{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.c4lpv2WS/b1/pandas_2.2.3+dfsg-9_arm64.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.c4lpv2WS/b2/pandas_2.2.3+dfsg-9_arm64.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,5 +1,5 @@\n \n- 4c6a9131d2b24bf80a0951f33a88e98b 10794620 doc optional python-pandas-doc_2.2.3+dfsg-9_all.deb\n- cdd2f20d52917edbf0c7c56aca8e2e8d 34776572 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-9_arm64.deb\n- 441b67d24cf446b81d658bbd4a85700e 3877148 python optional python3-pandas-lib_2.2.3+dfsg-9_arm64.deb\n+ e597f4391b778ed2167ef4805c6b1773 10793864 doc optional python-pandas-doc_2.2.3+dfsg-9_all.deb\n+ a8edc16622ec86de69c8275bed447999 34776136 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-9_arm64.deb\n+ e6e6b1396f5ee91a540716aa9087d9ab 3875984 python optional python3-pandas-lib_2.2.3+dfsg-9_arm64.deb\n 6f05a87b66230b056112f4c7c394692b 3096828 python optional python3-pandas_2.2.3+dfsg-9_all.deb\n"}, {"source1": "python-pandas-doc_2.2.3+dfsg-9_all.deb", "source2": "python-pandas-doc_2.2.3+dfsg-9_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2025-03-29 13:01:52.000000 debian-binary\n--rw-r--r-- 0 0 0 147380 2025-03-29 13:01:52.000000 control.tar.xz\n--rw-r--r-- 0 0 0 10647048 2025-03-29 13:01:52.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 147376 2025-03-29 13:01:52.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 10646296 2025-03-29 13:01:52.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -6256,61 +6256,61 @@\n -rw-r--r-- 0 root (0) root (0) 210184 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html\n -rw-r--r-- 0 root (0) root (0) 48665 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html\n -rw-r--r-- 0 root (0) root (0) 48657 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html\n -rw-r--r-- 0 root (0) root (0) 53295 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/release.html\n -rw-r--r-- 0 root (0) root (0) 269 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 17010 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/search.html\n--rw-r--r-- 0 root (0) root (0) 2358647 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 2358599 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n -rw-r--r-- 0 root (0) root (0) 259 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/style.html\n -rw-r--r-- 0 root (0) root (0) 255 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/text.html\n -rw-r--r-- 0 root (0) root (0) 256 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 277 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 272 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/\n -rw-r--r-- 0 root (0) root (0) 171380 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html\n--rw-r--r-- 0 root (0) root (0) 283835 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n+-rw-r--r-- 0 root (0) root (0) 283836 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n -rw-r--r-- 0 root (0) root (0) 436075 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html\n -rw-r--r-- 0 root (0) root (0) 36646 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html\n -rw-r--r-- 0 root (0) root (0) 217515 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html\n -rw-r--r-- 0 root (0) root (0) 18313 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html\n -rw-r--r-- 0 root (0) root (0) 66125 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html\n -rw-r--r-- 0 root (0) root (0) 160414 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html\n -rw-r--r-- 0 root (0) root (0) 81376 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html\n--rw-r--r-- 0 root (0) root (0) 115461 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n+-rw-r--r-- 0 root (0) root (0) 115453 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n -rw-r--r-- 0 root (0) root (0) 107882 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html\n -rw-r--r-- 0 root (0) root (0) 300850 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html\n -rw-r--r-- 0 root (0) root (0) 59715 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html\n -rw-r--r-- 0 root (0) root (0) 395484 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html\n -rw-r--r-- 0 root (0) root (0) 41778 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html\n -rw-r--r-- 0 root (0) root (0) 1145820 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html\n -rw-r--r-- 0 root (0) root (0) 208885 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html\n -rw-r--r-- 0 root (0) root (0) 178690 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html\n -rw-r--r-- 0 root (0) root (0) 112153 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html\n -rw-r--r-- 0 root (0) root (0) 147524 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html\n -rw-r--r-- 0 root (0) root (0) 162660 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html\n--rw-r--r-- 0 root (0) root (0) 115581 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n+-rw-r--r-- 0 root (0) root (0) 115579 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n -rw-r--r-- 0 root (0) root (0) 65863 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html\n -rw-r--r-- 0 root (0) root (0) 698240 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html\n--rw-r--r-- 0 root (0) root (0) 87857 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 87843 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 165302 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html\n -rw-r--r-- 0 root (0) root (0) 100947 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 486621 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 204461 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html\n -rw-r--r-- 0 root (0) root (0) 141947 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html\n -rw-r--r-- 0 root (0) root (0) 270 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/\n -rw-r--r-- 0 root (0) root (0) 107681 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html\n -rw-r--r-- 0 root (0) root (0) 10569 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz\n -rw-r--r-- 0 root (0) root (0) 83987 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html\n -rw-r--r-- 0 root (0) root (0) 66492 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html\n -rw-r--r-- 0 root (0) root (0) 82312 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html\n -rw-r--r-- 0 root (0) root (0) 104316 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html\n--rw-r--r-- 0 root (0) root (0) 222516 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n+-rw-r--r-- 0 root (0) root (0) 222518 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n -rw-r--r-- 0 root (0) root (0) 89385 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html\n -rw-r--r-- 0 root (0) root (0) 243730 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html\n -rw-r--r-- 0 root (0) root (0) 83262 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html\n -rw-r--r-- 0 root (0) root (0) 252303 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html\n -rw-r--r-- 0 root (0) root (0) 68280 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html\n -rw-r--r-- 0 root (0) root (0) 75115 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html\n -rw-r--r-- 0 root (0) root (0) 145199 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html\n"}, {"source1": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "source2": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -21550,15 +21550,14 @@\n \"007200\": 2184,\n \"007207\": [2184, 2214],\n \"007717\": 2199,\n \"007824\": 15,\n \"007952\": 2207,\n \"007996\": 2186,\n \"007f\": 203,\n- \"008\": 2193,\n \"008182\": 2204,\n \"008298\": 2186,\n \"008344\": 2207,\n \"008358\": 2207,\n \"008500\": 15,\n \"008543\": [102, 1158],\n \"008943\": [102, 1158],\n@@ -21581,14 +21580,15 @@\n \"010026\": 2191,\n \"010081\": 15,\n \"010165\": 2199,\n \"010589\": 2193,\n \"010670\": [102, 1158],\n \"0108\": 2257,\n \"010903\": 2207,\n+ \"011\": 2193,\n \"011111\": [182, 760],\n \"011342\": 2207,\n \"011351\": 2207,\n \"011374\": 2195,\n \"011470\": 2207,\n \"011736\": 2186,\n \"011829\": 2207,\n@@ -21633,15 +21633,14 @@\n \"016\": 2193,\n \"016009\": 15,\n \"016287\": 2210,\n \"016331\": 2210,\n \"016424\": [16, 19],\n \"016692\": [2184, 2195, 2214],\n \"01685762652715874\": [624, 1215],\n- \"017\": 2193,\n \"017106\": 2207,\n \"017118\": 2199,\n \"017152\": 2186,\n \"017263\": 2207,\n \"017276\": 2191,\n \"017587\": [2184, 2195, 2214],\n \"017796\": 2207,\n@@ -21651,15 +21650,15 @@\n \"018193\": 2207,\n \"018409\": 2207,\n \"018601\": [2184, 2214],\n \"018808\": 2207,\n \"018904\": 2207,\n \"018941\": 2207,\n \"018993\": 2214,\n- \"019\": 2207,\n+ \"019\": [2193, 2207],\n \"019449\": 2207,\n \"019794\": 2197,\n \"01t00\": [2163, 2199, 2210, 2235, 2246, 2261],\n \"01t01\": 2210,\n \"01t03\": 2210,\n \"01t05\": [909, 2210, 2235],\n \"01t07\": 1280,\n@@ -21820,14 +21819,15 @@\n \"0396\": [2184, 2186],\n \"039624\": 2207,\n \"039926\": 2210,\n \"03c\": 2208,\n \"03t00\": [2199, 2210, 2235, 2261],\n \"03t05\": [909, 2210],\n \"04\": [26, 27, 29, 31, 80, 84, 88, 114, 127, 148, 149, 157, 177, 178, 207, 213, 230, 292, 294, 306, 307, 317, 330, 332, 345, 402, 423, 528, 529, 592, 595, 600, 640, 644, 646, 658, 659, 671, 685, 688, 703, 725, 726, 732, 755, 756, 781, 788, 804, 985, 1075, 1145, 1269, 1270, 1280, 1289, 1344, 1393, 1452, 1498, 1500, 1741, 1776, 1815, 2184, 2185, 2186, 2188, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2250, 2261, 2264, 2271, 2283, 2298],\n+ \"040\": 2193,\n \"0400\": [2222, 2271],\n \"040039\": 2216,\n \"040247\": 2207,\n \"0405\": [182, 760],\n \"040775\": 2207,\n \"040863\": 2186,\n \"041\": [1447, 2200, 2232],\n@@ -21941,15 +21941,14 @@\n \"056780\": 2210,\n \"056842\": 2207,\n \"056909\": 2210,\n \"057165\": 2207,\n \"057490\": 2193,\n \"057737\": 2235,\n \"057974\": 2257,\n- \"058\": 2193,\n \"058006\": 2199,\n \"058176\": 2207,\n \"0582\": 2202,\n \"0582158\": 2202,\n \"058373\": 2207,\n \"058534\": 2210,\n \"058615\": 2207,\n@@ -22252,20 +22251,20 @@\n \"0n\": [1489, 2298],\n \"0px\": 2207,\n \"0rc0\": 13,\n \"0th\": [26, 249, 882, 1202, 2185, 2197, 2199, 2235],\n \"0x00\": 2294,\n \"0x40\": 2294,\n \"0x7efd0c0b0690\": 3,\n- \"0xffff3f5e92b0\": 2230,\n- \"0xffff717fdf80\": 2210,\n- \"0xffff731e84b0\": 2199,\n- \"0xffff7c545a80\": 2197,\n- \"0xffff9bb39d30\": 2246,\n- \"0xffffa0207b60\": 2195,\n+ \"0xffff1b6f52b0\": 2230,\n+ \"0xffff41642480\": 2210,\n+ \"0xffff4301edf0\": 2199,\n+ \"0xffff5c472a10\": 2197,\n+ \"0xffff753074d0\": 2246,\n+ \"0xffff77d624e0\": 2195,\n \"1\": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310],\n \"10\": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308],\n \"100\": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307],\n \"1000\": [9, 10, 15, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294],\n \"10000\": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266],\n \"100000\": [1354, 1372, 2199, 2201, 2210],\n \"1000000\": [144, 2199, 2228],\n@@ -22856,15 +22855,15 @@\n \"1148\": 2219,\n \"11481\": 2235,\n \"11485\": 2231,\n \"11488\": 2230,\n \"114907\": 2207,\n \"11497\": 2230,\n \"11499\": 2249,\n- \"115\": [282, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2230, 2231, 2232, 2257],\n+ \"115\": [282, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2230, 2231, 2232, 2257],\n \"11502\": 2230,\n \"11503\": 2257,\n \"11514\": 2231,\n \"11517\": 2229,\n \"11519\": 2229,\n \"11520\": 2229,\n \"11522\": 2230,\n@@ -23297,15 +23296,15 @@\n \"12679\": 2283,\n \"126818\": 2197,\n \"12684\": 2231,\n \"12687\": 2231,\n \"12688\": 2235,\n \"12695\": 2231,\n \"126970\": [2224, 2228],\n- \"127\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2204, 2208, 2210, 2211, 2225, 2227, 2231, 2232, 2283],\n+ \"127\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2204, 2208, 2210, 2211, 2225, 2227, 2231, 2232, 2283],\n \"12701\": 2231,\n \"12702\": 2230,\n \"127029\": 2235,\n \"12706\": 2231,\n \"12713\": 2231,\n \"1272\": 2298,\n \"12723\": 2231,\n@@ -23458,15 +23457,15 @@\n \"13078\": 2232,\n \"13082\": 2232,\n \"13083\": 2238,\n \"130932\": 2207,\n \"13097\": 2235,\n \"13098\": 2232,\n \"130980\": 2195,\n- \"131\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2232, 2249, 2283],\n+ \"131\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2232, 2249, 2283],\n \"1310\": 2199,\n \"13101\": 2239,\n \"13104\": 2232,\n \"13107\": 2232,\n \"13109\": 2232,\n \"13110\": 2232,\n \"13119\": 2232,\n@@ -23495,15 +23494,15 @@\n \"13176\": 2232,\n \"13179\": 2235,\n \"1318\": [16, 17, 18, 19, 2199, 2235],\n \"13180\": 2232,\n \"1319\": [16, 17, 18, 19, 2199, 2235],\n \"13191\": 2232,\n \"13193\": 30,\n- \"132\": [2184, 2185, 2186, 2188, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2208, 2210, 2211, 2222, 2230, 2232, 2249, 2283],\n+ \"132\": [2184, 2185, 2186, 2188, 2191, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2208, 2210, 2211, 2222, 2230, 2232, 2249, 2283],\n \"1320\": [16, 17, 18, 19, 2199, 2235],\n \"13200\": 2232,\n \"132003\": [15, 2185, 2197, 2199, 2202, 2215, 2257],\n \"13200317033032932\": 2197,\n \"132009\": 2207,\n \"13202\": 2234,\n \"132023\": 2199,\n@@ -23797,15 +23796,15 @@\n \"13873\": 2238,\n \"13874\": [2232, 2241],\n \"13876\": 2232,\n \"13879\": 2234,\n \"13884\": 2232,\n \"13894\": 2232,\n \"13898\": 2232,\n- \"139\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2212, 2232, 2298],\n+ \"139\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2212, 2232, 2298],\n \"13900\": 2232,\n \"13902\": 2232,\n \"13905\": 2241,\n \"13907\": 2232,\n \"139168\": 2197,\n \"13917\": 2232,\n \"13918\": 2238,\n@@ -24314,15 +24313,15 @@\n \"15495\": 2238,\n \"1549507744\": 2199,\n \"1549507744249032\": 2197,\n \"154951\": [15, 2185, 2197, 2199, 2202],\n \"154971\": 22,\n \"154975\": 22,\n \"15498\": 2235,\n- \"155\": [1447, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2207, 2210, 2211, 2232],\n+ \"155\": [1447, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2207, 2210, 2211, 2232],\n \"15501\": 2246,\n \"15503\": 2235,\n \"15504\": 2235,\n \"15506\": 2246,\n \"15507\": 2238,\n \"15516\": 2235,\n \"15520\": 2235,\n@@ -24571,15 +24570,15 @@\n \"16357\": 2241,\n \"16359\": 2238,\n \"16361\": 2236,\n \"16378\": 2236,\n \"16382\": 2236,\n \"16394\": 2236,\n \"16395\": 2236,\n- \"164\": [2185, 2186, 2188, 2195, 2197, 2199, 2201, 2210, 2211],\n+ \"164\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2210, 2211],\n \"16402\": 2238,\n \"16405\": 2236,\n \"16406\": 2241,\n \"16409\": 2236,\n \"16413\": 2236,\n \"16417\": 2238,\n \"16442\": 2249,\n@@ -25104,15 +25103,15 @@\n \"18271\": 2246,\n \"18273\": 2246,\n \"182879\": 2186,\n \"18291\": 2283,\n \"18293\": 2241,\n \"182937\": [2185, 2191, 2197],\n \"18295\": 2241,\n- \"183\": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2205, 2210, 2211, 2212],\n+ \"183\": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2210, 2211, 2212],\n \"18301\": 2239,\n \"18303\": 2250,\n \"18304\": 2241,\n \"183051\": 2186,\n \"183064\": 2207,\n \"18307\": 2265,\n \"18308\": 2246,\n@@ -25369,15 +25368,15 @@\n \"19086\": 2241,\n \"19087\": 2246,\n \"1909\": [2199, 2203, 2298],\n \"190912\": 2257,\n \"190913\": 2207,\n \"19096\": 2241,\n \"190976\": [2220, 2228, 2230],\n- \"191\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211],\n+ \"191\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211],\n \"1910\": [2203, 2298],\n \"19101\": 2241,\n \"19107\": 2241,\n \"1911\": [2203, 2298],\n \"191120\": 2186,\n \"1912\": [2203, 2298],\n \"19124\": 2241,\n@@ -25746,19 +25745,20 @@\n \"2021\": [288, 296, 318, 639, 652, 673, 940, 943, 948, 957, 970, 997, 1542, 2201, 2207, 2213, 2277, 2289, 2294],\n \"2022\": [5, 22, 523, 525, 528, 537, 982, 1185, 1246, 1288, 1491, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1542, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1560, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1578, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1598, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1620, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1637, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1657, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1677, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1699, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1720, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1758, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1776, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1793, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1815, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1839, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1857, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1876, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1894, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1912, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1930, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1947, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1964, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1982, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2018, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2036, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2054, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2108, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2127, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2145, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2186, 2203, 2213, 2227, 2298, 2302, 2307],\n \"2022a\": 2294,\n \"2023\": [34, 270, 298, 301, 320, 363, 511, 519, 526, 533, 543, 544, 545, 546, 547, 548, 549, 551, 554, 555, 556, 557, 558, 560, 563, 564, 565, 566, 567, 651, 894, 898, 954, 959, 960, 982, 984, 1000, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1024, 1122, 1141, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1501, 1620, 1930, 2090, 2127, 2145, 2213],\n \"202380\": 2207,\n \"20239\": [2241, 2265],\n \"2024\": [270, 544, 546, 555, 567, 894, 898, 2127, 2213],\n- \"2025\": [36, 544, 546, 555, 567, 894, 898, 2228],\n+ \"2025\": [36, 544, 546, 555, 567, 894, 898],\n \"20251\": 2307,\n \"2026\": 2228,\n \"202602\": 2205,\n \"202646\": 2230,\n+ \"2027\": 2228,\n \"20271\": 2241,\n \"202872\": [2184, 2214],\n \"202946\": 2207,\n \"203\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2253],\n \"2030\": 2265,\n \"20303\": 2265,\n \"20306\": 2302,\n@@ -26092,15 +26092,15 @@\n \"21459\": 2246,\n \"21469\": 2246,\n \"21470\": 2243,\n \"21471\": 2243,\n \"21484\": 2243,\n \"2149\": 2264,\n \"21494\": 2243,\n- \"215\": [2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2210, 2211, 2254],\n+ \"215\": [2185, 2186, 2188, 2191, 2195, 2197, 2199, 2210, 2211, 2254],\n \"21508\": 2246,\n \"2151\": 2264,\n \"21510\": 2249,\n \"21517\": 2277,\n \"215202\": 2207,\n \"21521\": 2249,\n \"21524\": 2243,\n@@ -26172,15 +26172,15 @@\n \"21770\": 2246,\n \"21775\": 2265,\n \"2178\": 2246,\n \"21781\": 2246,\n \"217815\": 2191,\n \"21785\": 2244,\n \"21789\": 2246,\n- \"218\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211, 2220, 2231],\n+ \"218\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2220, 2231],\n \"21801\": 2249,\n \"21809\": 2246,\n \"21813\": 2245,\n \"21824\": 2271,\n \"2184\": 2264,\n \"21846\": 2246,\n \"218470\": 2193,\n@@ -26221,15 +26221,15 @@\n \"219673\": 15,\n \"21978\": 2246,\n \"21980\": 2246,\n \"21997\": 2246,\n \"21998\": 2246,\n \"21st\": 31,\n \"22\": [10, 15, 17, 18, 19, 22, 23, 25, 29, 30, 31, 32, 133, 144, 208, 213, 230, 345, 513, 515, 535, 708, 782, 788, 804, 993, 1010, 1019, 1259, 1274, 1397, 1430, 1498, 1598, 1657, 1677, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2217, 2218, 2219, 2220, 2222, 2223, 2226, 2227, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2242, 2246, 2249, 2265, 2271, 2277, 2283, 2294, 2298, 2302, 2307],\n- \"220\": [118, 132, 135, 159, 161, 175, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2220, 2257],\n+ \"220\": [118, 132, 135, 159, 161, 175, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211, 2220, 2257],\n \"2200\": [2210, 2265],\n \"22000\": 150,\n \"22001\": 2246,\n \"220026\": 2207,\n \"22004\": 2246,\n \"22005\": 2246,\n \"22015\": 2246,\n@@ -26426,15 +26426,15 @@\n \"22981\": 2246,\n \"22984\": 2246,\n \"229864\": 2207,\n \"22988\": 2246,\n \"229938\": 2207,\n \"22994\": 2246,\n \"23\": [15, 17, 18, 19, 24, 25, 26, 27, 29, 30, 31, 32, 213, 230, 259, 276, 277, 341, 345, 363, 511, 514, 516, 519, 522, 531, 532, 549, 561, 651, 676, 788, 804, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 890, 902, 903, 924, 985, 1192, 1253, 1657, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2235, 2238, 2246, 2247, 2249, 2264, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"230\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2207, 2210, 2254],\n+ \"230\": [2185, 2186, 2188, 2195, 2197, 2199, 2207, 2210, 2254],\n \"23000\": [2199, 2246],\n \"230012\": 23,\n \"230066\": 2191,\n \"23009\": 2246,\n \"2301\": 2217,\n \"23011\": 2249,\n \"23013\": 2249,\n@@ -27258,15 +27258,15 @@\n \"268413\": 2207,\n \"2685\": 2221,\n \"268520\": [2184, 2195, 2214],\n \"2686\": 2215,\n \"2687\": 2215,\n \"2689\": 2215,\n \"268968\": 2207,\n- \"269\": [2186, 2188, 2193, 2195, 2197, 2199, 2210],\n+ \"269\": [2186, 2188, 2195, 2197, 2199, 2210],\n \"2690\": 2215,\n \"26916\": 2249,\n \"26919\": 2283,\n \"2692\": 2215,\n \"269219\": [242, 817],\n \"26934\": 2249,\n \"26939\": 2265,\n@@ -27342,15 +27342,15 @@\n \"27250\": 2249,\n \"272593\": 2230,\n \"27261\": 2251,\n \"272673\": 2207,\n \"27283\": 2265,\n \"27292\": 2265,\n \"272968\": 2195,\n- \"273\": [2186, 2188, 2195, 2197, 2199, 2202, 2210, 2257],\n+ \"273\": [2186, 2188, 2193, 2195, 2197, 2199, 2202, 2210, 2257],\n \"2730\": 2199,\n \"27309\": 2249,\n \"27311\": 2265,\n \"27315\": 2277,\n \"27321\": 2249,\n \"273290\": 2207,\n \"273322\": 2207,\n@@ -27511,15 +27511,15 @@\n \"28115\": 2265,\n \"28118\": 2265,\n \"281247\": [2185, 2191, 2197, 2199, 2202, 2204],\n \"28130\": 2265,\n \"28139\": 2265,\n \"281461\": 2191,\n \"28147\": 2251,\n- \"281473243096784\": 2246,\n+ \"281472639131568\": 2246,\n \"28150\": 2265,\n \"28156\": 2271,\n \"28163\": 2265,\n \"2817\": 1344,\n \"281885\": 2186,\n \"28189\": 2271,\n \"28192\": 2265,\n@@ -28565,15 +28565,15 @@\n \"33463\": 2283,\n \"33469\": [2289, 2298],\n \"33473\": 2271,\n \"33484\": 2289,\n \"33494\": 2277,\n \"33498\": 2271,\n \"334984\": 2199,\n- \"335\": [1433, 2186, 2197, 2199, 2210],\n+ \"335\": [1433, 2186, 2193, 2197, 2199, 2210],\n \"33530\": 2277,\n \"33539\": 2271,\n \"33548\": 2277,\n \"335486\": 2207,\n \"335505\": 2230,\n \"33552\": 2271,\n \"33558\": 2283,\n@@ -29314,15 +29314,15 @@\n \"3717\": 2218,\n \"37172\": 2283,\n \"37173\": 2277,\n \"37174\": 2275,\n \"371900\": 2186,\n \"37194\": 2277,\n \"371983\": 2195,\n- \"372\": [2186, 2193, 2197, 2199, 2210, 2219],\n+ \"372\": [2186, 2197, 2199, 2210, 2219],\n \"372077\": 2204,\n \"372171\": 2207,\n \"37218\": 2277,\n \"37220\": 2275,\n \"372216\": 2207,\n \"37222\": 2298,\n \"37245\": 2275,\n@@ -29927,15 +29927,15 @@\n \"3me\": 1344,\n \"3min\": [213, 788, 1192, 1253, 2210],\n \"3n\": [1508, 1526, 1544, 1562, 1581, 1602, 1622, 1639, 1660, 1681, 1702, 1723, 1743, 1761, 1778, 1795, 1817, 1842, 1859, 1879, 1897, 1915, 1932, 1949, 1967, 1984, 2002, 2021, 2039, 2057, 2075, 2092, 2110, 2129, 2147],\n \"3rd\": [2, 11, 34, 108, 205, 249, 590, 630, 778, 882, 1118, 2186, 2191, 2232, 2246, 2307, 2308, 2310],\n \"3u\": 2209,\n \"4\": [2, 4, 9, 10, 12, 13, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 35, 50, 58, 59, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 116, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 136, 138, 141, 144, 145, 146, 147, 152, 153, 154, 155, 156, 157, 158, 160, 162, 163, 164, 167, 168, 169, 170, 171, 172, 173, 174, 179, 180, 182, 184, 185, 186, 190, 191, 193, 194, 195, 196, 197, 199, 202, 203, 204, 205, 206, 209, 210, 212, 213, 215, 216, 217, 218, 220, 221, 222, 223, 224, 226, 228, 229, 231, 232, 233, 234, 235, 238, 240, 241, 244, 245, 248, 250, 252, 254, 255, 256, 257, 258, 261, 262, 263, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 278, 279, 280, 281, 284, 285, 292, 294, 301, 306, 307, 317, 331, 332, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 358, 367, 370, 380, 383, 389, 393, 394, 398, 399, 401, 404, 414, 420, 421, 429, 434, 436, 437, 455, 459, 461, 469, 473, 475, 477, 483, 490, 494, 496, 499, 501, 532, 568, 577, 579, 580, 581, 582, 583, 591, 592, 593, 594, 595, 596, 599, 600, 601, 603, 604, 605, 611, 612, 616, 618, 619, 621, 625, 626, 627, 628, 629, 630, 632, 634, 635, 636, 640, 644, 646, 658, 659, 671, 682, 683, 686, 688, 692, 696, 697, 698, 700, 701, 702, 703, 704, 712, 713, 714, 715, 716, 717, 720, 724, 730, 731, 732, 733, 738, 741, 742, 746, 748, 750, 758, 760, 762, 766, 767, 768, 769, 770, 771, 776, 778, 783, 784, 787, 788, 789, 793, 798, 799, 806, 807, 808, 812, 815, 816, 821, 823, 824, 830, 833, 835, 845, 846, 849, 858, 859, 862, 863, 865, 866, 868, 874, 879, 881, 883, 885, 888, 889, 895, 896, 899, 900, 902, 904, 906, 907, 908, 912, 913, 920, 921, 938, 979, 1033, 1034, 1035, 1037, 1044, 1053, 1054, 1061, 1073, 1074, 1075, 1077, 1120, 1127, 1134, 1136, 1138, 1140, 1143, 1145, 1146, 1147, 1148, 1149, 1152, 1153, 1154, 1155, 1156, 1157, 1159, 1160, 1161, 1164, 1165, 1166, 1167, 1168, 1170, 1171, 1172, 1176, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1191, 1192, 1193, 1194, 1195, 1196, 1199, 1200, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1212, 1214, 1216, 1217, 1218, 1221, 1222, 1223, 1225, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1237, 1238, 1239, 1240, 1241, 1244, 1246, 1247, 1248, 1249, 1250, 1252, 1253, 1254, 1255, 1256, 1257, 1260, 1261, 1263, 1265, 1267, 1268, 1269, 1270, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1288, 1289, 1290, 1291, 1292, 1294, 1295, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1343, 1344, 1347, 1362, 1365, 1369, 1375, 1384, 1385, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1400, 1402, 1403, 1404, 1406, 1407, 1408, 1409, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1424, 1430, 1432, 1433, 1434, 1435, 1436, 1438, 1439, 1440, 1441, 1442, 1443, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1458, 1463, 1465, 1466, 1467, 1468, 1469, 1470, 1475, 1476, 1478, 1479, 1486, 1487, 1489, 1490, 1493, 1494, 1496, 1497, 1498, 1500, 1506, 1524, 1741, 1758, 1793, 1815, 1839, 1857, 1982, 2000, 2108, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2247, 2249, 2257, 2260, 2261, 2263, 2264, 2265, 2266, 2267, 2270, 2271, 2277, 2278, 2283, 2294, 2295, 2297, 2298, 2302, 2307],\n \"40\": [15, 17, 18, 19, 32, 68, 74, 80, 88, 188, 189, 213, 228, 234, 345, 577, 583, 592, 600, 764, 765, 788, 823, 1264, 1387, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2298],\n- \"400\": [15, 141, 212, 280, 303, 586, 655, 717, 787, 1280, 1433, 2185, 2186, 2197, 2199, 2200, 2201, 2207, 2210, 2226],\n+ \"400\": [15, 141, 212, 280, 303, 586, 655, 717, 787, 1280, 1433, 2186, 2197, 2199, 2200, 2201, 2207, 2210, 2226],\n \"4000\": [10, 141, 717],\n \"40000\": [168, 1443, 2194, 2199, 2222],\n \"400000\": [2195, 2201, 2210, 2214],\n \"40002\": 2283,\n \"40004\": 2283,\n \"40008\": 2283,\n \"40013\": 2283,\n@@ -30047,15 +30047,15 @@\n \"40662\": 2281,\n \"406667\": 2201,\n \"40675\": 2289,\n \"40682\": 2289,\n \"40685\": 2302,\n \"40686\": 2298,\n \"4069\": 2220,\n- \"407\": [2186, 2199, 2210],\n+ \"407\": [2186, 2193, 2199, 2210],\n \"4071\": 2217,\n \"40712\": 2283,\n \"40722\": 2281,\n \"40730\": 2283,\n \"40731\": 2283,\n \"40732\": 2289,\n \"40754\": 2289,\n@@ -30085,15 +30085,15 @@\n \"40865\": 2283,\n \"4088\": 2224,\n \"408836\": 1299,\n \"408893\": 2207,\n \"4089\": 2217,\n \"40893\": 2302,\n \"40896\": 2283,\n- \"409\": [2186, 2199, 2210, 2218],\n+ \"409\": [2186, 2199, 2210],\n \"4090\": 2217,\n \"40904\": 2283,\n \"40908\": 2283,\n \"40912316\": [182, 760],\n \"40918\": 2283,\n \"4092\": 2217,\n \"409204\": 2219,\n@@ -30634,15 +30634,15 @@\n \"4327\": 2230,\n \"432707\": [2220, 2228, 2230],\n \"43274\": 2286,\n \"4328\": 2218,\n \"432893\": 2218,\n \"432911\": 2199,\n \"432980\": 2184,\n- \"433\": [2186, 2199, 2205, 2210, 2298],\n+ \"433\": [2186, 2199, 2210, 2298],\n \"4330\": 2218,\n \"433000088\": 2210,\n \"43305\": 2289,\n \"43307\": 2289,\n \"43309\": 2289,\n \"43311\": 2289,\n \"43314\": 2287,\n@@ -30676,15 +30676,15 @@\n \"433834\": 2186,\n \"43386\": 2287,\n \"433866e\": 2191,\n \"43392\": 2289,\n \"43394\": 2289,\n \"43396\": 2289,\n \"433985\": 2230,\n- \"434\": [2186, 2193, 2199, 2210, 2298],\n+ \"434\": [2186, 2199, 2210, 2298],\n \"434000\": [176, 179, 754, 757, 1242, 1243],\n \"43401\": 2286,\n \"434027\": 2199,\n \"43404\": 2289,\n \"43406\": 2289,\n \"434160\": 2207,\n \"434191\": 2235,\n@@ -32452,15 +32452,15 @@\n \"51856\": 2302,\n \"51858\": 2302,\n \"51861\": 2302,\n \"51873\": 2302,\n \"518736\": 2197,\n \"51895\": 2300,\n \"51896\": 2302,\n- \"519\": [2194, 2199, 2201, 2203, 2238, 2283, 2294, 2307],\n+ \"519\": [2193, 2194, 2199, 2201, 2203, 2238, 2283, 2294, 2307],\n \"51903\": 2302,\n \"5191\": 2218,\n \"519133\": 2207,\n \"51921\": 2302,\n \"51922\": 2302,\n \"51929\": 2307,\n \"51936\": 2302,\n@@ -33045,15 +33045,15 @@\n \"55069\": 2308,\n \"550787\": 2207,\n \"5508\": 2218,\n \"55080\": 2305,\n \"55084\": 2307,\n \"550854\": 2207,\n \"55088\": 2306,\n- \"551\": 2199,\n+ \"551\": [2199, 2205],\n \"55106\": 2304,\n \"55108\": 2307,\n \"551115123125783e\": 2199,\n \"55113\": 2307,\n \"551225\": 2193,\n \"55137\": 2306,\n \"55138\": 2304,\n@@ -33166,15 +33166,15 @@\n \"55677\": 2307,\n \"55678\": 2307,\n \"556787e\": 2222,\n \"55683\": 2307,\n \"556882\": 2195,\n \"5569\": 2221,\n \"55693\": 2307,\n- \"557\": 2199,\n+ \"557\": [2199, 2205],\n \"55709\": 2307,\n \"55710\": 2307,\n \"557110\": 2235,\n \"55714\": 2307,\n \"55718\": 2307,\n \"55730\": 2307,\n \"55736\": 2307,\n@@ -33452,14 +33452,15 @@\n \"573714\": 2207,\n \"573806\": 2229,\n \"574\": [2194, 2199, 2201, 2203, 2232, 2283, 2294, 2298, 2302, 2307],\n \"5740\": 2220,\n \"57418\": 2308,\n \"5742\": 2219,\n \"57429\": 2308,\n+ \"574736\": 2228,\n \"574779\": 2184,\n \"574816\": 2207,\n \"5749\": 2219,\n \"575\": [2194, 2199, 2201, 2203, 2232, 2283, 2294, 2302, 2307],\n \"575010\": 2191,\n \"575170\": 2184,\n \"575189\": 2199,\n@@ -33500,14 +33501,15 @@\n \"577569\": 2195,\n \"577585\": [2184, 2214],\n \"5776\": 2192,\n \"57761\": 2309,\n \"57762\": 2309,\n \"577693\": 2207,\n \"578\": [2194, 2199, 2201, 2203, 2232, 2283, 2294, 2298, 2302, 2307],\n+ \"578044\": 2228,\n \"5786\": 2229,\n \"578615\": 2207,\n \"578798\": 2210,\n \"578900\": 2207,\n \"579\": [2199, 2232],\n \"5797\": 2219,\n \"58\": [17, 19, 23, 213, 276, 345, 788, 902, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2271, 2307],\n@@ -33808,15 +33810,15 @@\n \"615556\": 27,\n \"615597\": 2207,\n \"615674\": 2207,\n \"615801\": 2207,\n \"615855\": 2185,\n \"615972\": 2205,\n \"615975\": 2207,\n- \"616\": [2199, 2205, 2232],\n+ \"616\": [2199, 2232],\n \"616184\": 2197,\n \"6166\": 2220,\n \"6167\": 2219,\n \"616767\": 2184,\n \"6169\": 2219,\n \"617\": [16, 17, 18, 19, 2199, 2203, 2232, 2235, 2298],\n \"6171\": 2219,\n@@ -33877,15 +33879,15 @@\n \"6240\": 2220,\n \"624607\": 15,\n \"624615\": 2207,\n \"624699e\": 2191,\n \"624747\": 2199,\n \"624938\": 2191,\n \"624988\": 2230,\n- \"625\": [205, 778, 2199, 2203, 2205, 2298],\n+ \"625\": [205, 778, 2199, 2203, 2298],\n \"6252\": 2220,\n \"625210\": 2207,\n \"6254\": 2220,\n \"625415\": 2207,\n \"6255\": 2192,\n \"6256\": [2192, 2202],\n \"6257\": 2192,\n@@ -34699,15 +34701,15 @@\n \"719369\": 2195,\n \"7195\": 2221,\n \"719541\": 2228,\n \"7196\": 2221,\n \"7198\": 2220,\n \"7199\": 2220,\n \"719915\": 2207,\n- \"72\": [17, 31, 190, 193, 766, 768, 1189, 1250, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271],\n+ \"72\": [17, 31, 190, 193, 766, 768, 1189, 1250, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271],\n \"720\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 1447, 2200, 2232],\n \"7200\": 2210,\n \"720000\": [2191, 2225],\n \"720521\": 2210,\n \"720589\": [2220, 2228, 2230, 2231],\n \"7206\": 2220,\n \"7207\": 2222,\n@@ -34956,15 +34958,14 @@\n \"7534\": 2221,\n \"753444\": 2207,\n \"753606\": 2199,\n \"753611\": 2207,\n \"753623\": 2191,\n \"753747\": 2207,\n \"7539\": 2221,\n- \"754\": 2218,\n \"7540\": 2222,\n \"754005\": 2210,\n \"7542\": 2222,\n \"7543\": 2222,\n \"754659\": 2191,\n \"755\": [29, 2298],\n \"7551\": 2221,\n@@ -34995,15 +34996,15 @@\n \"759104\": 2185,\n \"7592\": 2221,\n \"759328\": 2199,\n \"759606\": 2199,\n \"759644\": 2222,\n \"7599\": 2228,\n \"75th\": [107, 629, 1164, 1221],\n- \"76\": [18, 190, 193, 766, 768, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"76\": [18, 190, 193, 766, 768, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"760\": [32, 2298],\n \"7601\": 2221,\n \"760109\": 2195,\n \"7606\": 2221,\n \"760643\": 2199,\n \"7609\": 2221,\n \"760970\": 2207,\n@@ -35407,23 +35408,23 @@\n \"8121\": 2222,\n \"812101\": 2207,\n \"8122\": 2222,\n \"812436\": 2195,\n \"812500\": 18,\n \"8128\": 2222,\n \"8129\": 2222,\n- \"813\": [2193, 2199, 2200, 2298],\n+ \"813\": [2199, 2200, 2298],\n \"8131\": 2222,\n \"8132\": 2222,\n \"813266\": 2257,\n \"813360\": 2199,\n \"8138\": 2241,\n \"813850\": [15, 2185, 2197, 2199, 2202, 2215, 2257],\n \"813893\": 2207,\n- \"814\": [2199, 2298],\n+ \"814\": [2193, 2199, 2298],\n \"8140\": 2222,\n \"8143\": 2222,\n \"814347\": 2186,\n \"814397\": 2207,\n \"814470\": [2184, 2214],\n \"814788\": 2207,\n \"814869\": 2207,\n@@ -36626,15 +36627,14 @@\n \"989859\": 2185,\n \"99\": [15, 22, 145, 163, 284, 532, 741, 912, 1447, 1456, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2230, 2232, 2235, 2246, 2294, 2307],\n \"990\": [2199, 2230],\n \"9900\": 2199,\n \"990000\": 1894,\n \"990317\": 2199,\n \"990340\": 2207,\n- \"990496\": 2228,\n \"9905\": 2226,\n \"990582\": [2184, 2195, 2214],\n \"9907\": 2228,\n \"990810\": 2235,\n \"990921\": 2204,\n \"991\": [2199, 2230],\n \"9910\": 2226,\n@@ -36642,15 +36642,14 @@\n \"991234\": 2191,\n \"991460\": [2184, 2214],\n \"991575\": 2195,\n \"991803\": 1303,\n \"991946\": [2220, 2230],\n \"991993\": 2214,\n \"992\": [1343, 2199, 2205, 2230],\n- \"992021\": 2228,\n \"992033\": 2205,\n \"992052\": 2207,\n \"9921\": 2226,\n \"9923\": 2202,\n \"9925\": 2226,\n \"9926\": 2227,\n \"9927\": 2226,\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "unified_diff": "@@ -1847,25 +1847,25 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....: \n-196 us +- 1.28 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n-89 us +- 400 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+193 us +- 1.42 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+91.9 us +- 228 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n \n \n
In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n    .....: %timeit ser.take(indexer)\n    .....: \n-151 us +- 1.51 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n-124 us +- 2.66 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+150 us +- 2.3 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+121 us +- 1.05 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n 
\n
\n \n
\n

Index types#

\n

We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown here,\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -1245,23 +1245,23 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....:\n-196 us +- 1.28 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n-89 us +- 400 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+193 us +- 1.42 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+91.9 us +- 228 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n .....: %timeit ser.take(indexer)\n .....:\n-151 us +- 1.51 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n-124 us +- 2.66 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+150 us +- 2.3 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+121 us +- 1.05 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n *\b**\b**\b**\b**\b* I\bIn\bnd\bde\bex\bx t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b**\b*\n We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown _\bh_\be_\br_\be, and\n documentation about TimedeltaIndex is found _\bh_\be_\br_\be.\n In the following sub-sections we will highlight some other index types.\n *\b**\b**\b**\b* C\bCa\bat\bte\beg\bgo\bor\bri\bic\bca\bal\blI\bIn\bnd\bde\bex\bx_\b#\b# *\b**\b**\b**\b*\n _\bC_\ba_\bt_\be_\bg_\bo_\br_\bi_\bc_\ba_\bl_\bI_\bn_\bd_\be_\bx is a type of index that is useful for supporting indexing with\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "unified_diff": "@@ -592,31 +592,31 @@\n ...: s += f(a + i * dx)\n ...: return s * dx\n ...: \n \n \n

We achieve our result by using DataFrame.apply() (row-wise):

\n
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)\n-71 ms +- 2.76 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+73.7 ms +- 9.68 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

Let\u2019s take a look and see where the time is spent during this operation\n using the prun ipython magic function:

\n
# most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 0.218 seconds\n+         605946 function calls (605928 primitive calls) in 0.407 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.132    0.000    0.191    0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n-   552423    0.058    0.000    0.058    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n-     3000    0.004    0.000    0.017    0.000 series.py:1095(__getitem__)\n-     3000    0.003    0.000    0.008    0.000 series.py:1220(_get_value)\n+     1000    0.220    0.000    0.335    0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n+   552423    0.115    0.000    0.115    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n+     3000    0.019    0.000    0.040    0.000 series.py:1220(_get_value)\n+     3000    0.011    0.000    0.011    0.000 base.py:3777(get_loc)\n 
\n
\n

By far the majority of time is spend inside either integrate_f or f,\n hence we\u2019ll concentrate our efforts cythonizing these two functions.

\n
\n
\n

Plain Cython#

\n@@ -634,15 +634,15 @@\n ...: for i in range(N):\n ...: s += f_plain(a + i * dx)\n ...: return s * dx\n ...: \n \n \n
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)\n-73.9 ms +- 269 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+71 ms +- 34.8 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

This has improved the performance compared to the pure Python approach by one-third.

\n
\n
\n

Declaring C types#

\n

We can annotate the function variables and return types as well as use cdef\n@@ -658,15 +658,15 @@\n ....: for i in range(N):\n ....: s += f_typed(a + i * dx)\n ....: return s * dx\n ....: \n \n \n

In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-8.72 ms +- 44.8 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+8.61 ms +- 78.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

Annotating the functions with C types yields an over ten times performance improvement compared to\n the original Python implementation.

\n
\n
\n

Using ndarray#

\n@@ -678,16 +678,16 @@\n \n Ordered by: internal time\n List reduced from 157 to 4 due to restriction <4>\n \n ncalls tottime percall cumtime percall filename:lineno(function)\n 3000 0.004 0.000 0.016 0.000 series.py:1095(__getitem__)\n 3000 0.003 0.000 0.007 0.000 series.py:1220(_get_value)\n- 3000 0.002 0.000 0.003 0.000 base.py:3777(get_loc)\n 16098 0.002 0.000 0.003 0.000 {built-in method builtins.isinstance}\n+ 3000 0.002 0.000 0.003 0.000 base.py:3777(get_loc)\n \n \n
In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n@@ -722,15 +722,15 @@\n 
\n

This implementation creates an array of zeros and inserts the result\n of integrate_f_typed applied over each row. Looping over an ndarray is faster\n in Cython than looping over a Series object.

\n

Since apply_integrate_f is typed to accept an np.ndarray, Series.to_numpy()\n calls are needed to utilize this function.

\n
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-1.17 ms +- 215 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+1.16 ms +- 519 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n 
\n
\n

Performance has improved from the prior implementation by almost ten times.

\n
\n
\n

Disabling compiler directives#

\n

The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s boundscheck\n@@ -782,15 +782,15 @@\n from /build/reproducible-path/pandas-2.2.3+dfsg/buildtmp/.cache/ipython/cython/_cython_magic_883da8958ecc60be73b28b7124368f9c7cc2d174.c:1251:\n /usr/lib/aarch64-linux-gnu/python3-numpy/numpy/_core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]\n 17 | #warning "Using deprecated NumPy API, disable it with " \\\n | ^~~~~~~\n \n \n

In [17]: %timeit apply_integrate_f_wrap(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-813 us +- 191 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+814 us +- 273 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n 
\n
\n

However, a loop indexer i accessing an invalid location in an array would cause a segfault because memory access isn\u2019t checked.\n For more about boundscheck and wraparound, see the Cython docs on\n compiler directives.

\n
\n \n@@ -1148,19 +1148,19 @@\n compared to standard Python syntax for large DataFrame. This engine requires the\n optional dependency numexpr to be installed.

\n

The 'python' engine is generally not useful except for testing\n other evaluation engines against it. You will achieve no performance\n benefits using eval() with engine='python' and may\n incur a performance hit.

\n
In [40]: %timeit df1 + df2 + df3 + df4\n-8.5 ms +- 139 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+8.51 ms +- 61.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")\n-10.9 ms +- 62.2 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+11 ms +- 167 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n \n
\n

The DataFrame.eval() method#

\n

In addition to the top level pandas.eval() function you can also\n evaluate an expression in the \u201ccontext\u201d of a DataFrame.

\n@@ -1275,39 +1275,39 @@\n
In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]\n 
\n
\n

DataFrame arithmetic:

\n
In [60]: %timeit df1 + df2 + df3 + df4\n-8.54 ms +- 372 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+8.21 ms +- 164 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")\n-7.36 ms +- 434 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+6.94 ms +- 67.2 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

DataFrame comparison:

\n
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-10.8 ms +- 97.4 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+10.6 ms +- 127 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")\n-12.2 ms +- 230 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+11.8 ms +- 155 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

DataFrame arithmetic with unaligned axes.

\n
In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-19.5 ms +- 94.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+19.8 ms +- 73 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")\n-9.5 ms +- 131 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+8.54 ms +- 45 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n
\n

Note

\n

Operations such as

\n
1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -110,32 +110,32 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f(a + i * dx)\n    ...:     return s * dx\n    ...:\n We achieve our result by using _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\ba_\bp_\bp_\bl_\by_\b(_\b) (row-wise):\n In [5]: %timeit df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]), axis=1)\n-71 ms +- 2.76 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+73.7 ms +- 9.68 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Let\u2019s take a look and see where the time is spent during this operation using\n the _\bp_\br_\bu_\bn_\b _\bi_\bp_\by_\bt_\bh_\bo_\bn_\b _\bm_\ba_\bg_\bi_\bc_\b _\bf_\bu_\bn_\bc_\bt_\bi_\bo_\bn:\n # most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 0.218 seconds\n+         605946 function calls (605928 primitive calls) in 0.407 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.132    0.000    0.191    0.000 :1\n+     1000    0.220    0.000    0.335    0.000 :1\n (integrate_f)\n-   552423    0.058    0.000    0.058    0.000 :1\n+   552423    0.115    0.000    0.115    0.000 :1\n (f)\n-     3000    0.004    0.000    0.017    0.000 series.py:1095(__getitem__)\n-     3000    0.003    0.000    0.008    0.000 series.py:1220(_get_value)\n+     3000    0.019    0.000    0.040    0.000 series.py:1220(_get_value)\n+     3000    0.011    0.000    0.011    0.000 base.py:3777(get_loc)\n By far the majority of time is spend inside either integrate_f or f, hence\n we\u2019ll concentrate our efforts cythonizing these two functions.\n *\b**\b**\b**\b* P\bPl\bla\bai\bin\bn C\bCy\byt\bth\bho\bon\bn_\b#\b# *\b**\b**\b**\b*\n First we\u2019re going to need to import the Cython magic function to IPython:\n In [7]: %load_ext Cython\n Now, let\u2019s simply copy our functions over to Cython:\n In [8]: %%cython\n@@ -146,15 +146,15 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f_plain(a + i * dx)\n    ...:     return s * dx\n    ...:\n In [9]: %timeit df.apply(lambda x: integrate_f_plain(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-73.9 ms +- 269 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+71 ms +- 34.8 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n This has improved the performance compared to the pure Python approach by one-\n third.\n *\b**\b**\b**\b* D\bDe\bec\bcl\bla\bar\bri\bin\bng\bg C\bC t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b*\n We can annotate the function variables and return types as well as use cdef and\n cpdef to improve performance:\n In [10]: %%cython\n    ....: cdef double f_typed(double x) except? -2:\n@@ -166,15 +166,15 @@\n    ....:     dx = (b - a) / N\n    ....:     for i in range(N):\n    ....:         s += f_typed(a + i * dx)\n    ....:     return s * dx\n    ....:\n In [11]: %timeit df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-8.72 ms +- 44.8 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+8.61 ms +- 78.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n Annotating the functions with C types yields an over ten times performance\n improvement compared to the original Python implementation.\n *\b**\b**\b**\b* U\bUs\bsi\bin\bng\bg n\bnd\bda\bar\brr\bra\bay\by_\b#\b# *\b**\b**\b**\b*\n When re-profiling, time is spent creating a _\bS_\be_\br_\bi_\be_\bs from each row, and calling\n __getitem__ from both the index and the series (three times for each row).\n These Python function calls are expensive and can be improved by passing an\n np.ndarray.\n@@ -184,17 +184,17 @@\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n      3000    0.004    0.000    0.016    0.000 series.py:1095(__getitem__)\n      3000    0.003    0.000    0.007    0.000 series.py:1220(_get_value)\n-     3000    0.002    0.000    0.003    0.000 base.py:3777(get_loc)\n     16098    0.002    0.000    0.003    0.000 {built-in method\n builtins.isinstance}\n+     3000    0.002    0.000    0.003    0.000 base.py:3777(get_loc)\n In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n    ....: cpdef double integrate_f_typed(double a, double b, int N):\n    ....:     cdef int i\n@@ -235,15 +235,15 @@\n This implementation creates an array of zeros and inserts the result of\n integrate_f_typed applied over each row. Looping over an ndarray is faster in\n Cython than looping over a _\bS_\be_\br_\bi_\be_\bs object.\n Since apply_integrate_f is typed to accept an np.ndarray, _\bS_\be_\br_\bi_\be_\bs_\b._\bt_\bo_\b__\bn_\bu_\bm_\bp_\by_\b(_\b)\n calls are needed to utilize this function.\n In [14]: %timeit apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(), df\n [\"N\"].to_numpy())\n-1.17 ms +- 215 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+1.16 ms +- 519 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n Performance has improved from the prior implementation by almost ten times.\n *\b**\b**\b**\b* D\bDi\bis\bsa\bab\bbl\bli\bin\bng\bg c\bco\bom\bmp\bpi\bil\ble\ber\br d\bdi\bir\bre\bec\bct\bti\biv\bve\bes\bs_\b#\b# *\b**\b**\b**\b*\n The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s\n boundscheck and wraparound checks can yield more performance.\n In [15]: %prun -l 4 apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n          78 function calls in 0.001 seconds\n@@ -298,15 +298,15 @@\n /usr/lib/aarch64-linux-gnu/python3-numpy/numpy/_core/include/numpy/\n npy_1_7_deprecated_api.h:17:2: warning: #warning \"Using deprecated NumPy API,\n disable it with \" \"#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION\" [-Wcpp]\n    17 | #warning \"Using deprecated NumPy API, disable it with \" \\\n       |  ^~~~~~~\n In [17]: %timeit apply_integrate_f_wrap(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n-813 us +- 191 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+814 us +- 273 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n However, a loop indexer i accessing an invalid location in an array would cause\n a segfault because memory access isn\u2019t checked. For more about boundscheck and\n wraparound, see the Cython docs on _\bc_\bo_\bm_\bp_\bi_\bl_\be_\br_\b _\bd_\bi_\br_\be_\bc_\bt_\bi_\bv_\be_\bs.\n *\b**\b**\b**\b**\b* N\bNu\bum\bmb\bba\ba (\b(J\bJI\bIT\bT c\bco\bom\bmp\bpi\bil\bla\bat\bti\bio\bon\bn)\b)_\b#\b# *\b**\b**\b**\b**\b*\n An alternative to statically compiling Cython code is to use a dynamic just-in-\n time (JIT) compiler with _\bN_\bu_\bm_\bb_\ba.\n Numba allows you to write a pure Python function which can be JIT compiled to\n@@ -609,17 +609,17 @@\n The 'numexpr' engine is the more performant engine that can yield performance\n improvements compared to standard Python syntax for large _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be. This\n engine requires the optional dependency numexpr to be installed.\n The 'python' engine is generally n\bno\bot\bt useful except for testing other evaluation\n engines against it. You will achieve n\bno\bo performance benefits using _\be_\bv_\ba_\bl_\b(_\b) with\n engine='python' and may incur a performance hit.\n In [40]: %timeit df1 + df2 + df3 + df4\n-8.5 ms +- 139 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+8.51 ms +- 61.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n In [41]: %timeit pd.eval(\"df1 + df2 + df3 + df4\", engine=\"python\")\n-10.9 ms +- 62.2 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+11 ms +- 167 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n *\b**\b**\b**\b* T\bTh\bhe\be _\bD\bD_\ba\ba_\bt\bt_\ba\ba_\bF\bF_\br\br_\ba\ba_\bm\bm_\be\be_\b.\b._\be\be_\bv\bv_\ba\ba_\bl\bl_\b(\b(_\b)\b) m\bme\bet\bth\bho\bod\bd_\b#\b# *\b**\b**\b**\b*\n In addition to the top level _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) function you can also evaluate an\n expression in the \u201ccontext\u201d of a _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be.\n In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=[\"a\", \"b\"])\n \n In [43]: df.eval(\"a + b\")\n Out[43]:\n@@ -716,29 +716,29 @@\n _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) works well with expressions containing large arrays.\n In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for\n _ in range(4)]\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic:\n In [60]: %timeit df1 + df2 + df3 + df4\n-8.54 ms +- 372 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+8.21 ms +- 164 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n In [61]: %timeit pd.eval(\"df1 + df2 + df3 + df4\")\n-7.36 ms +- 434 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+6.94 ms +- 67.2 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be comparison:\n In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-10.8 ms +- 97.4 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+10.6 ms +- 127 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n In [63]: %timeit pd.eval(\"(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\")\n-12.2 ms +- 230 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+11.8 ms +- 155 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic with unaligned axes.\n In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-19.5 ms +- 94.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+19.8 ms +- 73 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n In [66]: %timeit pd.eval(\"df1 + df2 + df3 + df4 + s\")\n-9.5 ms +- 131 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+8.54 ms +- 45 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n Note\n Operations such as\n 1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n ~1  # this is okay, but slower when using eval\n should be performed in Python. An exception will be raised if you try to\n perform any boolean/bitwise operations with scalar operands that are not of\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "unified_diff": "@@ -1086,16 +1086,16 @@\n    ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")\n    ....: counts = pd.Series(dtype=int)\n    ....: for path in files:\n    ....:     df = pd.read_parquet(path)\n    ....:     counts = counts.add(df["name"].value_counts(), fill_value=0)\n    ....: counts.astype(int)\n    ....: \n-CPU times: user 433 us, sys: 183 us, total: 616 us\n-Wall time: 625 us\n+CPU times: user 551 us, sys: 0 ns, total: 551 us\n+Wall time: 557 us\n Out[32]: Series([], dtype: int64)\n 
\n
\n

Some readers, like pandas.read_csv(), offer parameters to control the\n chunksize when reading a single file.

\n

Manually chunking is an OK option for workflows that don\u2019t\n require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby(), are\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -644,16 +644,16 @@\n ....: files = pathlib.Path(\"data/timeseries/\").glob(\"ts*.parquet\")\n ....: counts = pd.Series(dtype=int)\n ....: for path in files:\n ....: df = pd.read_parquet(path)\n ....: counts = counts.add(df[\"name\"].value_counts(), fill_value=0)\n ....: counts.astype(int)\n ....:\n-CPU times: user 433 us, sys: 183 us, total: 616 us\n-Wall time: 625 us\n+CPU times: user 551 us, sys: 0 ns, total: 551 us\n+Wall time: 557 us\n Out[32]: Series([], dtype: int64)\n Some readers, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\br_\be_\ba_\bd_\b__\bc_\bs_\bv_\b(_\b), offer parameters to control the chunksize\n when reading a single file.\n Manually chunking is an OK option for workflows that don\u2019t require too\n sophisticated of operations. Some operations, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\bg_\br_\bo_\bu_\bp_\bb_\by_\b(_\b),\n are much harder to do chunkwise. In these cases, you may be better switching to\n a different library that implements these out-of-core algorithms for you.\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "unified_diff": null, "details": [{"source1": "style.ipynb", "source2": "style.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9985610875706213%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2026-05-02T10:47:19.790405Z', \"", " \"'iopub.status.busy': '2026-05-02T10:47:19.789324Z', 'iopub.status.idle': \"", " \"'2026-05-02T10:47:20.182832Z', 'shell.execute_reply': \"", " \"'2026-05-02T10:47:20.181959Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2026-05-02T10:47:20.186367Z', 'iopub.status.busy': \"", " \"'2026-05-02T10:47:20.186062Z', 'iopub.status.idle': '2026-05-02T10:47:2 [\u2026]"], "unified_diff": "@@ -39,18 +39,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-03-30T03:09:13.873605Z\",\n- \"iopub.status.busy\": \"2025-03-30T03:09:13.873129Z\",\n- \"iopub.status.idle\": \"2025-03-30T03:09:14.282146Z\",\n- \"shell.execute_reply\": \"2025-03-30T03:09:14.281127Z\"\n+ \"iopub.execute_input\": \"2026-05-02T10:47:19.790405Z\",\n+ \"iopub.status.busy\": \"2026-05-02T10:47:19.789324Z\",\n+ \"iopub.status.idle\": \"2026-05-02T10:47:20.182832Z\",\n+ \"shell.execute_reply\": \"2026-05-02T10:47:20.181959Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot\\n\",\n \"# We have this here to trigger matplotlib's font cache stuff.\\n\",\n@@ -77,36 +77,36 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-03-30T03:09:14.286792Z\",\n- \"iopub.status.busy\": \"2025-03-30T03:09:14.286462Z\",\n- \"iopub.status.idle\": \"2025-03-30T03:09:14.585742Z\",\n- \"shell.execute_reply\": \"2025-03-30T03:09:14.584821Z\"\n+ \"iopub.execute_input\": \"2026-05-02T10:47:20.186367Z\",\n+ \"iopub.status.busy\": \"2026-05-02T10:47:20.186062Z\",\n+ \"iopub.status.idle\": \"2026-05-02T10:47:20.536188Z\",\n+ \"shell.execute_reply\": \"2026-05-02T10:47:20.535267Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import pandas as pd\\n\",\n \"import numpy as np\\n\",\n \"import matplotlib as mpl\\n\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-03-30T03:09:14.589457Z\",\n- \"iopub.status.busy\": \"2025-03-30T03:09:14.589081Z\",\n- \"iopub.status.idle\": \"2025-03-30T03:09:14.639517Z\",\n- \"shell.execute_reply\": \"2025-03-30T03:09:14.638527Z\"\n+ \"iopub.execute_input\": \"2026-05-02T10:47:20.539667Z\",\n+ \"iopub.status.busy\": \"2026-05-02T10:47:20.539338Z\",\n+ \"iopub.status.idle\": \"2026-05-02T10:47:20.587331Z\",\n+ \"shell.execute_reply\": \"2026-05-02T10:47:20.586309Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\\n\",\n \"from pandas.io.formats.style import Styler\\n\",\n@@ -123,18 +123,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-03-30T03:09:14.643038Z\",\n- \"iopub.status.busy\": \"2025-03-30T03:09:14.642710Z\",\n- \"iopub.status.idle\": \"2025-03-30T03:09:14.652299Z\",\n- \"shell.execute_reply\": \"2025-03-30T03:09:14.651583Z\"\n+ \"iopub.execute_input\": \"2026-05-02T10:47:20.590639Z\",\n+ \"iopub.status.busy\": \"2026-05-02T10:47:20.590316Z\",\n+ \"iopub.status.idle\": \"2026-05-02T10:47:20.600127Z\",\n+ \"shell.execute_reply\": \"2026-05-02T10:47:20.599165Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/html\": [\n \"