class:`facet `\n - Bernstein basis approximation with positive-only basis function values.\n * - H1\n - iga\n - :class:`cell `\n@@ -41,12 +37,16 @@\n - serendipity\n - :class:`cell `, :class:`facet `\n - Lagrange basis nodal serendipity approximation with order <= 3.\n * - H1\n - shell10x\n - :class:`cell `\n - The approximation for the shell10x element.\n+ * - L2\n+ - constant\n+ - :class:`cell `, :class:`facet `\n+ - The L2 constant-in-a-region approximation.\n * - DG\n - legendre_discontinuous\n - :class:`cell `\n - Discontinuous Galerkin method approximation with Legendre basis.\n \n"}, {"source1": "./usr/share/doc/python-sfepy-doc/html/_sources/term_table.rst.txt", "source2": "./usr/share/doc/python-sfepy-doc/html/_sources/term_table.rst.txt", "unified_diff": "@@ -37,15 +37,15 @@\n :class:`BiotTerm `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n \\int_{\\Omega} p\\ \\alpha_{ij} e_{ij}(\\ul{v}) \\mbox{ , }\n \\int_{\\Omega} q\\ \\alpha_{ij} e_{ij}(\\ul{u})\n- - :ref:`the.ela.ess `, :ref:`bio `, :ref:`bio.npb `, :ref:`the.ela `, :ref:`bio.npb.lag `, :ref:`bio.sho.syn `\n+ - :ref:`bio.npb.lag `, :ref:`bio.sho.syn `, :ref:`bio.npb `, :ref:`the.ela `, :ref:`the.ela.ess `, :ref:`bio `\n * - ev_biot_stress\n \n :class:`BiotStressTerm `\n - ````, ````\n - .. math::\n - \\int_{\\Omega} \\alpha_{ij} p\n - \n@@ -125,15 +125,15 @@\n \n where\n \n \n .. math::\n \\ul{f}^{*}(p_{in}, p_{out}) = \\ul{a} \\frac{p_{in} +\n p_{out}}{2} + (1 - \\alpha) \\ul{n} C \\frac{ p_{in} - p_{out}}{2},\n- - :ref:`adv.dif.2D `, :ref:`adv.1D `, :ref:`adv.2D `\n+ - :ref:`adv.1D `, :ref:`adv.2D `, :ref:`adv.dif.2D `\n * - dw_dg_diffusion_flux\n \n :class:`DiffusionDGFluxTerm `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n@@ -145,29 +145,29 @@\n \n .. math::\n \\langle \\nabla \\phi \\rangle = \\frac{\\nabla\\phi_{in} +\n \\nabla\\phi_{out}}{2}\n \n .. math::\n [\\phi] = \\phi_{in} - \\phi_{out}\n- - :ref:`bur.2D `, :ref:`lap.2D `, :ref:`adv.dif.2D `\n+ - :ref:`lap.2D `, :ref:`adv.dif.2D `, :ref:`bur.2D `\n * - dw_dg_interior_penalty\n \n :class:`DiffusionInteriorPenaltyTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\partial{T_K}} \\bar{D} C_w\n \\frac{Ord^2}{d(\\partial{T_K})}[p][q]\n \n where\n \n \n .. math::\n [\\phi] = \\phi_{in} - \\phi_{out}\n- - :ref:`bur.2D `, :ref:`lap.2D `, :ref:`adv.dif.2D `\n+ - :ref:`lap.2D `, :ref:`adv.dif.2D `, :ref:`bur.2D `\n * - dw_dg_nonlinear_laxfrie_flux\n \n :class:`NonlinearHyperbolicDGFluxTerm `\n - ````, ````, ````, ````, ````\n - .. math::\n \\int_{\\partial{T_K}} \\ul{n} \\cdot f^{*} (p_{in}, p_{out})q\n \n@@ -181,15 +181,15 @@\n - :ref:`bur.2D `\n * - dw_diffusion\n \n :class:`DiffusionTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} K_{ij} \\nabla_i q \\nabla_j p\n- - :ref:`pie.ela `, :ref:`vib.aco `, :ref:`dar.flo.mul `, :ref:`bio `, :ref:`bio.npb `, :ref:`poi.neu `, :ref:`bio.npb.lag `, :ref:`bio.sho.syn `, :ref:`pie.ela `\n+ - :ref:`poi.neu `, :ref:`vib.aco `, :ref:`bio.npb.lag `, :ref:`bio.sho.syn `, :ref:`bio.npb `, :ref:`pie.ela `, :ref:`pie.ela `, :ref:`dar.flo.mul `, :ref:`bio `\n * - dw_diffusion_coupling\n \n :class:`DiffusionCoupling `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n@@ -229,26 +229,26 @@\n * - dw_div_grad\n \n :class:`DivGradTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\nu\\ \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{ ,\n } \\int_{\\Omega} \\nabla \\ul{v} : \\nabla \\ul{u}\n- - :ref:`nav.sto `, :ref:`sto `, :ref:`nav.sto.iga `, :ref:`sto.sli.bc `, :ref:`sta.nav.sto `, :ref:`nav.sto `\n+ - :ref:`sto `, :ref:`nav.sto `, :ref:`sta.nav.sto `, :ref:`sto.sli.bc `, :ref:`nav.sto.iga `, :ref:`nav.sto `\n * - dw_dot\n \n :class:`DotProductTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\cal{D}} q p \\mbox{ , } \\int_{\\cal{D}} \\ul{v} \\cdot\n \\ul{u}\\\\ \\int_\\Gamma \\ul{v} \\cdot \\ul{n} p \\mbox{ , } \\int_\\Gamma\n q \\ul{n} \\cdot \\ul{u} \\mbox{ , }\\\\ \\int_{\\cal{D}} c q p \\mbox{ , }\n \\int_{\\cal{D}} c \\ul{v} \\cdot \\ul{u} \\mbox{ , } \\int_{\\cal{D}}\n \\ul{v} \\cdot \\ull{c} \\cdot \\ul{u}\n- - :ref:`poi.per.bou.con `, :ref:`adv.2D `, :ref:`pie.ela `, :ref:`wel `, :ref:`mod.ana.dec `, :ref:`hel.apa `, :ref:`sto.sli.bc `, :ref:`tim.poi `, :ref:`lin.ela.up `, :ref:`dar.flo.mul `, :ref:`adv.1D `, :ref:`tim.adv.dif `, :ref:`bor `, :ref:`aco `, :ref:`osc `, :ref:`hyd `, :ref:`tim.hea.equ.mul.mat `, :ref:`bal `, :ref:`lin.ela.dam `, :ref:`vib.aco `, :ref:`poi.fun `, :ref:`tim.poi.exp `, :ref:`ref.evp `, :ref:`bur.2D `, :ref:`the.ele `, :ref:`aco `, :ref:`pie.ela `\n+ - :ref:`ref.evp `, :ref:`poi.per.bou.con `, :ref:`vib.aco `, :ref:`bur.2D `, :ref:`tim.hea.equ.mul.mat `, :ref:`bal `, :ref:`aco `, :ref:`aco `, :ref:`sto.sli.bc `, :ref:`pie.ela `, :ref:`pie.ela `, :ref:`the.ele `, :ref:`osc `, :ref:`lin.ela.up `, :ref:`lin.ela.dam `, :ref:`poi.fun `, :ref:`tim.adv.dif `, :ref:`mod.ana.dec `, :ref:`hel.apa `, :ref:`tim.poi `, :ref:`wel `, :ref:`hyd `, :ref:`tim.poi.exp `, :ref:`bor `, :ref:`adv.2D `, :ref:`adv.1D `, :ref:`dar.flo.mul `\n * - dw_elastic_wave\n \n :class:`ElasticWaveTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} D_{ijkl}\\ g_{ij}(\\ul{v}) g_{kl}(\\ul{u})\n - \n@@ -290,15 +290,15 @@\n - \n * - dw_integrate\n \n :class:`IntegrateOperatorTerm `\n - ````, ````\n - .. math::\n \\int_{\\cal{D}} q \\mbox{ or } \\int_{\\cal{D}} c q\n- - :ref:`poi.per.bou.con `, :ref:`vib.aco `, :ref:`hel.apa `, :ref:`aco `, :ref:`dar.flo.mul `, :ref:`poi.neu `, :ref:`tim.hea.equ.mul.mat `, :ref:`aco `\n+ - :ref:`hel.apa `, :ref:`poi.neu `, :ref:`vib.aco `, :ref:`tim.hea.equ.mul.mat `, :ref:`aco `, :ref:`aco `, :ref:`dar.flo.mul `, :ref:`poi.per.bou.con `\n * - ev_integrate_mat\n \n :class:`IntegrateMatTerm `\n - ````, ````\n - .. math::\n \\int_{\\cal{D}} c\n - \n@@ -311,15 +311,15 @@\n - :ref:`aco `\n * - dw_laplace\n \n :class:`LaplaceTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} c \\nabla q \\cdot \\nabla p\n- - :ref:`poi.per.bou.con `, :ref:`lap.cou.lcb `, :ref:`wel `, :ref:`hel.apa `, :ref:`poi.par.stu `, :ref:`sto.sli.bc `, :ref:`tim.poi `, :ref:`aco `, :ref:`poi.fie.dep.mat `, :ref:`lap.tim.ebc `, :ref:`tim.adv.dif `, :ref:`poi.iga `, :ref:`bor `, :ref:`aco `, :ref:`poi `, :ref:`osc `, :ref:`hyd `, :ref:`tim.hea.equ.mul.mat `, :ref:`poi.sho.syn `, :ref:`sin `, :ref:`adv.dif.2D `, :ref:`vib.aco `, :ref:`lap.2D `, :ref:`cub `, :ref:`poi.fun `, :ref:`tim.poi.exp `, :ref:`ref.evp `, :ref:`bur.2D `, :ref:`the.ela.ess `, :ref:`the.ele `, :ref:`lap.flu.2d `, :ref:`lap.1d `\n+ - :ref:`poi.sho.syn `, :ref:`ref.evp `, :ref:`poi.fie.dep.mat `, :ref:`poi.per.bou.con `, :ref:`sin `, :ref:`vib.aco `, :ref:`bur.2D `, :ref:`tim.hea.equ.mul.mat `, :ref:`aco `, :ref:`aco `, :ref:`sto.sli.bc `, :ref:`poi `, :ref:`cub `, :ref:`the.ele `, :ref:`osc `, :ref:`lap.flu.2d `, :ref:`poi.par.stu `, :ref:`poi.fun `, :ref:`tim.adv.dif `, :ref:`lap.2D `, :ref:`lap.1d `, :ref:`the.ela.ess `, :ref:`poi.iga `, :ref:`hel.apa `, :ref:`tim.poi `, :ref:`adv.dif.2D `, :ref:`lap.cou.lcb `, :ref:`wel `, :ref:`hyd `, :ref:`tim.poi.exp `, :ref:`bor `, :ref:`lap.tim.ebc `\n * - dw_lin_convect\n \n :class:`LinearConvectTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} ((\\ul{w} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}\n \n@@ -356,15 +356,15 @@\n - :ref:`mul.poi.con `\n * - dw_lin_elastic\n \n :class:`LinearElasticTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\n- - :ref:`mix.mes `, :ref:`pie.ela `, :ref:`lin.ela.iga `, :ref:`mod.ana.dec `, :ref:`the.ela `, :ref:`sei.loa `, :ref:`bio.sho.syn `, :ref:`lin.ela.up `, :ref:`wed.mes `, :ref:`lin.ela.mM `, :ref:`nod.lcb `, :ref:`ela `, :ref:`ela.shi.per `, :ref:`its.3 `, :ref:`com.ela.mat `, :ref:`mul.poi.con `, :ref:`ela.con.pla `, :ref:`its.2 `, :ref:`its.4 `, :ref:`lin.ela.opt `, :ref:`bio `, :ref:`bio.npb `, :ref:`mul.nod.lcb `, :ref:`pie.ela.mac `, :ref:`mat.non `, :ref:`ela.con.sph `, :ref:`lin.ela.tra `, :ref:`lin.ela.dam `, :ref:`vib.aco `, :ref:`two.bod.con `, :ref:`bio.npb.lag `, :ref:`pre.fib `, :ref:`its.1 `, :ref:`tru.bri `, :ref:`lin.vis `, :ref:`the.ela.ess `, :ref:`lin.ela `, :ref:`pie.ela `\n+ - :ref:`tru.bri `, :ref:`bio.npb.lag `, :ref:`lin.ela.opt `, :ref:`pie.ela.mac `, :ref:`two.bod.con `, :ref:`lin.vis `, :ref:`mul.nod.lcb `, :ref:`lin.ela.iga `, :ref:`bio `, :ref:`vib.aco `, :ref:`its.2 `, :ref:`ela.con.sph `, :ref:`bio.sho.syn `, :ref:`pie.ela `, :ref:`pie.ela `, :ref:`lin.ela `, :ref:`ela.con.pla `, :ref:`sei.loa `, :ref:`lin.ela.up `, :ref:`lin.ela.dam `, :ref:`wed.mes `, :ref:`lin.ela.mM `, :ref:`its.4 `, :ref:`its.3 `, :ref:`ela.shi.per `, :ref:`bio.npb `, :ref:`mod.ana.dec `, :ref:`mix.mes `, :ref:`lin.ela.tra `, :ref:`ela `, :ref:`the.ela.ess `, :ref:`mat.non `, :ref:`com.ela.mat `, :ref:`the.ela `, :ref:`mul.poi.con `, :ref:`nod.lcb `, :ref:`pre.fib `, :ref:`its.1 `\n * - dw_lin_elastic_iso\n \n :class:`LinearElasticIsotropicTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\\\\\n \\mbox{ with } \\\\ D_{ijkl} = \\mu (\\delta_{ik}\n@@ -373,15 +373,15 @@\n - \n * - dw_lin_prestress\n \n :class:`LinearPrestressTerm `\n - ````, ````\n - .. math::\n \\int_{\\Omega} \\sigma_{ij} e_{ij}(\\ul{v})\n- - :ref:`non.hyp.mM `, :ref:`pie.ela.mac `, :ref:`pre.fib `\n+ - :ref:`non.hyp.mM `, :ref:`pre.fib `, :ref:`pie.ela.mac `\n * - dw_lin_spring\n \n :class:`LinearSpringTerm `\n - ````, ````, ````\n - .. math::\n \\ul{f}^{(i)} = - \\ul{f}^{(j)} = k (\\ul{u}^{(j)} -\n \\ul{u}^{(i)})\\\\ \\quad \\forall \\mbox{ elements } T_K^{i,j}\\\\ \\mbox{\n@@ -398,15 +398,15 @@\n \n :class:`LinearTrussTerm `\n - ````, ````, ````\n - .. math::\n F^{(i)} = -F^{(j)} = EA / l (U^{(j)} - U^{(i)})\\\\ \\quad\n \\forall \\mbox{ elements } T_K^{i,j}\\\\ \\mbox{ in a region\n connecting nodes } i, j\n- - :ref:`tru.bri `, :ref:`tru.bri `\n+ - :ref:`tru.bri `, :ref:`tru.bri `\n * - ev_lin_truss_force\n \n :class:`LinearTrussInternalForceTerm `\n - ````, ````\n - .. math::\n F = EA / l (U^{(j)} - U^{(i)})\\\\ \\quad \\forall \\mbox{\n elements } T_K^{i,j}\\\\ \\mbox{ in a region connecting nodes } i, j\n@@ -461,15 +461,15 @@\n :class:`PiezoCouplingTerm `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n \\int_{\\Omega} g_{kij}\\ e_{ij}(\\ul{v}) \\nabla_k p\\\\\n \\int_{\\Omega} g_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k q\n- - :ref:`pie.ela `, :ref:`pie.ela `\n+ - :ref:`pie.ela `, :ref:`pie.ela `\n * - ev_piezo_strain\n \n :class:`PiezoStrainTerm `\n - ````, ````\n - .. math::\n \\int_{\\Omega} g_{kij} e_{ij}(\\ul{u})\n - \n@@ -483,15 +483,15 @@\n * - dw_point_load\n \n :class:`ConcentratedPointLoadTerm `\n - ````, ````\n - .. math::\n \\ul{f}^i = \\ul{\\bar f}^i \\quad \\forall \\mbox{ FE node } i\n \\mbox{ in a region }\n- - :ref:`its.4 `, :ref:`tru.bri `, :ref:`she.can `, :ref:`its.3 `, :ref:`its.1 `, :ref:`its.2 `\n+ - :ref:`tru.bri `, :ref:`its.2 `, :ref:`she.can `, :ref:`its.3 `, :ref:`its.4 `, :ref:`its.1 `\n * - dw_point_lspring\n \n :class:`LinearPointSpringTerm `\n - ````, ````, ````\n - .. math::\n \\ul{f}^i = -k \\ul{u}^i \\quad \\forall \\mbox{ FE node } i\n \\mbox{ in a region }\n@@ -508,15 +508,15 @@\n :class:`ScalarDotMGradScalarTerm `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n \\int_{\\Omega} q \\ul{y} \\cdot \\nabla p \\mbox{ , }\n \\int_{\\Omega} p \\ul{y} \\cdot \\nabla q\n- - :ref:`adv.dif.2D `, :ref:`adv.1D `, :ref:`adv.2D `\n+ - :ref:`adv.1D `, :ref:`adv.2D `, :ref:`adv.dif.2D `\n * - dw_shell10x\n \n :class:`Shell10XTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\n - :ref:`she.can `\n@@ -527,15 +527,15 @@\n \n ````, ````, ````\n - .. math::\n \\int_{\\Omega} p\\ \\nabla \\cdot \\ul{v} \\mbox{ , }\n \\int_{\\Omega} q\\ \\nabla \\cdot \\ul{u}\\\\ \\mbox{ or } \\int_{\\Omega}\n c\\ p\\ \\nabla \\cdot \\ul{v} \\mbox{ , } \\int_{\\Omega} c\\ q\\ \\nabla\n \\cdot \\ul{u}\n- - :ref:`nav.sto `, :ref:`sto `, :ref:`nav.sto.iga `, :ref:`sto.sli.bc `, :ref:`sta.nav.sto `, :ref:`nav.sto `, :ref:`lin.ela.up `\n+ - :ref:`sto `, :ref:`nav.sto `, :ref:`sta.nav.sto `, :ref:`sto.sli.bc `, :ref:`nav.sto.iga `, :ref:`lin.ela.up `, :ref:`nav.sto `\n * - dw_stokes_wave\n \n :class:`StokesWaveTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} (\\ul{\\kappa} \\cdot \\ul{v}) (\\ul{\\kappa}\n \\cdot \\ul{u})\n@@ -553,36 +553,36 @@\n - \n * - ev_sum_vals\n \n :class:`SumNodalValuesTerm `\n - ````\n - \n - \n- * - ev_surface_flux\n-\n- :class:`SurfaceFluxTerm `\n- - ````, ````\n- - .. math::\n- \\int_{\\Gamma} \\ul{n} \\cdot K_{ij} \\nabla_j p\n- - \n * - dw_surface_flux\n \n :class:`SurfaceFluxOperatorTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Gamma} q \\ul{n} \\cdot \\ull{K} \\cdot \\nabla p\n - \n+ * - ev_surface_flux\n+\n+ :class:`SurfaceFluxTerm `\n+ - ````, ````\n+ - .. math::\n+ \\int_{\\Gamma} \\ul{n} \\cdot K_{ij} \\nabla_j p\n+ - \n * - dw_surface_ltr\n \n :class:`LinearTractionTerm `\n - ````, ````\n - .. math::\n \\int_{\\Gamma} \\ul{v} \\cdot \\ull{\\sigma} \\cdot \\ul{n},\n \\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},\n- - :ref:`mix.mes `, :ref:`wed.mes `, :ref:`lin.ela.tra `, :ref:`nod.lcb `, :ref:`lin.ela.opt `, :ref:`ela.shi.per `, :ref:`tru.bri `, :ref:`lin.vis `, :ref:`com.ela.mat `\n+ - :ref:`tru.bri `, :ref:`lin.ela.opt `, :ref:`wed.mes `, :ref:`ela.shi.per `, :ref:`com.ela.mat `, :ref:`lin.vis `, :ref:`mix.mes `, :ref:`nod.lcb `, :ref:`lin.ela.tra `\n * - ev_surface_moment\n \n :class:`SurfaceMomentTerm `\n - ````, ````\n - .. math::\n \\int_{\\Gamma} \\ul{n} (\\ul{x} - \\ul{x}_0)\n - \n@@ -633,15 +633,15 @@\n * - dw_volume_lvf\n \n :class:`LinearVolumeForceTerm `\n - ````, ````\n - .. math::\n \\int_{\\Omega} \\ul{f} \\cdot \\ul{v} \\mbox{ or }\n \\int_{\\Omega} f q\n- - :ref:`bur.2D `, :ref:`poi.par.stu `, :ref:`adv.dif.2D `, :ref:`poi.iga `\n+ - :ref:`poi.par.stu `, :ref:`bur.2D `, :ref:`adv.dif.2D `, :ref:`poi.iga `\n * - dw_volume_nvf\n \n :class:`NonlinearVolumeForceTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} q f(p)\n - :ref:`poi.non.mat `\n@@ -703,30 +703,30 @@\n \n :class:`SDConvectTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} [ u_k \\pdiff{u_i}{x_k} w_i (\\nabla \\cdot\n \\Vcal) - u_k \\pdiff{\\Vcal_j}{x_k} \\pdiff{u_i}{x_j} w_i ]\n - \n- * - ev_sd_diffusion\n+ * - de_sd_diffusion\n \n- :class:`SDDiffusionTerm `\n- - ````, ````, ````, ````\n+ :class:`ESDDiffusionTerm `\n+ - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\hat{K}_{ij} \\nabla_i q\\, \\nabla_j p\n \n .. math::\n \\hat{K}_{ij} = K_{ij}\\left( \\delta_{ik}\\delta_{jl} \\nabla\n \\cdot \\ul{\\Vcal} - \\delta_{ik}{\\partial \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}{\\partial \\Vcal_i \\over \\partial x_k}\\right)\n - \n- * - de_sd_diffusion\n+ * - ev_sd_diffusion\n \n- :class:`ESDDiffusionTerm `\n- - ````, ````, ````, ````\n+ :class:`SDDiffusionTerm `\n+ - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\hat{K}_{ij} \\nabla_i q\\, \\nabla_j p\n \n .. math::\n \\hat{K}_{ij} = K_{ij}\\left( \\delta_{ik}\\delta_{jl} \\nabla\n \\cdot \\ul{\\Vcal} - \\delta_{ik}{\\partial \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}{\\partial \\Vcal_i \\over \\partial x_k}\\right)\n@@ -735,32 +735,32 @@\n \n :class:`SDDivTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} p [ (\\nabla \\cdot \\ul{w}) (\\nabla \\cdot\n \\ul{\\Vcal}) - \\pdiff{\\Vcal_k}{x_i} \\pdiff{w_i}{x_k} ]\n - \n- * - de_sd_div_grad\n+ * - ev_sd_div_grad\n \n- :class:`ESDDivGradTerm `\n- - ````, ````, ````, ````\n+ :class:`SDDivGradTerm `\n+ - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{\n , } \\int_{\\Omega} \\nu \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u}\n \n .. math::\n \\hat{I}_{ijkl} = \\delta_{ik}\\delta_{jl} \\nabla \\cdot\n \\ul{\\Vcal} - \\delta_{ik}\\delta_{js} {\\partial \\Vcal_l \\over\n \\partial x_s} - \\delta_{is}\\delta_{jl} {\\partial \\Vcal_k \\over\n \\partial x_s}\n - \n- * - ev_sd_div_grad\n+ * - de_sd_div_grad\n \n- :class:`SDDivGradTerm `\n- - ````, ````, ````, ````\n+ :class:`ESDDivGradTerm `\n+ - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{\n , } \\int_{\\Omega} \\nu \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u}\n \n .. math::\n \\hat{I}_{ijkl} = \\delta_{ik}\\delta_{jl} \\nabla \\cdot\n \\ul{\\Vcal} - \\delta_{ik}\\delta_{js} {\\partial \\Vcal_l \\over\n@@ -782,39 +782,51 @@\n \n :class:`SDDotTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} p q (\\nabla \\cdot \\ul{\\Vcal}) \\mbox{ , }\n \\int_{\\Omega} (\\ul{u} \\cdot \\ul{w}) (\\nabla \\cdot \\ul{\\Vcal})\n - \n+ * - de_sd_lin_elastic\n+\n+ :class:`ESDLinearElasticTerm `\n+ - ````, ````, ````, ````\n+ - .. math::\n+ \\int_{\\Omega} \\hat{D}_{ijkl} {\\partial v_i \\over \\partial\n+ x_j} {\\partial u_k \\over \\partial x_l}\n+\n+ .. math::\n+ \\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n+ D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n+ \\Vcal_j \\over \\partial x_q}\n+ - \n * - ev_sd_lin_elastic\n \n :class:`SDLinearElasticTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\hat{D}_{ijkl}\\ e_{ij}(\\ul{v})\n e_{kl}(\\ul{u})\n \n .. math::\n \\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n \\Vcal_j \\over \\partial x_q}\n - \n- * - de_sd_lin_elastic\n+ * - ev_sd_piezo_coupling\n \n- :class:`ESDLinearElasticTerm `\n- - ````, ````, ````, ````\n+ :class:`SDPiezoCouplingTerm `\n+ - ````, ````, ````, ````\n - .. math::\n- \\int_{\\Omega} \\hat{D}_{ijkl} {\\partial v_i \\over \\partial\n- x_j} {\\partial u_k \\over \\partial x_l}\n+ \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k p\n \n .. math::\n- \\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n- D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n- \\Vcal_j \\over \\partial x_q}\n+ \\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n+ g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n+ \\Vcal_k \\over \\partial x_l}\n - \n * - de_sd_piezo_coupling\n \n :class:`ESDPiezoCouplingTerm `\n - ````, ````, ````, ````\n \n ````, ````, ````, ````\n@@ -823,26 +835,14 @@\n \\mbox{ , } \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k q\n \n .. math::\n \\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n \\Vcal_k \\over \\partial x_l}\n - \n- * - ev_sd_piezo_coupling\n-\n- :class:`SDPiezoCouplingTerm `\n- - ````, ````, ````, ````\n- - .. math::\n- \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k p\n-\n- .. math::\n- \\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n- g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n- \\Vcal_k \\over \\partial x_l}\n- - \n * - de_sd_stokes\n \n :class:`ESDStokesTerm `\n - ````, ````, ````, ````\n \n ````, ````, ````, ````\n - .. math::\n@@ -857,35 +857,35 @@\n * - ev_sd_surface_integrate\n \n :class:`SDSufaceIntegrateTerm `\n - ````, ````\n - .. math::\n \\int_{\\Gamma} p \\nabla \\cdot \\ul{\\Vcal}\n - \n+ * - ev_sd_surface_ltr\n+\n+ :class:`SDLinearTractionTerm `\n+ - ````, ````, ````\n+ - .. math::\n+ \\int_{\\Gamma} \\ul{v} \\cdot (\\ull{\\sigma}\\, \\ul{n}),\n+ \\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},\n+ - \n * - de_sd_surface_ltr\n \n :class:`ESDLinearTractionTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Gamma} \\ul{v} \\cdot\n \\left[\\left(\\ull{\\hat{\\sigma}}\\, \\nabla \\cdot \\ul{\\cal{V}} -\n \\ull{{\\hat\\sigma}}\\, \\nabla \\ul{\\cal{V}} \\right)\\ul{n}\\right]\n \n .. math::\n \\ull{\\hat\\sigma} = \\ull{I} \\mbox{ , } \\ull{\\hat\\sigma} =\n c\\,\\ull{I} \\mbox{ or } \\ull{\\hat\\sigma} = \\ull{\\sigma}\n - \n- * - ev_sd_surface_ltr\n-\n- :class:`SDLinearTractionTerm `\n- - ````, ````, ````\n- - .. math::\n- \\int_{\\Gamma} \\ul{v} \\cdot (\\ull{\\sigma}\\, \\ul{n}),\n- \\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},\n- - \n * - de_sd_v_dot_grad_s\n \n :class:`ESDVectorDotGradScalarTerm `\n - ````, ````, ````, ````\n \n ````, ````, ````, ````\n - .. math::\n@@ -975,22 +975,22 @@\n - \n * - dw_tl_he_mooney_rivlin\n \n :class:`MooneyRivlinTLTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})\n- - :ref:`hyp `, :ref:`bal `, :ref:`com.ela.mat `\n+ - :ref:`bal `, :ref:`hyp `, :ref:`com.ela.mat `\n * - dw_tl_he_neohook\n \n :class:`NeoHookeanTLTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})\n- - :ref:`hyp `, :ref:`per.tl `, :ref:`com.ela.mat `, :ref:`bal `, :ref:`act.fib `\n+ - :ref:`per.tl `, :ref:`bal `, :ref:`act.fib `, :ref:`hyp `, :ref:`com.ela.mat `\n * - dw_tl_he_ogden\n \n :class:`OgdenTLTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})\n - \n@@ -1068,23 +1068,23 @@\n * - dw_ul_he_mooney_rivlin\n \n :class:`MooneyRivlinULTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\mathcal{L}\\tau_{ij}(\\ul{u})\n e_{ij}(\\delta\\ul{v})/J\n- - :ref:`hyp.ul `, :ref:`hyp.ul.up `\n+ - :ref:`hyp.ul.up `, :ref:`hyp.ul `\n * - dw_ul_he_neohook\n \n :class:`NeoHookeanULTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\mathcal{L}\\tau_{ij}(\\ul{u})\n e_{ij}(\\delta\\ul{v})/J\n- - :ref:`hyp.ul `, :ref:`hyp.ul.up `\n+ - :ref:`hyp.ul.up `, :ref:`hyp.ul `\n * - dw_ul_volume\n \n :class:`VolumeULTerm `\n - ````, ````\n - .. math::\n \\begin{array}{l} \\int_{\\Omega} q J(\\ul{u}) \\\\ \\mbox{volume\n mode: vector for } K \\from \\Ical_h: \\int_{T_K} J(\\ul{u}) \\\\\n@@ -1440,15 +1440,15 @@\n \n :class:`MassTerm `\n - ````, ````, ````, ````, ````\n - .. math::\n M^C = \\int_{\\cal{D}} \\rho \\ul{v} \\cdot \\ul{u} \\\\ M^L =\n \\mathrm{lumping}(M^C) \\\\ M^A = (1 - \\beta) M^C + \\beta M^L \\\\ A =\n \\sum_e A_e \\\\ C = \\sum_e A_e^T (M_e^A)^{-1} A_e\n- - :ref:`ela `, :ref:`sei.loa `\n+ - :ref:`sei.loa `, :ref:`ela `\n * - de_non_penetration_p\n \n :class:`ENonPenetrationPenaltyTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Gamma} c (\\ul{n} \\cdot \\ul{v}) (\\ul{n} \\cdot\n \\ul{u})\n"}, {"source1": "./usr/share/doc/python-sfepy-doc/html/field_table.html", "source2": "./usr/share/doc/python-sfepy-doc/html/field_table.html", "comments": ["Ordering differences only"], "unified_diff": "@@ -137,59 +137,59 @@\n

space

\n

basis

\n

region kind

\n

description

\n \n \n \n-

L2

\n-

constant

\n-

cell, facet

\n-

The L2 constant-in-a-region approximation.

\n-\n-

H1

\n+

H1

\n

bernstein

\n

cell, facet

\n

Bernstein basis approximation with positive-only basis function values.

\n \n-

H1

\n+

H1

\n

iga

\n

cell

\n

Bezier extraction based NURBS approximation for isogeometric analysis.

\n \n-

H1

\n+

H1

\n

lagrange

\n

cell, facet

\n

Lagrange basis nodal approximation.

\n \n-

H1

\n+

H1

\n

lagrange_discontinuous

\n

cell

\n

The C0 constant-per-cell approximation.

\n \n-

H1

\n+

H1

\n

lobatto

\n

cell

\n

Hierarchical basis approximation with Lobatto polynomials.

\n \n-

H1

\n+

H1

\n

sem

\n

cell, facet

\n

Spectral element method approximation.

\n \n-

H1

\n+

H1

\n

serendipity

\n

cell, facet

\n

Lagrange basis nodal serendipity approximation with order <= 3.

\n \n-

H1

\n+

H1

\n

shell10x

\n

cell

\n

The approximation for the shell10x element.

\n \n+

L2

\n+

constant

\n+

cell, facet

\n+

The L2 constant-in-a-region approximation.

\n+\n

DG

\n

legendre_discontinuous

\n

cell

\n

Discontinuous Galerkin method approximation with Legendre basis.

\n \n \n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -14,16 +14,14 @@\n [_static/uwb_logo.png]\n SfePy\n * \n * View_page_source\n ===============================================================================\n Fields\u00b6\n space basis region kind description\n-L2 constant cell, facet The L2 constant-in-a-region\n- approximation.\n H1 bernstein cell, facet Bernstein basis approximation with\n positive-only basis function values.\n Bezier extraction based NURBS\n H1 iga cell approximation for isogeometric\n analysis.\n H1 lagrange cell, facet Lagrange basis nodal approximation.\n H1 lagrange_discontinuous cell The C0 constant-per-cell\n@@ -31,12 +29,14 @@\n H1 lobatto cell Hierarchical basis approximation with\n Lobatto polynomials.\n H1 sem cell, facet Spectral element method approximation.\n H1 serendipity cell, facet Lagrange basis nodal serendipity\n approximation with order <= 3.\n H1 shell10x cell The approximation for the shell10x\n element.\n+L2 constant cell, facet The L2 constant-in-a-region\n+ approximation.\n DG legendre_discontinuous cell Discontinuous Galerkin method\n approximation with Legendre basis.\n ===============================================================================\n \u00a9 Copyright 2020, Robert Cimrman and SfePy developers.\n Built with Sphinx using a theme provided by Read_the_Docs.\n"}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/searchindex.js", "source2": "./usr/share/doc/python-sfepy-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -20208,15 +20208,15 @@\n \"09666\": 11,\n \"099\": [20, 290],\n \"099999\": 288,\n \"0_1\": 26,\n \"0d\": 26,\n \"0e3\": 20,\n \"0e9\": [20, 289],\n- \"0x7fe58f719c60\": 180,\n+ \"0x7f7a29f1df80\": 180,\n \"1\": [0, 1, 5, 7, 8, 11, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 34, 35, 39, 40, 41, 42, 44, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 72, 77, 78, 80, 81, 83, 84, 87, 89, 90, 91, 93, 94, 95, 99, 100, 102, 107, 108, 112, 113, 114, 115, 116, 118, 122, 123, 124, 127, 128, 131, 132, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 149, 150, 156, 179, 180, 181, 182, 183, 184, 186, 187, 188, 189, 191, 192, 193, 194, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 227, 229, 258, 272, 285, 286, 288, 289],\n \"10\": [0, 11, 23, 24, 25, 26, 30, 65, 67, 70, 91, 93, 111, 120, 130, 142, 146, 147, 151, 154, 156, 179, 180, 181, 182, 184, 187, 188, 189, 206, 208, 215, 288, 289, 290],\n \"100\": [39, 40, 41, 105, 134, 142, 143, 179, 180, 227],\n \"1000\": [24, 91, 142, 147],\n \"100000\": [111, 179],\n \"1000000\": [142, 289],\n \"10000000000000001\": 142,\n"}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/src/sfepy/solvers/nls.html", "source2": "./usr/share/doc/python-sfepy-doc/html/src/sfepy/solvers/nls.html", "unified_diff": "@@ -173,15 +173,15 @@\n
lin_precisionfloat or None

If not None, the linear system solution tolerances are set in each\n nonlinear iteration relative to the current residual norm by the\n lin_precision factor. Ignored for direct linear solvers.

\n
\n
step_red0.0 < float <= 1.0 (default: 1.0)

Step reduction factor. Equivalent to the mixing parameter a:\n (1 - a) x + a (x + dx) = x + a dx

\n
\n-
line_search_funfunction(it, vec_x0, vec_r0, vec_dx0, err_last, conf, fun, apply_lin_solver, timers, log=None) (default: <function apply_line_search_bt at 0x7fe58f719c60>)

The line search function.

\n+
line_search_funfunction(it, vec_x0, vec_r0, vec_dx0, err_last, conf, fun, apply_lin_solver, timers, log=None) (default: <function apply_line_search_bt at 0x7f7a29f1df80>)

The line search function.

\n
\n
ls_mode\u2018residual\u2019 or \u2018error\u2019 (default: \u2018residual\u2019)

The line search mode: when it is \u2018residual\u2019, the solver tries to\n make the iteration residuals decreasing while for \u2018error\u2019 the solution error\n estimates should decrease.

\n
\n
ls_onfloat (default: 0.99999)

Start the backtracking line-search by reducing the step, if\n ||d(x^i)|| / ||d(x^{i-1})|| is larger than ls_on, where d\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -64,15 +64,15 @@\n norm by thelin_precisionfactor. Ignored for direct linear\n solvers.\n step_red0.0 < float <= 1.0 (default: 1.0)\n Step reduction factor. Equivalent to the mixing parameter a:\n (1 - a) x + a (x + dx) = x + a dx\n line_search_funfunction(it, vec_x0, vec_r0, vec_dx0, err_last,\n conf, fun, apply_lin_solver, timers, log=None) (default:\n- )\n+ )\n The line search function.\n ls_mode\u2018residual\u2019 or \u2018error\u2019 (default: \u2018residual\u2019)\n The line search mode: when it is \u2018residual\u2019, the solver tries\n to make the iteration residuals decreasing while for \u2018error\u2019\n the solution error estimates should decrease.\n ls_onfloat (default: 0.99999)\n Start the backtracking line-search by reducing the step, if\n"}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/term_table.html", "source2": "./usr/share/doc/python-sfepy-doc/html/term_table.html", "unified_diff": "@@ -169,15 +169,15 @@\n

<material>, <virtual/param_v>, <state/param_s>

\n

<material>, <state>, <virtual>

\n \n
\n

\\int_{\\Omega} p\\ \\alpha_{ij} e_{ij}(\\ul{v}) \\mbox{ , }\n \\int_{\\Omega} q\\ \\alpha_{ij} e_{ij}(\\ul{u})

\n
\n-

the.ela.ess, bio, bio.npb, the.ela, bio.npb.lag, bio.sho.syn

\n+

bio.npb.lag, bio.sho.syn, bio.npb, the.ela, the.ela.ess, bio

\n \n

ev_biot_stress

\n

BiotStressTerm

\n \n

<material>, <parameter>

\n
\n

- \\int_{\\Omega} \\alpha_{ij} p

\n@@ -276,15 +276,15 @@\n

\\int_{\\partial{T_K}} \\ul{n} \\cdot \\ul{f}^{*} (p_{in},\n p_{out})q

\n

where

\n
\n

\\ul{f}^{*}(p_{in}, p_{out}) = \\ul{a} \\frac{p_{in} +\n p_{out}}{2} + (1 - \\alpha) \\ul{n} C \\frac{ p_{in} - p_{out}}{2},

\n
\n-

adv.dif.2D, adv.1D, adv.2D

\n+

adv.1D, adv.2D, adv.dif.2D

\n \n

dw_dg_diffusion_flux

\n

DiffusionDGFluxTerm

\n \n

<material>, <state>, <virtual>

\n

<material>, <virtual>, <state>

\n \n@@ -294,28 +294,28 @@\n

where

\n
\n

\\langle \\nabla \\phi \\rangle = \\frac{\\nabla\\phi_{in} +\n \\nabla\\phi_{out}}{2}

\n
\n

[\\phi] = \\phi_{in} - \\phi_{out}

\n
\n-

bur.2D, lap.2D, adv.dif.2D

\n+

lap.2D, adv.dif.2D, bur.2D

\n \n

dw_dg_interior_penalty

\n

DiffusionInteriorPenaltyTerm

\n \n

<material>, <material_Cw>, <virtual>, <state>

\n
\n

\\int_{\\partial{T_K}} \\bar{D} C_w\n \\frac{Ord^2}{d(\\partial{T_K})}[p][q]

\n

where

\n
\n

[\\phi] = \\phi_{in} - \\phi_{out}

\n
\n-

bur.2D, lap.2D, adv.dif.2D

\n+

lap.2D, adv.dif.2D, bur.2D

\n \n

dw_dg_nonlinear_laxfrie_flux

\n

NonlinearHyperbolicDGFluxTerm

\n \n

<opt_material>, <fun>, <fun_d>, <virtual>, <state>

\n
\n

\\int_{\\partial{T_K}} \\ul{n} \\cdot f^{*} (p_{in}, p_{out})q

\n@@ -330,15 +330,15 @@\n

dw_diffusion

\n

DiffusionTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} K_{ij} \\nabla_i q \\nabla_j p

\n
\n-

pie.ela, vib.aco, dar.flo.mul, bio, bio.npb, poi.neu, bio.npb.lag, bio.sho.syn, pie.ela

\n+

poi.neu, vib.aco, bio.npb.lag, bio.sho.syn, bio.npb, pie.ela, pie.ela, dar.flo.mul, bio

\n \n

dw_diffusion_coupling

\n

DiffusionCoupling

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n

<material>, <state>, <virtual>

\n \n@@ -390,28 +390,28 @@\n

DivGradTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} \\nu\\ \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{ ,\n } \\int_{\\Omega} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n-

nav.sto, sto, nav.sto.iga, sto.sli.bc, sta.nav.sto, nav.sto

\n+

sto, nav.sto, sta.nav.sto, sto.sli.bc, nav.sto.iga, nav.sto

\n \n

dw_dot

\n

DotProductTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\cal{D}} q p \\mbox{ , } \\int_{\\cal{D}} \\ul{v} \\cdot\n \\ul{u}\\\\ \\int_\\Gamma \\ul{v} \\cdot \\ul{n} p \\mbox{ , } \\int_\\Gamma\n q \\ul{n} \\cdot \\ul{u} \\mbox{ , }\\\\ \\int_{\\cal{D}} c q p \\mbox{ , }\n \\int_{\\cal{D}} c \\ul{v} \\cdot \\ul{u} \\mbox{ , } \\int_{\\cal{D}}\n \\ul{v} \\cdot \\ull{c} \\cdot \\ul{u}

\n
\n-

poi.per.bou.con, adv.2D, pie.ela, wel, mod.ana.dec, hel.apa, sto.sli.bc, tim.poi, lin.ela.up, dar.flo.mul, adv.1D, tim.adv.dif, bor, aco, osc, hyd, tim.hea.equ.mul.mat, bal, lin.ela.dam, vib.aco, poi.fun, tim.poi.exp, ref.evp, bur.2D, the.ele, aco, pie.ela

\n+

ref.evp, poi.per.bou.con, vib.aco, bur.2D, tim.hea.equ.mul.mat, bal, aco, aco, sto.sli.bc, pie.ela, pie.ela, the.ele, osc, lin.ela.up, lin.ela.dam, poi.fun, tim.adv.dif, mod.ana.dec, hel.apa, tim.poi, wel, hyd, tim.poi.exp, bor, adv.2D, adv.1D, dar.flo.mul

\n \n

dw_elastic_wave

\n

ElasticWaveTerm

\n \n

<material_1>, <material_2>, <virtual>, <state>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ g_{ij}(\\ul{v}) g_{kl}(\\ul{u})

\n@@ -465,15 +465,15 @@\n

dw_integrate

\n

IntegrateOperatorTerm

\n \n

<opt_material>, <virtual>

\n
\n

\\int_{\\cal{D}} q \\mbox{ or } \\int_{\\cal{D}} c q

\n
\n-

poi.per.bou.con, vib.aco, hel.apa, aco, dar.flo.mul, poi.neu, tim.hea.equ.mul.mat, aco

\n+

hel.apa, poi.neu, vib.aco, tim.hea.equ.mul.mat, aco, aco, dar.flo.mul, poi.per.bou.con

\n \n

ev_integrate_mat

\n

IntegrateMatTerm

\n \n

<material>, <parameter>

\n
\n

\\int_{\\cal{D}} c

\n@@ -492,15 +492,15 @@\n

dw_laplace

\n

LaplaceTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} c \\nabla q \\cdot \\nabla p

\n
\n-

poi.per.bou.con, lap.cou.lcb, wel, hel.apa, poi.par.stu, sto.sli.bc, tim.poi, aco, poi.fie.dep.mat, lap.tim.ebc, tim.adv.dif, poi.iga, bor, aco, poi, osc, hyd, tim.hea.equ.mul.mat, poi.sho.syn, sin, adv.dif.2D, vib.aco, lap.2D, cub, poi.fun, tim.poi.exp, ref.evp, bur.2D, the.ela.ess, the.ele, lap.flu.2d, lap.1d

\n+

poi.sho.syn, ref.evp, poi.fie.dep.mat, poi.per.bou.con, sin, vib.aco, bur.2D, tim.hea.equ.mul.mat, aco, aco, sto.sli.bc, poi, cub, the.ele, osc, lap.flu.2d, poi.par.stu, poi.fun, tim.adv.dif, lap.2D, lap.1d, the.ela.ess, poi.iga, hel.apa, tim.poi, adv.dif.2D, lap.cou.lcb, wel, hyd, tim.poi.exp, bor, lap.tim.ebc

\n \n

dw_lin_convect

\n

LinearConvectTerm

\n \n

<virtual>, <parameter>, <state>

\n
\n

\\int_{\\Omega} ((\\ul{w} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}

\n@@ -545,15 +545,15 @@\n

dw_lin_elastic

\n

LinearElasticTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})

\n
\n-

mix.mes, pie.ela, lin.ela.iga, mod.ana.dec, the.ela, sei.loa, bio.sho.syn, lin.ela.up, wed.mes, lin.ela.mM, nod.lcb, ela, ela.shi.per, its.3, com.ela.mat, mul.poi.con, ela.con.pla, its.2, its.4, lin.ela.opt, bio, bio.npb, mul.nod.lcb, pie.ela.mac, mat.non, ela.con.sph, lin.ela.tra, lin.ela.dam, vib.aco, two.bod.con, bio.npb.lag, pre.fib, its.1, tru.bri, lin.vis, the.ela.ess, lin.ela, pie.ela

\n+

tru.bri, bio.npb.lag, lin.ela.opt, pie.ela.mac, two.bod.con, lin.vis, mul.nod.lcb, lin.ela.iga, bio, vib.aco, its.2, ela.con.sph, bio.sho.syn, pie.ela, pie.ela, lin.ela, ela.con.pla, sei.loa, lin.ela.up, lin.ela.dam, wed.mes, lin.ela.mM, its.4, its.3, ela.shi.per, bio.npb, mod.ana.dec, mix.mes, lin.ela.tra, ela, the.ela.ess, mat.non, com.ela.mat, the.ela, mul.poi.con, nod.lcb, pre.fib, its.1

\n \n

dw_lin_elastic_iso

\n

LinearElasticIsotropicTerm

\n \n

<material_1>, <material_2>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\\\\\n@@ -566,15 +566,15 @@\n

dw_lin_prestress

\n

LinearPrestressTerm

\n \n

<material>, <virtual/param>

\n
\n

\\int_{\\Omega} \\sigma_{ij} e_{ij}(\\ul{v})

\n
\n-

non.hyp.mM, pie.ela.mac, pre.fib

\n+

non.hyp.mM, pre.fib, pie.ela.mac

\n \n

dw_lin_spring

\n

LinearSpringTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\ul{f}^{(i)} = - \\ul{f}^{(j)} = k (\\ul{u}^{(j)} -\n@@ -702,15 +702,15 @@\n

ConcentratedPointLoadTerm

\n \n

<material>, <virtual>

\n
\n

\\ul{f}^i = \\ul{\\bar f}^i \\quad \\forall \\mbox{ FE node } i\n \\mbox{ in a region }

\n
\n-

its.4, tru.bri, she.can, its.3, its.1, its.2

\n+

tru.bri, its.2, she.can, its.3, its.4, its.1

\n \n

dw_point_lspring

\n

LinearPointSpringTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\ul{f}^i = -k \\ul{u}^i \\quad \\forall \\mbox{ FE node } i\n@@ -733,15 +733,15 @@\n

<material>, <virtual>, <state>

\n

<material>, <state>, <virtual>

\n \n
\n

\\int_{\\Omega} q \\ul{y} \\cdot \\nabla p \\mbox{ , }\n \\int_{\\Omega} p \\ul{y} \\cdot \\nabla q

\n
\n-

adv.dif.2D, adv.1D, adv.2D

\n+

adv.1D, adv.2D, adv.dif.2D

\n \n

dw_shell10x

\n

Shell10XTerm

\n \n

<material_d>, <material_drill>, <virtual>, <state>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})

\n@@ -756,15 +756,15 @@\n \n
\n

\\int_{\\Omega} p\\ \\nabla \\cdot \\ul{v} \\mbox{ , }\n \\int_{\\Omega} q\\ \\nabla \\cdot \\ul{u}\\\\ \\mbox{ or } \\int_{\\Omega}\n c\\ p\\ \\nabla \\cdot \\ul{v} \\mbox{ , } \\int_{\\Omega} c\\ q\\ \\nabla\n \\cdot \\ul{u}

\n
\n-

nav.sto, sto, nav.sto.iga, sto.sli.bc, sta.nav.sto, nav.sto, lin.ela.up

\n+

sto, nav.sto, sta.nav.sto, sto.sli.bc, nav.sto.iga, lin.ela.up, nav.sto

\n \n

dw_stokes_wave

\n

StokesWaveTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} (\\ul{\\kappa} \\cdot \\ul{v}) (\\ul{\\kappa}\n@@ -788,41 +788,41 @@\n

ev_sum_vals

\n

SumNodalValuesTerm

\n \n

<parameter>

\n \n \n \n-

ev_surface_flux

\n-

SurfaceFluxTerm

\n+

dw_surface_flux

\n+

SurfaceFluxOperatorTerm

\n \n-

<material>, <parameter>

\n+

<opt_material>, <virtual>, <state>

\n
\n-

\\int_{\\Gamma} \\ul{n} \\cdot K_{ij} \\nabla_j p

\n+

\\int_{\\Gamma} q \\ul{n} \\cdot \\ull{K} \\cdot \\nabla p

\n
\n \n \n-

dw_surface_flux

\n-

SurfaceFluxOperatorTerm

\n+

ev_surface_flux

\n+

SurfaceFluxTerm

\n \n-

<opt_material>, <virtual>, <state>

\n+

<material>, <parameter>

\n
\n-

\\int_{\\Gamma} q \\ul{n} \\cdot \\ull{K} \\cdot \\nabla p

\n+

\\int_{\\Gamma} \\ul{n} \\cdot K_{ij} \\nabla_j p

\n
\n \n \n

dw_surface_ltr

\n

LinearTractionTerm

\n \n

<opt_material>, <virtual/param>

\n
\n

\\int_{\\Gamma} \\ul{v} \\cdot \\ull{\\sigma} \\cdot \\ul{n},\n \\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n
\n-

mix.mes, wed.mes, lin.ela.tra, nod.lcb, lin.ela.opt, ela.shi.per, tru.bri, lin.vis, com.ela.mat

\n+

tru.bri, lin.ela.opt, wed.mes, ela.shi.per, com.ela.mat, lin.vis, mix.mes, nod.lcb, lin.ela.tra

\n \n

ev_surface_moment

\n

SurfaceMomentTerm

\n \n

<material>, <parameter>

\n
\n

\\int_{\\Gamma} \\ul{n} (\\ul{x} - \\ul{x}_0)

\n@@ -887,15 +887,15 @@\n

LinearVolumeForceTerm

\n \n

<material>, <virtual>

\n
\n

\\int_{\\Omega} \\ul{f} \\cdot \\ul{v} \\mbox{ or }\n \\int_{\\Omega} f q

\n
\n-

bur.2D, poi.par.stu, adv.dif.2D, poi.iga

\n+

poi.par.stu, bur.2D, adv.dif.2D, poi.iga

\n \n

dw_volume_nvf

\n

NonlinearVolumeForceTerm

\n \n

<fun>, <dfun>, <virtual>, <state>

\n
\n

\\int_{\\Omega} q f(p)

\n@@ -974,31 +974,31 @@\n

<parameter_u>, <parameter_w>, <parameter_mv>

\n
\n

\\int_{\\Omega} [ u_k \\pdiff{u_i}{x_k} w_i (\\nabla \\cdot\n \\Vcal) - u_k \\pdiff{\\Vcal_j}{x_k} \\pdiff{u_i}{x_j} w_i ]

\n
\n \n \n-

ev_sd_diffusion

\n-

SDDiffusionTerm

\n+

de_sd_diffusion

\n+

ESDDiffusionTerm

\n \n-

<material>, <parameter_q>, <parameter_p>, <parameter_mv>

\n+

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{K}_{ij} \\nabla_i q\\, \\nabla_j p

\n
\n

\\hat{K}_{ij} = K_{ij}\\left( \\delta_{ik}\\delta_{jl} \\nabla\n \\cdot \\ul{\\Vcal} - \\delta_{ik}{\\partial \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}{\\partial \\Vcal_i \\over \\partial x_k}\\right)

\n
\n \n \n-

de_sd_diffusion

\n-

ESDDiffusionTerm

\n+

ev_sd_diffusion

\n+

SDDiffusionTerm

\n \n-

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n+

<material>, <parameter_q>, <parameter_p>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{K}_{ij} \\nabla_i q\\, \\nabla_j p

\n
\n

\\hat{K}_{ij} = K_{ij}\\left( \\delta_{ik}\\delta_{jl} \\nabla\n \\cdot \\ul{\\Vcal} - \\delta_{ik}{\\partial \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}{\\partial \\Vcal_i \\over \\partial x_k}\\right)

\n
\n@@ -1010,33 +1010,33 @@\n

<parameter_u>, <parameter_p>, <parameter_mv>

\n
\n

\\int_{\\Omega} p [ (\\nabla \\cdot \\ul{w}) (\\nabla \\cdot\n \\ul{\\Vcal}) - \\pdiff{\\Vcal_k}{x_i} \\pdiff{w_i}{x_k} ]

\n
\n \n \n-

de_sd_div_grad

\n-

ESDDivGradTerm

\n+

ev_sd_div_grad

\n+

SDDivGradTerm

\n \n-

<opt_material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n+

<opt_material>, <parameter_u>, <parameter_w>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{\n , } \\int_{\\Omega} \\nu \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n

\\hat{I}_{ijkl} = \\delta_{ik}\\delta_{jl} \\nabla \\cdot\n \\ul{\\Vcal} - \\delta_{ik}\\delta_{js} {\\partial \\Vcal_l \\over\n \\partial x_s} - \\delta_{is}\\delta_{jl} {\\partial \\Vcal_k \\over\n \\partial x_s}

\n
\n \n \n-

ev_sd_div_grad

\n-

SDDivGradTerm

\n+

de_sd_div_grad

\n+

ESDDivGradTerm

\n \n-

<opt_material>, <parameter_u>, <parameter_w>, <parameter_mv>

\n+

<opt_material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{\n , } \\int_{\\Omega} \\nu \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n

\\hat{I}_{ijkl} = \\delta_{ik}\\delta_{jl} \\nabla \\cdot\n \\ul{\\Vcal} - \\delta_{ik}\\delta_{js} {\\partial \\Vcal_l \\over\n \\partial x_s} - \\delta_{is}\\delta_{jl} {\\partial \\Vcal_k \\over\n@@ -1063,64 +1063,64 @@\n

<parameter_1>, <parameter_2>, <parameter_mv>

\n
\n

\\int_{\\Omega} p q (\\nabla \\cdot \\ul{\\Vcal}) \\mbox{ , }\n \\int_{\\Omega} (\\ul{u} \\cdot \\ul{w}) (\\nabla \\cdot \\ul{\\Vcal})

\n
\n \n \n-

ev_sd_lin_elastic

\n-

SDLinearElasticTerm

\n+

de_sd_lin_elastic

\n+

ESDLinearElasticTerm

\n \n-

<material>, <parameter_w>, <parameter_u>, <parameter_mv>

\n+

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{D}_{ijkl}\\ e_{ij}(\\ul{v})\n-e_{kl}(\\ul{u})

\n+

\\int_{\\Omega} \\hat{D}_{ijkl} {\\partial v_i \\over \\partial\n+x_j} {\\partial u_k \\over \\partial x_l}

\n
\n

\\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n \\Vcal_j \\over \\partial x_q}

\n
\n \n \n-

de_sd_lin_elastic

\n-

ESDLinearElasticTerm

\n+

ev_sd_lin_elastic

\n+

SDLinearElasticTerm

\n \n-

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n+

<material>, <parameter_w>, <parameter_u>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{D}_{ijkl} {\\partial v_i \\over \\partial\n-x_j} {\\partial u_k \\over \\partial x_l}

\n+

\\int_{\\Omega} \\hat{D}_{ijkl}\\ e_{ij}(\\ul{v})\n+e_{kl}(\\ul{u})

\n
\n

\\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n \\Vcal_j \\over \\partial x_q}

\n
\n \n \n-

de_sd_piezo_coupling

\n-

ESDPiezoCouplingTerm

\n-\n-

<material>, <virtual/param_v>, <state/param_s>, <parameter_mv>

\n-

<material>, <state>, <virtual>, <parameter_mv>

\n+

ev_sd_piezo_coupling

\n+

SDPiezoCouplingTerm

\n \n+

<material>, <parameter_u>, <parameter_p>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{v}) \\nabla_k p\n-\\mbox{ , } \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k q

\n+

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k p

\n
\n

\\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n \\Vcal_k \\over \\partial x_l}

\n
\n \n \n-

ev_sd_piezo_coupling

\n-

SDPiezoCouplingTerm

\n+

de_sd_piezo_coupling

\n+

ESDPiezoCouplingTerm

\n+\n+

<material>, <virtual/param_v>, <state/param_s>, <parameter_mv>

\n+

<material>, <state>, <virtual>, <parameter_mv>

\n \n-

<material>, <parameter_u>, <parameter_p>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k p

\n+

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{v}) \\nabla_k p\n+\\mbox{ , } \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k q

\n
\n

\\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n \\Vcal_k \\over \\partial x_l}

\n
\n \n \n@@ -1145,38 +1145,38 @@\n \n

<parameter>, <parameter_mv>

\n
\n

\\int_{\\Gamma} p \\nabla \\cdot \\ul{\\Vcal}

\n
\n \n \n-

de_sd_surface_ltr

\n+

ev_sd_surface_ltr

\n+

SDLinearTractionTerm

\n+\n+

<opt_material>, <parameter>, <parameter_mv>

\n+
\n+

\\int_{\\Gamma} \\ul{v} \\cdot (\\ull{\\sigma}\\, \\ul{n}),\n+\\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n+
\n+\n+\n+

de_sd_surface_ltr

\n

ESDLinearTractionTerm

\n \n

<opt_material>, <virtual/param>, <parameter_mv>

\n
\n

\\int_{\\Gamma} \\ul{v} \\cdot\n \\left[\\left(\\ull{\\hat{\\sigma}}\\, \\nabla \\cdot \\ul{\\cal{V}} -\n \\ull{{\\hat\\sigma}}\\, \\nabla \\ul{\\cal{V}} \\right)\\ul{n}\\right]

\n
\n

\\ull{\\hat\\sigma} = \\ull{I} \\mbox{ , } \\ull{\\hat\\sigma} =\n c\\,\\ull{I} \\mbox{ or } \\ull{\\hat\\sigma} = \\ull{\\sigma}

\n
\n \n \n-

ev_sd_surface_ltr

\n-

SDLinearTractionTerm

\n-\n-

<opt_material>, <parameter>, <parameter_mv>

\n-
\n-

\\int_{\\Gamma} \\ul{v} \\cdot (\\ull{\\sigma}\\, \\ul{n}),\n-\\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n-
\n-\n-\n

de_sd_v_dot_grad_s

\n

ESDVectorDotGradScalarTerm

\n \n

<opt_material>, <virtual/param_v>, <state/param_s>, <parameter_mv>

\n

<opt_material>, <state>, <virtual>, <parameter_mv>

\n \n
\n@@ -1286,24 +1286,24 @@\n

dw_tl_he_mooney_rivlin

\n

MooneyRivlinTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

hyp, bal, com.ela.mat

\n+

bal, hyp, com.ela.mat

\n \n

dw_tl_he_neohook

\n

NeoHookeanTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

hyp, per.tl, com.ela.mat, bal, act.fib

\n+

per.tl, bal, act.fib, hyp, com.ela.mat

\n \n

dw_tl_he_ogden

\n

OgdenTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n@@ -1402,25 +1402,25 @@\n

MooneyRivlinULTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} \\mathcal{L}\\tau_{ij}(\\ul{u})\n e_{ij}(\\delta\\ul{v})/J

\n
\n-

hyp.ul, hyp.ul.up

\n+

hyp.ul.up, hyp.ul

\n \n

dw_ul_he_neohook

\n

NeoHookeanULTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} \\mathcal{L}\\tau_{ij}(\\ul{u})\n e_{ij}(\\delta\\ul{v})/J

\n
\n-

hyp.ul, hyp.ul.up

\n+

hyp.ul.up, hyp.ul

\n \n

dw_ul_volume

\n

VolumeULTerm

\n \n

<virtual>, <state>

\n
\n

\\begin{array}{l} \\int_{\\Omega} q J(\\ul{u}) \\\\ \\mbox{volume\n@@ -1856,15 +1856,15 @@\n \n

<material_rho>, <material_lumping>, <material_beta>, <virtual>, <state>

\n
\n

M^C = \\int_{\\cal{D}} \\rho \\ul{v} \\cdot \\ul{u} \\\\ M^L =\n \\mathrm{lumping}(M^C) \\\\ M^A = (1 - \\beta) M^C + \\beta M^L \\\\ A =\n \\sum_e A_e \\\\ C = \\sum_e A_e^T (M_e^A)^{-1} A_e

\n
\n-

ela, sei.loa

\n+

sei.loa, ela

\n \n

de_non_penetration_p

\n

ENonPenetrationPenaltyTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Gamma} c (\\ul{n} \\cdot \\ul{v}) (\\ul{n} \\cdot\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -32,18 +32,18 @@\n \\nabla) p) q\n , \\int_{\\Gamma}\n dw_bc_newton , \\alpha q (p - tim.hea.equ.mul.mat\n BCNewtonTerm , p_{\\rm\n outer})\n , \\int_{\\Omega}\n , {ij} e_{ij} the.ela.ess, bio,\n-dw_biot \\mbox{ , } bio.npb.lag,\n- , \\int_{\\Omega} bio.sho.syn\n+ param_v>, {ij} e_{ij} bio.npb.lag,\n+dw_biot \\mbox{ , } the.ela, the.ela.ess,\n+ , \\int_{\\Omega} bio\n , q\\ \\alpha_\n {ij} e_{ij}\n (\\ul{u})\n ev_biot_stress , - \\int_\n BiotStressTerm {\\Omega}\n \\alpha_{ij} p\n ev_cauchy_strain \\int_{\\cal\n@@ -103,16 +103,16 @@\n {\\partial{T_\n K}} \\ul{n}\n \\cdot \\ul{f}^\n {*} (p_{in},\n p_{out})q\n , \\ul{f}^{*}(p_\n-dw_dg_advect_laxfrie_flux , {out}) = \\ul adv.2D\n+dw_dg_advect_laxfrie_flux , {out}) = \\ul adv.dif.2D\n , {a} \\frac{p_\n {in} + p_\n {out}}{2} +\n (1 - \\alpha)\n \\ul{n} C\n \\frac{ p_{in}\n - p_{out}}\n@@ -123,16 +123,16 @@\n \\nabla p\n \\rangle [q]\n \\mbox{ , }\n \\int_\n {\\partial{T_\n , K}} D \\langle\n , \\nabla q\n-dw_dg_diffusion_flux \\rangle [p] bur.2D, lap.2D,\n-DiffusionDGFluxTerm , where adv.dif.2D\n+dw_dg_diffusion_flux \\rangle [p] lap.2D, adv.dif.2D,\n+DiffusionDGFluxTerm , where bur.2D\n , \\langle\n \\nabla \\phi\n \\rangle =\n \\frac\n {\\nabla\\phi_\n {in} +\n \\nabla\\phi_\n@@ -140,16 +140,16 @@\n [\\phi] =\n \\phi_{in} -\n \\phi_{out}\n \\int_\n {\\partial{T_\n K}} \\bar{D}\n , C_w \\frac\n-dw_dg_interior_penalty , (\\partial{T_ adv.dif.2D\n+dw_dg_interior_penalty , (\\partial{T_ bur.2D\n , K})}[p][q]\n where\n [\\phi] =\n \\phi_{in} -\n \\phi_{out}\n \\int_\n {\\partial{T_\n@@ -166,19 +166,19 @@\n \\ul{f}(p_\n {out})}{2} +\n (1 - \\alpha)\n \\ul{n} C\n \\frac{ p_{in}\n - p_{out}}\n {2},\n- , \\int_{\\Omega} pie.ela, vib.aco,\n-dw_diffusion , \\nabla_i q bio.npb, poi.neu,\n- bio.sho.syn, pie.ela\n+ , \\int_{\\Omega} poi.neu, vib.aco,\n+dw_diffusion , \\nabla_i q bio.sho.syn, bio.npb,\n+ dar.flo.mul, bio\n , \\int_{\\Omega}\n , \\nabla_j q\n dw_diffusion_coupling \\int_{\\Omega}\n , q K_{j}\n , \\nabla_j p\n@@ -201,40 +201,40 @@\n ev_div , \\mbox { , }\n \\int_{\\cal\n {D}} c \\nabla\n \\cdot \\ul{u}\n \\int_{\\Omega}\n , \\ul{v} : nav.sto, sto,\n-dw_div_grad , \\ul{v} : sto, nav.sto,\n+dw_div_grad , \\mbox{ , } sto.sli.bc,\n- \\nabla \\ul{v}\n : \\nabla \\ul\n {u}\n \\int_{\\cal\n {D}} q p\n \\mbox{ , }\n \\int_{\\cal\n- {D}} \\ul{v}\n+ {D}} \\ul{v} ref.evp,\n \\cdot \\ul poi.per.bou.con,\n- {u}\\\\ \\int_ adv.2D, pie.ela, wel,\n- \\Gamma \\ul{v} mod.ana.dec, hel.apa,\n- \\cdot \\ul{n} sto.sli.bc, tim.poi,\n- , \\int_\\Gamma q dar.flo.mul, adv.1D,\n-dw_dot , \\ul{u} \\mbox aco, osc, hyd,\n- {\\cal{D}} c q bal, lin.ela.dam,\n- p \\mbox{ , } vib.aco, poi.fun,\n- \\int_{\\cal tim.poi.exp, ref.evp,\n- {D}} c \\ul{v} bur.2D, the.ele, aco,\n- \\cdot \\ul{u} pie.ela\n+ {u}\\\\ \\int_ vib.aco, bur.2D,\n+ \\Gamma \\ul{v} tim.hea.equ.mul.mat,\n+ \\cdot \\ul{n} bal, aco, aco,\n+ , \\int_\\Gamma q pie.ela, the.ele,\n+dw_dot , \\ul{u} \\mbox lin.ela.dam, poi.fun,\n+ {\\cal{D}} c q mod.ana.dec, hel.apa,\n+ p \\mbox{ , } tim.poi, wel, hyd,\n+ \\int_{\\cal tim.poi.exp, bor,\n+ {D}} c \\ul{v} adv.2D, adv.1D,\n+ \\cdot \\ul{u} dar.flo.mul\n \\mbox{ , }\n \\int_{\\cal\n {D}} \\ul{v}\n \\cdot \\ull{c}\n \\cdot \\ul{u}\n , \\int_{\\Omega}\n dw_elastic_wave , D_{ijkl}\\ g_\n@@ -280,44 +280,43 @@\n \\int_{\\cal\n {D}} c \\ul{y}\n \\mbox{ , }\n \\int_\\Gamma c\n \\ul{y} \\cdot\n \\ul{n} \\mbox\n { flux }\n- poi.per.bou.con,\n- , {D}} q \\mbox aco, dar.flo.mul,\n-IntegrateOperatorTerm { or } \\int_ poi.neu,\n- {\\cal{D}} c q tim.hea.equ.mul.mat,\n- aco\n+ hel.apa, poi.neu,\n+ , {D}} q \\mbox tim.hea.equ.mul.mat,\n+IntegrateOperatorTerm { or } \\int_ aco, aco,\n+ {\\cal{D}} c q dar.flo.mul,\n+ poi.per.bou.con\n ev_integrate_mat , \\int_{\\cal\n IntegrateMatTerm {D}} c\n , \\int_{\\Gamma}\n SurfaceJumpTerm , c\\, q (p_1 - aco\n , p_2)\n \n- poi.per.bou.con,\n+ poi.sho.syn, ref.evp,\n+ poi.fie.dep.mat,\n+ poi.per.bou.con, sin,\n+ vib.aco, bur.2D,\n+ tim.hea.equ.mul.mat,\n+ , \\int_{\\Omega} poi, cub, the.ele,\n+dw_laplace , \\cdot \\nabla poi.par.stu, poi.fun,\n+ lap.1d, the.ela.ess,\n+ poi.iga, hel.apa,\n+ tim.poi, adv.dif.2D,\n lap.cou.lcb, wel,\n- hel.apa, poi.par.stu,\n- sto.sli.bc, tim.poi,\n- aco, poi.fie.dep.mat,\n- , \\int_{\\Omega} tim.adv.dif, poi.iga,\n-dw_laplace , \\cdot \\nabla hyd,\n- poi.sho.syn, sin,\n- adv.dif.2D, vib.aco,\n- lap.2D, cub, poi.fun,\n- tim.poi.exp, ref.evp,\n- bur.2D, the.ela.ess,\n- the.ele, lap.flu.2d,\n- lap.1d\n+ hyd, tim.poi.exp,\n+ bor, lap.tim.ebc\n \\int_{\\Omega}\n ((\\ul{w}\n , \\cdot \\nabla)\n dw_lin_convect , \\ul{u}) \\cdot sta.nav.sto\n LinearConvectTerm \\ul{v}\n ((\\ul{w}\n \\cdot \\nabla)\n@@ -352,36 +351,36 @@\n LinearDRotSpringTerm , \\mbox mul.poi.con\n , { elements }\n T_K^{i,j}\\\\\n \\mbox{ in a\n region\n connecting\n nodes } i, j\n- mix.mes, pie.ela,\n- lin.ela.iga,\n- mod.ana.dec, the.ela,\n- sei.loa, bio.sho.syn,\n- lin.ela.up, wed.mes,\n- lin.ela.mM, nod.lcb,\n- ela, ela.shi.per,\n- its.3, com.ela.mat,\n- , \\int_{\\Omega} mul.poi.con,\n- , {ij}(\\ul{v}) its.4, lin.ela.opt,\n-LinearElasticTerm {u}) mul.nod.lcb,\n- pie.ela.mac, mat.non,\n+ tru.bri, bio.npb.lag,\n+ lin.ela.opt,\n+ pie.ela.mac,\n+ two.bod.con, lin.vis,\n+ mul.nod.lcb,\n+ lin.ela.iga, bio,\n+ vib.aco, its.2,\n ela.con.sph,\n- lin.ela.tra,\n- lin.ela.dam, vib.aco,\n- two.bod.con,\n- bio.npb.lag, pre.fib,\n- its.1, tru.bri,\n- lin.vis, the.ela.ess,\n- lin.ela, pie.ela\n+ , \\int_{\\Omega} bio.sho.syn, pie.ela,\n+ , {ij}(\\ul{v}) ela.con.pla, sei.loa,\n+LinearElasticTerm {u}) lin.ela.dam, wed.mes,\n+ lin.ela.mM, its.4,\n+ its.3, ela.shi.per,\n+ bio.npb, mod.ana.dec,\n+ mix.mes, lin.ela.tra,\n+ ela, the.ela.ess,\n+ mat.non, com.ela.mat,\n+ the.ela, mul.poi.con,\n+ nod.lcb, pre.fib,\n+ its.1\n \\int_{\\Omega}\n D_{ijkl}\\ e_\n {ij}(\\ul{v})\n e_{kl}(\\ul\n , {u})\\\\ \\mbox\n , { with } \\\\\n dw_lin_elastic_iso {jl}+\\delta_\n {il} \\delta_\n {jk}) +\n \\lambda \\\n \\delta_{ij}\n \\delta_{kl}\n , \\int_{\\Omega}\n-dw_lin_prestress e_{ij}(\\ul pie.ela.mac, pre.fib\n+dw_lin_prestress e_{ij}(\\ul pie.ela.mac\n {v})\n \\ul{f}^{(i)}\n = - \\ul{f}^{\n (j)} = k (\\ul\n {u}^{(j)} -\n \\ul{u}^{\n dw_lin_spring , (i)})\\\\ \\quad\n@@ -494,17 +493,17 @@\n PiezoStrainTerm g_{kij} e_\n {ij}(\\ul{u})\n ev_piezo_stress , \\int_{\\Omega}\n PiezoStressTerm g_{kij}\n \\nabla_k p\n \\ul{f}^i =\n \\ul{\\bar f}^i\n-dw_point_load , \\quad \\forall its.4, tru.bri,\n+dw_point_load , \\quad \\forall tru.bri, its.2,\n ConcentratedPointLoadTerm \\mbox{ FE she.can, its.3,\n- node } i its.1, its.2\n+ node } i its.4, its.1\n \\mbox{ in a\n region }\n \\ul{f}^i = -\n k \\ul{u}^i\n dw_point_lspring , \\quad \\forall\n LinearPointSpringTerm , \\mbox{ FE\n node } i\n@@ -512,34 +511,34 @@\n region }\n dw_s_dot_grad_i_s , Z^i = \\int_\n ScalarDotGradIScalarTerm , {\\Omega} q\n \\nabla_i p\n \\int_{\\Omega}\n , q \\ul{y}\n , \\cdot \\nabla\n-dw_s_dot_mgrad_s p \\mbox{ , } adv.dif.2D, adv.1D,\n-ScalarDotMGradScalarTerm , \\int_{\\Omega} adv.2D\n+dw_s_dot_mgrad_s p \\mbox{ , } adv.1D, adv.2D,\n+ScalarDotMGradScalarTerm , \\int_{\\Omega} adv.dif.2D\n , p \\ul{y}\n \\cdot \\nabla\n q\n , \\int_{\\Omega}\n dw_shell10x , {ij}(\\ul{v}) she.can\n , e_{kl}(\\ul\n {u})\n \\int_{\\Omega}\n p\\ \\nabla\n \\cdot \\ul{v}\n , \\int_{\\Omega}\n- , \\cdot \\ul nav.sto.iga,\n+ , \\cdot \\ul sta.nav.sto,\n dw_stokes { or } \\int_ sta.nav.sto, nav.sto,\n- { or } \\int_ nav.sto.iga,\n+ , p\\ \\nabla\n , \\cdot \\ul{v}\n \\mbox{ , }\n \\int_{\\Omega}\n c\\ q\\ \\nabla\n \\cdot \\ul{u}\n \\int_{\\Omega}\n@@ -555,29 +554,29 @@\n StokesWaveDivTerm , \\int_{\\Omega}\n , (\\ul{\\kappa}\n \\cdot \\ul{u})\n (\\nabla \\cdot\n \\ul{v})\n ev_sum_vals \n SumNodalValuesTerm\n- \\int_{\\Gamma}\n-ev_surface_flux , \\ul{n} \\cdot\n-SurfaceFluxTerm K_{ij}\n- \\nabla_j p\n , q \\ul{n}\n SurfaceFluxOperatorTerm , \\cdot \\ull{K}\n \\cdot \\nabla\n p\n \\int_{\\Gamma}\n- , \\ull{\\sigma} lin.ela.tra, nod.lcb,\n-LinearTractionTerm \\int_{\\Gamma} ela.shi.per, tru.bri,\n- \\ul{v} \\cdot lin.vis, com.ela.mat\n+ev_surface_flux , \\ul{n} \\cdot\n+SurfaceFluxTerm K_{ij}\n+ \\nabla_j p\n+ \\int_{\\Gamma}\n+ , \\ull{\\sigma} wed.mes, ela.shi.per,\n+LinearTractionTerm \\int_{\\Gamma} mix.mes, nod.lcb,\n+ \\ul{v} \\cdot lin.ela.tra\n \\ul{n},\n \\int_{\\Gamma}\n ev_surface_moment , \\ul{n} (\\ul\n SurfaceMomentTerm {x} - \\ul{x}_\n 0)\n dw_surface_ndot , \\int_{\\Gamma}\n SufaceNormalDotTerm \\int_{\\Omega}\n , \\ul{u} \\cdot\n , \\ul{c} q\\\\\n \n ev_volume \\int_{\\cal\n VolumeTerm {D}} 1\n \\int_{\\Omega}\n-dw_volume_lvf , \\ul{f} \\cdot bur.2D, poi.par.stu,\n+dw_volume_lvf , \\ul{f} \\cdot poi.par.stu, bur.2D,\n LinearVolumeForceTerm \\ul{v} \\mbox adv.dif.2D, poi.iga\n { or } \\int_\n {\\Omega} f q\n ,\n dw_volume_nvf , \\int_{\\Omega} poi.non.mat\n NonlinearVolumeForceTerm , q f(p)\n \n@@ -654,28 +653,28 @@\n k} \\pdiff{u_i}{x_j} w_\n i ]\n \\int_{\\Omega} \\hat{K}_\n {ij} \\nabla_i q\\,\n \\nabla_j p\n \\hat{K}_{ij} = K_\n , {ij}\\left( \\delta_\n-ev_sd_diffusion , {ik}\\delta_{jl} \\nabla\n-SDDiffusionTerm , \\cdot \\ul{\\Vcal} -\n+de_sd_diffusion , {ik}\\delta_{jl} \\nabla\n+ESDDiffusionTerm , \\cdot \\ul{\\Vcal} -\n \\delta_{ik}{\\partial\n \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}\n {\\partial \\Vcal_i \\over\n \\partial x_k}\\right)\n \\int_{\\Omega} \\hat{K}_\n {ij} \\nabla_i q\\,\n \\nabla_j p\n \\hat{K}_{ij} = K_\n , {ij}\\left( \\delta_\n-de_sd_diffusion , {ik}\\delta_{jl} \\nabla\n-ESDDiffusionTerm , \\cdot \\ul{\\Vcal} -\n+ev_sd_diffusion , {ik}\\delta_{jl} \\nabla\n+SDDiffusionTerm , \\cdot \\ul{\\Vcal} -\n \\delta_{ik}{\\partial\n \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}\n {\\partial \\Vcal_i \\over\n \\partial x_k}\\right)\n \\int_{\\Omega} p [\n , (\\nabla \\cdot \\ul{w})\n@@ -685,31 +684,31 @@\n {w_i}{x_k} ]\n \\int_{\\Omega} \\hat{I}\n \\nabla \\ul{v} : \\nabla\n \\ul{u} \\mbox{ , } \\int_\n {\\Omega} \\nu \\hat{I}\n \\nabla \\ul{v} : \\nabla\n , \\ul{u}\n-de_sd_div_grad , \\hat{I}_{ijkl} =\n-ESDDivGradTerm , \\delta_{ik}\\delta_{jl}\n+ev_sd_div_grad , \\hat{I}_{ijkl} =\n+SDDivGradTerm , \\delta_{ik}\\delta_{jl}\n \\nabla \\cdot \\ul{\\Vcal}\n - \\delta_{ik}\\delta_\n {js} {\\partial \\Vcal_\n l \\over \\partial x_s} -\n \\delta_{is}\\delta_{jl}\n {\\partial \\Vcal_k \\over\n \\partial x_s}\n \\int_{\\Omega} \\hat{I}\n \\nabla \\ul{v} : \\nabla\n \\ul{u} \\mbox{ , } \\int_\n {\\Omega} \\nu \\hat{I}\n \\nabla \\ul{v} : \\nabla\n , \\ul{u}\n-ev_sd_div_grad , \\hat{I}_{ijkl} =\n-SDDivGradTerm , \\delta_{ik}\\delta_{jl}\n+de_sd_div_grad , \\hat{I}_{ijkl} =\n+ESDDivGradTerm , \\delta_{ik}\\delta_{jl}\n \\nabla \\cdot \\ul{\\Vcal}\n - \\delta_{ik}\\delta_\n {js} {\\partial \\Vcal_\n l \\over \\partial x_s} -\n \\delta_{is}\\delta_{jl}\n {\\partial \\Vcal_k \\over\n \\partial x_s}\n@@ -731,88 +730,88 @@\n \\int_{\\Omega} p q\n , (\\nabla \\cdot \\ul\n ev_sd_dot , {\\Vcal}) \\mbox{ , }\n SDDotTerm \\int_{\\Omega} (\\ul{u}\n \\cdot \\ul{w}) (\\nabla\n \\cdot \\ul{\\Vcal})\n \\int_{\\Omega} \\hat{D}_\n- {ijkl}\\ e_{ij}(\\ul{v})\n- e_{kl}(\\ul{u})\n- , \\hat{D}_{ijkl} = D_\n-ev_sd_lin_elastic , {ijkl}(\\nabla \\cdot \\ul\n-SDLinearElasticTerm , {\\Vcal}) - D_{ijkq}\n- {\\partial \\Vcal_l \\over\n- \\partial x_q} - D_\n- {iqkl}{\\partial \\Vcal_\n- j \\over \\partial x_q}\n- \\int_{\\Omega} \\hat{D}_\n {ijkl} {\\partial v_\n i \\over \\partial x_j}\n {\\partial u_k \\over\n , \\partial x_l}\n de_sd_lin_elastic , \\hat{D}_{ijkl} = D_\n ESDLinearElasticTerm , {ijkl}(\\nabla \\cdot \\ul\n {\\Vcal}) - D_{ijkq}\n {\\partial \\Vcal_l \\over\n \\partial x_q} - D_\n {iqkl}{\\partial \\Vcal_\n j \\over \\partial x_q}\n+ \\int_{\\Omega} \\hat{D}_\n+ {ijkl}\\ e_{ij}(\\ul{v})\n+ e_{kl}(\\ul{u})\n+ , \\hat{D}_{ijkl} = D_\n+ev_sd_lin_elastic , {ijkl}(\\nabla \\cdot \\ul\n+SDLinearElasticTerm , {\\Vcal}) - D_{ijkq}\n+ {\\partial \\Vcal_l \\over\n+ \\partial x_q} - D_\n+ {iqkl}{\\partial \\Vcal_\n+ j \\over \\partial x_q}\n+ \\int_{\\Omega} \\hat{g}_\n+ {kij}\\ e_{ij}(\\ul{u})\n+ \\nabla_k p\n+ , \\hat{g}_{kij} = g_{kij}\n+ev_sd_piezo_coupling , (\\nabla \\cdot \\ul\n+SDPiezoCouplingTerm , {\\Vcal}) - g_{kil}\n+ {\\partial \\Vcal_j \\over\n+ \\partial x_l} - g_{lij}\n+ {\\partial \\Vcal_k \\over\n+ \\partial x_l}\n \\int_{\\Omega} \\hat{g}_\n {kij}\\ e_{ij}(\\ul{v})\n \\nabla_k p \\mbox{ , }\n , \\int_{\\Omega} \\hat{g}_\n , {kij}\\ e_{ij}(\\ul{u})\n de_sd_piezo_coupling , \\nabla_k q\n ESDPiezoCouplingTerm \\hat{g}_{kij} = g_{kij}\n , (\\nabla \\cdot \\ul\n , , {\\Vcal}) - g_{kil}\n {\\partial \\Vcal_j \\over\n \\partial x_l} - g_{lij}\n {\\partial \\Vcal_k \\over\n \\partial x_l}\n- \\int_{\\Omega} \\hat{g}_\n- {kij}\\ e_{ij}(\\ul{u})\n- \\nabla_k p\n- , \\hat{g}_{kij} = g_{kij}\n-ev_sd_piezo_coupling , (\\nabla \\cdot \\ul\n-SDPiezoCouplingTerm , {\\Vcal}) - g_{kil}\n- {\\partial \\Vcal_j \\over\n- \\partial x_l} - g_{lij}\n- {\\partial \\Vcal_k \\over\n- \\partial x_l}\n \\int_{\\Omega} p\\, \\hat\n {I}_{ij} {\\partial v_\n , i \\over \\partial x_j}\n , \\mbox{ , } \\int_\n de_sd_stokes , {\\Omega} q\\, \\hat{I}_\n ESDStokesTerm {ij} {\\partial u_\n , i \\over \\partial x_j}\n , , \\hat{I}_{ij} = \\delta_\n {ij} \\nabla \\cdot \\Vcal\n - {\\partial \\Vcal_\n j \\over \\partial x_i}\n ev_sd_surface_integrate , \\int_{\\Gamma} p \\nabla\n SDSufaceIntegrateTerm \\cdot \\ul{\\Vcal}\n+ , \\int_{\\Gamma} \\ul{v}\n+ev_sd_surface_ltr , \\cdot (\\ull{\\sigma}\\,\n+SDLinearTractionTerm \\ul{n}), \\int_{\\Gamma}\n+ \\ul{v} \\cdot \\ul{n},\n \\int_{\\Gamma} \\ul{v}\n \\cdot \\left[\\left(\\ull\n {\\hat{\\sigma}}\\, \\nabla\n \\cdot \\ul{\\cal{V}} -\n \\ull{{\\hat\\sigma}}\\,\n de_sd_surface_ltr , \\nabla \\ul{\\cal{V}}\n ESDLinearTractionTerm , \\right)\\ul{n}\\right]\n \\ull{\\hat\\sigma} = \\ull\n {I} \\mbox{ , } \\ull\n {\\hat\\sigma} = c\\,\\ull\n {I} \\mbox{ or } \\ull\n {\\hat\\sigma} = \\ull\n {\\sigma}\n- , \\int_{\\Gamma} \\ul{v}\n-ev_sd_surface_ltr , \\cdot (\\ull{\\sigma}\\,\n-SDLinearTractionTerm \\ul{n}), \\int_{\\Gamma}\n- \\ul{v} \\cdot \\ul{n},\n \\int_{\\Omega} \\hat{I}_\n {ij} {\\partial p \\over\n , \\partial x_j}\\, v_\n , i \\mbox{ , } \\int_\n de_sd_v_dot_grad_s , {\\Omega} \\hat{I}_{ij}\n ESDVectorDotGradScalarTerm {\\partial q \\over\n , \\partial x_j}\\, u_i\n@@ -866,22 +865,22 @@\n \n \\int_{\\Omega}\n dw_tl_he_genyeoh , S_{ij}(\\ul{u})\n GenYeohTLTerm , \\delta E_{ij}\n (\\ul{u};\\ul\n {v})\n \\int_{\\Omega}\n-dw_tl_he_mooney_rivlin , S_{ij}(\\ul{u}) hyp, bal,\n+dw_tl_he_mooney_rivlin , S_{ij}(\\ul{u}) bal, hyp,\n MooneyRivlinTLTerm , \\delta E_{ij} com.ela.mat\n (\\ul{u};\\ul\n {v})\n \\int_{\\Omega}\n-dw_tl_he_neohook , S_{ij}(\\ul{u}) hyp, per.tl,\n-NeoHookeanTLTerm , \\delta E_{ij} com.ela.mat, bal,\n- (\\ul{u};\\ul act.fib\n+dw_tl_he_neohook , S_{ij}(\\ul{u}) per.tl, bal,\n+NeoHookeanTLTerm , \\delta E_{ij} act.fib, hyp,\n+ (\\ul{u};\\ul com.ela.mat\n {v})\n \\int_{\\Omega}\n dw_tl_he_ogden , S_{ij}(\\ul{u})\n OgdenTLTerm , \\delta E_{ij}\n (\\ul{u};\\ul\n {v})\n ,\n@@ -944,21 +943,21 @@\n , \\mathcal\n dw_ul_he_by_fun , {L}\\tau_{ij} hyp.ul.by.fun\n HyperelasticByFunULTerm (\\ul{u}) e_\n {ij}(\\delta\\ul\n {v})/J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_he_mooney_rivlin , {L}\\tau_{ij} hyp.ul, hyp.ul.up\n+dw_ul_he_mooney_rivlin , {L}\\tau_{ij} hyp.ul.up, hyp.ul\n MooneyRivlinULTerm (\\ul{u}) e_\n {ij}(\\delta\\ul\n {v})/J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_he_neohook , {L}\\tau_{ij} hyp.ul, hyp.ul.up\n+dw_ul_he_neohook , {L}\\tau_{ij} hyp.ul.up, hyp.ul\n NeoHookeanULTerm (\\ul{u}) e_\n {ij}(\\delta\\ul\n {v})/J\n \\begin{array}\n {l} \\int_\n {\\Omega} q J\n (\\ul{u}) \\\\\n@@ -1248,15 +1247,15 @@\n {\\delta w}) \\ e_\n {lm,n}(\\ull{w})\n M^C = \\int_{\\cal\n {D}} \\rho \\ul{v}\n \\cdot \\ul{u} \\\\\n , M^L = \\mathrm\n de_mass , {lumping}(M^C) \\\\\n-MassTerm , M^A = (1 - \\beta) ela, sei.loa\n+MassTerm , M^A = (1 - \\beta) sei.loa, ela\n , M^C + \\beta M^L\n \\\\ A = \\sum_e A_\n e \\\\ C = \\sum_\n e A_e^T (M_e^A)^\n {-1} A_e\n , \\int_{\\Gamma} c\n de_non_penetration_p , (\\ul{n} \\cdot \\ul\n"}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/terms_overview.html", "source2": "./usr/share/doc/python-sfepy-doc/html/terms_overview.html", "unified_diff": "@@ -373,15 +373,15 @@\n

<material>, <virtual/param_v>, <state/param_s>

\n

<material>, <state>, <virtual>

\n \n
\n

\\int_{\\Omega} p\\ \\alpha_{ij} e_{ij}(\\ul{v}) \\mbox{ , }\n \\int_{\\Omega} q\\ \\alpha_{ij} e_{ij}(\\ul{u})

\n
\n-

the.ela.ess, bio, bio.npb, the.ela, bio.npb.lag, bio.sho.syn

\n+

bio.npb.lag, bio.sho.syn, bio.npb, the.ela, the.ela.ess, bio

\n \n

ev_biot_stress

\n

BiotStressTerm

\n \n

<material>, <parameter>

\n
\n

- \\int_{\\Omega} \\alpha_{ij} p

\n@@ -480,15 +480,15 @@\n

\\int_{\\partial{T_K}} \\ul{n} \\cdot \\ul{f}^{*} (p_{in},\n p_{out})q

\n

where

\n
\n

\\ul{f}^{*}(p_{in}, p_{out}) = \\ul{a} \\frac{p_{in} +\n p_{out}}{2} + (1 - \\alpha) \\ul{n} C \\frac{ p_{in} - p_{out}}{2},

\n
\n-

adv.dif.2D, adv.1D, adv.2D

\n+

adv.1D, adv.2D, adv.dif.2D

\n \n

dw_dg_diffusion_flux

\n

DiffusionDGFluxTerm

\n \n

<material>, <state>, <virtual>

\n

<material>, <virtual>, <state>

\n \n@@ -498,28 +498,28 @@\n

where

\n
\n

\\langle \\nabla \\phi \\rangle = \\frac{\\nabla\\phi_{in} +\n \\nabla\\phi_{out}}{2}

\n
\n

[\\phi] = \\phi_{in} - \\phi_{out}

\n
\n-

bur.2D, lap.2D, adv.dif.2D

\n+

lap.2D, adv.dif.2D, bur.2D

\n \n

dw_dg_interior_penalty

\n

DiffusionInteriorPenaltyTerm

\n \n

<material>, <material_Cw>, <virtual>, <state>

\n
\n

\\int_{\\partial{T_K}} \\bar{D} C_w\n \\frac{Ord^2}{d(\\partial{T_K})}[p][q]

\n

where

\n
\n

[\\phi] = \\phi_{in} - \\phi_{out}

\n
\n-

bur.2D, lap.2D, adv.dif.2D

\n+

lap.2D, adv.dif.2D, bur.2D

\n \n

dw_dg_nonlinear_laxfrie_flux

\n

NonlinearHyperbolicDGFluxTerm

\n \n

<opt_material>, <fun>, <fun_d>, <virtual>, <state>

\n
\n

\\int_{\\partial{T_K}} \\ul{n} \\cdot f^{*} (p_{in}, p_{out})q

\n@@ -534,15 +534,15 @@\n

dw_diffusion

\n

DiffusionTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} K_{ij} \\nabla_i q \\nabla_j p

\n
\n-

pie.ela, vib.aco, dar.flo.mul, bio, bio.npb, poi.neu, bio.npb.lag, bio.sho.syn, pie.ela

\n+

poi.neu, vib.aco, bio.npb.lag, bio.sho.syn, bio.npb, pie.ela, pie.ela, dar.flo.mul, bio

\n \n

dw_diffusion_coupling

\n

DiffusionCoupling

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n

<material>, <state>, <virtual>

\n \n@@ -594,28 +594,28 @@\n

DivGradTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} \\nu\\ \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{ ,\n } \\int_{\\Omega} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n-

nav.sto, sto, nav.sto.iga, sto.sli.bc, sta.nav.sto, nav.sto

\n+

sto, nav.sto, sta.nav.sto, sto.sli.bc, nav.sto.iga, nav.sto

\n \n

dw_dot

\n

DotProductTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\cal{D}} q p \\mbox{ , } \\int_{\\cal{D}} \\ul{v} \\cdot\n \\ul{u}\\\\ \\int_\\Gamma \\ul{v} \\cdot \\ul{n} p \\mbox{ , } \\int_\\Gamma\n q \\ul{n} \\cdot \\ul{u} \\mbox{ , }\\\\ \\int_{\\cal{D}} c q p \\mbox{ , }\n \\int_{\\cal{D}} c \\ul{v} \\cdot \\ul{u} \\mbox{ , } \\int_{\\cal{D}}\n \\ul{v} \\cdot \\ull{c} \\cdot \\ul{u}

\n
\n-

poi.per.bou.con, adv.2D, pie.ela, wel, mod.ana.dec, hel.apa, sto.sli.bc, tim.poi, lin.ela.up, dar.flo.mul, adv.1D, tim.adv.dif, bor, aco, osc, hyd, tim.hea.equ.mul.mat, bal, lin.ela.dam, vib.aco, poi.fun, tim.poi.exp, ref.evp, bur.2D, the.ele, aco, pie.ela

\n+

ref.evp, poi.per.bou.con, vib.aco, bur.2D, tim.hea.equ.mul.mat, bal, aco, aco, sto.sli.bc, pie.ela, pie.ela, the.ele, osc, lin.ela.up, lin.ela.dam, poi.fun, tim.adv.dif, mod.ana.dec, hel.apa, tim.poi, wel, hyd, tim.poi.exp, bor, adv.2D, adv.1D, dar.flo.mul

\n \n

dw_elastic_wave

\n

ElasticWaveTerm

\n \n

<material_1>, <material_2>, <virtual>, <state>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ g_{ij}(\\ul{v}) g_{kl}(\\ul{u})

\n@@ -669,15 +669,15 @@\n

dw_integrate

\n

IntegrateOperatorTerm

\n \n

<opt_material>, <virtual>

\n
\n

\\int_{\\cal{D}} q \\mbox{ or } \\int_{\\cal{D}} c q

\n
\n-

poi.per.bou.con, vib.aco, hel.apa, aco, dar.flo.mul, poi.neu, tim.hea.equ.mul.mat, aco

\n+

hel.apa, poi.neu, vib.aco, tim.hea.equ.mul.mat, aco, aco, dar.flo.mul, poi.per.bou.con

\n \n

ev_integrate_mat

\n

IntegrateMatTerm

\n \n

<material>, <parameter>

\n
\n

\\int_{\\cal{D}} c

\n@@ -696,15 +696,15 @@\n

dw_laplace

\n

LaplaceTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} c \\nabla q \\cdot \\nabla p

\n
\n-

poi.per.bou.con, lap.cou.lcb, wel, hel.apa, poi.par.stu, sto.sli.bc, tim.poi, aco, poi.fie.dep.mat, lap.tim.ebc, tim.adv.dif, poi.iga, bor, aco, poi, osc, hyd, tim.hea.equ.mul.mat, poi.sho.syn, sin, adv.dif.2D, vib.aco, lap.2D, cub, poi.fun, tim.poi.exp, ref.evp, bur.2D, the.ela.ess, the.ele, lap.flu.2d, lap.1d

\n+

poi.sho.syn, ref.evp, poi.fie.dep.mat, poi.per.bou.con, sin, vib.aco, bur.2D, tim.hea.equ.mul.mat, aco, aco, sto.sli.bc, poi, cub, the.ele, osc, lap.flu.2d, poi.par.stu, poi.fun, tim.adv.dif, lap.2D, lap.1d, the.ela.ess, poi.iga, hel.apa, tim.poi, adv.dif.2D, lap.cou.lcb, wel, hyd, tim.poi.exp, bor, lap.tim.ebc

\n \n

dw_lin_convect

\n

LinearConvectTerm

\n \n

<virtual>, <parameter>, <state>

\n
\n

\\int_{\\Omega} ((\\ul{w} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}

\n@@ -749,15 +749,15 @@\n

dw_lin_elastic

\n

LinearElasticTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})

\n
\n-

mix.mes, pie.ela, lin.ela.iga, mod.ana.dec, the.ela, sei.loa, bio.sho.syn, lin.ela.up, wed.mes, lin.ela.mM, nod.lcb, ela, ela.shi.per, its.3, com.ela.mat, mul.poi.con, ela.con.pla, its.2, its.4, lin.ela.opt, bio, bio.npb, mul.nod.lcb, pie.ela.mac, mat.non, ela.con.sph, lin.ela.tra, lin.ela.dam, vib.aco, two.bod.con, bio.npb.lag, pre.fib, its.1, tru.bri, lin.vis, the.ela.ess, lin.ela, pie.ela

\n+

tru.bri, bio.npb.lag, lin.ela.opt, pie.ela.mac, two.bod.con, lin.vis, mul.nod.lcb, lin.ela.iga, bio, vib.aco, its.2, ela.con.sph, bio.sho.syn, pie.ela, pie.ela, lin.ela, ela.con.pla, sei.loa, lin.ela.up, lin.ela.dam, wed.mes, lin.ela.mM, its.4, its.3, ela.shi.per, bio.npb, mod.ana.dec, mix.mes, lin.ela.tra, ela, the.ela.ess, mat.non, com.ela.mat, the.ela, mul.poi.con, nod.lcb, pre.fib, its.1

\n \n

dw_lin_elastic_iso

\n

LinearElasticIsotropicTerm

\n \n

<material_1>, <material_2>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\\\\\n@@ -770,15 +770,15 @@\n

dw_lin_prestress

\n

LinearPrestressTerm

\n \n

<material>, <virtual/param>

\n
\n

\\int_{\\Omega} \\sigma_{ij} e_{ij}(\\ul{v})

\n
\n-

non.hyp.mM, pie.ela.mac, pre.fib

\n+

non.hyp.mM, pre.fib, pie.ela.mac

\n \n

dw_lin_spring

\n

LinearSpringTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\ul{f}^{(i)} = - \\ul{f}^{(j)} = k (\\ul{u}^{(j)} -\n@@ -906,15 +906,15 @@\n

ConcentratedPointLoadTerm

\n \n

<material>, <virtual>

\n
\n

\\ul{f}^i = \\ul{\\bar f}^i \\quad \\forall \\mbox{ FE node } i\n \\mbox{ in a region }

\n
\n-

its.4, tru.bri, she.can, its.3, its.1, its.2

\n+

tru.bri, its.2, she.can, its.3, its.4, its.1

\n \n

dw_point_lspring

\n

LinearPointSpringTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\ul{f}^i = -k \\ul{u}^i \\quad \\forall \\mbox{ FE node } i\n@@ -937,15 +937,15 @@\n

<material>, <virtual>, <state>

\n

<material>, <state>, <virtual>

\n \n
\n

\\int_{\\Omega} q \\ul{y} \\cdot \\nabla p \\mbox{ , }\n \\int_{\\Omega} p \\ul{y} \\cdot \\nabla q

\n
\n-

adv.dif.2D, adv.1D, adv.2D

\n+

adv.1D, adv.2D, adv.dif.2D

\n \n

dw_shell10x

\n

Shell10XTerm

\n \n

<material_d>, <material_drill>, <virtual>, <state>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})

\n@@ -960,15 +960,15 @@\n \n
\n

\\int_{\\Omega} p\\ \\nabla \\cdot \\ul{v} \\mbox{ , }\n \\int_{\\Omega} q\\ \\nabla \\cdot \\ul{u}\\\\ \\mbox{ or } \\int_{\\Omega}\n c\\ p\\ \\nabla \\cdot \\ul{v} \\mbox{ , } \\int_{\\Omega} c\\ q\\ \\nabla\n \\cdot \\ul{u}

\n
\n-

nav.sto, sto, nav.sto.iga, sto.sli.bc, sta.nav.sto, nav.sto, lin.ela.up

\n+

sto, nav.sto, sta.nav.sto, sto.sli.bc, nav.sto.iga, lin.ela.up, nav.sto

\n \n

dw_stokes_wave

\n

StokesWaveTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} (\\ul{\\kappa} \\cdot \\ul{v}) (\\ul{\\kappa}\n@@ -992,41 +992,41 @@\n

ev_sum_vals

\n

SumNodalValuesTerm

\n \n

<parameter>

\n \n \n \n-

ev_surface_flux

\n-

SurfaceFluxTerm

\n+

dw_surface_flux

\n+

SurfaceFluxOperatorTerm

\n \n-

<material>, <parameter>

\n+

<opt_material>, <virtual>, <state>

\n
\n-

\\int_{\\Gamma} \\ul{n} \\cdot K_{ij} \\nabla_j p

\n+

\\int_{\\Gamma} q \\ul{n} \\cdot \\ull{K} \\cdot \\nabla p

\n
\n \n \n-

dw_surface_flux

\n-

SurfaceFluxOperatorTerm

\n+

ev_surface_flux

\n+

SurfaceFluxTerm

\n \n-

<opt_material>, <virtual>, <state>

\n+

<material>, <parameter>

\n
\n-

\\int_{\\Gamma} q \\ul{n} \\cdot \\ull{K} \\cdot \\nabla p

\n+

\\int_{\\Gamma} \\ul{n} \\cdot K_{ij} \\nabla_j p

\n
\n \n \n

dw_surface_ltr

\n

LinearTractionTerm

\n \n

<opt_material>, <virtual/param>

\n
\n

\\int_{\\Gamma} \\ul{v} \\cdot \\ull{\\sigma} \\cdot \\ul{n},\n \\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n
\n-

mix.mes, wed.mes, lin.ela.tra, nod.lcb, lin.ela.opt, ela.shi.per, tru.bri, lin.vis, com.ela.mat

\n+

tru.bri, lin.ela.opt, wed.mes, ela.shi.per, com.ela.mat, lin.vis, mix.mes, nod.lcb, lin.ela.tra

\n \n

ev_surface_moment

\n

SurfaceMomentTerm

\n \n

<material>, <parameter>

\n
\n

\\int_{\\Gamma} \\ul{n} (\\ul{x} - \\ul{x}_0)

\n@@ -1091,15 +1091,15 @@\n

LinearVolumeForceTerm

\n \n

<material>, <virtual>

\n
\n

\\int_{\\Omega} \\ul{f} \\cdot \\ul{v} \\mbox{ or }\n \\int_{\\Omega} f q

\n
\n-

bur.2D, poi.par.stu, adv.dif.2D, poi.iga

\n+

poi.par.stu, bur.2D, adv.dif.2D, poi.iga

\n \n

dw_volume_nvf

\n

NonlinearVolumeForceTerm

\n \n

<fun>, <dfun>, <virtual>, <state>

\n
\n

\\int_{\\Omega} q f(p)

\n@@ -1178,31 +1178,31 @@\n

<parameter_u>, <parameter_w>, <parameter_mv>

\n
\n

\\int_{\\Omega} [ u_k \\pdiff{u_i}{x_k} w_i (\\nabla \\cdot\n \\Vcal) - u_k \\pdiff{\\Vcal_j}{x_k} \\pdiff{u_i}{x_j} w_i ]

\n
\n \n \n-

ev_sd_diffusion

\n-

SDDiffusionTerm

\n+

de_sd_diffusion

\n+

ESDDiffusionTerm

\n \n-

<material>, <parameter_q>, <parameter_p>, <parameter_mv>

\n+

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{K}_{ij} \\nabla_i q\\, \\nabla_j p

\n
\n

\\hat{K}_{ij} = K_{ij}\\left( \\delta_{ik}\\delta_{jl} \\nabla\n \\cdot \\ul{\\Vcal} - \\delta_{ik}{\\partial \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}{\\partial \\Vcal_i \\over \\partial x_k}\\right)

\n
\n \n \n-

de_sd_diffusion

\n-

ESDDiffusionTerm

\n+

ev_sd_diffusion

\n+

SDDiffusionTerm

\n \n-

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n+

<material>, <parameter_q>, <parameter_p>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{K}_{ij} \\nabla_i q\\, \\nabla_j p

\n
\n

\\hat{K}_{ij} = K_{ij}\\left( \\delta_{ik}\\delta_{jl} \\nabla\n \\cdot \\ul{\\Vcal} - \\delta_{ik}{\\partial \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}{\\partial \\Vcal_i \\over \\partial x_k}\\right)

\n
\n@@ -1214,33 +1214,33 @@\n

<parameter_u>, <parameter_p>, <parameter_mv>

\n
\n

\\int_{\\Omega} p [ (\\nabla \\cdot \\ul{w}) (\\nabla \\cdot\n \\ul{\\Vcal}) - \\pdiff{\\Vcal_k}{x_i} \\pdiff{w_i}{x_k} ]

\n
\n \n \n-

de_sd_div_grad

\n-

ESDDivGradTerm

\n+

ev_sd_div_grad

\n+

SDDivGradTerm

\n \n-

<opt_material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n+

<opt_material>, <parameter_u>, <parameter_w>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{\n , } \\int_{\\Omega} \\nu \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n

\\hat{I}_{ijkl} = \\delta_{ik}\\delta_{jl} \\nabla \\cdot\n \\ul{\\Vcal} - \\delta_{ik}\\delta_{js} {\\partial \\Vcal_l \\over\n \\partial x_s} - \\delta_{is}\\delta_{jl} {\\partial \\Vcal_k \\over\n \\partial x_s}

\n
\n \n \n-

ev_sd_div_grad

\n-

SDDivGradTerm

\n+

de_sd_div_grad

\n+

ESDDivGradTerm

\n \n-

<opt_material>, <parameter_u>, <parameter_w>, <parameter_mv>

\n+

<opt_material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n
\n

\\int_{\\Omega} \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{\n , } \\int_{\\Omega} \\nu \\hat{I} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n

\\hat{I}_{ijkl} = \\delta_{ik}\\delta_{jl} \\nabla \\cdot\n \\ul{\\Vcal} - \\delta_{ik}\\delta_{js} {\\partial \\Vcal_l \\over\n \\partial x_s} - \\delta_{is}\\delta_{jl} {\\partial \\Vcal_k \\over\n@@ -1267,64 +1267,64 @@\n

<parameter_1>, <parameter_2>, <parameter_mv>

\n
\n

\\int_{\\Omega} p q (\\nabla \\cdot \\ul{\\Vcal}) \\mbox{ , }\n \\int_{\\Omega} (\\ul{u} \\cdot \\ul{w}) (\\nabla \\cdot \\ul{\\Vcal})

\n
\n \n \n-

ev_sd_lin_elastic

\n-

SDLinearElasticTerm

\n+

de_sd_lin_elastic

\n+

ESDLinearElasticTerm

\n \n-

<material>, <parameter_w>, <parameter_u>, <parameter_mv>

\n+

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{D}_{ijkl}\\ e_{ij}(\\ul{v})\n-e_{kl}(\\ul{u})

\n+

\\int_{\\Omega} \\hat{D}_{ijkl} {\\partial v_i \\over \\partial\n+x_j} {\\partial u_k \\over \\partial x_l}

\n
\n

\\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n \\Vcal_j \\over \\partial x_q}

\n
\n \n \n-

de_sd_lin_elastic

\n-

ESDLinearElasticTerm

\n+

ev_sd_lin_elastic

\n+

SDLinearElasticTerm

\n \n-

<material>, <virtual/param_1>, <state/param_2>, <parameter_mv>

\n+

<material>, <parameter_w>, <parameter_u>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{D}_{ijkl} {\\partial v_i \\over \\partial\n-x_j} {\\partial u_k \\over \\partial x_l}

\n+

\\int_{\\Omega} \\hat{D}_{ijkl}\\ e_{ij}(\\ul{v})\n+e_{kl}(\\ul{u})

\n
\n

\\hat{D}_{ijkl} = D_{ijkl}(\\nabla \\cdot \\ul{\\Vcal}) -\n D_{ijkq}{\\partial \\Vcal_l \\over \\partial x_q} - D_{iqkl}{\\partial\n \\Vcal_j \\over \\partial x_q}

\n
\n \n \n-

de_sd_piezo_coupling

\n-

ESDPiezoCouplingTerm

\n-\n-

<material>, <virtual/param_v>, <state/param_s>, <parameter_mv>

\n-

<material>, <state>, <virtual>, <parameter_mv>

\n+

ev_sd_piezo_coupling

\n+

SDPiezoCouplingTerm

\n \n+

<material>, <parameter_u>, <parameter_p>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{v}) \\nabla_k p\n-\\mbox{ , } \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k q

\n+

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k p

\n
\n

\\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n \\Vcal_k \\over \\partial x_l}

\n
\n \n \n-

ev_sd_piezo_coupling

\n-

SDPiezoCouplingTerm

\n+

de_sd_piezo_coupling

\n+

ESDPiezoCouplingTerm

\n+\n+

<material>, <virtual/param_v>, <state/param_s>, <parameter_mv>

\n+

<material>, <state>, <virtual>, <parameter_mv>

\n \n-

<material>, <parameter_u>, <parameter_p>, <parameter_mv>

\n
\n-

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k p

\n+

\\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{v}) \\nabla_k p\n+\\mbox{ , } \\int_{\\Omega} \\hat{g}_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k q

\n
\n

\\hat{g}_{kij} = g_{kij}(\\nabla \\cdot \\ul{\\Vcal}) -\n g_{kil}{\\partial \\Vcal_j \\over \\partial x_l} - g_{lij}{\\partial\n \\Vcal_k \\over \\partial x_l}

\n
\n \n \n@@ -1349,38 +1349,38 @@\n \n

<parameter>, <parameter_mv>

\n
\n

\\int_{\\Gamma} p \\nabla \\cdot \\ul{\\Vcal}

\n
\n \n \n-

de_sd_surface_ltr

\n+

ev_sd_surface_ltr

\n+

SDLinearTractionTerm

\n+\n+

<opt_material>, <parameter>, <parameter_mv>

\n+
\n+

\\int_{\\Gamma} \\ul{v} \\cdot (\\ull{\\sigma}\\, \\ul{n}),\n+\\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n+
\n+\n+\n+

de_sd_surface_ltr

\n

ESDLinearTractionTerm

\n \n

<opt_material>, <virtual/param>, <parameter_mv>

\n
\n

\\int_{\\Gamma} \\ul{v} \\cdot\n \\left[\\left(\\ull{\\hat{\\sigma}}\\, \\nabla \\cdot \\ul{\\cal{V}} -\n \\ull{{\\hat\\sigma}}\\, \\nabla \\ul{\\cal{V}} \\right)\\ul{n}\\right]

\n
\n

\\ull{\\hat\\sigma} = \\ull{I} \\mbox{ , } \\ull{\\hat\\sigma} =\n c\\,\\ull{I} \\mbox{ or } \\ull{\\hat\\sigma} = \\ull{\\sigma}

\n
\n \n \n-

ev_sd_surface_ltr

\n-

SDLinearTractionTerm

\n-\n-

<opt_material>, <parameter>, <parameter_mv>

\n-
\n-

\\int_{\\Gamma} \\ul{v} \\cdot (\\ull{\\sigma}\\, \\ul{n}),\n-\\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n-
\n-\n-\n

de_sd_v_dot_grad_s

\n

ESDVectorDotGradScalarTerm

\n \n

<opt_material>, <virtual/param_v>, <state/param_s>, <parameter_mv>

\n

<opt_material>, <state>, <virtual>, <parameter_mv>

\n \n
\n@@ -1490,24 +1490,24 @@\n

dw_tl_he_mooney_rivlin

\n

MooneyRivlinTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

hyp, bal, com.ela.mat

\n+

bal, hyp, com.ela.mat

\n \n

dw_tl_he_neohook

\n

NeoHookeanTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

hyp, per.tl, com.ela.mat, bal, act.fib

\n+

per.tl, bal, act.fib, hyp, com.ela.mat

\n \n

dw_tl_he_ogden

\n

OgdenTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n@@ -1606,25 +1606,25 @@\n

MooneyRivlinULTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} \\mathcal{L}\\tau_{ij}(\\ul{u})\n e_{ij}(\\delta\\ul{v})/J

\n
\n-

hyp.ul, hyp.ul.up

\n+

hyp.ul.up, hyp.ul

\n \n

dw_ul_he_neohook

\n

NeoHookeanULTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} \\mathcal{L}\\tau_{ij}(\\ul{u})\n e_{ij}(\\delta\\ul{v})/J

\n
\n-

hyp.ul, hyp.ul.up

\n+

hyp.ul.up, hyp.ul

\n \n

dw_ul_volume

\n

VolumeULTerm

\n \n

<virtual>, <state>

\n
\n

\\begin{array}{l} \\int_{\\Omega} q J(\\ul{u}) \\\\ \\mbox{volume\n@@ -2060,15 +2060,15 @@\n \n

<material_rho>, <material_lumping>, <material_beta>, <virtual>, <state>

\n
\n

M^C = \\int_{\\cal{D}} \\rho \\ul{v} \\cdot \\ul{u} \\\\ M^L =\n \\mathrm{lumping}(M^C) \\\\ M^A = (1 - \\beta) M^C + \\beta M^L \\\\ A =\n \\sum_e A_e \\\\ C = \\sum_e A_e^T (M_e^A)^{-1} A_e

\n
\n-

ela, sei.loa

\n+

sei.loa, ela

\n \n

de_non_penetration_p

\n

ENonPenetrationPenaltyTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Gamma} c (\\ul{n} \\cdot \\ul{v}) (\\ul{n} \\cdot\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -117,18 +117,18 @@\n \\nabla) p) q\n , \\int_{\\Gamma}\n dw_bc_newton , \\alpha q (p - tim.hea.equ.mul.mat\n BCNewtonTerm , p_{\\rm\n outer})\n , \\int_{\\Omega}\n , {ij} e_{ij} the.ela.ess, bio,\n-dw_biot \\mbox{ , } bio.npb.lag,\n- , \\int_{\\Omega} bio.sho.syn\n+ param_v>, {ij} e_{ij} bio.npb.lag,\n+dw_biot \\mbox{ , } the.ela, the.ela.ess,\n+ , \\int_{\\Omega} bio\n , q\\ \\alpha_\n {ij} e_{ij}\n (\\ul{u})\n ev_biot_stress , - \\int_\n BiotStressTerm {\\Omega}\n \\alpha_{ij} p\n ev_cauchy_strain \\int_{\\cal\n@@ -188,16 +188,16 @@\n {\\partial{T_\n K}} \\ul{n}\n \\cdot \\ul{f}^\n {*} (p_{in},\n p_{out})q\n , \\ul{f}^{*}(p_\n-dw_dg_advect_laxfrie_flux , {out}) = \\ul adv.2D\n+dw_dg_advect_laxfrie_flux , {out}) = \\ul adv.dif.2D\n , {a} \\frac{p_\n {in} + p_\n {out}}{2} +\n (1 - \\alpha)\n \\ul{n} C\n \\frac{ p_{in}\n - p_{out}}\n@@ -208,16 +208,16 @@\n \\nabla p\n \\rangle [q]\n \\mbox{ , }\n \\int_\n {\\partial{T_\n , K}} D \\langle\n , \\nabla q\n-dw_dg_diffusion_flux \\rangle [p] bur.2D, lap.2D,\n-DiffusionDGFluxTerm , where adv.dif.2D\n+dw_dg_diffusion_flux \\rangle [p] lap.2D, adv.dif.2D,\n+DiffusionDGFluxTerm , where bur.2D\n , \\langle\n \\nabla \\phi\n \\rangle =\n \\frac\n {\\nabla\\phi_\n {in} +\n \\nabla\\phi_\n@@ -225,16 +225,16 @@\n [\\phi] =\n \\phi_{in} -\n \\phi_{out}\n \\int_\n {\\partial{T_\n K}} \\bar{D}\n , C_w \\frac\n-dw_dg_interior_penalty , (\\partial{T_ adv.dif.2D\n+dw_dg_interior_penalty , (\\partial{T_ bur.2D\n , K})}[p][q]\n where\n [\\phi] =\n \\phi_{in} -\n \\phi_{out}\n \\int_\n {\\partial{T_\n@@ -251,19 +251,19 @@\n \\ul{f}(p_\n {out})}{2} +\n (1 - \\alpha)\n \\ul{n} C\n \\frac{ p_{in}\n - p_{out}}\n {2},\n- , \\int_{\\Omega} pie.ela, vib.aco,\n-dw_diffusion , \\nabla_i q bio.npb, poi.neu,\n- bio.sho.syn, pie.ela\n+ , \\int_{\\Omega} poi.neu, vib.aco,\n+dw_diffusion , \\nabla_i q bio.sho.syn, bio.npb,\n+ dar.flo.mul, bio\n , \\int_{\\Omega}\n , \\nabla_j q\n dw_diffusion_coupling \\int_{\\Omega}\n , q K_{j}\n , \\nabla_j p\n@@ -286,40 +286,40 @@\n ev_div , \\mbox { , }\n \\int_{\\cal\n {D}} c \\nabla\n \\cdot \\ul{u}\n \\int_{\\Omega}\n , \\ul{v} : nav.sto, sto,\n-dw_div_grad , \\ul{v} : sto, nav.sto,\n+dw_div_grad , \\mbox{ , } sto.sli.bc,\n- \\nabla \\ul{v}\n : \\nabla \\ul\n {u}\n \\int_{\\cal\n {D}} q p\n \\mbox{ , }\n \\int_{\\cal\n- {D}} \\ul{v}\n+ {D}} \\ul{v} ref.evp,\n \\cdot \\ul poi.per.bou.con,\n- {u}\\\\ \\int_ adv.2D, pie.ela, wel,\n- \\Gamma \\ul{v} mod.ana.dec, hel.apa,\n- \\cdot \\ul{n} sto.sli.bc, tim.poi,\n- , \\int_\\Gamma q dar.flo.mul, adv.1D,\n-dw_dot , \\ul{u} \\mbox aco, osc, hyd,\n- {\\cal{D}} c q bal, lin.ela.dam,\n- p \\mbox{ , } vib.aco, poi.fun,\n- \\int_{\\cal tim.poi.exp, ref.evp,\n- {D}} c \\ul{v} bur.2D, the.ele, aco,\n- \\cdot \\ul{u} pie.ela\n+ {u}\\\\ \\int_ vib.aco, bur.2D,\n+ \\Gamma \\ul{v} tim.hea.equ.mul.mat,\n+ \\cdot \\ul{n} bal, aco, aco,\n+ , \\int_\\Gamma q pie.ela, the.ele,\n+dw_dot , \\ul{u} \\mbox lin.ela.dam, poi.fun,\n+ {\\cal{D}} c q mod.ana.dec, hel.apa,\n+ p \\mbox{ , } tim.poi, wel, hyd,\n+ \\int_{\\cal tim.poi.exp, bor,\n+ {D}} c \\ul{v} adv.2D, adv.1D,\n+ \\cdot \\ul{u} dar.flo.mul\n \\mbox{ , }\n \\int_{\\cal\n {D}} \\ul{v}\n \\cdot \\ull{c}\n \\cdot \\ul{u}\n , \\int_{\\Omega}\n dw_elastic_wave , D_{ijkl}\\ g_\n@@ -365,44 +365,43 @@\n \\int_{\\cal\n {D}} c \\ul{y}\n \\mbox{ , }\n \\int_\\Gamma c\n \\ul{y} \\cdot\n \\ul{n} \\mbox\n { flux }\n- poi.per.bou.con,\n- , {D}} q \\mbox aco, dar.flo.mul,\n-IntegrateOperatorTerm { or } \\int_ poi.neu,\n- {\\cal{D}} c q tim.hea.equ.mul.mat,\n- aco\n+ hel.apa, poi.neu,\n+ , {D}} q \\mbox tim.hea.equ.mul.mat,\n+IntegrateOperatorTerm { or } \\int_ aco, aco,\n+ {\\cal{D}} c q dar.flo.mul,\n+ poi.per.bou.con\n ev_integrate_mat , \\int_{\\cal\n IntegrateMatTerm {D}} c\n , \\int_{\\Gamma}\n SurfaceJumpTerm , c\\, q (p_1 - aco\n , p_2)\n \n- poi.per.bou.con,\n+ poi.sho.syn, ref.evp,\n+ poi.fie.dep.mat,\n+ poi.per.bou.con, sin,\n+ vib.aco, bur.2D,\n+ tim.hea.equ.mul.mat,\n+ , \\int_{\\Omega} poi, cub, the.ele,\n+dw_laplace , \\cdot \\nabla poi.par.stu, poi.fun,\n+ lap.1d, the.ela.ess,\n+ poi.iga, hel.apa,\n+ tim.poi, adv.dif.2D,\n lap.cou.lcb, wel,\n- hel.apa, poi.par.stu,\n- sto.sli.bc, tim.poi,\n- aco, poi.fie.dep.mat,\n- , \\int_{\\Omega} tim.adv.dif, poi.iga,\n-dw_laplace , \\cdot \\nabla hyd,\n- poi.sho.syn, sin,\n- adv.dif.2D, vib.aco,\n- lap.2D, cub, poi.fun,\n- tim.poi.exp, ref.evp,\n- bur.2D, the.ela.ess,\n- the.ele, lap.flu.2d,\n- lap.1d\n+ hyd, tim.poi.exp,\n+ bor, lap.tim.ebc\n \\int_{\\Omega}\n ((\\ul{w}\n , \\cdot \\nabla)\n dw_lin_convect , \\ul{u}) \\cdot sta.nav.sto\n LinearConvectTerm \\ul{v}\n ((\\ul{w}\n \\cdot \\nabla)\n@@ -437,36 +436,36 @@\n LinearDRotSpringTerm , \\mbox mul.poi.con\n , { elements }\n T_K^{i,j}\\\\\n \\mbox{ in a\n region\n connecting\n nodes } i, j\n- mix.mes, pie.ela,\n- lin.ela.iga,\n- mod.ana.dec, the.ela,\n- sei.loa, bio.sho.syn,\n- lin.ela.up, wed.mes,\n- lin.ela.mM, nod.lcb,\n- ela, ela.shi.per,\n- its.3, com.ela.mat,\n- , \\int_{\\Omega} mul.poi.con,\n- , {ij}(\\ul{v}) its.4, lin.ela.opt,\n-LinearElasticTerm {u}) mul.nod.lcb,\n- pie.ela.mac, mat.non,\n+ tru.bri, bio.npb.lag,\n+ lin.ela.opt,\n+ pie.ela.mac,\n+ two.bod.con, lin.vis,\n+ mul.nod.lcb,\n+ lin.ela.iga, bio,\n+ vib.aco, its.2,\n ela.con.sph,\n- lin.ela.tra,\n- lin.ela.dam, vib.aco,\n- two.bod.con,\n- bio.npb.lag, pre.fib,\n- its.1, tru.bri,\n- lin.vis, the.ela.ess,\n- lin.ela, pie.ela\n+ , \\int_{\\Omega} bio.sho.syn, pie.ela,\n+ , {ij}(\\ul{v}) ela.con.pla, sei.loa,\n+LinearElasticTerm {u}) lin.ela.dam, wed.mes,\n+ lin.ela.mM, its.4,\n+ its.3, ela.shi.per,\n+ bio.npb, mod.ana.dec,\n+ mix.mes, lin.ela.tra,\n+ ela, the.ela.ess,\n+ mat.non, com.ela.mat,\n+ the.ela, mul.poi.con,\n+ nod.lcb, pre.fib,\n+ its.1\n \\int_{\\Omega}\n D_{ijkl}\\ e_\n {ij}(\\ul{v})\n e_{kl}(\\ul\n , {u})\\\\ \\mbox\n , { with } \\\\\n dw_lin_elastic_iso {jl}+\\delta_\n {il} \\delta_\n {jk}) +\n \\lambda \\\n \\delta_{ij}\n \\delta_{kl}\n , \\int_{\\Omega}\n-dw_lin_prestress e_{ij}(\\ul pie.ela.mac, pre.fib\n+dw_lin_prestress e_{ij}(\\ul pie.ela.mac\n {v})\n \\ul{f}^{(i)}\n = - \\ul{f}^{\n (j)} = k (\\ul\n {u}^{(j)} -\n \\ul{u}^{\n dw_lin_spring , (i)})\\\\ \\quad\n@@ -579,17 +578,17 @@\n PiezoStrainTerm g_{kij} e_\n {ij}(\\ul{u})\n ev_piezo_stress , \\int_{\\Omega}\n PiezoStressTerm g_{kij}\n \\nabla_k p\n \\ul{f}^i =\n \\ul{\\bar f}^i\n-dw_point_load , \\quad \\forall its.4, tru.bri,\n+dw_point_load , \\quad \\forall tru.bri, its.2,\n ConcentratedPointLoadTerm \\mbox{ FE she.can, its.3,\n- node } i its.1, its.2\n+ node } i its.4, its.1\n \\mbox{ in a\n region }\n \\ul{f}^i = -\n k \\ul{u}^i\n dw_point_lspring , \\quad \\forall\n LinearPointSpringTerm , \\mbox{ FE\n node } i\n@@ -597,34 +596,34 @@\n region }\n dw_s_dot_grad_i_s , Z^i = \\int_\n ScalarDotGradIScalarTerm , {\\Omega} q\n \\nabla_i p\n \\int_{\\Omega}\n , q \\ul{y}\n , \\cdot \\nabla\n-dw_s_dot_mgrad_s p \\mbox{ , } adv.dif.2D, adv.1D,\n-ScalarDotMGradScalarTerm , \\int_{\\Omega} adv.2D\n+dw_s_dot_mgrad_s p \\mbox{ , } adv.1D, adv.2D,\n+ScalarDotMGradScalarTerm , \\int_{\\Omega} adv.dif.2D\n , p \\ul{y}\n \\cdot \\nabla\n q\n , \\int_{\\Omega}\n dw_shell10x , {ij}(\\ul{v}) she.can\n , e_{kl}(\\ul\n {u})\n \\int_{\\Omega}\n p\\ \\nabla\n \\cdot \\ul{v}\n , \\int_{\\Omega}\n- , \\cdot \\ul nav.sto.iga,\n+ , \\cdot \\ul sta.nav.sto,\n dw_stokes { or } \\int_ sta.nav.sto, nav.sto,\n- { or } \\int_ nav.sto.iga,\n+ , p\\ \\nabla\n , \\cdot \\ul{v}\n \\mbox{ , }\n \\int_{\\Omega}\n c\\ q\\ \\nabla\n \\cdot \\ul{u}\n \\int_{\\Omega}\n@@ -640,29 +639,29 @@\n StokesWaveDivTerm , \\int_{\\Omega}\n , (\\ul{\\kappa}\n \\cdot \\ul{u})\n (\\nabla \\cdot\n \\ul{v})\n ev_sum_vals \n SumNodalValuesTerm\n- \\int_{\\Gamma}\n-ev_surface_flux , \\ul{n} \\cdot\n-SurfaceFluxTerm K_{ij}\n- \\nabla_j p\n , q \\ul{n}\n SurfaceFluxOperatorTerm , \\cdot \\ull{K}\n \\cdot \\nabla\n p\n \\int_{\\Gamma}\n- , \\ull{\\sigma} lin.ela.tra, nod.lcb,\n-LinearTractionTerm \\int_{\\Gamma} ela.shi.per, tru.bri,\n- \\ul{v} \\cdot lin.vis, com.ela.mat\n+ev_surface_flux , \\ul{n} \\cdot\n+SurfaceFluxTerm K_{ij}\n+ \\nabla_j p\n+ \\int_{\\Gamma}\n+ , \\ull{\\sigma} wed.mes, ela.shi.per,\n+LinearTractionTerm \\int_{\\Gamma} mix.mes, nod.lcb,\n+ \\ul{v} \\cdot lin.ela.tra\n \\ul{n},\n \\int_{\\Gamma}\n ev_surface_moment , \\ul{n} (\\ul\n SurfaceMomentTerm {x} - \\ul{x}_\n 0)\n dw_surface_ndot , \\int_{\\Gamma}\n SufaceNormalDotTerm \\int_{\\Omega}\n , \\ul{u} \\cdot\n , \\ul{c} q\\\\\n \n ev_volume \\int_{\\cal\n VolumeTerm {D}} 1\n \\int_{\\Omega}\n-dw_volume_lvf , \\ul{f} \\cdot bur.2D, poi.par.stu,\n+dw_volume_lvf , \\ul{f} \\cdot poi.par.stu, bur.2D,\n LinearVolumeForceTerm \\ul{v} \\mbox adv.dif.2D, poi.iga\n { or } \\int_\n {\\Omega} f q\n ,\n dw_volume_nvf , \\int_{\\Omega} poi.non.mat\n NonlinearVolumeForceTerm , q f(p)\n \n@@ -739,28 +738,28 @@\n k} \\pdiff{u_i}{x_j} w_\n i ]\n \\int_{\\Omega} \\hat{K}_\n {ij} \\nabla_i q\\,\n \\nabla_j p\n \\hat{K}_{ij} = K_\n , {ij}\\left( \\delta_\n-ev_sd_diffusion , {ik}\\delta_{jl} \\nabla\n-SDDiffusionTerm , \\cdot \\ul{\\Vcal} -\n+de_sd_diffusion , {ik}\\delta_{jl} \\nabla\n+ESDDiffusionTerm , \\cdot \\ul{\\Vcal} -\n \\delta_{ik}{\\partial\n \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}\n {\\partial \\Vcal_i \\over\n \\partial x_k}\\right)\n \\int_{\\Omega} \\hat{K}_\n {ij} \\nabla_i q\\,\n \\nabla_j p\n \\hat{K}_{ij} = K_\n , {ij}\\left( \\delta_\n-de_sd_diffusion , {ik}\\delta_{jl} \\nabla\n-ESDDiffusionTerm , \\cdot \\ul{\\Vcal} -\n+ev_sd_diffusion , {ik}\\delta_{jl} \\nabla\n+SDDiffusionTerm , \\cdot \\ul{\\Vcal} -\n \\delta_{ik}{\\partial\n \\Vcal_j \\over \\partial\n x_l} - \\delta_{jl}\n {\\partial \\Vcal_i \\over\n \\partial x_k}\\right)\n \\int_{\\Omega} p [\n , (\\nabla \\cdot \\ul{w})\n@@ -770,31 +769,31 @@\n {w_i}{x_k} ]\n \\int_{\\Omega} \\hat{I}\n \\nabla \\ul{v} : \\nabla\n \\ul{u} \\mbox{ , } \\int_\n {\\Omega} \\nu \\hat{I}\n \\nabla \\ul{v} : \\nabla\n , \\ul{u}\n-de_sd_div_grad , \\hat{I}_{ijkl} =\n-ESDDivGradTerm , \\delta_{ik}\\delta_{jl}\n+ev_sd_div_grad , \\hat{I}_{ijkl} =\n+SDDivGradTerm , \\delta_{ik}\\delta_{jl}\n \\nabla \\cdot \\ul{\\Vcal}\n - \\delta_{ik}\\delta_\n {js} {\\partial \\Vcal_\n l \\over \\partial x_s} -\n \\delta_{is}\\delta_{jl}\n {\\partial \\Vcal_k \\over\n \\partial x_s}\n \\int_{\\Omega} \\hat{I}\n \\nabla \\ul{v} : \\nabla\n \\ul{u} \\mbox{ , } \\int_\n {\\Omega} \\nu \\hat{I}\n \\nabla \\ul{v} : \\nabla\n , \\ul{u}\n-ev_sd_div_grad , \\hat{I}_{ijkl} =\n-SDDivGradTerm , \\delta_{ik}\\delta_{jl}\n+de_sd_div_grad , \\hat{I}_{ijkl} =\n+ESDDivGradTerm , \\delta_{ik}\\delta_{jl}\n \\nabla \\cdot \\ul{\\Vcal}\n - \\delta_{ik}\\delta_\n {js} {\\partial \\Vcal_\n l \\over \\partial x_s} -\n \\delta_{is}\\delta_{jl}\n {\\partial \\Vcal_k \\over\n \\partial x_s}\n@@ -816,88 +815,88 @@\n \\int_{\\Omega} p q\n , (\\nabla \\cdot \\ul\n ev_sd_dot , {\\Vcal}) \\mbox{ , }\n SDDotTerm \\int_{\\Omega} (\\ul{u}\n \\cdot \\ul{w}) (\\nabla\n \\cdot \\ul{\\Vcal})\n \\int_{\\Omega} \\hat{D}_\n- {ijkl}\\ e_{ij}(\\ul{v})\n- e_{kl}(\\ul{u})\n- , \\hat{D}_{ijkl} = D_\n-ev_sd_lin_elastic , {ijkl}(\\nabla \\cdot \\ul\n-SDLinearElasticTerm , {\\Vcal}) - D_{ijkq}\n- {\\partial \\Vcal_l \\over\n- \\partial x_q} - D_\n- {iqkl}{\\partial \\Vcal_\n- j \\over \\partial x_q}\n- \\int_{\\Omega} \\hat{D}_\n {ijkl} {\\partial v_\n i \\over \\partial x_j}\n {\\partial u_k \\over\n , \\partial x_l}\n de_sd_lin_elastic , \\hat{D}_{ijkl} = D_\n ESDLinearElasticTerm , {ijkl}(\\nabla \\cdot \\ul\n {\\Vcal}) - D_{ijkq}\n {\\partial \\Vcal_l \\over\n \\partial x_q} - D_\n {iqkl}{\\partial \\Vcal_\n j \\over \\partial x_q}\n+ \\int_{\\Omega} \\hat{D}_\n+ {ijkl}\\ e_{ij}(\\ul{v})\n+ e_{kl}(\\ul{u})\n+ , \\hat{D}_{ijkl} = D_\n+ev_sd_lin_elastic , {ijkl}(\\nabla \\cdot \\ul\n+SDLinearElasticTerm , {\\Vcal}) - D_{ijkq}\n+ {\\partial \\Vcal_l \\over\n+ \\partial x_q} - D_\n+ {iqkl}{\\partial \\Vcal_\n+ j \\over \\partial x_q}\n+ \\int_{\\Omega} \\hat{g}_\n+ {kij}\\ e_{ij}(\\ul{u})\n+ \\nabla_k p\n+ , \\hat{g}_{kij} = g_{kij}\n+ev_sd_piezo_coupling , (\\nabla \\cdot \\ul\n+SDPiezoCouplingTerm , {\\Vcal}) - g_{kil}\n+ {\\partial \\Vcal_j \\over\n+ \\partial x_l} - g_{lij}\n+ {\\partial \\Vcal_k \\over\n+ \\partial x_l}\n \\int_{\\Omega} \\hat{g}_\n {kij}\\ e_{ij}(\\ul{v})\n \\nabla_k p \\mbox{ , }\n , \\int_{\\Omega} \\hat{g}_\n , {kij}\\ e_{ij}(\\ul{u})\n de_sd_piezo_coupling , \\nabla_k q\n ESDPiezoCouplingTerm \\hat{g}_{kij} = g_{kij}\n , (\\nabla \\cdot \\ul\n , , {\\Vcal}) - g_{kil}\n {\\partial \\Vcal_j \\over\n \\partial x_l} - g_{lij}\n {\\partial \\Vcal_k \\over\n \\partial x_l}\n- \\int_{\\Omega} \\hat{g}_\n- {kij}\\ e_{ij}(\\ul{u})\n- \\nabla_k p\n- , \\hat{g}_{kij} = g_{kij}\n-ev_sd_piezo_coupling , (\\nabla \\cdot \\ul\n-SDPiezoCouplingTerm , {\\Vcal}) - g_{kil}\n- {\\partial \\Vcal_j \\over\n- \\partial x_l} - g_{lij}\n- {\\partial \\Vcal_k \\over\n- \\partial x_l}\n \\int_{\\Omega} p\\, \\hat\n {I}_{ij} {\\partial v_\n , i \\over \\partial x_j}\n , \\mbox{ , } \\int_\n de_sd_stokes , {\\Omega} q\\, \\hat{I}_\n ESDStokesTerm {ij} {\\partial u_\n , i \\over \\partial x_j}\n , , \\hat{I}_{ij} = \\delta_\n {ij} \\nabla \\cdot \\Vcal\n - {\\partial \\Vcal_\n j \\over \\partial x_i}\n ev_sd_surface_integrate , \\int_{\\Gamma} p \\nabla\n SDSufaceIntegrateTerm \\cdot \\ul{\\Vcal}\n+ , \\int_{\\Gamma} \\ul{v}\n+ev_sd_surface_ltr , \\cdot (\\ull{\\sigma}\\,\n+SDLinearTractionTerm \\ul{n}), \\int_{\\Gamma}\n+ \\ul{v} \\cdot \\ul{n},\n \\int_{\\Gamma} \\ul{v}\n \\cdot \\left[\\left(\\ull\n {\\hat{\\sigma}}\\, \\nabla\n \\cdot \\ul{\\cal{V}} -\n \\ull{{\\hat\\sigma}}\\,\n de_sd_surface_ltr , \\nabla \\ul{\\cal{V}}\n ESDLinearTractionTerm , \\right)\\ul{n}\\right]\n \\ull{\\hat\\sigma} = \\ull\n {I} \\mbox{ , } \\ull\n {\\hat\\sigma} = c\\,\\ull\n {I} \\mbox{ or } \\ull\n {\\hat\\sigma} = \\ull\n {\\sigma}\n- , \\int_{\\Gamma} \\ul{v}\n-ev_sd_surface_ltr , \\cdot (\\ull{\\sigma}\\,\n-SDLinearTractionTerm \\ul{n}), \\int_{\\Gamma}\n- \\ul{v} \\cdot \\ul{n},\n \\int_{\\Omega} \\hat{I}_\n {ij} {\\partial p \\over\n , \\partial x_j}\\, v_\n , i \\mbox{ , } \\int_\n de_sd_v_dot_grad_s , {\\Omega} \\hat{I}_{ij}\n ESDVectorDotGradScalarTerm {\\partial q \\over\n , \\partial x_j}\\, u_i\n@@ -951,22 +950,22 @@\n \n \\int_{\\Omega}\n dw_tl_he_genyeoh , S_{ij}(\\ul{u})\n GenYeohTLTerm , \\delta E_{ij}\n (\\ul{u};\\ul\n {v})\n \\int_{\\Omega}\n-dw_tl_he_mooney_rivlin , S_{ij}(\\ul{u}) hyp, bal,\n+dw_tl_he_mooney_rivlin , S_{ij}(\\ul{u}) bal, hyp,\n MooneyRivlinTLTerm , \\delta E_{ij} com.ela.mat\n (\\ul{u};\\ul\n {v})\n \\int_{\\Omega}\n-dw_tl_he_neohook , S_{ij}(\\ul{u}) hyp, per.tl,\n-NeoHookeanTLTerm , \\delta E_{ij} com.ela.mat, bal,\n- (\\ul{u};\\ul act.fib\n+dw_tl_he_neohook , S_{ij}(\\ul{u}) per.tl, bal,\n+NeoHookeanTLTerm , \\delta E_{ij} act.fib, hyp,\n+ (\\ul{u};\\ul com.ela.mat\n {v})\n \\int_{\\Omega}\n dw_tl_he_ogden , S_{ij}(\\ul{u})\n OgdenTLTerm , \\delta E_{ij}\n (\\ul{u};\\ul\n {v})\n ,\n@@ -1029,21 +1028,21 @@\n , \\mathcal\n dw_ul_he_by_fun , {L}\\tau_{ij} hyp.ul.by.fun\n HyperelasticByFunULTerm (\\ul{u}) e_\n {ij}(\\delta\\ul\n {v})/J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_he_mooney_rivlin , {L}\\tau_{ij} hyp.ul, hyp.ul.up\n+dw_ul_he_mooney_rivlin , {L}\\tau_{ij} hyp.ul.up, hyp.ul\n MooneyRivlinULTerm (\\ul{u}) e_\n {ij}(\\delta\\ul\n {v})/J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_he_neohook , {L}\\tau_{ij} hyp.ul, hyp.ul.up\n+dw_ul_he_neohook , {L}\\tau_{ij} hyp.ul.up, hyp.ul\n NeoHookeanULTerm (\\ul{u}) e_\n {ij}(\\delta\\ul\n {v})/J\n \\begin{array}\n {l} \\int_\n {\\Omega} q J\n (\\ul{u}) \\\\\n@@ -1333,15 +1332,15 @@\n {\\delta w}) \\ e_\n {lm,n}(\\ull{w})\n M^C = \\int_{\\cal\n {D}} \\rho \\ul{v}\n \\cdot \\ul{u} \\\\\n , M^L = \\mathrm\n de_mass , {lumping}(M^C) \\\\\n-MassTerm , M^A = (1 - \\beta) ela, sei.loa\n+MassTerm , M^A = (1 - \\beta) sei.loa, ela\n , M^C + \\beta M^L\n \\\\ A = \\sum_e A_\n e \\\\ C = \\sum_\n e A_e^T (M_e^A)^\n {-1} A_e\n , \\int_{\\Gamma} c\n de_non_penetration_p , (\\ul{n} \\cdot \\ul\n"}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/users_guide.html", "source2": "./usr/share/doc/python-sfepy-doc/html/users_guide.html", "comments": ["Ordering differences only"], "unified_diff": "@@ -632,59 +632,59 @@\n

space

\n

basis

\n

region kind

\n

description

\n \n \n \n-

L2

\n-

constant

\n-

cell, facet

\n-

The L2 constant-in-a-region approximation.

\n-\n-

H1

\n+

H1

\n

bernstein

\n

cell, facet

\n

Bernstein basis approximation with positive-only basis function values.

\n \n-

H1

\n+

H1

\n

iga

\n

cell

\n

Bezier extraction based NURBS approximation for isogeometric analysis.

\n \n-

H1

\n+

H1

\n

lagrange

\n

cell, facet

\n

Lagrange basis nodal approximation.

\n \n-

H1

\n+

H1

\n

lagrange_discontinuous

\n

cell

\n

The C0 constant-per-cell approximation.

\n \n-

H1

\n+

H1

\n

lobatto

\n

cell

\n

Hierarchical basis approximation with Lobatto polynomials.

\n \n-

H1

\n+

H1

\n

sem

\n

cell, facet

\n

Spectral element method approximation.

\n \n-

H1

\n+

H1

\n

serendipity

\n

cell, facet

\n

Lagrange basis nodal serendipity approximation with order <= 3.

\n \n-

H1

\n+

H1

\n

shell10x

\n

cell

\n

The approximation for the shell10x element.

\n \n+

L2

\n+

constant

\n+

cell, facet

\n+

The L2 constant-in-a-region approximation.

\n+\n

DG

\n

legendre_discontinuous

\n

cell

\n

Discontinuous Galerkin method approximation with Legendre basis.

\n \n \n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -277,16 +277,14 @@\n * tensor product elements: 0, 1, \u20181B\u2019\n Optional bubble function enrichment is marked by \u2018B\u2019.\n The implemented combinations of spaces and bases are listed below, the space\n column corresponds to , the basis column to and\n region type to the field region type.\n Fields\u00b6\n space basis region kind description\n-L2 constant cell, facet The L2 constant-in-a-region\n- approximation.\n H1 bernstein cell, facet Bernstein basis approximation with\n positive-only basis function values.\n Bezier extraction based NURBS\n H1 iga cell approximation for isogeometric\n analysis.\n H1 lagrange cell, facet Lagrange basis nodal approximation.\n H1 lagrange_discontinuous cell The C0 constant-per-cell\n@@ -294,14 +292,16 @@\n H1 lobatto cell Hierarchical basis approximation with\n Lobatto polynomials.\n H1 sem cell, facet Spectral element method approximation.\n H1 serendipity cell, facet Lagrange basis nodal serendipity\n approximation with order <= 3.\n H1 shell10x cell The approximation for the shell10x\n element.\n+L2 constant cell, facet The L2 constant-in-a-region\n+ approximation.\n DG legendre_discontinuous cell Discontinuous Galerkin method\n approximation with Legendre basis.\n **** Variables\u00b6 ****\n Variables use the FE approximation given by the specified field:\n variables = {\n : (, , , [])\n }\n"}]}]}]}]}]}