{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.fsUT8BBy/b1/sfepy_2025.2-1_arm64.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.fsUT8BBy/b2/sfepy_2025.2-1_arm64.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,4 +1,4 @@\n \n- 5dc259457c62fc88ddfd50de6d330a19 12574856 doc optional python-sfepy-doc_2025.2-1_all.deb\n+ fd01dc4f2d637fb17648af89ffa3c1e7 12570072 doc optional python-sfepy-doc_2025.2-1_all.deb\n 6e6172da17646b8195190c3a85643828 5543444 debug optional python3-sfepy-dbgsym_2025.2-1_arm64.deb\n 448e6bbcf1132e1bd9768bead4ea7897 4578220 python optional python3-sfepy_2025.2-1_arm64.deb\n"}, {"source1": "python-sfepy-doc_2025.2-1_all.deb", "source2": "python-sfepy-doc_2025.2-1_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2025-07-07 22:05:05.000000 debian-binary\n--rw-r--r-- 0 0 0 27996 2025-07-07 22:05:05.000000 control.tar.xz\n--rw-r--r-- 0 0 0 12546668 2025-07-07 22:05:05.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 28008 2025-07-07 22:05:05.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 12541872 2025-07-07 22:05:05.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,13 +1,13 @@\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./usr/\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./usr/share/\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./usr/share/doc/\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/\n--rw-r--r-- 0 root (0) root (0) 3849256 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/SfePy.pdf.gz\n+-rw-r--r-- 0 root (0) root (0) 3849280 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/SfePy.pdf.gz\n -rw-r--r-- 0 root (0) root (0) 2125 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/changelog.Debian.gz\n -rw-r--r-- 0 root (0) root (0) 1802 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/copyright\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/examples/\n -rw-r--r-- 0 root (0) root (0) 0 2025-07-06 21:11:10.000000 ./usr/share/doc/python-sfepy-doc/examples/__init__.py\n drwxr-xr-x 0 root (0) root (0) 0 2025-07-07 22:05:05.000000 ./usr/share/doc/python-sfepy-doc/examples/acoustics/\n -rw-r--r-- 0 root (0) root (0) 0 2025-07-06 21:11:10.000000 ./usr/share/doc/python-sfepy-doc/examples/acoustics/__init__.py\n -rw-r--r-- 0 root (0) root (0) 1751 2025-07-06 21:11:10.000000 ./usr/share/doc/python-sfepy-doc/examples/acoustics/acoustics.py\n"}, {"source1": "./usr/share/doc/python-sfepy-doc/SfePy.pdf.gz", "source2": "./usr/share/doc/python-sfepy-doc/SfePy.pdf.gz", "unified_diff": null, "details": [{"source1": "SfePy.pdf", "source2": "SfePy.pdf", "unified_diff": null, "details": [{"source1": "pdftotext {} -", "source2": "pdftotext {} -", "unified_diff": "@@ -5126,20 +5126,20 @@\n \n \u03a9\n \n \u222b\ufe01\n \ud835\udc5e \ud835\udefc\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc62)\n \u03a9\n \n-the.ela,\n+bio.npb.lag,\n the.ela.ess,\n-bio,\n bio.npb,\n+bio,\n bio.sho.syn,\n-bio.npb.lag\n+the.ela\n \n \u222b\ufe01\n \u2212\n \n \ud835\udefc\ud835\udc56\ud835\udc57 \ud835\udc5d\n \u03a9\n \n@@ -5263,19 +5263,20 @@\n dw_dg_advect_laxfrie_flux\n ,\n AdvectionDGFluxTerm\n ,\n ,\n \n \n-adv.dif.2D,\n-adv.2D, adv.1D\n-\n \u222b\ufe01\n \n+adv.2D,\n+adv.dif.2D,\n+adv.1D\n+\n \ud835\udc5b \u00b7 \ud835\udc53 * (\ud835\udc5d\ud835\udc56\ud835\udc5b , \ud835\udc5d\ud835\udc5c\ud835\udc62\ud835\udc61 )\ud835\udc5e\n \n \ud835\udf15\ud835\udc47\ud835\udc3e\n \n where\n \ud835\udc53 * (\ud835\udc5d\ud835\udc56\ud835\udc5b , \ud835\udc5d\ud835\udc5c\ud835\udc62\ud835\udc61 ) = \ud835\udc4e\n dw_dg_diffusion_flux\n@@ -5403,21 +5404,21 @@\n \ud835\udc3e\ud835\udc56\ud835\udc57 \u2207\ud835\udc56 \ud835\udc5e\u2207\ud835\udc57 \ud835\udc5d\n \u03a9\n \n \u222b\ufe01\n \n \ud835\udc5d\ud835\udc3e\ud835\udc57 \u2207\ud835\udc57 \ud835\udc5e ,\n \n-pie.ela, vib.aco,\n+pie.ela,\n+bio.npb.lag,\n+bio.npb, poi.neu,\n+dar.flo.mul,\n bio,\n-bio.npb,\n-poi.neu,\n+vib.aco,\n bio.sho.syn,\n-dar.flo.mul,\n-bio.npb.lag,\n pie.ela\n \n \u222b\ufe01\n \ud835\udc5e\ud835\udc3e\ud835\udc57 \u2207\ud835\udc57 \ud835\udc5d\n \n \u03a9\n \n@@ -5552,37 +5553,39 @@\n \n \u03a9\n \n \ud835\udc9f\n \n \ud835\udc9f\n \n-nav.sto, sto.sli.bc,\n-sto, nav.sto.iga,\n-nav.sto,\n-sta.nav.sto\n-osc,\n-adv.2D,\n-pie.ela,\n-aco,\n-vib.aco,\n-mod.ana.dec,\n-ref.evp, tim.poi,\n-pie.ela, poi.fun,\n-wel, hyd, bur.2D,\n-aco, lin.ela.up,\n-lin.ela.dam,\n+nav.sto.iga,\n+sta.nav.sto,\n sto.sli.bc,\n-hel.apa, bal, bor,\n-poi.per.bou.con,\n+sto,\n+nav.sto, nav.sto\n+hyd,\n+mod.ana.dec,\n+dar.flo.mul,\n+hel.apa, tim.poi,\n tim.hea.equ.mul.mat,\n-adv.1D, the.ele,\n-tim.poi.exp,\n+the.ele,\n tim.adv.dif,\n-dar.flo.mul\n+bal, tim.poi.exp,\n+wel,\n+sto.sli.bc,\n+bor,\n+vib.aco,\n+lin.ela.up, pie.ela,\n+poi.per.bou.con,\n+aco,\n+pie.ela,\n+lin.ela.dam,\n+adv.2D, poi.fun,\n+adv.1D, bur.2D,\n+ref.evp, osc, aco\n \n \u222b\ufe01\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc54\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc54\ud835\udc58\ud835\udc59 (\ud835\udc62)\n \u03a9\n \n \u222b\ufe01\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc54\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n@@ -5686,22 +5689,20 @@\n ev_integrate_mat ,\n IntegrateMatTerm\n \n \ud835\udc66,\n \n \ud835\udc9f\n \n-aco,\n-hel.apa,\n-vib.aco,\n-poi.neu,\n-aco,\n poi.per.bou.con,\n+poi.neu,\n+dar.flo.mul,\n+hel.apa,\n tim.hea.equ.mul.mat,\n-dar.flo.mul\n+aco, vib.aco, aco\n \n \u222b\ufe01\n \ud835\udc50\n \ud835\udc9f\n \n dw_jump\n ,\n@@ -5735,41 +5736,38 @@\n ,\n ,\n \n \n examples\n-poi, osc, cub,\n-poi.fie.dep.mat,\n-aco,\n-vib.aco,\n-ref.evp, tim.poi,\n-lap.1d, poi.fun,\n-wel,\n hyd,\n-bur.2D,\n-sin,\n-aco, poi.par.stu,\n-adv.dif.2D,\n+poi.fie.dep.mat,\n+cub, poi.sho.syn,\n+poi.iga, hel.apa,\n+tim.poi,\n+tim.hea.equ.mul.mat,\n+the.ele,\n+poi.par.stu,\n+tim.adv.dif,\n lap.flu.2d,\n-lap.2D,\n+tim.poi.exp,\n lap.tim.ebc,\n+wel,\n sto.sli.bc,\n-hel.apa,\n-poi.iga,\n bor,\n+vib.aco,\n+sin, the.ela.ess,\n poi.per.bou.con,\n-tim.hea.equ.mul.mat,\n lap.cou.lcb,\n-the.ela.ess,\n-the.ele,\n-tim.poi.exp,\n-poi.sho.syn,\n-tim.adv.dif\n+lap.1d, aco, poi,\n+poi.fun, bur.2D,\n+adv.dif.2D,\n+ref.evp, lap.2D,\n+osc, aco\n sta.nav.sto\n \n \u222b\ufe01\n \ud835\udc50\u2207\ud835\udc5e \u00b7 \u2207\ud835\udc5d\n \u03a9\n \n dw_lin_convect\n@@ -5876,44 +5874,45 @@\n param_2>\n dw_lin_prestress\n ,\n LinearPrestressTerm\n \n \n-lin.ela.tra,\n-mat.non,\n-pie.ela, vib.aco,\n+its.4, ela.con.sph,\n+lin.ela.opt,\n+bio.npb,\n mod.ana.dec,\n-mix.mes,\n pie.ela.mac,\n-tru.bri,\n+mat.non,\n+wed.mes,\n bio.npb.lag,\n-com.ela.mat,\n+lin.ela.tra,\n+vib.aco,\n+lin.ela.up,\n+lin.ela.mM,\n+pie.ela,\n+the.ela.ess, its.1,\n+lin.vis, nod.lcb,\n+bio, bio.sho.syn,\n pie.ela, the.ela,\n-ela.con.sph,\n-wed.mes, pre.fib,\n-lin.ela.mM, ela,\n-lin.ela.up, its.4,\n-lin.ela.dam,\n-lin.vis,\n-mul.nod.lcb,\n+pre.fib,\n its.3,\n-bio,\n-lin.ela.opt,\n-mul.poi.con,\n-bio.sho.syn,\n-nod.lcb,\n-lin.ela.iga,\n-sei.loa,\n-the.ela.ess, its.2,\n+lin.ela.dam,\n two.bod.con,\n-bio.npb, lin.ela,\n-ela.con.pla, its.1,\n-ela.shi.per\n+sei.loa,\n+lin.ela.iga,\n+mul.nod.lcb,\n+tru.bri,\n+its.2,\n+ela.con.pla,\n+ela.shi.per,\n+com.ela.mat,\n+ela, mul.poi.con,\n+mix.mes, lin.ela\n \n \u222b\ufe01\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n \u03a9\n \n \u222b\ufe01\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\ud835\udc52\ud835\udc58\ud835\udc59 (\ud835\udc62)\n@@ -5921,17 +5920,17 @@\n \n with\n \ud835\udc37\ud835\udc56\ud835\udc57\ud835\udc58\ud835\udc59 = \ud835\udf07(\ud835\udeff\ud835\udc56\ud835\udc58 \ud835\udeff\ud835\udc57\ud835\udc59 + \ud835\udeff\ud835\udc56\ud835\udc59 \ud835\udeff\ud835\udc57\ud835\udc58 ) + \ud835\udf06 \ud835\udeff\ud835\udc56\ud835\udc57 \ud835\udeff\ud835\udc58\ud835\udc59\n \n \u222b\ufe01\n \ud835\udf0e\ud835\udc56\ud835\udc57 \ud835\udc52\ud835\udc56\ud835\udc57 (\ud835\udc63)\n \n+pre.fib,\n non.hyp.mM,\n-pie.ela.mac,\n-pre.fib\n+pie.ela.mac\n \n \u03a9\n \n continues on next page\n \n 1.8. Term Overview\n \n@@ -6142,17 +6141,18 @@\n \ud835\udc53 \ud835\udc56 = \u2212\ud835\udc58\ud835\udc62\ud835\udc56\n \n dw_s_dot_grad_i_s ,\n ScalarDotGradIScalarTerm\n ,\n \n \n-she.can, tru.bri,\n-its.3, its.2, its.1,\n-its.4\n+its.4, its.1, its.2,\n+its.3,\n+tru.bri,\n+she.can\n \n \u2200 FE node \ud835\udc56 in a region\n \n \ud835\udc56\n \n \u222b\ufe01\n \n@@ -6170,19 +6170,21 @@\n \n \n \u222b\ufe01\n \u03a9\n \n \ud835\udc5e\ud835\udc66 \u00b7 \u2207\ud835\udc5d ,\n \n-adv.dif.2D,\n-adv.2D, adv.1D\n-\n \u222b\ufe01\n \ud835\udc5d\ud835\udc66 \u00b7 \u2207\ud835\udc5e\n+\n+adv.2D,\n+adv.dif.2D,\n+adv.1D\n+\n \u03a9\n \n continues on next page\n \n 1.8. Term Overview\n \n 109\n@@ -6234,19 +6236,20 @@\n \u222b\ufe01 \u03a9\n \u222b\ufe01 \u03a9\n or\n \ud835\udc50\ud835\udc5d\u2207\u00b7\ud835\udc63,\n \ud835\udc50\ud835\udc5e\u2207\u00b7\ud835\udc62\n \u03a9\n \n-nav.sto, sto.sli.bc,\n-sto, nav.sto.iga,\n-nav.sto,\n+nav.sto.iga,\n+sta.nav.sto,\n+sto.sli.bc,\n lin.ela.up,\n-sta.nav.sto\n+sto,\n+nav.sto, nav.sto\n \n \u03a9\n \n \u222b\ufe01\n (\ud835\udf05 \u00b7 \ud835\udc63)(\ud835\udf05 \u00b7 \ud835\udc62)\n \u03a9\n \n@@ -6256,40 +6259,40 @@\n \n ,\n ,\n \n ev_sum_vals\n \n SumNodalValuesTerm\n-ev_surface_flux\n-,\n-SurfaceFluxTerm \n+dw_surface_flux\n+,\n+SurfaceFluxOperatorTerm\n+,\n+\n \n \u222b\ufe01\n \n \u222b\ufe01\n (\ud835\udf05 \u00b7 \ud835\udc63)(\u2207 \u00b7 \ud835\udc62) ,\n \n \u03a9\n \n (\ud835\udf05 \u00b7 \ud835\udc62)(\u2207 \u00b7 \ud835\udc63)\n \u03a9\n \n \u222b\ufe01\n-\ud835\udc5b \u00b7 \ud835\udc3e\ud835\udc56\ud835\udc57 \u2207\ud835\udc57 \ud835\udc5d\n+\ud835\udc5e\ud835\udc5b \u00b7 \ud835\udc3e \u00b7 \u2207\ud835\udc5d\n \u0393\n \n-dw_surface_flux\n-,\n-SurfaceFluxOperatorTerm\n-,\n-\n+ev_surface_flux\n+,\n+SurfaceFluxTerm \n \n \u222b\ufe01\n-\ud835\udc5e\ud835\udc5b \u00b7 \ud835\udc3e \u00b7 \u2207\ud835\udc5d\n+\ud835\udc5b \u00b7 \ud835\udc3e\ud835\udc56\ud835\udc57 \u2207\ud835\udc57 \ud835\udc5d\n \u0393\n \n dw_surface_ltr\n ,\n LinearTractionTerm\n \n@@ -6304,21 +6307,21 @@\n ev_surface_moment ,\n SurfaceMomentTerm\n \n \n \ud835\udc63 \u00b7 \ud835\udc5b,\n \u0393\n \n-lin.vis, lin.ela.tra,\n-tru.bri, mix.mes,\n-wed.mes,\n lin.ela.opt,\n-nod.lcb,\n+lin.ela.tra, tru.bri,\n+lin.vis, nod.lcb,\n+ela.shi.per,\n com.ela.mat,\n-ela.shi.per\n+wed.mes,\n+mix.mes\n \n \u222b\ufe01\n \ud835\udc5b(\ud835\udc65 \u2212 \ud835\udc650 )\n \u0393\n \n continues on next page\n \n@@ -6435,17 +6438,17 @@\n \n \n \u222b\ufe01\n \ud835\udc53\ud835\udc5e\n \u03a9\n \n bur.2D,\n-poi.par.stu,\n adv.dif.2D,\n-poi.iga\n+poi.iga,\n+poi.par.stu\n poi.non.mat\n \n \u222b\ufe01\n \ud835\udc5e\ud835\udc53 (\ud835\udc5d)\n \u03a9\n \n ev_volume_surface \n@@ -6989,15 +6992,15 @@\n \u03a9\n \n dw_tl_bulk_pressure,\n BulkPressureTLTerm\n ,\n \n \n-per.tl, bal\n+bal, per.tl\n \u222b\ufe01\n \ud835\udc46\ud835\udc56\ud835\udc57 (\ud835\udc5d)\ud835\udeff\ud835\udc38\ud835\udc56\ud835\udc57 (\ud835\udc62; \ud835\udc63)\n \u03a9\n \n dw_tl_diffusion\n ,\n DiffusionTLTerm ,\n@@ -7079,27 +7082,29 @@\n dw_tl_he_mooney_rivlin\n ,\n MooneyRivlinTLTerm\n ,\n \n \n examples\n-com.ela.mat, bal,\n+bal, com.ela.mat,\n hyp\n \n \u222b\ufe01\n \ud835\udc46\ud835\udc56\ud835\udc57 (\ud835\udc62)\ud835\udeff\ud835\udc38\ud835\udc56\ud835\udc57 (\ud835\udc62; \ud835\udc63)\n \u03a9\n \n dw_tl_he_neohook ,\n NeoHookeanTLTerm,\n \n \n-bal, per.tl, act.fib,\n-hyp, com.ela.mat\n+act.fib,\n+hyp,\n+per.tl,\n+com.ela.mat, bal\n \n \u222b\ufe01\n \ud835\udc46\ud835\udc56\ud835\udc57 (\ud835\udc62)\ud835\udeff\ud835\udc38\ud835\udc56\ud835\udc57 (\ud835\udc62; \ud835\udc63)\n \u03a9\n \n dw_tl_he_ogden\n OgdenTLTerm\n@@ -7146,15 +7151,15 @@\n \ud835\udf08 \u00b7 \ud835\udc39 \u22121 \u00b7 \ud835\udf0e \u00b7 \ud835\udc63\ud835\udc3d\n \n \u0393\n \n dw_tl_volume\n VolumeTLTerm\n \n-per.tl, bal\n+bal, per.tl\n \n ,\n \n \u222b\ufe00\n \n \ud835\udc5e\ud835\udc3d(\ud835\udc62)\n \u03a9\n"}]}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/_sources/term_table.rst.txt", "source2": "./usr/share/doc/python-sfepy-doc/html/_sources/term_table.rst.txt", "unified_diff": "@@ -37,15 +37,15 @@\n :class:`BiotTerm `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n \\int_{\\Omega} p\\ \\alpha_{ij} e_{ij}(\\ul{v}) \\mbox{ , }\n \\int_{\\Omega} q\\ \\alpha_{ij} e_{ij}(\\ul{u})\n- - :ref:`bio.npb `, :ref:`bio.sho.syn `, :ref:`the.ela `, :ref:`bio `, :ref:`bio.npb.lag `, :ref:`the.ela.ess `\n+ - :ref:`bio.npb.lag `, :ref:`bio `, :ref:`the.ela `, :ref:`bio.npb `, :ref:`the.ela.ess `, :ref:`bio.sho.syn `\n * - ev_biot_stress\n \n :class:`BiotStressTerm `\n - ````, ````\n - .. math::\n - \\int_{\\Omega} \\alpha_{ij} p\n - \n@@ -94,15 +94,15 @@\n - :ref:`ela.con.sph `\n * - dw_convect\n \n :class:`ConvectTerm `\n - ````, ````\n - .. math::\n \\int_{\\Omega} ((\\ul{u} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}\n- - :ref:`nav.sto `, :ref:`nav.sto `, :ref:`nav.sto.iga `\n+ - :ref:`nav.sto `, :ref:`nav.sto.iga `, :ref:`nav.sto `\n * - dw_convect_v_grad_s\n \n :class:`ConvectVGradSTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} q (\\ul{u} \\cdot \\nabla p)\n - :ref:`poi.fun `\n@@ -125,15 +125,15 @@\n \n where\n \n \n .. math::\n \\ul{f}^{*}(p_{in}, p_{out}) = \\ul{a} \\frac{p_{in} +\n p_{out}}{2} + (1 - \\alpha) \\ul{n} C \\frac{ p_{in} - p_{out}}{2},\n- - :ref:`adv.1D `, :ref:`adv.dif.2D `, :ref:`adv.2D `\n+ - :ref:`adv.dif.2D `, :ref:`adv.2D `, :ref:`adv.1D `\n * - dw_dg_diffusion_flux\n \n :class:`DiffusionDGFluxTerm `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n@@ -145,29 +145,29 @@\n \n .. math::\n \\langle \\nabla \\phi \\rangle = \\frac{\\nabla\\phi_{in} +\n \\nabla\\phi_{out}}{2}\n \n .. math::\n [\\phi] = \\phi_{in} - \\phi_{out}\n- - :ref:`adv.dif.2D `, :ref:`bur.2D `, :ref:`lap.2D `\n+ - :ref:`adv.dif.2D `, :ref:`lap.2D `, :ref:`bur.2D `\n * - dw_dg_interior_penalty\n \n :class:`DiffusionInteriorPenaltyTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\partial{T_K}} \\bar{D} C_w\n \\frac{Ord^2}{d(\\partial{T_K})}[p][q]\n \n where\n \n \n .. math::\n [\\phi] = \\phi_{in} - \\phi_{out}\n- - :ref:`adv.dif.2D `, :ref:`bur.2D `, :ref:`lap.2D `\n+ - :ref:`adv.dif.2D `, :ref:`lap.2D `, :ref:`bur.2D `\n * - dw_dg_nonlinear_laxfrie_flux\n \n :class:`NonlinearHyperbolicDGFluxTerm `\n - ````, ````, ````, ````, ````\n - .. math::\n \\int_{\\partial{T_K}} \\ul{n} \\cdot f^{*} (p_{in}, p_{out})q\n \n@@ -181,15 +181,15 @@\n - :ref:`bur.2D `\n * - dw_diffusion\n \n :class:`DiffusionTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} K_{ij} \\nabla_i q \\nabla_j p\n- - :ref:`pie.ela `, :ref:`bio.npb `, :ref:`bio.sho.syn `, :ref:`poi.neu `, :ref:`vib.aco `, :ref:`dar.flo.mul `, :ref:`bio `, :ref:`bio.npb.lag `, :ref:`pie.ela `\n+ - :ref:`vib.aco `, :ref:`bio.npb.lag `, :ref:`bio `, :ref:`dar.flo.mul `, :ref:`poi.neu `, :ref:`bio.npb `, :ref:`pie.ela `, :ref:`pie.ela `, :ref:`bio.sho.syn `\n * - dw_diffusion_coupling\n \n :class:`DiffusionCoupling `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n@@ -229,26 +229,26 @@\n * - dw_div_grad\n \n :class:`DivGradTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} \\nu\\ \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{ ,\n } \\int_{\\Omega} \\nabla \\ul{v} : \\nabla \\ul{u}\n- - :ref:`sta.nav.sto `, :ref:`sto.sli.bc `, :ref:`nav.sto `, :ref:`nav.sto `, :ref:`nav.sto.iga `, :ref:`sto `\n+ - :ref:`sta.nav.sto `, :ref:`sto `, :ref:`nav.sto `, :ref:`sto.sli.bc `, :ref:`nav.sto `, :ref:`nav.sto.iga `\n * - dw_dot\n \n :class:`DotProductTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\cal{D}} q p \\mbox{ , } \\int_{\\cal{D}} \\ul{v} \\cdot\n \\ul{u}\\\\ \\int_\\Gamma \\ul{v} \\cdot \\ul{n} p \\mbox{ , } \\int_\\Gamma\n q \\ul{n} \\cdot \\ul{u} \\mbox{ , }\\\\ \\int_{\\cal{D}} c q p \\mbox{ , }\n \\int_{\\cal{D}} c \\ul{v} \\cdot \\ul{u} \\mbox{ , } \\int_{\\cal{D}}\n \\ul{v} \\cdot \\ull{c} \\cdot \\ul{u}\n- - :ref:`poi.per.bou.con `, :ref:`tim.poi `, :ref:`poi.fun `, :ref:`vib.aco `, :ref:`lin.ela.dam `, :ref:`tim.adv.dif `, :ref:`ref.evp `, :ref:`pie.ela `, :ref:`lin.ela.up `, :ref:`aco `, :ref:`dar.flo.mul `, :ref:`adv.2D `, :ref:`pie.ela `, :ref:`osc `, :ref:`the.ele `, :ref:`sto.sli.bc `, :ref:`hel.apa `, :ref:`bor `, :ref:`bur.2D `, :ref:`adv.1D `, :ref:`tim.poi.exp `, :ref:`bal `, :ref:`hyd `, :ref:`mod.ana.dec `, :ref:`wel `, :ref:`aco `, :ref:`tim.hea.equ.mul.mat `\n+ - :ref:`bor `, :ref:`poi.fun `, :ref:`hel.apa `, :ref:`poi.per.bou.con `, :ref:`pie.ela `, :ref:`tim.poi `, :ref:`lin.ela.up `, :ref:`wel `, :ref:`sto.sli.bc `, :ref:`bur.2D `, :ref:`the.ele `, :ref:`aco `, :ref:`mod.ana.dec `, :ref:`tim.adv.dif `, :ref:`pie.ela `, :ref:`lin.ela.dam `, :ref:`bal `, :ref:`adv.1D `, :ref:`vib.aco `, :ref:`adv.2D `, :ref:`dar.flo.mul `, :ref:`tim.hea.equ.mul.mat `, :ref:`ref.evp `, :ref:`osc `, :ref:`tim.poi.exp `, :ref:`aco `, :ref:`hyd `\n * - dw_elastic_wave\n \n :class:`ElasticWaveTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} D_{ijkl}\\ g_{ij}(\\ul{v}) g_{kl}(\\ul{u})\n - \n@@ -274,31 +274,31 @@\n :class:`GradTerm `\n - ````, ````\n - .. math::\n \\int_{\\cal{D}} \\nabla p \\mbox{ or } \\int_{\\cal{D}} \\nabla\n \\ul{u}\\\\ \\int_{\\cal{D}} c \\nabla p \\mbox{ or } \\int_{\\cal{D}} c\n \\nabla \\ul{u}\n - \n- * - dw_integrate\n-\n- :class:`IntegrateOperatorTerm `\n- - ````, ````\n- - .. math::\n- \\int_{\\cal{D}} q \\mbox{ or } \\int_{\\cal{D}} c q\n- - :ref:`poi.per.bou.con `, :ref:`poi.neu `, :ref:`aco `, :ref:`vib.aco `, :ref:`dar.flo.mul `, :ref:`hel.apa `, :ref:`aco `, :ref:`tim.hea.equ.mul.mat `\n * - ev_integrate\n \n :class:`IntegrateTerm `\n - ````, ````\n - .. math::\n \\int_{\\cal{D}} y \\mbox{ , } \\int_{\\cal{D}} \\ul{y} \\mbox{ ,\n } \\int_\\Gamma \\ul{y} \\cdot \\ul{n}\\\\ \\int_{\\cal{D}} c y \\mbox{ , }\n \\int_{\\cal{D}} c \\ul{y} \\mbox{ , } \\int_\\Gamma c \\ul{y} \\cdot\n \\ul{n} \\mbox{ flux }\n - \n+ * - dw_integrate\n+\n+ :class:`IntegrateOperatorTerm `\n+ - ````, ````\n+ - .. math::\n+ \\int_{\\cal{D}} q \\mbox{ or } \\int_{\\cal{D}} c q\n+ - :ref:`aco `, :ref:`vib.aco `, :ref:`dar.flo.mul `, :ref:`tim.hea.equ.mul.mat `, :ref:`poi.neu `, :ref:`hel.apa `, :ref:`poi.per.bou.con `, :ref:`aco `\n * - ev_integrate_mat\n \n :class:`IntegrateMatTerm `\n - ````, ````\n - .. math::\n \\int_{\\cal{D}} c\n - \n@@ -311,15 +311,15 @@\n - :ref:`aco `\n * - dw_laplace\n \n :class:`LaplaceTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} c \\nabla q \\cdot \\nabla p\n- - :ref:`poi.per.bou.con `, :ref:`tim.poi `, :ref:`poi.fun `, :ref:`poi.sho.syn `, :ref:`vib.aco `, :ref:`adv.dif.2D `, :ref:`tim.adv.dif `, :ref:`ref.evp `, :ref:`poi.fie.dep.mat `, :ref:`lap.flu.2d `, :ref:`aco `, :ref:`cub `, :ref:`lap.2D `, :ref:`osc `, :ref:`the.ele `, :ref:`sin `, :ref:`poi.par.stu `, :ref:`sto.sli.bc `, :ref:`hel.apa `, :ref:`lap.1d `, :ref:`bor `, :ref:`lap.tim.ebc `, :ref:`the.ela.ess `, :ref:`bur.2D `, :ref:`poi.iga `, :ref:`lap.cou.lcb `, :ref:`poi `, :ref:`tim.poi.exp `, :ref:`hyd `, :ref:`wel `, :ref:`aco `, :ref:`tim.hea.equ.mul.mat `\n+ - :ref:`bor `, :ref:`lap.1d `, :ref:`poi.fun `, :ref:`hel.apa `, :ref:`poi.per.bou.con `, :ref:`lap.tim.ebc `, :ref:`the.ela.ess `, :ref:`lap.flu.2d `, :ref:`tim.poi `, :ref:`poi.sho.syn `, :ref:`wel `, :ref:`lap.2D `, :ref:`sto.sli.bc `, :ref:`bur.2D `, :ref:`lap.cou.lcb `, :ref:`the.ele `, :ref:`poi `, :ref:`poi.par.stu `, :ref:`aco `, :ref:`poi.fie.dep.mat `, :ref:`cub `, :ref:`tim.adv.dif `, :ref:`poi.iga `, :ref:`vib.aco `, :ref:`tim.hea.equ.mul.mat `, :ref:`ref.evp `, :ref:`sin `, :ref:`osc `, :ref:`tim.poi.exp `, :ref:`adv.dif.2D `, :ref:`aco `, :ref:`hyd `\n * - dw_lin_convect\n \n :class:`LinearConvectTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} ((\\ul{w} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}\n \n@@ -356,15 +356,15 @@\n - :ref:`mul.poi.con `\n * - dw_lin_elastic\n \n :class:`LinearElasticTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\n- - :ref:`bio.npb `, :ref:`lin.vis `, :ref:`its.2 `, :ref:`pie.ela.mac `, :ref:`mul.poi.con `, :ref:`vib.aco `, :ref:`lin.ela.dam `, :ref:`ela.shi.per `, :ref:`two.bod.con `, :ref:`bio.npb.lag `, :ref:`nod.lcb `, :ref:`pie.ela `, :ref:`bio.sho.syn `, :ref:`mix.mes `, :ref:`lin.ela.up `, :ref:`bio `, :ref:`lin.ela.tra `, :ref:`pie.ela `, :ref:`lin.ela.mM `, :ref:`ela.con.sph `, :ref:`wed.mes `, :ref:`ela.con.pla `, :ref:`mat.non `, :ref:`its.1 `, :ref:`lin.ela `, :ref:`its.4 `, :ref:`lin.ela.iga `, :ref:`its.3 `, :ref:`the.ela.ess `, :ref:`ela `, :ref:`sei.loa `, :ref:`pre.fib `, :ref:`mul.nod.lcb `, :ref:`com.ela.mat `, :ref:`mod.ana.dec `, :ref:`lin.ela.opt `, :ref:`the.ela `, :ref:`tru.bri `\n+ - :ref:`lin.ela.iga `, :ref:`lin.vis `, :ref:`two.bod.con `, :ref:`pie.ela `, :ref:`lin.ela.mM `, :ref:`pre.fib `, :ref:`the.ela.ess `, :ref:`mul.poi.con `, :ref:`wed.mes `, :ref:`its.3 `, :ref:`ela.shi.per `, :ref:`ela.con.sph `, :ref:`ela `, :ref:`lin.ela.up `, :ref:`sei.loa `, :ref:`its.1 `, :ref:`its.2 `, :ref:`mod.ana.dec `, :ref:`bio.npb.lag `, :ref:`bio `, :ref:`lin.ela `, :ref:`nod.lcb `, :ref:`its.4 `, :ref:`lin.ela.opt `, :ref:`mat.non `, :ref:`com.ela.mat `, :ref:`pie.ela `, :ref:`lin.ela.tra `, :ref:`lin.ela.dam `, :ref:`ela.con.pla `, :ref:`pie.ela.mac `, :ref:`vib.aco `, :ref:`mul.nod.lcb `, :ref:`the.ela `, :ref:`bio.npb `, :ref:`mix.mes `, :ref:`tru.bri `, :ref:`bio.sho.syn `\n * - dw_lin_elastic_iso\n \n :class:`LinearElasticIsotropicTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\\\\\n \\mbox{ with } \\\\ D_{ijkl} = \\mu (\\delta_{ik}\n@@ -373,15 +373,15 @@\n - \n * - dw_lin_prestress\n \n :class:`LinearPrestressTerm `\n - ````, ````\n - .. math::\n \\int_{\\Omega} \\sigma_{ij} e_{ij}(\\ul{v})\n- - :ref:`pie.ela.mac `, :ref:`non.hyp.mM `, :ref:`pre.fib `\n+ - :ref:`pie.ela.mac `, :ref:`pre.fib `, :ref:`non.hyp.mM `\n * - dw_lin_spring\n \n :class:`LinearSpringTerm `\n - ````, ````, ````\n - .. math::\n \\ul{f}^{(i)} = - \\ul{f}^{(j)} = k (\\ul{u}^{(j)} -\n \\ul{u}^{(i)})\\\\ \\quad \\forall \\mbox{ elements } T_K^{i,j}\\\\ \\mbox{\n@@ -398,15 +398,15 @@\n \n :class:`LinearTrussTerm `\n - ````, ````, ````\n - .. math::\n F^{(i)} = -F^{(j)} = EA / l (U^{(j)} - U^{(i)})\\\\ \\quad\n \\forall \\mbox{ elements } T_K^{i,j}\\\\ \\mbox{ in a region\n connecting nodes } i, j\n- - :ref:`tru.bri `, :ref:`tru.bri `\n+ - :ref:`tru.bri `, :ref:`tru.bri `\n * - ev_lin_truss_force\n \n :class:`LinearTrussInternalForceTerm `\n - ````, ````\n - .. math::\n F = EA / l (U^{(j)} - U^{(i)})\\\\ \\quad \\forall \\mbox{\n elements } T_K^{i,j}\\\\ \\mbox{ in a region connecting nodes } i, j\n@@ -461,15 +461,15 @@\n :class:`PiezoCouplingTerm `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n \\int_{\\Omega} g_{kij}\\ e_{ij}(\\ul{v}) \\nabla_k p\\\\\n \\int_{\\Omega} g_{kij}\\ e_{ij}(\\ul{u}) \\nabla_k q\n- - :ref:`pie.ela `, :ref:`pie.ela `\n+ - :ref:`pie.ela `, :ref:`pie.ela `\n * - ev_piezo_strain\n \n :class:`PiezoStrainTerm `\n - ````, ````\n - .. math::\n \\int_{\\Omega} g_{kij} e_{ij}(\\ul{u})\n - \n@@ -483,15 +483,15 @@\n * - dw_point_load\n \n :class:`ConcentratedPointLoadTerm `\n - ````, ````\n - .. math::\n \\ul{f}^i = \\ul{\\bar f}^i \\quad \\forall \\mbox{ FE node } i\n \\mbox{ in a region }\n- - :ref:`its.2 `, :ref:`tru.bri `, :ref:`she.can `, :ref:`its.1 `, :ref:`its.4 `, :ref:`its.3 `\n+ - :ref:`its.2 `, :ref:`its.4 `, :ref:`she.can `, :ref:`tru.bri `, :ref:`its.1 `, :ref:`its.3 `\n * - dw_point_lspring\n \n :class:`LinearPointSpringTerm `\n - ````, ````, ````\n - .. math::\n \\ul{f}^i = -k \\ul{u}^i \\quad \\forall \\mbox{ FE node } i\n \\mbox{ in a region }\n@@ -508,15 +508,15 @@\n :class:`ScalarDotMGradScalarTerm `\n - ````, ````, ````\n \n ````, ````, ````\n - .. math::\n \\int_{\\Omega} q \\ul{y} \\cdot \\nabla p \\mbox{ , }\n \\int_{\\Omega} p \\ul{y} \\cdot \\nabla q\n- - :ref:`adv.1D `, :ref:`adv.dif.2D `, :ref:`adv.2D `\n+ - :ref:`adv.dif.2D `, :ref:`adv.2D `, :ref:`adv.1D `\n * - dw_shell10x\n \n :class:`Shell10XTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\n - :ref:`she.can `\n@@ -527,15 +527,15 @@\n \n ````, ````, ````\n - .. math::\n \\int_{\\Omega} p\\ \\nabla \\cdot \\ul{v} \\mbox{ , }\n \\int_{\\Omega} q\\ \\nabla \\cdot \\ul{u}\\\\ \\mbox{ or } \\int_{\\Omega}\n c\\ p\\ \\nabla \\cdot \\ul{v} \\mbox{ , } \\int_{\\Omega} c\\ q\\ \\nabla\n \\cdot \\ul{u}\n- - :ref:`lin.ela.up `, :ref:`sta.nav.sto `, :ref:`sto.sli.bc `, :ref:`nav.sto `, :ref:`nav.sto `, :ref:`nav.sto.iga `, :ref:`sto `\n+ - :ref:`sta.nav.sto `, :ref:`sto `, :ref:`nav.sto `, :ref:`lin.ela.up `, :ref:`sto.sli.bc `, :ref:`nav.sto `, :ref:`nav.sto.iga `\n * - dw_stokes_wave\n \n :class:`StokesWaveTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} (\\ul{\\kappa} \\cdot \\ul{v}) (\\ul{\\kappa}\n \\cdot \\ul{u})\n@@ -553,36 +553,36 @@\n - \n * - ev_sum_vals\n \n :class:`SumNodalValuesTerm `\n - ````\n - \n - \n- * - ev_surface_flux\n-\n- :class:`SurfaceFluxTerm `\n- - ````, ````\n- - .. math::\n- \\int_{\\Gamma} \\ul{n} \\cdot K_{ij} \\nabla_j p\n- - \n * - dw_surface_flux\n \n :class:`SurfaceFluxOperatorTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Gamma} q \\ul{n} \\cdot \\ull{K} \\cdot \\nabla p\n - \n+ * - ev_surface_flux\n+\n+ :class:`SurfaceFluxTerm `\n+ - ````, ````\n+ - .. math::\n+ \\int_{\\Gamma} \\ul{n} \\cdot K_{ij} \\nabla_j p\n+ - \n * - dw_surface_ltr\n \n :class:`LinearTractionTerm `\n - ````, ````\n - .. math::\n \\int_{\\Gamma} \\ul{v} \\cdot \\ull{\\sigma} \\cdot \\ul{n},\n \\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},\n- - :ref:`lin.vis `, :ref:`mix.mes `, :ref:`com.ela.mat `, :ref:`lin.ela.opt `, :ref:`wed.mes `, :ref:`tru.bri `, :ref:`ela.shi.per `, :ref:`nod.lcb `, :ref:`lin.ela.tra `\n+ - :ref:`ela.shi.per `, :ref:`lin.vis `, :ref:`nod.lcb `, :ref:`lin.ela.opt `, :ref:`mix.mes `, :ref:`com.ela.mat `, :ref:`tru.bri `, :ref:`lin.ela.tra `, :ref:`wed.mes `\n * - ev_surface_moment\n \n :class:`SurfaceMomentTerm `\n - ````, ````\n - .. math::\n \\int_{\\Gamma} \\ul{n} (\\ul{x} - \\ul{x}_0)\n - \n@@ -633,15 +633,15 @@\n * - dw_volume_lvf\n \n :class:`LinearVolumeForceTerm `\n - ````, ````\n - .. math::\n \\int_{\\Omega} \\ul{f} \\cdot \\ul{v} \\mbox{ or }\n \\int_{\\Omega} f q\n- - :ref:`poi.iga `, :ref:`adv.dif.2D `, :ref:`bur.2D `, :ref:`poi.par.stu `\n+ - :ref:`adv.dif.2D `, :ref:`bur.2D `, :ref:`poi.iga `, :ref:`poi.par.stu `\n * - dw_volume_nvf\n \n :class:`NonlinearVolumeForceTerm `\n - ````, ````, ````, ````\n - .. math::\n \\int_{\\Omega} q f(p)\n - :ref:`poi.non.mat `\n@@ -925,15 +925,15 @@\n - \n * - dw_tl_bulk_penalty\n \n :class:`BulkPenaltyTLTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})\n- - :ref:`com.ela.mat `, :ref:`hyp `, :ref:`act.fib `\n+ - :ref:`hyp `, :ref:`act.fib `, :ref:`com.ela.mat `\n * - dw_tl_bulk_pressure\n \n :class:`BulkPressureTLTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} S_{ij}(p) \\delta E_{ij}(\\ul{u};\\ul{v})\n - :ref:`bal `, :ref:`per.tl `\n@@ -975,22 +975,22 @@\n - \n * - dw_tl_he_mooney_rivlin\n \n :class:`MooneyRivlinTLTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})\n- - :ref:`bal `, :ref:`com.ela.mat `, :ref:`hyp `\n+ - :ref:`hyp `, :ref:`bal `, :ref:`com.ela.mat `\n * - dw_tl_he_neohook\n \n :class:`NeoHookeanTLTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})\n- - :ref:`hyp `, :ref:`bal `, :ref:`com.ela.mat `, :ref:`per.tl `, :ref:`act.fib `\n+ - :ref:`act.fib `, :ref:`com.ela.mat `, :ref:`hyp `, :ref:`bal `, :ref:`per.tl `\n * - dw_tl_he_ogden\n \n :class:`OgdenTLTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})\n - \n@@ -1440,15 +1440,15 @@\n \n :class:`MassTerm `\n - ````, ````, ````, ````, ````\n - .. math::\n M^C = \\int_{\\cal{D}} \\rho \\ul{v} \\cdot \\ul{u} \\\\ M^L =\n \\mathrm{lumping}(M^C) \\\\ M^A = (1 - \\beta) M^C + \\beta M^L \\\\ A =\n \\sum_e A_e \\\\ C = \\sum_e A_e^T (M_e^A)^{-1} A_e\n- - :ref:`sei.loa `, :ref:`ela `\n+ - :ref:`ela `, :ref:`sei.loa `\n * - de_non_penetration_p\n \n :class:`ENonPenetrationPenaltyTerm `\n - ````, ````, ````\n - .. math::\n \\int_{\\Gamma} c (\\ul{n} \\cdot \\ul{v}) (\\ul{n} \\cdot\n \\ul{u})\n"}, {"source1": "./usr/share/doc/python-sfepy-doc/html/searchindex.js", "source2": "./usr/share/doc/python-sfepy-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -20326,15 +20326,15 @@\n \"09666\": 11,\n \"099\": [20, 290],\n \"099999\": 288,\n \"0_1\": 26,\n \"0d\": 26,\n \"0e3\": 20,\n \"0e9\": [20, 289],\n- \"0xffff9bebf060\": 180,\n+ \"0xffffab483060\": 180,\n \"1\": [0, 1, 5, 7, 8, 11, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 34, 35, 39, 40, 41, 42, 44, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 72, 77, 78, 80, 81, 83, 84, 87, 89, 90, 91, 93, 94, 95, 99, 100, 102, 107, 108, 112, 113, 114, 115, 116, 118, 122, 123, 124, 127, 128, 131, 132, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 149, 150, 156, 171, 179, 180, 181, 182, 183, 184, 186, 187, 188, 189, 191, 192, 193, 194, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 227, 229, 258, 272, 285, 286, 288, 289],\n \"10\": [0, 11, 23, 24, 25, 26, 30, 65, 67, 70, 91, 93, 111, 120, 130, 142, 146, 147, 151, 154, 156, 179, 180, 181, 182, 184, 187, 188, 189, 206, 208, 215, 288, 289, 290],\n \"100\": [39, 40, 41, 105, 134, 142, 143, 179, 180, 227],\n \"1000\": [24, 91, 142, 147],\n \"100000\": [111, 179],\n \"1000000\": [142, 289],\n \"10000000000000001\": 142,\n"}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/src/sfepy/solvers/nls.html", "source2": "./usr/share/doc/python-sfepy-doc/html/src/sfepy/solvers/nls.html", "unified_diff": "@@ -173,15 +173,15 @@\n
lin_precisionfloat or None

If not None, the linear system solution tolerances are set in each\n nonlinear iteration relative to the current residual norm by the\n lin_precision factor. Ignored for direct linear solvers.

\n
\n
step_red0.0 < float <= 1.0 (default: 1.0)

Step reduction factor. Equivalent to the mixing parameter a:\n (1 - a) x + a (x + dx) = x + a dx

\n
\n-
line_search_funfunction(it, vec_x0, vec_r0, vec_dx0, err_last, conf, fun, apply_lin_solver, timers, log=None) (default: <function apply_line_search_bt at 0xffff9bebf060>)

The line search function.

\n+
line_search_funfunction(it, vec_x0, vec_r0, vec_dx0, err_last, conf, fun, apply_lin_solver, timers, log=None) (default: <function apply_line_search_bt at 0xffffab483060>)

The line search function.

\n
\n
ls_mode\u2018residual\u2019 or \u2018error\u2019 (default: \u2018residual\u2019)

The line search mode: when it is \u2018residual\u2019, the solver tries to\n make the iteration residuals decreasing while for \u2018error\u2019 the solution error\n estimates should decrease.

\n
\n
ls_onfloat (default: 0.99999)

Start the backtracking line-search by reducing the step, if\n ||d(x^i)|| / ||d(x^{i-1})|| is larger than ls_on, where d\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -64,15 +64,15 @@\n norm by thelin_precisionfactor. Ignored for direct linear\n solvers.\n s\bst\bte\bep\bp_\b_r\bre\bed\bd0.0 < float <= 1.0 (default: 1.0)\n Step reduction factor. Equivalent to the mixing parameter a:\n (1 - a) x + a (x + dx) = x + a dx\n l\bli\bin\bne\be_\b_s\bse\bea\bar\brc\bch\bh_\b_f\bfu\bun\bnfunction(it, vec_x0, vec_r0, vec_dx0, err_last,\n conf, fun, apply_lin_solver, timers, log=None) (default:\n- )\n+ )\n The line search function.\n l\bls\bs_\b_m\bmo\bod\bde\be\u2018residual\u2019 or \u2018error\u2019 (default: \u2018residual\u2019)\n The line search mode: when it is \u2018residual\u2019, the solver tries\n to make the iteration residuals decreasing while for \u2018error\u2019\n the solution error estimates should decrease.\n l\bls\bs_\b_o\bon\bnfloat (default: 0.99999)\n Start the backtracking line-search by reducing the step, if\n"}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/term_table.html", "source2": "./usr/share/doc/python-sfepy-doc/html/term_table.html", "unified_diff": "@@ -169,15 +169,15 @@\n

<material>, <virtual/param_v>, <state/param_s>

\n

<material>, <state>, <virtual>

\n \n
\n

\\int_{\\Omega} p\\ \\alpha_{ij} e_{ij}(\\ul{v}) \\mbox{ , }\n \\int_{\\Omega} q\\ \\alpha_{ij} e_{ij}(\\ul{u})

\n
\n-

bio.npb, bio.sho.syn, the.ela, bio, bio.npb.lag, the.ela.ess

\n+

bio.npb.lag, bio, the.ela, bio.npb, the.ela.ess, bio.sho.syn

\n \n

ev_biot_stress

\n

BiotStressTerm

\n \n

<material>, <parameter>

\n
\n

- \\int_{\\Omega} \\alpha_{ij} p

\n@@ -242,15 +242,15 @@\n

dw_convect

\n

ConvectTerm

\n \n

<virtual>, <state>

\n
\n

\\int_{\\Omega} ((\\ul{u} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}

\n
\n-

nav.sto, nav.sto, nav.sto.iga

\n+

nav.sto, nav.sto.iga, nav.sto

\n \n

dw_convect_v_grad_s

\n

ConvectVGradSTerm

\n \n

<virtual>, <state_v>, <state_s>

\n
\n

\\int_{\\Omega} q (\\ul{u} \\cdot \\nabla p)

\n@@ -276,15 +276,15 @@\n

\\int_{\\partial{T_K}} \\ul{n} \\cdot \\ul{f}^{*} (p_{in},\n p_{out})q

\n

where

\n
\n

\\ul{f}^{*}(p_{in}, p_{out}) = \\ul{a} \\frac{p_{in} +\n p_{out}}{2} + (1 - \\alpha) \\ul{n} C \\frac{ p_{in} - p_{out}}{2},

\n
\n-

adv.1D, adv.dif.2D, adv.2D

\n+

adv.dif.2D, adv.2D, adv.1D

\n \n

dw_dg_diffusion_flux

\n

DiffusionDGFluxTerm

\n \n

<material>, <state>, <virtual>

\n

<material>, <virtual>, <state>

\n \n@@ -294,28 +294,28 @@\n

where

\n
\n

\\langle \\nabla \\phi \\rangle = \\frac{\\nabla\\phi_{in} +\n \\nabla\\phi_{out}}{2}

\n
\n

[\\phi] = \\phi_{in} - \\phi_{out}

\n
\n-

adv.dif.2D, bur.2D, lap.2D

\n+

adv.dif.2D, lap.2D, bur.2D

\n \n

dw_dg_interior_penalty

\n

DiffusionInteriorPenaltyTerm

\n \n

<material>, <material_Cw>, <virtual>, <state>

\n
\n

\\int_{\\partial{T_K}} \\bar{D} C_w\n \\frac{Ord^2}{d(\\partial{T_K})}[p][q]

\n

where

\n
\n

[\\phi] = \\phi_{in} - \\phi_{out}

\n
\n-

adv.dif.2D, bur.2D, lap.2D

\n+

adv.dif.2D, lap.2D, bur.2D

\n \n

dw_dg_nonlinear_laxfrie_flux

\n

NonlinearHyperbolicDGFluxTerm

\n \n

<opt_material>, <fun>, <fun_d>, <virtual>, <state>

\n
\n

\\int_{\\partial{T_K}} \\ul{n} \\cdot f^{*} (p_{in}, p_{out})q

\n@@ -330,15 +330,15 @@\n

dw_diffusion

\n

DiffusionTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} K_{ij} \\nabla_i q \\nabla_j p

\n
\n-

pie.ela, bio.npb, bio.sho.syn, poi.neu, vib.aco, dar.flo.mul, bio, bio.npb.lag, pie.ela

\n+

vib.aco, bio.npb.lag, bio, dar.flo.mul, poi.neu, bio.npb, pie.ela, pie.ela, bio.sho.syn

\n \n

dw_diffusion_coupling

\n

DiffusionCoupling

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n

<material>, <state>, <virtual>

\n \n@@ -390,28 +390,28 @@\n

DivGradTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} \\nu\\ \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{ ,\n } \\int_{\\Omega} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n-

sta.nav.sto, sto.sli.bc, nav.sto, nav.sto, nav.sto.iga, sto

\n+

sta.nav.sto, sto, nav.sto, sto.sli.bc, nav.sto, nav.sto.iga

\n \n

dw_dot

\n

DotProductTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\cal{D}} q p \\mbox{ , } \\int_{\\cal{D}} \\ul{v} \\cdot\n \\ul{u}\\\\ \\int_\\Gamma \\ul{v} \\cdot \\ul{n} p \\mbox{ , } \\int_\\Gamma\n q \\ul{n} \\cdot \\ul{u} \\mbox{ , }\\\\ \\int_{\\cal{D}} c q p \\mbox{ , }\n \\int_{\\cal{D}} c \\ul{v} \\cdot \\ul{u} \\mbox{ , } \\int_{\\cal{D}}\n \\ul{v} \\cdot \\ull{c} \\cdot \\ul{u}

\n
\n-

poi.per.bou.con, tim.poi, poi.fun, vib.aco, lin.ela.dam, tim.adv.dif, ref.evp, pie.ela, lin.ela.up, aco, dar.flo.mul, adv.2D, pie.ela, osc, the.ele, sto.sli.bc, hel.apa, bor, bur.2D, adv.1D, tim.poi.exp, bal, hyd, mod.ana.dec, wel, aco, tim.hea.equ.mul.mat

\n+

bor, poi.fun, hel.apa, poi.per.bou.con, pie.ela, tim.poi, lin.ela.up, wel, sto.sli.bc, bur.2D, the.ele, aco, mod.ana.dec, tim.adv.dif, pie.ela, lin.ela.dam, bal, adv.1D, vib.aco, adv.2D, dar.flo.mul, tim.hea.equ.mul.mat, ref.evp, osc, tim.poi.exp, aco, hyd

\n \n

dw_elastic_wave

\n

ElasticWaveTerm

\n \n

<material_1>, <material_2>, <virtual>, <state>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ g_{ij}(\\ul{v}) g_{kl}(\\ul{u})

\n@@ -446,35 +446,35 @@\n
\n

\\int_{\\cal{D}} \\nabla p \\mbox{ or } \\int_{\\cal{D}} \\nabla\n \\ul{u}\\\\ \\int_{\\cal{D}} c \\nabla p \\mbox{ or } \\int_{\\cal{D}} c\n \\nabla \\ul{u}

\n
\n \n \n-

dw_integrate

\n-

IntegrateOperatorTerm

\n-\n-

<opt_material>, <virtual>

\n-
\n-

\\int_{\\cal{D}} q \\mbox{ or } \\int_{\\cal{D}} c q

\n-
\n-

poi.per.bou.con, poi.neu, aco, vib.aco, dar.flo.mul, hel.apa, aco, tim.hea.equ.mul.mat

\n-\n-

ev_integrate

\n+

ev_integrate

\n

IntegrateTerm

\n \n

<opt_material>, <parameter>

\n
\n

\\int_{\\cal{D}} y \\mbox{ , } \\int_{\\cal{D}} \\ul{y} \\mbox{ ,\n } \\int_\\Gamma \\ul{y} \\cdot \\ul{n}\\\\ \\int_{\\cal{D}} c y \\mbox{ , }\n \\int_{\\cal{D}} c \\ul{y} \\mbox{ , } \\int_\\Gamma c \\ul{y} \\cdot\n \\ul{n} \\mbox{ flux }

\n
\n \n \n+

dw_integrate

\n+

IntegrateOperatorTerm

\n+\n+

<opt_material>, <virtual>

\n+
\n+

\\int_{\\cal{D}} q \\mbox{ or } \\int_{\\cal{D}} c q

\n+
\n+

aco, vib.aco, dar.flo.mul, tim.hea.equ.mul.mat, poi.neu, hel.apa, poi.per.bou.con, aco

\n+\n

ev_integrate_mat

\n

IntegrateMatTerm

\n \n

<material>, <parameter>

\n
\n

\\int_{\\cal{D}} c

\n
\n@@ -492,15 +492,15 @@\n

dw_laplace

\n

LaplaceTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} c \\nabla q \\cdot \\nabla p

\n
\n-

poi.per.bou.con, tim.poi, poi.fun, poi.sho.syn, vib.aco, adv.dif.2D, tim.adv.dif, ref.evp, poi.fie.dep.mat, lap.flu.2d, aco, cub, lap.2D, osc, the.ele, sin, poi.par.stu, sto.sli.bc, hel.apa, lap.1d, bor, lap.tim.ebc, the.ela.ess, bur.2D, poi.iga, lap.cou.lcb, poi, tim.poi.exp, hyd, wel, aco, tim.hea.equ.mul.mat

\n+

bor, lap.1d, poi.fun, hel.apa, poi.per.bou.con, lap.tim.ebc, the.ela.ess, lap.flu.2d, tim.poi, poi.sho.syn, wel, lap.2D, sto.sli.bc, bur.2D, lap.cou.lcb, the.ele, poi, poi.par.stu, aco, poi.fie.dep.mat, cub, tim.adv.dif, poi.iga, vib.aco, tim.hea.equ.mul.mat, ref.evp, sin, osc, tim.poi.exp, adv.dif.2D, aco, hyd

\n \n

dw_lin_convect

\n

LinearConvectTerm

\n \n

<virtual>, <parameter>, <state>

\n
\n

\\int_{\\Omega} ((\\ul{w} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}

\n@@ -545,15 +545,15 @@\n

dw_lin_elastic

\n

LinearElasticTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})

\n
\n-

bio.npb, lin.vis, its.2, pie.ela.mac, mul.poi.con, vib.aco, lin.ela.dam, ela.shi.per, two.bod.con, bio.npb.lag, nod.lcb, pie.ela, bio.sho.syn, mix.mes, lin.ela.up, bio, lin.ela.tra, pie.ela, lin.ela.mM, ela.con.sph, wed.mes, ela.con.pla, mat.non, its.1, lin.ela, its.4, lin.ela.iga, its.3, the.ela.ess, ela, sei.loa, pre.fib, mul.nod.lcb, com.ela.mat, mod.ana.dec, lin.ela.opt, the.ela, tru.bri

\n+

lin.ela.iga, lin.vis, two.bod.con, pie.ela, lin.ela.mM, pre.fib, the.ela.ess, mul.poi.con, wed.mes, its.3, ela.shi.per, ela.con.sph, ela, lin.ela.up, sei.loa, its.1, its.2, mod.ana.dec, bio.npb.lag, bio, lin.ela, nod.lcb, its.4, lin.ela.opt, mat.non, com.ela.mat, pie.ela, lin.ela.tra, lin.ela.dam, ela.con.pla, pie.ela.mac, vib.aco, mul.nod.lcb, the.ela, bio.npb, mix.mes, tru.bri, bio.sho.syn

\n \n

dw_lin_elastic_iso

\n

LinearElasticIsotropicTerm

\n \n

<material_1>, <material_2>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\\\\\n@@ -566,15 +566,15 @@\n

dw_lin_prestress

\n

LinearPrestressTerm

\n \n

<material>, <virtual/param>

\n
\n

\\int_{\\Omega} \\sigma_{ij} e_{ij}(\\ul{v})

\n
\n-

pie.ela.mac, non.hyp.mM, pre.fib

\n+

pie.ela.mac, pre.fib, non.hyp.mM

\n \n

dw_lin_spring

\n

LinearSpringTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\ul{f}^{(i)} = - \\ul{f}^{(j)} = k (\\ul{u}^{(j)} -\n@@ -702,15 +702,15 @@\n

ConcentratedPointLoadTerm

\n \n

<material>, <virtual>

\n
\n

\\ul{f}^i = \\ul{\\bar f}^i \\quad \\forall \\mbox{ FE node } i\n \\mbox{ in a region }

\n
\n-

its.2, tru.bri, she.can, its.1, its.4, its.3

\n+

its.2, its.4, she.can, tru.bri, its.1, its.3

\n \n

dw_point_lspring

\n

LinearPointSpringTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\ul{f}^i = -k \\ul{u}^i \\quad \\forall \\mbox{ FE node } i\n@@ -733,15 +733,15 @@\n

<material>, <virtual>, <state>

\n

<material>, <state>, <virtual>

\n \n
\n

\\int_{\\Omega} q \\ul{y} \\cdot \\nabla p \\mbox{ , }\n \\int_{\\Omega} p \\ul{y} \\cdot \\nabla q

\n
\n-

adv.1D, adv.dif.2D, adv.2D

\n+

adv.dif.2D, adv.2D, adv.1D

\n \n

dw_shell10x

\n

Shell10XTerm

\n \n

<material_d>, <material_drill>, <virtual>, <state>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})

\n@@ -756,15 +756,15 @@\n \n
\n

\\int_{\\Omega} p\\ \\nabla \\cdot \\ul{v} \\mbox{ , }\n \\int_{\\Omega} q\\ \\nabla \\cdot \\ul{u}\\\\ \\mbox{ or } \\int_{\\Omega}\n c\\ p\\ \\nabla \\cdot \\ul{v} \\mbox{ , } \\int_{\\Omega} c\\ q\\ \\nabla\n \\cdot \\ul{u}

\n
\n-

lin.ela.up, sta.nav.sto, sto.sli.bc, nav.sto, nav.sto, nav.sto.iga, sto

\n+

sta.nav.sto, sto, nav.sto, lin.ela.up, sto.sli.bc, nav.sto, nav.sto.iga

\n \n

dw_stokes_wave

\n

StokesWaveTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} (\\ul{\\kappa} \\cdot \\ul{v}) (\\ul{\\kappa}\n@@ -788,41 +788,41 @@\n

ev_sum_vals

\n

SumNodalValuesTerm

\n \n

<parameter>

\n \n \n \n-

ev_surface_flux

\n-

SurfaceFluxTerm

\n+

dw_surface_flux

\n+

SurfaceFluxOperatorTerm

\n \n-

<material>, <parameter>

\n+

<opt_material>, <virtual>, <state>

\n
\n-

\\int_{\\Gamma} \\ul{n} \\cdot K_{ij} \\nabla_j p

\n+

\\int_{\\Gamma} q \\ul{n} \\cdot \\ull{K} \\cdot \\nabla p

\n
\n \n \n-

dw_surface_flux

\n-

SurfaceFluxOperatorTerm

\n+

ev_surface_flux

\n+

SurfaceFluxTerm

\n \n-

<opt_material>, <virtual>, <state>

\n+

<material>, <parameter>

\n
\n-

\\int_{\\Gamma} q \\ul{n} \\cdot \\ull{K} \\cdot \\nabla p

\n+

\\int_{\\Gamma} \\ul{n} \\cdot K_{ij} \\nabla_j p

\n
\n \n \n

dw_surface_ltr

\n

LinearTractionTerm

\n \n

<opt_material>, <virtual/param>

\n
\n

\\int_{\\Gamma} \\ul{v} \\cdot \\ull{\\sigma} \\cdot \\ul{n},\n \\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n
\n-

lin.vis, mix.mes, com.ela.mat, lin.ela.opt, wed.mes, tru.bri, ela.shi.per, nod.lcb, lin.ela.tra

\n+

ela.shi.per, lin.vis, nod.lcb, lin.ela.opt, mix.mes, com.ela.mat, tru.bri, lin.ela.tra, wed.mes

\n \n

ev_surface_moment

\n

SurfaceMomentTerm

\n \n

<material>, <parameter>

\n
\n

\\int_{\\Gamma} \\ul{n} (\\ul{x} - \\ul{x}_0)

\n@@ -887,15 +887,15 @@\n

LinearVolumeForceTerm

\n \n

<material>, <virtual>

\n
\n

\\int_{\\Omega} \\ul{f} \\cdot \\ul{v} \\mbox{ or }\n \\int_{\\Omega} f q

\n
\n-

poi.iga, adv.dif.2D, bur.2D, poi.par.stu

\n+

adv.dif.2D, bur.2D, poi.iga, poi.par.stu

\n \n

dw_volume_nvf

\n

NonlinearVolumeForceTerm

\n \n

<fun>, <dfun>, <virtual>, <state>

\n
\n

\\int_{\\Omega} q f(p)

\n@@ -1222,15 +1222,15 @@\n

dw_tl_bulk_penalty

\n

BulkPenaltyTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

com.ela.mat, hyp, act.fib

\n+

hyp, act.fib, com.ela.mat

\n \n

dw_tl_bulk_pressure

\n

BulkPressureTLTerm

\n \n

<virtual>, <state>, <state_p>

\n
\n

\\int_{\\Omega} S_{ij}(p) \\delta E_{ij}(\\ul{u};\\ul{v})

\n@@ -1286,24 +1286,24 @@\n

dw_tl_he_mooney_rivlin

\n

MooneyRivlinTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

bal, com.ela.mat, hyp

\n+

hyp, bal, com.ela.mat

\n \n

dw_tl_he_neohook

\n

NeoHookeanTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

hyp, bal, com.ela.mat, per.tl, act.fib

\n+

act.fib, com.ela.mat, hyp, bal, per.tl

\n \n

dw_tl_he_ogden

\n

OgdenTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n@@ -1856,15 +1856,15 @@\n \n

<material_rho>, <material_lumping>, <material_beta>, <virtual>, <state>

\n
\n

M^C = \\int_{\\cal{D}} \\rho \\ul{v} \\cdot \\ul{u} \\\\ M^L =\n \\mathrm{lumping}(M^C) \\\\ M^A = (1 - \\beta) M^C + \\beta M^L \\\\ A =\n \\sum_e A_e \\\\ C = \\sum_e A_e^T (M_e^A)^{-1} A_e

\n
\n-

sei.loa, ela

\n+

ela, sei.loa

\n \n

de_non_penetration_p

\n

ENonPenetrationPenaltyTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Gamma} c (\\ul{n} \\cdot \\ul{v}) (\\ul{n} \\cdot\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -32,19 +32,19 @@\n \\nabla) p) q\n , \\int_{\\Gamma}\n dw_bc_newton , \\alpha q (p - tim.hea.equ.mul.mat\n _\bB_\bC_\bN_\be_\bw_\bt_\bo_\bn_\bT_\be_\br_\bm , p_{\\rm\n outer})\n \\int_{\\Omega}\n p\\ \\alpha_\n- , {ij} e_{ij} bio.npb,\n-dw_biot , (\\ul{v}) bio.sho.syn,\n-_\bB_\bi_\bo_\bt_\bT_\be_\br_\bm \\mbox{ , } the.ela, bio,\n- , \\int_{\\Omega} bio.npb.lag,\n- , q\\ \\alpha_ the.ela.ess\n+ , {ij} e_{ij} bio.npb.lag, bio,\n+dw_biot , (\\ul{v}) the.ela, bio.npb,\n+_\bB_\bi_\bo_\bt_\bT_\be_\br_\bm \\mbox{ , } the.ela.ess,\n+ , \\int_{\\Omega} bio.sho.syn\n+ , q\\ \\alpha_\n {ij} e_{ij}\n (\\ul{u})\n ev_biot_stress , - \\int_\n _\bB_\bi_\bo_\bt_\bS_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm {\\Omega}\n \\alpha_{ij} p\n ev_cauchy_strain \\int_{\\cal\n _\bC_\ba_\bu_\bc_\bh_\by_\bS_\bt_\br_\ba_\bi_\bn_\bT_\be_\br_\bm {D}} \\ull{e}\n@@ -72,16 +72,16 @@\n , \n , \\int_{\\Gamma}\n dw_contact_sphere , \\ul{v} \\cdot\n _\bC_\bo_\bn_\bt_\ba_\bc_\bt_\bS_\bp_\bh_\be_\br_\be_\bT_\be_\br_\bm , f(d(\\ul{u})) ela.con.sph\n , \\ul{n}(\\ul\n {u})\n \\int_{\\Omega}\n-dw_convect ((\\ul{u} nav.sto, nav.sto,\n-_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm , \\cdot \\nabla) nav.sto.iga\n+dw_convect ((\\ul{u} nav.sto,\n+_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm , \\cdot \\nabla) nav.sto.iga, nav.sto\n \\ul{u}) \\cdot\n \\ul{v}\n , \\int_{\\Omega}\n dw_convect_v_grad_s , q (\\ul{u} poi.fun\n _\bC_\bo_\bn_\bv_\be_\bc_\bt_\bV_\bG_\br_\ba_\bd_\bS_\bT_\be_\br_\bm \\cdot \\nabla\n p)\n \\ull{F} =\n@@ -101,16 +101,16 @@\n {\\partial\n {T_K}} \\ul{n}\n \\cdot \\ul{f}^\n {*} (p_{in},\n p_{out})q\n where\n , \\ul{f}^{*}(p_\n-dw_dg_advect_laxfrie_flux , {in}, p_ adv.1D, adv.dif.2D,\n-_\bA_\bd_\bv_\be_\bc_\bt_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , {out}) = \\ul adv.2D\n+dw_dg_advect_laxfrie_flux , {in}, p_ adv.dif.2D, adv.2D,\n+_\bA_\bd_\bv_\be_\bc_\bt_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , {out}) = \\ul adv.1D\n {a} \\frac{p_\n {in} + p_\n {out}}{2} +\n (1 - \\alpha)\n \\ul{n} C\n \\frac{ p_{in}\n - p_{out}}\n@@ -122,16 +122,16 @@\n \\nabla p\n \\rangle [q]\n \\mbox{ , }\n \\int_\n {\\partial\n {T_K}} D\n , \\langle\n-dw_dg_diffusion_flux , \\nabla q adv.dif.2D, bur.2D,\n-_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , \\rangle [p] lap.2D\n+dw_dg_diffusion_flux , \\nabla q adv.dif.2D, lap.2D,\n+_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , \\rangle [p] bur.2D\n , where\n \\langle\n \\nabla \\phi\n \\rangle =\n \\frac\n {\\nabla\\phi_\n {in} +\n@@ -140,16 +140,16 @@\n [\\phi] =\n \\phi_{in} -\n \\phi_{out}\n \\int_\n {\\partial\n {T_K}} \\bar\n {D} C_w \\frac\n-dw_dg_interior_penalty , {Ord^2}{d adv.dif.2D, bur.2D,\n-_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bI_\bn_\bt_\be_\br_\bi_\bo_\br_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\be_\br_\bm , (\\partial lap.2D\n+dw_dg_interior_penalty , {Ord^2}{d adv.dif.2D, lap.2D,\n+_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bI_\bn_\bt_\be_\br_\bi_\bo_\br_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\be_\br_\bm , (\\partial bur.2D\n , {T_K})}[p][q]\n where\n [\\phi] =\n \\phi_{in} -\n \\phi_{out}\n \\int_\n {\\partial\n@@ -166,20 +166,20 @@\n \\ul{f}(p_\n {out})}{2} +\n (1 - \\alpha)\n \\ul{n} C\n \\frac{ p_{in}\n - p_{out}}\n {2},\n- pie.ela, bio.npb,\n- , \\int_{\\Omega} bio.sho.syn,\n-dw_diffusion , K_{ij} poi.neu, vib.aco,\n-_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\be_\br_\bm \\nabla_i q dar.flo.mul, bio,\n- \\nabla_j p bio.npb.lag,\n- pie.ela\n+ vib.aco,\n+ , \\int_{\\Omega} bio.npb.lag, bio,\n+dw_diffusion , K_{ij} dar.flo.mul,\n+_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\be_\br_\bm \\nabla_i q poi.neu, bio.npb,\n+ \\nabla_j p pie.ela, pie.ela,\n+ bio.sho.syn\n \\int_{\\Omega}\n , p K_{j}\n dw_diffusion_coupling , \\nabla_j q\n _\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bC_\bo_\bu_\bp_\bl_\bi_\bn_\bg \\mbox{ , }\n , \\int_{\\Omega}\n , q K_{j}\n \\nabla_j p\n@@ -201,42 +201,42 @@\n dw_div , \\ul{v} \\mbox\n _\bD_\bi_\bv_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_\n {\\Omega} c\n \\nabla \\cdot\n \\ul{v}\n \\int_{\\Omega}\n \\nu\\ \\nabla\n- \\ul{v} : sta.nav.sto,\n-dw_div_grad , \\nabla \\ul{u} sto.sli.bc,\n-_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , \\mbox{ , } nav.sto, nav.sto,\n- \\int_{\\Omega} nav.sto.iga, sto\n+ \\ul{v} :\n+dw_div_grad , \\nabla \\ul{u} sta.nav.sto, sto,\n+_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , \\mbox{ , } nav.sto, sto.sli.bc,\n+ \\int_{\\Omega} nav.sto, nav.sto.iga\n \\nabla \\ul{v}\n : \\nabla \\ul\n {u}\n \\int_{\\cal\n {D}} q p\n \\mbox{ , }\n \\int_{\\cal\n- {D}} \\ul{v} poi.per.bou.con,\n- \\cdot \\ul tim.poi, poi.fun,\n- {u}\\\\ vib.aco,\n- \\int_\\Gamma lin.ela.dam,\n- \\ul{v} \\cdot tim.adv.dif,\n- \\ul{n} p ref.evp, pie.ela,\n- \\mbox{ , } lin.ela.up, aco,\n-dw_dot , \\int_\\Gamma q dar.flo.mul,\n-_\bD_\bo_\bt_\bP_\br_\bo_\bd_\bu_\bc_\bt_\bT_\be_\br_\bm , \\ul{n} \\cdot adv.2D, pie.ela,\n- \\ul{u} \\mbox osc, the.ele,\n- { , }\\\\ \\int_ sto.sli.bc,\n- {\\cal{D}} c q hel.apa, bor,\n- p \\mbox{ , } bur.2D, adv.1D,\n- \\int_{\\cal tim.poi.exp, bal,\n- {D}} c \\ul{v} hyd, mod.ana.dec,\n- \\cdot \\ul{u} wel, aco,\n- \\mbox{ , } tim.hea.equ.mul.mat\n+ {D}} \\ul{v} bor, poi.fun,\n+ \\cdot \\ul hel.apa,\n+ {u}\\\\ poi.per.bou.con,\n+ \\int_\\Gamma pie.ela, tim.poi,\n+ \\ul{v} \\cdot lin.ela.up, wel,\n+ \\ul{n} p sto.sli.bc, bur.2D,\n+ \\mbox{ , } the.ele, aco,\n+dw_dot , \\int_\\Gamma q mod.ana.dec,\n+_\bD_\bo_\bt_\bP_\br_\bo_\bd_\bu_\bc_\bt_\bT_\be_\br_\bm , \\ul{n} \\cdot tim.adv.dif,\n+ \\ul{u} \\mbox pie.ela,\n+ { , }\\\\ \\int_ lin.ela.dam, bal,\n+ {\\cal{D}} c q adv.1D, vib.aco,\n+ p \\mbox{ , } adv.2D, dar.flo.mul,\n+ \\int_{\\cal tim.hea.equ.mul.mat,\n+ {D}} c \\ul{v} ref.evp, osc,\n+ \\cdot \\ul{u} tim.poi.exp, aco,\n+ \\mbox{ , } hyd\n \\int_{\\cal\n {D}} \\ul{v}\n \\cdot \\ull{c}\n \\cdot \\ul{u}\n \\int_{\\Omega}\n dw_elastic_wave , D_{ijkl}\\ g_\n _\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bW_\ba_\bv_\be_\bT_\be_\br_\bm , {ij}(\\ul{v})\n@@ -263,20 +263,14 @@\n ev_grad , \\ul{u}\\\\\n _\bG_\br_\ba_\bd_\bT_\be_\br_\bm \\int_{\\cal\n {D}} c \\nabla\n p \\mbox{ or }\n \\int_{\\cal\n {D}} c \\nabla\n \\ul{u}\n- poi.per.bou.con,\n- \\int_{\\cal poi.neu, aco,\n-dw_integrate , {D}} q \\mbox vib.aco,\n-_\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_ dar.flo.mul,\n- {\\cal{D}} c q hel.apa, aco,\n- tim.hea.equ.mul.mat\n \\int_{\\cal\n {D}} y \\mbox\n { , } \\int_\n {\\cal{D}} \\ul\n {y} \\mbox{ ,\n } \\int_\\Gamma\n \\ul{y} \\cdot\n@@ -287,41 +281,43 @@\n \\int_{\\cal\n {D}} c \\ul{y}\n \\mbox{ , }\n \\int_\\Gamma c\n \\ul{y} \\cdot\n \\ul{n} \\mbox\n { flux }\n+ \\int_{\\cal aco, vib.aco,\n+dw_integrate , {D}} q \\mbox dar.flo.mul,\n+_\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_ tim.hea.equ.mul.mat,\n+ {\\cal{D}} c q poi.neu, hel.apa,\n+ poi.per.bou.con, aco\n ev_integrate_mat , \\int_{\\cal\n _\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bM_\ba_\bt_\bT_\be_\br_\bm {D}} c\n , \\int_{\\Gamma}\n dw_jump , c\\, q (p_1 - aco\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bJ_\bu_\bm_\bp_\bT_\be_\br_\bm , p_2)\n \n+ bor, lap.1d,\n+ poi.fun, hel.apa,\n poi.per.bou.con,\n- tim.poi, poi.fun,\n- poi.sho.syn,\n- vib.aco,\n- adv.dif.2D,\n- tim.adv.dif,\n- ref.evp,\n- poi.fie.dep.mat,\n- \\int_{\\Omega} lap.flu.2d, aco,\n-dw_laplace , c \\nabla q cub, lap.2D, osc,\n-_\bL_\ba_\bp_\bl_\ba_\bc_\be_\bT_\be_\br_\bm , \\cdot \\nabla the.ele, sin,\n- p poi.par.stu,\n- sto.sli.bc,\n- hel.apa, lap.1d,\n- bor, lap.tim.ebc,\n+ lap.tim.ebc,\n the.ela.ess,\n- bur.2D, poi.iga,\n- lap.cou.lcb, poi,\n- tim.poi.exp, hyd,\n- wel, aco,\n- tim.hea.equ.mul.mat\n+ lap.flu.2d, tim.poi,\n+ poi.sho.syn, wel,\n+ , \\int_{\\Omega} lap.2D, sto.sli.bc,\n+dw_laplace , c \\nabla q bur.2D, lap.cou.lcb,\n+_\bL_\ba_\bp_\bl_\ba_\bc_\be_\bT_\be_\br_\bm \\cdot \\nabla the.ele, poi,\n+ p poi.par.stu, aco,\n+ poi.fie.dep.mat,\n+ cub, tim.adv.dif,\n+ poi.iga, vib.aco,\n+ tim.hea.equ.mul.mat,\n+ ref.evp, sin, osc,\n+ tim.poi.exp,\n+ adv.dif.2D, aco, hyd\n \\int_{\\Omega}\n ((\\ul{w}\n , \\cdot \\nabla)\n dw_lin_convect , \\ul{u}) \\cdot sta.nav.sto\n _\bL_\bi_\bn_\be_\ba_\br_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm \\ul{v}\n ((\\ul{w}\n \\cdot \\nabla)\n@@ -356,42 +352,42 @@\n _\bL_\bi_\bn_\be_\ba_\br_\bD_\bR_\bo_\bt_\bS_\bp_\br_\bi_\bn_\bg_\bT_\be_\br_\bm , \\mbox mul.poi.con\n , { elements }\n T_K^{i,j}\\\\\n \\mbox{ in a\n region\n connecting\n nodes } i, j\n- bio.npb, lin.vis,\n- its.2, pie.ela.mac,\n+ lin.ela.iga,\n+ lin.vis,\n+ two.bod.con,\n+ pie.ela, lin.ela.mM,\n+ pre.fib,\n+ the.ela.ess,\n mul.poi.con,\n- vib.aco,\n- lin.ela.dam,\n+ wed.mes, its.3,\n ela.shi.per,\n- two.bod.con,\n- bio.npb.lag,\n- nod.lcb, pie.ela,\n- bio.sho.syn,\n- mix.mes,\n- \\int_{\\Omega} lin.ela.up, bio,\n- , D_{ijkl}\\ e_ lin.ela.tra,\n-dw_lin_elastic , {ij}(\\ul{v}) pie.ela,\n-_\bL_\bi_\bn_\be_\ba_\br_\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bT_\be_\br_\bm e_{kl}(\\ul lin.ela.mM,\n- {u}) ela.con.sph,\n- wed.mes,\n+ ela.con.sph, ela,\n+ lin.ela.up, sei.loa,\n+ \\int_{\\Omega} its.1, its.2,\n+ , D_{ijkl}\\ e_ mod.ana.dec,\n+dw_lin_elastic , {ij}(\\ul{v}) bio.npb.lag, bio,\n+_\bL_\bi_\bn_\be_\ba_\br_\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bT_\be_\br_\bm e_{kl}(\\ul lin.ela, nod.lcb,\n+ {u}) its.4, lin.ela.opt,\n+ mat.non,\n+ com.ela.mat,\n+ pie.ela,\n+ lin.ela.tra,\n+ lin.ela.dam,\n ela.con.pla,\n- mat.non, its.1,\n- lin.ela, its.4,\n- lin.ela.iga, its.3,\n- the.ela.ess, ela,\n- sei.loa, pre.fib,\n+ pie.ela.mac,\n+ vib.aco,\n mul.nod.lcb,\n- com.ela.mat,\n- mod.ana.dec,\n- lin.ela.opt,\n- the.ela, tru.bri\n+ the.ela, bio.npb,\n+ mix.mes, tru.bri,\n+ bio.sho.syn\n \\int_{\\Omega}\n D_{ijkl}\\ e_\n {ij}(\\ul{v})\n e_{kl}(\\ul\n {u})\\\\ \\mbox\n , { with } \\\\\n dw_lin_elastic_iso , D_{ijkl} =\n@@ -401,15 +397,15 @@\n {il} \\delta_\n {jk}) +\n \\lambda \\\n \\delta_{ij}\n \\delta_{kl}\n \\int_{\\Omega}\n dw_lin_prestress , \\sigma_{ij} pie.ela.mac,\n-_\bL_\bi_\bn_\be_\ba_\br_\bP_\br_\be_\bs_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm e_{ij}(\\ul non.hyp.mM, pre.fib\n+_\bL_\bi_\bn_\be_\ba_\br_\bP_\br_\be_\bs_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm e_{ij}(\\ul pre.fib, non.hyp.mM\n {v})\n \\ul{f}^{(i)}\n = - \\ul{f}^{\n (j)} = k (\\ul\n {u}^{(j)} -\n \\ul{u}^{\n dw_lin_spring , (i)})\\\\ \\quad\n@@ -504,17 +500,17 @@\n _\bP_\bi_\be_\bz_\bo_\bS_\bt_\br_\ba_\bi_\bn_\bT_\be_\br_\bm g_{kij} e_\n {ij}(\\ul{u})\n ev_piezo_stress , \\int_{\\Omega}\n _\bP_\bi_\be_\bz_\bo_\bS_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm g_{kij}\n \\nabla_k p\n \\ul{f}^i =\n \\ul{\\bar f}^i\n-dw_point_load , \\quad \\forall its.2, tru.bri,\n-_\bC_\bo_\bn_\bc_\be_\bn_\bt_\br_\ba_\bt_\be_\bd_\bP_\bo_\bi_\bn_\bt_\bL_\bo_\ba_\bd_\bT_\be_\br_\bm \\mbox{ FE she.can, its.1,\n- node } i its.4, its.3\n+dw_point_load , \\quad \\forall its.2, its.4,\n+_\bC_\bo_\bn_\bc_\be_\bn_\bt_\br_\ba_\bt_\be_\bd_\bP_\bo_\bi_\bn_\bt_\bL_\bo_\ba_\bd_\bT_\be_\br_\bm \\mbox{ FE she.can, tru.bri,\n+ node } i its.1, its.3\n \\mbox{ in a\n region }\n \\ul{f}^i = -\n k \\ul{u}^i\n dw_point_lspring , \\quad \\forall\n _\bL_\bi_\bn_\be_\ba_\br_\bP_\bo_\bi_\bn_\bt_\bS_\bp_\br_\bi_\bn_\bg_\bT_\be_\br_\bm , \\mbox{ FE\n node } i\n@@ -522,34 +518,34 @@\n region }\n dw_s_dot_grad_i_s , Z^i = \\int_\n _\bS_\bc_\ba_\bl_\ba_\br_\bD_\bo_\bt_\bG_\br_\ba_\bd_\bI_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , {\\Omega} q\n \\nabla_i p\n \\int_{\\Omega}\n q \\ul{y}\n , \\cdot \\nabla\n-dw_s_dot_mgrad_s , p \\mbox{ , } adv.1D, adv.dif.2D,\n-_\bS_\bc_\ba_\bl_\ba_\br_\bD_\bo_\bt_\bM_\bG_\br_\ba_\bd_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , \\int_{\\Omega} adv.2D\n+dw_s_dot_mgrad_s , p \\mbox{ , } adv.dif.2D, adv.2D,\n+_\bS_\bc_\ba_\bl_\ba_\br_\bD_\bo_\bt_\bM_\bG_\br_\ba_\bd_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , \\int_{\\Omega} adv.1D\n , p \\ul{y}\n \\cdot \\nabla\n q\n \\int_{\\Omega}\n dw_shell10x , D_{ijkl}\\ e_\n _\bS_\bh_\be_\bl_\bl_\b1_\b0_\bX_\bT_\be_\br_\bm , {ij}(\\ul{v}) she.can\n , e_{kl}(\\ul\n {u})\n \\int_{\\Omega}\n p\\ \\nabla\n \\cdot \\ul{v}\n \\mbox{ , }\n \\int_{\\Omega}\n- , q\\ \\nabla lin.ela.up,\n- , \\cdot \\ul sta.nav.sto,\n-dw_stokes {u}\\\\ \\mbox sto.sli.bc,\n-_\bS_\bt_\bo_\bk_\be_\bs_\bT_\be_\br_\bm , { or } \\int_ nav.sto, nav.sto,\n- , {\\Omega} c\\ nav.sto.iga, sto\n+ , q\\ \\nabla\n+ , \\cdot \\ul sta.nav.sto, sto,\n+dw_stokes {u}\\\\ \\mbox nav.sto, lin.ela.up,\n+_\bS_\bt_\bo_\bk_\be_\bs_\bT_\be_\br_\bm , { or } \\int_ sto.sli.bc, nav.sto,\n+ , {\\Omega} c\\ nav.sto.iga\n p\\ \\nabla\n \\cdot \\ul{v}\n \\mbox{ , }\n \\int_{\\Omega}\n c\\ q\\ \\nabla\n \\cdot \\ul{u}\n \\int_{\\Omega}\n@@ -566,29 +562,29 @@\n , (\\ul{\\kappa}\n \\cdot \\ul{u})\n (\\nabla \\cdot\n \\ul{v})\n ev_sum_vals \n _\bS_\bu_\bm_\bN_\bo_\bd_\ba_\bl_\bV_\ba_\bl_\bu_\be_\bs_\bT_\be_\br_\bm\n \\int_{\\Gamma}\n-ev_surface_flux , \\ul{n} \\cdot\n-_\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm K_{ij}\n- \\nabla_j p\n- \\int_{\\Gamma}\n dw_surface_flux , q \\ul{n}\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm , \\cdot \\ull{K}\n \\cdot \\nabla\n p\n- \\int_{\\Gamma} lin.vis, mix.mes,\n- \\ul{v} \\cdot com.ela.mat,\n-dw_surface_ltr , \\ull{\\sigma} lin.ela.opt,\n-_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm \\cdot \\ul{n}, wed.mes, tru.bri,\n+ \\int_{\\Gamma}\n+ev_surface_flux , \\ul{n} \\cdot\n+_\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm K_{ij}\n+ \\nabla_j p\n \\int_{\\Gamma} ela.shi.per,\n- \\ul{v} \\cdot nod.lcb,\n- \\ul{n}, lin.ela.tra\n+ \\ul{v} \\cdot lin.vis, nod.lcb,\n+dw_surface_ltr , \\ull{\\sigma} lin.ela.opt,\n+_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm \\cdot \\ul{n}, mix.mes,\n+ \\int_{\\Gamma} com.ela.mat,\n+ \\ul{v} \\cdot tru.bri,\n+ \\ul{n}, lin.ela.tra, wed.mes\n \\int_{\\Gamma}\n ev_surface_moment , \\ul{n} (\\ul\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bM_\bo_\bm_\be_\bn_\bt_\bT_\be_\br_\bm {x} - \\ul\n {x}_0)\n dw_surface_ndot , \\int_{\\Gamma}\n _\bS_\bu_\bf_\ba_\bc_\be_\bN_\bo_\br_\bm_\ba_\bl_\bD_\bo_\bt_\bT_\be_\br_\bm q \\ul{c} lap.flu.2d\n \\cdot \\ul{n}\n@@ -626,17 +622,17 @@\n _\bV_\be_\bc_\bt_\bo_\br_\bD_\bo_\bt_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm \\mbox{ , }\n , \\int_{\\Omega}\n , \\ul{u} \\cdot\n \\ul{c} q\\\\\n ev_volume \\int_{\\cal\n _\bV_\bo_\bl_\bu_\bm_\be_\bT_\be_\br_\bm {D}} 1\n \\int_{\\Omega}\n-dw_volume_lvf , \\ul{f} \\cdot poi.iga,\n-_\bL_\bi_\bn_\be_\ba_\br_\bV_\bo_\bl_\bu_\bm_\be_\bF_\bo_\br_\bc_\be_\bT_\be_\br_\bm \\ul{v} \\mbox adv.dif.2D, bur.2D,\n- { or } \\int_ poi.par.stu\n+dw_volume_lvf , \\ul{f} \\cdot adv.dif.2D, bur.2D,\n+_\bL_\bi_\bn_\be_\ba_\br_\bV_\bo_\bl_\bu_\bm_\be_\bF_\bo_\br_\bc_\be_\bT_\be_\br_\bm \\ul{v} \\mbox poi.iga, poi.par.stu\n+ { or } \\int_\n {\\Omega} f q\n dw_volume_nvf , , \\int_{\\Omega} poi.non.mat\n _\bN_\bo_\bn_\bl_\bi_\bn_\be_\ba_\br_\bV_\bo_\bl_\bu_\bm_\be_\bF_\bo_\br_\bc_\be_\bT_\be_\br_\bm , q f(p)\n 1 / D\n ev_volume_surface \\int_\\Gamma\n _\bV_\bo_\bl_\bu_\bm_\be_\bS_\bu_\br_\bf_\ba_\bc_\be_\bT_\be_\br_\bm \\ul{x} \\cdot\n \\ul{n}\n@@ -848,168 +844,158 @@\n , , \\hat{I}_{ij} =\n \\delta_{ij} \\nabla\n \\cdot \\Vcal -\n {\\partial \\Vcal_j\n \\over \\partial x_i}\n *\b**\b**\b**\b**\b**\b* T\bTa\bab\bbl\ble\be o\bof\bf l\bla\bar\brg\bge\be d\bde\bef\bfo\bor\brm\bma\bat\bti\bio\bon\bn t\bte\ber\brm\bms\bs_\b?\b\u00b6 *\b**\b**\b**\b**\b**\b*\n L\bLa\bar\brg\bge\be d\bde\bef\bfo\bor\brm\bma\bat\bti\bio\bon\bn t\bte\ber\brm\bms\bs_\b?\b\u00b6\n-n\bna\bam\bme\be/\b/c\bcl\bla\bas\bss\bs a\bar\brg\bgu\bum\bme\ben\bnt\bts\bs d\bde\bef\bfi\bin\bni\bit\bti\bio\bon\bn e\bex\bxa\bam\bmp\bpl\ble\bes\bs\n- \\int_{\\Omega}\n-dw_tl_bulk_active , S_{ij}(\\ul{u})\n-_\bB_\bu_\bl_\bk_\bA_\bc_\bt_\bi_\bv_\be_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij}\n- (\\ul{u};\\ul\n- {v})\n- \\int_{\\Omega}\n-dw_tl_bulk_penalty , S_{ij}(\\ul{u}) com.ela.mat,\n-_\bB_\bu_\bl_\bk_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij} hyp, act.fib\n- (\\ul{u};\\ul\n- {v})\n- \\int_{\\Omega}\n-dw_tl_bulk_pressure , S_{ij}(p)\n-_\bB_\bu_\bl_\bk_\bP_\br_\be_\bs_\bs_\bu_\br_\be_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij} bal, per.tl\n- (\\ul{u};\\ul\n- {v})\n+n\bna\bam\bme\be/\b/c\bcl\bla\bas\bss\bs a\bar\brg\bgu\bum\bme\ben\bnt\bts\bs d\bde\bef\bfi\bin\bni\bit\bti\bio\bon\bn e\bex\bxa\bam\bmp\bpl\ble\bes\bs\n+ , \\int_{\\Omega}\n+dw_tl_bulk_active , S_{ij}(\\ul{u})\n+_\bB_\bu_\bl_\bk_\bA_\bc_\bt_\bi_\bv_\be_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n+ (\\ul{u};\\ul{v})\n+ , \\int_{\\Omega}\n+dw_tl_bulk_penalty , S_{ij}(\\ul{u}) hyp, act.fib,\n+_\bB_\bu_\bl_\bk_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} com.ela.mat\n+ (\\ul{u};\\ul{v})\n+ , \\int_{\\Omega}\n+dw_tl_bulk_pressure , S_{ij}(p) bal, per.tl\n+_\bB_\bu_\bl_\bk_\bP_\br_\be_\bs_\bs_\bu_\br_\be_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n+ (\\ul{u};\\ul{v})\n , \\int_{\\Omega}\n- , \\ull{K}(\\ul\n-dw_tl_diffusion , {u}^{(n-1)}) : per.tl\n+ , \\ull{K}(\\ul{u}^\n+dw_tl_diffusion , {(n-1)}) : per.tl\n _\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\bL_\bT_\be_\br_\bm , \\pdiff{q}{\\ul\n {X}} \\pdiff{p}\n {\\ul{X}}\n ,\n , \\int_{\\Omega}\n dw_tl_fib_a , S_{ij}(\\ul{u})\n-_\bF_\bi_\bb_\br_\be_\bs_\bA_\bc_\bt_\bi_\bv_\be_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij} act.fib\n- , (\\ul{u};\\ul\n- , {v})\n+_\bF_\bi_\bb_\br_\be_\bs_\bA_\bc_\bt_\bi_\bv_\be_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij} act.fib\n+ , (\\ul{u};\\ul{v})\n+ ,\n \n- , \\int_{\\Omega}\n- , S_{ij}(\\ul{u})\n-dw_tl_fib_e , \\delta E_{ij}\n-_\bF_\bi_\bb_\br_\be_\bs_\bE_\bx_\bp_\bo_\bn_\be_\bn_\bt_\bi_\ba_\bl_\bT_\bL_\bT_\be_\br_\bm , (\\ul{u};\\ul\n- , {v})\n+ ,\n+ , \\int_{\\Omega}\n+dw_tl_fib_e , S_{ij}(\\ul{u})\n+_\bF_\bi_\bb_\br_\be_\bs_\bE_\bx_\bp_\bo_\bn_\be_\bn_\bt_\bi_\ba_\bl_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij}\n+ , (\\ul{u};\\ul{v})\n \n ,\n , \\int_{\\Omega}\n dw_tl_fib_spe , S_{ij}(\\ul{u})\n _\bF_\bi_\bb_\br_\be_\bs_\bS_\bo_\bf_\bt_\bP_\bl_\bu_\bs_\bE_\bx_\bp_\bo_\bn_\be_\bn_\bt_\bi_\ba_\bl_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij}\n- , (\\ul{u};\\ul\n- , {v})\n+ , (\\ul{u};\\ul{v})\n+ ,\n \n- \\int_{\\Omega}\n-dw_tl_he_genyeoh , S_{ij}(\\ul{u})\n-_\bG_\be_\bn_\bY_\be_\bo_\bh_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij}\n- (\\ul{u};\\ul\n- {v})\n- \\int_{\\Omega}\n-dw_tl_he_mooney_rivlin , S_{ij}(\\ul{u}) bal,\n-_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij} com.ela.mat,\n- (\\ul{u};\\ul hyp\n- {v})\n- \\int_{\\Omega} hyp, bal,\n-dw_tl_he_neohook , S_{ij}(\\ul{u}) com.ela.mat,\n-_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij} per.tl,\n- (\\ul{u};\\ul act.fib\n- {v})\n- \\int_{\\Omega}\n-dw_tl_he_ogden , S_{ij}(\\ul{u})\n-_\bO_\bg_\bd_\be_\bn_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij}\n- (\\ul{u};\\ul\n- {v})\n+ , \\int_{\\Omega}\n+dw_tl_he_genyeoh , S_{ij}(\\ul{u})\n+_\bG_\be_\bn_\bY_\be_\bo_\bh_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n+ (\\ul{u};\\ul{v})\n+ , \\int_{\\Omega}\n+dw_tl_he_mooney_rivlin , S_{ij}(\\ul{u}) hyp, bal,\n+_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} com.ela.mat\n+ (\\ul{u};\\ul{v})\n+ , \\int_{\\Omega} act.fib,\n+dw_tl_he_neohook , S_{ij}(\\ul{u}) com.ela.mat,\n+_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} hyp, bal,\n+ (\\ul{u};\\ul{v}) per.tl\n+ , \\int_{\\Omega}\n+dw_tl_he_ogden , S_{ij}(\\ul{u})\n+_\bO_\bg_\bd_\be_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n+ (\\ul{u};\\ul{v})\n ,\n dw_tl_membrane ,\n-_\bT_\bL_\bM_\be_\bm_\bb_\br_\ba_\bn_\be_\bT_\be_\br_\bm , bal\n+_\bT_\bL_\bM_\be_\bm_\bb_\br_\ba_\bn_\be_\bT_\be_\br_\bm , bal\n ,\n \n- \\int_{\\Gamma}\n- , \\ul{\\nu} \\cdot\n-ev_tl_surface_flux , \\ull{K}(\\ul\n-_\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bT_\bL_\bT_\be_\br_\bm , {u}^{(n-1)})\n- \\pdiff{p}{\\ul\n- {X}}\n+ , \\int_{\\Gamma}\n+ev_tl_surface_flux , \\ul{\\nu} \\cdot\n+_\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bT_\bL_\bT_\be_\br_\bm , \\ull{K}(\\ul{u}^\n+ {(n-1)}) \\pdiff\n+ {p}{\\ul{X}}\n \\int_{\\Gamma}\n , \\ul{\\nu} \\cdot\n-dw_tl_surface_traction , \\ull{F}^{-1} per.tl\n+dw_tl_surface_traction , \\ull{F}^{-1} per.tl\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\bL_\bT_\be_\br_\bm \\cdot \\ull\n {\\sigma} \\cdot\n \\ul{v} J\n \\begin{array}\n {l} \\int_\n {\\Omega} q J\n (\\ul{u}) \\\\\n \\mbox{volume\n mode: vector\n for } K \\from\n- \\Ical_h: \\int_\n-dw_tl_volume , {T_K} J(\\ul bal, per.tl\n-_\bV_\bo_\bl_\bu_\bm_\be_\bT_\bL_\bT_\be_\br_\bm {u}) \\\\ \\mbox\n+dw_tl_volume , \\Ical_h: \\int_\n+_\bV_\bo_\bl_\bu_\bm_\be_\bT_\bL_\bT_\be_\br_\bm {T_K} J(\\ul{u}) bal, per.tl\n+ \\\\ \\mbox\n {rel\\_volume\n mode: vector\n for } K \\from\n \\Ical_h: \\int_\n- {T_K} J(\\ul\n- {u}) / \\int_\n- {T_K} 1 \\end\n- {array}\n+ {T_K} J(\\ul{u})\n+ / \\int_{T_K} 1\n+ \\end{array}\n 1 / D \\int_\n ev_tl_volume_surface {\\Gamma} \\ul\n _\bV_\bo_\bl_\bu_\bm_\be_\bS_\bu_\br_\bf_\ba_\bc_\be_\bT_\bL_\bT_\be_\br_\bm {\\nu} \\cdot\n \\ull{F}^{-1}\n \\cdot \\ul{x} J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_bulk_penalty , {L}\\tau_{ij} hyp.ul\n-_\bB_\bu_\bl_\bk_\bP_\be_\bn_\ba_\bl_\bt_\by_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_\n- {ij}(\\delta\\ul\n- {v})/J\n+dw_ul_bulk_penalty , {L}\\tau_{ij} hyp.ul\n+_\bB_\bu_\bl_\bk_\bP_\be_\bn_\ba_\bl_\bt_\by_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij}\n+ (\\delta\\ul{v})/\n+ J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_bulk_pressure , {L}\\tau_{ij} hyp.ul.up\n-_\bB_\bu_\bl_\bk_\bP_\br_\be_\bs_\bs_\bu_\br_\be_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_\n- {ij}(\\delta\\ul\n- {v})/J\n+dw_ul_bulk_pressure , {L}\\tau_{ij} hyp.ul.up\n+_\bB_\bu_\bl_\bk_\bP_\br_\be_\bs_\bs_\bu_\br_\be_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij}\n+ (\\delta\\ul{v})/\n+ J\n , \\int_{\\Omega}\n-dw_ul_compressible , 1\\over \\gamma hyp.ul.up\n-_\bC_\bo_\bm_\bp_\br_\be_\bs_\bs_\bi_\bb_\bi_\bl_\bi_\bt_\by_\bU_\bL_\bT_\be_\br_\bm , p \\, q\n+dw_ul_compressible , 1\\over \\gamma p hyp.ul.up\n+_\bC_\bo_\bm_\bp_\br_\be_\bs_\bs_\bi_\bb_\bi_\bl_\bi_\bt_\by_\bU_\bL_\bT_\be_\br_\bm , \\, q\n \n \\int_{\\Omega}\n \\mathcal\n-dw_ul_he_by_fun , , {L}\\tau_{ij} hyp.ul.by.fun\n-_\bH_\by_\bp_\be_\br_\be_\bl_\ba_\bs_\bt_\bi_\bc_\bB_\by_\bF_\bu_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_\n- {ij}(\\delta\\ul\n- {v})/J\n+dw_ul_he_by_fun , , {L}\\tau_{ij} hyp.ul.by.fun\n+_\bH_\by_\bp_\be_\br_\be_\bl_\ba_\bs_\bt_\bi_\bc_\bB_\by_\bF_\bu_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij}\n+ (\\delta\\ul{v})/\n+ J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_he_mooney_rivlin , {L}\\tau_{ij} hyp.ul.up,\n-_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_ hyp.ul\n- {ij}(\\delta\\ul\n- {v})/J\n+dw_ul_he_mooney_rivlin , {L}\\tau_{ij} hyp.ul.up,\n+_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij} hyp.ul\n+ (\\delta\\ul{v})/\n+ J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_he_neohook , {L}\\tau_{ij} hyp.ul.up,\n-_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_ hyp.ul\n- {ij}(\\delta\\ul\n- {v})/J\n+dw_ul_he_neohook , {L}\\tau_{ij} hyp.ul.up,\n+_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij} hyp.ul\n+ (\\delta\\ul{v})/\n+ J\n \\begin{array}\n {l} \\int_\n {\\Omega} q J\n (\\ul{u}) \\\\\n \\mbox{volume\n mode: vector\n for } K \\from\n- \\Ical_h: \\int_\n-dw_ul_volume , {T_K} J(\\ul hyp.ul.up\n-_\bV_\bo_\bl_\bu_\bm_\be_\bU_\bL_\bT_\be_\br_\bm {u}) \\\\ \\mbox\n+dw_ul_volume , \\Ical_h: \\int_\n+_\bV_\bo_\bl_\bu_\bm_\be_\bU_\bL_\bT_\be_\br_\bm {T_K} J(\\ul{u}) hyp.ul.up\n+ \\\\ \\mbox\n {rel\\_volume\n mode: vector\n for } K \\from\n \\Ical_h: \\int_\n- {T_K} J(\\ul\n- {u}) / \\int_\n- {T_K} 1 \\end\n- {array}\n+ {T_K} J(\\ul{u})\n+ / \\int_{T_K} 1\n+ \\end{array}\n *\b**\b**\b**\b**\b**\b* T\bTa\bab\bbl\ble\be o\bof\bf s\bsp\bpe\bec\bci\bia\bal\bl t\bte\ber\brm\bms\bs_\b?\b\u00b6 *\b**\b**\b**\b**\b**\b*\n S\bSp\bpe\bec\bci\bia\bal\bl t\bte\ber\brm\bms\bs_\b?\b\u00b6\n n\bna\bam\bme\be/\b/c\bcl\bla\bas\bss\bs a\bar\brg\bgu\bum\bme\ben\bnt\bts\bs d\bde\bef\bfi\bin\bni\bit\bti\bio\bon\bn e\bex\bxa\bam\bmp\bpl\ble\bes\bs\n \\begin{array}{l}\n \\int_{\\Omega}\n \\left [\\int_0^t\n , \\alpha_{ij}(t-\n@@ -1291,15 +1277,15 @@\n {\\delta w}) \\ e_\n {lm,n}(\\ull{w})\n M^C = \\int_{\\cal\n {D}} \\rho \\ul{v}\n \\cdot \\ul{u} \\\\\n , M^L = \\mathrm\n de_mass , {lumping}(M^C) \\\\\n-_\bM_\ba_\bs_\bs_\bT_\be_\br_\bm , M^A = (1 - \\beta) sei.loa, ela\n+_\bM_\ba_\bs_\bs_\bT_\be_\br_\bm , M^A = (1 - \\beta) ela, sei.loa\n , M^C + \\beta M^L\n \\\\ A = \\sum_e A_e\n \\\\ C = \\sum_e\n A_e^T (M_e^A)^{-\n 1} A_e\n \\int_{\\Gamma} c\n de_non_penetration_p , (\\ul{n} \\cdot \\ul\n"}]}, {"source1": "./usr/share/doc/python-sfepy-doc/html/terms_overview.html", "source2": "./usr/share/doc/python-sfepy-doc/html/terms_overview.html", "unified_diff": "@@ -373,15 +373,15 @@\n

<material>, <virtual/param_v>, <state/param_s>

\n

<material>, <state>, <virtual>

\n \n
\n

\\int_{\\Omega} p\\ \\alpha_{ij} e_{ij}(\\ul{v}) \\mbox{ , }\n \\int_{\\Omega} q\\ \\alpha_{ij} e_{ij}(\\ul{u})

\n
\n-

bio.npb, bio.sho.syn, the.ela, bio, bio.npb.lag, the.ela.ess

\n+

bio.npb.lag, bio, the.ela, bio.npb, the.ela.ess, bio.sho.syn

\n \n

ev_biot_stress

\n

BiotStressTerm

\n \n

<material>, <parameter>

\n
\n

- \\int_{\\Omega} \\alpha_{ij} p

\n@@ -446,15 +446,15 @@\n

dw_convect

\n

ConvectTerm

\n \n

<virtual>, <state>

\n
\n

\\int_{\\Omega} ((\\ul{u} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}

\n
\n-

nav.sto, nav.sto, nav.sto.iga

\n+

nav.sto, nav.sto.iga, nav.sto

\n \n

dw_convect_v_grad_s

\n

ConvectVGradSTerm

\n \n

<virtual>, <state_v>, <state_s>

\n
\n

\\int_{\\Omega} q (\\ul{u} \\cdot \\nabla p)

\n@@ -480,15 +480,15 @@\n

\\int_{\\partial{T_K}} \\ul{n} \\cdot \\ul{f}^{*} (p_{in},\n p_{out})q

\n

where

\n
\n

\\ul{f}^{*}(p_{in}, p_{out}) = \\ul{a} \\frac{p_{in} +\n p_{out}}{2} + (1 - \\alpha) \\ul{n} C \\frac{ p_{in} - p_{out}}{2},

\n
\n-

adv.1D, adv.dif.2D, adv.2D

\n+

adv.dif.2D, adv.2D, adv.1D

\n \n

dw_dg_diffusion_flux

\n

DiffusionDGFluxTerm

\n \n

<material>, <state>, <virtual>

\n

<material>, <virtual>, <state>

\n \n@@ -498,28 +498,28 @@\n

where

\n
\n

\\langle \\nabla \\phi \\rangle = \\frac{\\nabla\\phi_{in} +\n \\nabla\\phi_{out}}{2}

\n
\n

[\\phi] = \\phi_{in} - \\phi_{out}

\n
\n-

adv.dif.2D, bur.2D, lap.2D

\n+

adv.dif.2D, lap.2D, bur.2D

\n \n

dw_dg_interior_penalty

\n

DiffusionInteriorPenaltyTerm

\n \n

<material>, <material_Cw>, <virtual>, <state>

\n
\n

\\int_{\\partial{T_K}} \\bar{D} C_w\n \\frac{Ord^2}{d(\\partial{T_K})}[p][q]

\n

where

\n
\n

[\\phi] = \\phi_{in} - \\phi_{out}

\n
\n-

adv.dif.2D, bur.2D, lap.2D

\n+

adv.dif.2D, lap.2D, bur.2D

\n \n

dw_dg_nonlinear_laxfrie_flux

\n

NonlinearHyperbolicDGFluxTerm

\n \n

<opt_material>, <fun>, <fun_d>, <virtual>, <state>

\n
\n

\\int_{\\partial{T_K}} \\ul{n} \\cdot f^{*} (p_{in}, p_{out})q

\n@@ -534,15 +534,15 @@\n

dw_diffusion

\n

DiffusionTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} K_{ij} \\nabla_i q \\nabla_j p

\n
\n-

pie.ela, bio.npb, bio.sho.syn, poi.neu, vib.aco, dar.flo.mul, bio, bio.npb.lag, pie.ela

\n+

vib.aco, bio.npb.lag, bio, dar.flo.mul, poi.neu, bio.npb, pie.ela, pie.ela, bio.sho.syn

\n \n

dw_diffusion_coupling

\n

DiffusionCoupling

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n

<material>, <state>, <virtual>

\n \n@@ -594,28 +594,28 @@\n

DivGradTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} \\nu\\ \\nabla \\ul{v} : \\nabla \\ul{u} \\mbox{ ,\n } \\int_{\\Omega} \\nabla \\ul{v} : \\nabla \\ul{u}

\n
\n-

sta.nav.sto, sto.sli.bc, nav.sto, nav.sto, nav.sto.iga, sto

\n+

sta.nav.sto, sto, nav.sto, sto.sli.bc, nav.sto, nav.sto.iga

\n \n

dw_dot

\n

DotProductTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\cal{D}} q p \\mbox{ , } \\int_{\\cal{D}} \\ul{v} \\cdot\n \\ul{u}\\\\ \\int_\\Gamma \\ul{v} \\cdot \\ul{n} p \\mbox{ , } \\int_\\Gamma\n q \\ul{n} \\cdot \\ul{u} \\mbox{ , }\\\\ \\int_{\\cal{D}} c q p \\mbox{ , }\n \\int_{\\cal{D}} c \\ul{v} \\cdot \\ul{u} \\mbox{ , } \\int_{\\cal{D}}\n \\ul{v} \\cdot \\ull{c} \\cdot \\ul{u}

\n
\n-

poi.per.bou.con, tim.poi, poi.fun, vib.aco, lin.ela.dam, tim.adv.dif, ref.evp, pie.ela, lin.ela.up, aco, dar.flo.mul, adv.2D, pie.ela, osc, the.ele, sto.sli.bc, hel.apa, bor, bur.2D, adv.1D, tim.poi.exp, bal, hyd, mod.ana.dec, wel, aco, tim.hea.equ.mul.mat

\n+

bor, poi.fun, hel.apa, poi.per.bou.con, pie.ela, tim.poi, lin.ela.up, wel, sto.sli.bc, bur.2D, the.ele, aco, mod.ana.dec, tim.adv.dif, pie.ela, lin.ela.dam, bal, adv.1D, vib.aco, adv.2D, dar.flo.mul, tim.hea.equ.mul.mat, ref.evp, osc, tim.poi.exp, aco, hyd

\n \n

dw_elastic_wave

\n

ElasticWaveTerm

\n \n

<material_1>, <material_2>, <virtual>, <state>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ g_{ij}(\\ul{v}) g_{kl}(\\ul{u})

\n@@ -650,35 +650,35 @@\n
\n

\\int_{\\cal{D}} \\nabla p \\mbox{ or } \\int_{\\cal{D}} \\nabla\n \\ul{u}\\\\ \\int_{\\cal{D}} c \\nabla p \\mbox{ or } \\int_{\\cal{D}} c\n \\nabla \\ul{u}

\n
\n \n \n-

dw_integrate

\n-

IntegrateOperatorTerm

\n-\n-

<opt_material>, <virtual>

\n-
\n-

\\int_{\\cal{D}} q \\mbox{ or } \\int_{\\cal{D}} c q

\n-
\n-

poi.per.bou.con, poi.neu, aco, vib.aco, dar.flo.mul, hel.apa, aco, tim.hea.equ.mul.mat

\n-\n-

ev_integrate

\n+

ev_integrate

\n

IntegrateTerm

\n \n

<opt_material>, <parameter>

\n
\n

\\int_{\\cal{D}} y \\mbox{ , } \\int_{\\cal{D}} \\ul{y} \\mbox{ ,\n } \\int_\\Gamma \\ul{y} \\cdot \\ul{n}\\\\ \\int_{\\cal{D}} c y \\mbox{ , }\n \\int_{\\cal{D}} c \\ul{y} \\mbox{ , } \\int_\\Gamma c \\ul{y} \\cdot\n \\ul{n} \\mbox{ flux }

\n
\n \n \n+

dw_integrate

\n+

IntegrateOperatorTerm

\n+\n+

<opt_material>, <virtual>

\n+
\n+

\\int_{\\cal{D}} q \\mbox{ or } \\int_{\\cal{D}} c q

\n+
\n+

aco, vib.aco, dar.flo.mul, tim.hea.equ.mul.mat, poi.neu, hel.apa, poi.per.bou.con, aco

\n+\n

ev_integrate_mat

\n

IntegrateMatTerm

\n \n

<material>, <parameter>

\n
\n

\\int_{\\cal{D}} c

\n
\n@@ -696,15 +696,15 @@\n

dw_laplace

\n

LaplaceTerm

\n \n

<opt_material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} c \\nabla q \\cdot \\nabla p

\n
\n-

poi.per.bou.con, tim.poi, poi.fun, poi.sho.syn, vib.aco, adv.dif.2D, tim.adv.dif, ref.evp, poi.fie.dep.mat, lap.flu.2d, aco, cub, lap.2D, osc, the.ele, sin, poi.par.stu, sto.sli.bc, hel.apa, lap.1d, bor, lap.tim.ebc, the.ela.ess, bur.2D, poi.iga, lap.cou.lcb, poi, tim.poi.exp, hyd, wel, aco, tim.hea.equ.mul.mat

\n+

bor, lap.1d, poi.fun, hel.apa, poi.per.bou.con, lap.tim.ebc, the.ela.ess, lap.flu.2d, tim.poi, poi.sho.syn, wel, lap.2D, sto.sli.bc, bur.2D, lap.cou.lcb, the.ele, poi, poi.par.stu, aco, poi.fie.dep.mat, cub, tim.adv.dif, poi.iga, vib.aco, tim.hea.equ.mul.mat, ref.evp, sin, osc, tim.poi.exp, adv.dif.2D, aco, hyd

\n \n

dw_lin_convect

\n

LinearConvectTerm

\n \n

<virtual>, <parameter>, <state>

\n
\n

\\int_{\\Omega} ((\\ul{w} \\cdot \\nabla) \\ul{u}) \\cdot \\ul{v}

\n@@ -749,15 +749,15 @@\n

dw_lin_elastic

\n

LinearElasticTerm

\n \n

<material>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})

\n
\n-

bio.npb, lin.vis, its.2, pie.ela.mac, mul.poi.con, vib.aco, lin.ela.dam, ela.shi.per, two.bod.con, bio.npb.lag, nod.lcb, pie.ela, bio.sho.syn, mix.mes, lin.ela.up, bio, lin.ela.tra, pie.ela, lin.ela.mM, ela.con.sph, wed.mes, ela.con.pla, mat.non, its.1, lin.ela, its.4, lin.ela.iga, its.3, the.ela.ess, ela, sei.loa, pre.fib, mul.nod.lcb, com.ela.mat, mod.ana.dec, lin.ela.opt, the.ela, tru.bri

\n+

lin.ela.iga, lin.vis, two.bod.con, pie.ela, lin.ela.mM, pre.fib, the.ela.ess, mul.poi.con, wed.mes, its.3, ela.shi.per, ela.con.sph, ela, lin.ela.up, sei.loa, its.1, its.2, mod.ana.dec, bio.npb.lag, bio, lin.ela, nod.lcb, its.4, lin.ela.opt, mat.non, com.ela.mat, pie.ela, lin.ela.tra, lin.ela.dam, ela.con.pla, pie.ela.mac, vib.aco, mul.nod.lcb, the.ela, bio.npb, mix.mes, tru.bri, bio.sho.syn

\n \n

dw_lin_elastic_iso

\n

LinearElasticIsotropicTerm

\n \n

<material_1>, <material_2>, <virtual/param_1>, <state/param_2>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})\\\\\n@@ -770,15 +770,15 @@\n

dw_lin_prestress

\n

LinearPrestressTerm

\n \n

<material>, <virtual/param>

\n
\n

\\int_{\\Omega} \\sigma_{ij} e_{ij}(\\ul{v})

\n
\n-

pie.ela.mac, non.hyp.mM, pre.fib

\n+

pie.ela.mac, pre.fib, non.hyp.mM

\n \n

dw_lin_spring

\n

LinearSpringTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\ul{f}^{(i)} = - \\ul{f}^{(j)} = k (\\ul{u}^{(j)} -\n@@ -906,15 +906,15 @@\n

ConcentratedPointLoadTerm

\n \n

<material>, <virtual>

\n
\n

\\ul{f}^i = \\ul{\\bar f}^i \\quad \\forall \\mbox{ FE node } i\n \\mbox{ in a region }

\n
\n-

its.2, tru.bri, she.can, its.1, its.4, its.3

\n+

its.2, its.4, she.can, tru.bri, its.1, its.3

\n \n

dw_point_lspring

\n

LinearPointSpringTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\ul{f}^i = -k \\ul{u}^i \\quad \\forall \\mbox{ FE node } i\n@@ -937,15 +937,15 @@\n

<material>, <virtual>, <state>

\n

<material>, <state>, <virtual>

\n \n
\n

\\int_{\\Omega} q \\ul{y} \\cdot \\nabla p \\mbox{ , }\n \\int_{\\Omega} p \\ul{y} \\cdot \\nabla q

\n
\n-

adv.1D, adv.dif.2D, adv.2D

\n+

adv.dif.2D, adv.2D, adv.1D

\n \n

dw_shell10x

\n

Shell10XTerm

\n \n

<material_d>, <material_drill>, <virtual>, <state>

\n
\n

\\int_{\\Omega} D_{ijkl}\\ e_{ij}(\\ul{v}) e_{kl}(\\ul{u})

\n@@ -960,15 +960,15 @@\n \n
\n

\\int_{\\Omega} p\\ \\nabla \\cdot \\ul{v} \\mbox{ , }\n \\int_{\\Omega} q\\ \\nabla \\cdot \\ul{u}\\\\ \\mbox{ or } \\int_{\\Omega}\n c\\ p\\ \\nabla \\cdot \\ul{v} \\mbox{ , } \\int_{\\Omega} c\\ q\\ \\nabla\n \\cdot \\ul{u}

\n
\n-

lin.ela.up, sta.nav.sto, sto.sli.bc, nav.sto, nav.sto, nav.sto.iga, sto

\n+

sta.nav.sto, sto, nav.sto, lin.ela.up, sto.sli.bc, nav.sto, nav.sto.iga

\n \n

dw_stokes_wave

\n

StokesWaveTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} (\\ul{\\kappa} \\cdot \\ul{v}) (\\ul{\\kappa}\n@@ -992,41 +992,41 @@\n

ev_sum_vals

\n

SumNodalValuesTerm

\n \n

<parameter>

\n \n \n \n-

ev_surface_flux

\n-

SurfaceFluxTerm

\n+

dw_surface_flux

\n+

SurfaceFluxOperatorTerm

\n \n-

<material>, <parameter>

\n+

<opt_material>, <virtual>, <state>

\n
\n-

\\int_{\\Gamma} \\ul{n} \\cdot K_{ij} \\nabla_j p

\n+

\\int_{\\Gamma} q \\ul{n} \\cdot \\ull{K} \\cdot \\nabla p

\n
\n \n \n-

dw_surface_flux

\n-

SurfaceFluxOperatorTerm

\n+

ev_surface_flux

\n+

SurfaceFluxTerm

\n \n-

<opt_material>, <virtual>, <state>

\n+

<material>, <parameter>

\n
\n-

\\int_{\\Gamma} q \\ul{n} \\cdot \\ull{K} \\cdot \\nabla p

\n+

\\int_{\\Gamma} \\ul{n} \\cdot K_{ij} \\nabla_j p

\n
\n \n \n

dw_surface_ltr

\n

LinearTractionTerm

\n \n

<opt_material>, <virtual/param>

\n
\n

\\int_{\\Gamma} \\ul{v} \\cdot \\ull{\\sigma} \\cdot \\ul{n},\n \\int_{\\Gamma} \\ul{v} \\cdot \\ul{n},

\n
\n-

lin.vis, mix.mes, com.ela.mat, lin.ela.opt, wed.mes, tru.bri, ela.shi.per, nod.lcb, lin.ela.tra

\n+

ela.shi.per, lin.vis, nod.lcb, lin.ela.opt, mix.mes, com.ela.mat, tru.bri, lin.ela.tra, wed.mes

\n \n

ev_surface_moment

\n

SurfaceMomentTerm

\n \n

<material>, <parameter>

\n
\n

\\int_{\\Gamma} \\ul{n} (\\ul{x} - \\ul{x}_0)

\n@@ -1091,15 +1091,15 @@\n

LinearVolumeForceTerm

\n \n

<material>, <virtual>

\n
\n

\\int_{\\Omega} \\ul{f} \\cdot \\ul{v} \\mbox{ or }\n \\int_{\\Omega} f q

\n
\n-

poi.iga, adv.dif.2D, bur.2D, poi.par.stu

\n+

adv.dif.2D, bur.2D, poi.iga, poi.par.stu

\n \n

dw_volume_nvf

\n

NonlinearVolumeForceTerm

\n \n

<fun>, <dfun>, <virtual>, <state>

\n
\n

\\int_{\\Omega} q f(p)

\n@@ -1426,15 +1426,15 @@\n

dw_tl_bulk_penalty

\n

BulkPenaltyTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

com.ela.mat, hyp, act.fib

\n+

hyp, act.fib, com.ela.mat

\n \n

dw_tl_bulk_pressure

\n

BulkPressureTLTerm

\n \n

<virtual>, <state>, <state_p>

\n
\n

\\int_{\\Omega} S_{ij}(p) \\delta E_{ij}(\\ul{u};\\ul{v})

\n@@ -1490,24 +1490,24 @@\n

dw_tl_he_mooney_rivlin

\n

MooneyRivlinTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

bal, com.ela.mat, hyp

\n+

hyp, bal, com.ela.mat

\n \n

dw_tl_he_neohook

\n

NeoHookeanTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n
\n-

hyp, bal, com.ela.mat, per.tl, act.fib

\n+

act.fib, com.ela.mat, hyp, bal, per.tl

\n \n

dw_tl_he_ogden

\n

OgdenTLTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Omega} S_{ij}(\\ul{u}) \\delta E_{ij}(\\ul{u};\\ul{v})

\n@@ -2060,15 +2060,15 @@\n \n

<material_rho>, <material_lumping>, <material_beta>, <virtual>, <state>

\n
\n

M^C = \\int_{\\cal{D}} \\rho \\ul{v} \\cdot \\ul{u} \\\\ M^L =\n \\mathrm{lumping}(M^C) \\\\ M^A = (1 - \\beta) M^C + \\beta M^L \\\\ A =\n \\sum_e A_e \\\\ C = \\sum_e A_e^T (M_e^A)^{-1} A_e

\n
\n-

sei.loa, ela

\n+

ela, sei.loa

\n \n

de_non_penetration_p

\n

ENonPenetrationPenaltyTerm

\n \n

<material>, <virtual>, <state>

\n
\n

\\int_{\\Gamma} c (\\ul{n} \\cdot \\ul{v}) (\\ul{n} \\cdot\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -119,19 +119,19 @@\n \\nabla) p) q\n , \\int_{\\Gamma}\n dw_bc_newton , \\alpha q (p - tim.hea.equ.mul.mat\n _\bB_\bC_\bN_\be_\bw_\bt_\bo_\bn_\bT_\be_\br_\bm , p_{\\rm\n outer})\n \\int_{\\Omega}\n p\\ \\alpha_\n- , {ij} e_{ij} bio.npb,\n-dw_biot , (\\ul{v}) bio.sho.syn,\n-_\bB_\bi_\bo_\bt_\bT_\be_\br_\bm \\mbox{ , } the.ela, bio,\n- , \\int_{\\Omega} bio.npb.lag,\n- , q\\ \\alpha_ the.ela.ess\n+ , {ij} e_{ij} bio.npb.lag, bio,\n+dw_biot , (\\ul{v}) the.ela, bio.npb,\n+_\bB_\bi_\bo_\bt_\bT_\be_\br_\bm \\mbox{ , } the.ela.ess,\n+ , \\int_{\\Omega} bio.sho.syn\n+ , q\\ \\alpha_\n {ij} e_{ij}\n (\\ul{u})\n ev_biot_stress , - \\int_\n _\bB_\bi_\bo_\bt_\bS_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm {\\Omega}\n \\alpha_{ij} p\n ev_cauchy_strain \\int_{\\cal\n _\bC_\ba_\bu_\bc_\bh_\by_\bS_\bt_\br_\ba_\bi_\bn_\bT_\be_\br_\bm {D}} \\ull{e}\n@@ -159,16 +159,16 @@\n , \n , \\int_{\\Gamma}\n dw_contact_sphere , \\ul{v} \\cdot\n _\bC_\bo_\bn_\bt_\ba_\bc_\bt_\bS_\bp_\bh_\be_\br_\be_\bT_\be_\br_\bm , f(d(\\ul{u})) ela.con.sph\n , \\ul{n}(\\ul\n {u})\n \\int_{\\Omega}\n-dw_convect ((\\ul{u} nav.sto, nav.sto,\n-_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm , \\cdot \\nabla) nav.sto.iga\n+dw_convect ((\\ul{u} nav.sto,\n+_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm , \\cdot \\nabla) nav.sto.iga, nav.sto\n \\ul{u}) \\cdot\n \\ul{v}\n , \\int_{\\Omega}\n dw_convect_v_grad_s , q (\\ul{u} poi.fun\n _\bC_\bo_\bn_\bv_\be_\bc_\bt_\bV_\bG_\br_\ba_\bd_\bS_\bT_\be_\br_\bm \\cdot \\nabla\n p)\n \\ull{F} =\n@@ -188,16 +188,16 @@\n {\\partial\n {T_K}} \\ul{n}\n \\cdot \\ul{f}^\n {*} (p_{in},\n p_{out})q\n where\n , \\ul{f}^{*}(p_\n-dw_dg_advect_laxfrie_flux , {in}, p_ adv.1D, adv.dif.2D,\n-_\bA_\bd_\bv_\be_\bc_\bt_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , {out}) = \\ul adv.2D\n+dw_dg_advect_laxfrie_flux , {in}, p_ adv.dif.2D, adv.2D,\n+_\bA_\bd_\bv_\be_\bc_\bt_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , {out}) = \\ul adv.1D\n {a} \\frac{p_\n {in} + p_\n {out}}{2} +\n (1 - \\alpha)\n \\ul{n} C\n \\frac{ p_{in}\n - p_{out}}\n@@ -209,16 +209,16 @@\n \\nabla p\n \\rangle [q]\n \\mbox{ , }\n \\int_\n {\\partial\n {T_K}} D\n , \\langle\n-dw_dg_diffusion_flux , \\nabla q adv.dif.2D, bur.2D,\n-_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , \\rangle [p] lap.2D\n+dw_dg_diffusion_flux , \\nabla q adv.dif.2D, lap.2D,\n+_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bD_\bG_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm , \\rangle [p] bur.2D\n , where\n \\langle\n \\nabla \\phi\n \\rangle =\n \\frac\n {\\nabla\\phi_\n {in} +\n@@ -227,16 +227,16 @@\n [\\phi] =\n \\phi_{in} -\n \\phi_{out}\n \\int_\n {\\partial\n {T_K}} \\bar\n {D} C_w \\frac\n-dw_dg_interior_penalty , {Ord^2}{d adv.dif.2D, bur.2D,\n-_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bI_\bn_\bt_\be_\br_\bi_\bo_\br_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\be_\br_\bm , (\\partial lap.2D\n+dw_dg_interior_penalty , {Ord^2}{d adv.dif.2D, lap.2D,\n+_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bI_\bn_\bt_\be_\br_\bi_\bo_\br_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\be_\br_\bm , (\\partial bur.2D\n , {T_K})}[p][q]\n where\n [\\phi] =\n \\phi_{in} -\n \\phi_{out}\n \\int_\n {\\partial\n@@ -253,20 +253,20 @@\n \\ul{f}(p_\n {out})}{2} +\n (1 - \\alpha)\n \\ul{n} C\n \\frac{ p_{in}\n - p_{out}}\n {2},\n- pie.ela, bio.npb,\n- , \\int_{\\Omega} bio.sho.syn,\n-dw_diffusion , K_{ij} poi.neu, vib.aco,\n-_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\be_\br_\bm \\nabla_i q dar.flo.mul, bio,\n- \\nabla_j p bio.npb.lag,\n- pie.ela\n+ vib.aco,\n+ , \\int_{\\Omega} bio.npb.lag, bio,\n+dw_diffusion , K_{ij} dar.flo.mul,\n+_\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\be_\br_\bm \\nabla_i q poi.neu, bio.npb,\n+ \\nabla_j p pie.ela, pie.ela,\n+ bio.sho.syn\n \\int_{\\Omega}\n , p K_{j}\n dw_diffusion_coupling , \\nabla_j q\n _\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bC_\bo_\bu_\bp_\bl_\bi_\bn_\bg \\mbox{ , }\n , \\int_{\\Omega}\n , q K_{j}\n \\nabla_j p\n@@ -288,42 +288,42 @@\n dw_div , \\ul{v} \\mbox\n _\bD_\bi_\bv_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_\n {\\Omega} c\n \\nabla \\cdot\n \\ul{v}\n \\int_{\\Omega}\n \\nu\\ \\nabla\n- \\ul{v} : sta.nav.sto,\n-dw_div_grad , \\nabla \\ul{u} sto.sli.bc,\n-_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , \\mbox{ , } nav.sto, nav.sto,\n- \\int_{\\Omega} nav.sto.iga, sto\n+ \\ul{v} :\n+dw_div_grad , \\nabla \\ul{u} sta.nav.sto, sto,\n+_\bD_\bi_\bv_\bG_\br_\ba_\bd_\bT_\be_\br_\bm , \\mbox{ , } nav.sto, sto.sli.bc,\n+ \\int_{\\Omega} nav.sto, nav.sto.iga\n \\nabla \\ul{v}\n : \\nabla \\ul\n {u}\n \\int_{\\cal\n {D}} q p\n \\mbox{ , }\n \\int_{\\cal\n- {D}} \\ul{v} poi.per.bou.con,\n- \\cdot \\ul tim.poi, poi.fun,\n- {u}\\\\ vib.aco,\n- \\int_\\Gamma lin.ela.dam,\n- \\ul{v} \\cdot tim.adv.dif,\n- \\ul{n} p ref.evp, pie.ela,\n- \\mbox{ , } lin.ela.up, aco,\n-dw_dot , \\int_\\Gamma q dar.flo.mul,\n-_\bD_\bo_\bt_\bP_\br_\bo_\bd_\bu_\bc_\bt_\bT_\be_\br_\bm , \\ul{n} \\cdot adv.2D, pie.ela,\n- \\ul{u} \\mbox osc, the.ele,\n- { , }\\\\ \\int_ sto.sli.bc,\n- {\\cal{D}} c q hel.apa, bor,\n- p \\mbox{ , } bur.2D, adv.1D,\n- \\int_{\\cal tim.poi.exp, bal,\n- {D}} c \\ul{v} hyd, mod.ana.dec,\n- \\cdot \\ul{u} wel, aco,\n- \\mbox{ , } tim.hea.equ.mul.mat\n+ {D}} \\ul{v} bor, poi.fun,\n+ \\cdot \\ul hel.apa,\n+ {u}\\\\ poi.per.bou.con,\n+ \\int_\\Gamma pie.ela, tim.poi,\n+ \\ul{v} \\cdot lin.ela.up, wel,\n+ \\ul{n} p sto.sli.bc, bur.2D,\n+ \\mbox{ , } the.ele, aco,\n+dw_dot , \\int_\\Gamma q mod.ana.dec,\n+_\bD_\bo_\bt_\bP_\br_\bo_\bd_\bu_\bc_\bt_\bT_\be_\br_\bm , \\ul{n} \\cdot tim.adv.dif,\n+ \\ul{u} \\mbox pie.ela,\n+ { , }\\\\ \\int_ lin.ela.dam, bal,\n+ {\\cal{D}} c q adv.1D, vib.aco,\n+ p \\mbox{ , } adv.2D, dar.flo.mul,\n+ \\int_{\\cal tim.hea.equ.mul.mat,\n+ {D}} c \\ul{v} ref.evp, osc,\n+ \\cdot \\ul{u} tim.poi.exp, aco,\n+ \\mbox{ , } hyd\n \\int_{\\cal\n {D}} \\ul{v}\n \\cdot \\ull{c}\n \\cdot \\ul{u}\n \\int_{\\Omega}\n dw_elastic_wave , D_{ijkl}\\ g_\n _\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bW_\ba_\bv_\be_\bT_\be_\br_\bm , {ij}(\\ul{v})\n@@ -350,20 +350,14 @@\n ev_grad , \\ul{u}\\\\\n _\bG_\br_\ba_\bd_\bT_\be_\br_\bm \\int_{\\cal\n {D}} c \\nabla\n p \\mbox{ or }\n \\int_{\\cal\n {D}} c \\nabla\n \\ul{u}\n- poi.per.bou.con,\n- \\int_{\\cal poi.neu, aco,\n-dw_integrate , {D}} q \\mbox vib.aco,\n-_\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_ dar.flo.mul,\n- {\\cal{D}} c q hel.apa, aco,\n- tim.hea.equ.mul.mat\n \\int_{\\cal\n {D}} y \\mbox\n { , } \\int_\n {\\cal{D}} \\ul\n {y} \\mbox{ ,\n } \\int_\\Gamma\n \\ul{y} \\cdot\n@@ -374,41 +368,43 @@\n \\int_{\\cal\n {D}} c \\ul{y}\n \\mbox{ , }\n \\int_\\Gamma c\n \\ul{y} \\cdot\n \\ul{n} \\mbox\n { flux }\n+ \\int_{\\cal aco, vib.aco,\n+dw_integrate , {D}} q \\mbox dar.flo.mul,\n+_\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm { or } \\int_ tim.hea.equ.mul.mat,\n+ {\\cal{D}} c q poi.neu, hel.apa,\n+ poi.per.bou.con, aco\n ev_integrate_mat , \\int_{\\cal\n _\bI_\bn_\bt_\be_\bg_\br_\ba_\bt_\be_\bM_\ba_\bt_\bT_\be_\br_\bm {D}} c\n , \\int_{\\Gamma}\n dw_jump , c\\, q (p_1 - aco\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bJ_\bu_\bm_\bp_\bT_\be_\br_\bm , p_2)\n \n+ bor, lap.1d,\n+ poi.fun, hel.apa,\n poi.per.bou.con,\n- tim.poi, poi.fun,\n- poi.sho.syn,\n- vib.aco,\n- adv.dif.2D,\n- tim.adv.dif,\n- ref.evp,\n- poi.fie.dep.mat,\n- \\int_{\\Omega} lap.flu.2d, aco,\n-dw_laplace , c \\nabla q cub, lap.2D, osc,\n-_\bL_\ba_\bp_\bl_\ba_\bc_\be_\bT_\be_\br_\bm , \\cdot \\nabla the.ele, sin,\n- p poi.par.stu,\n- sto.sli.bc,\n- hel.apa, lap.1d,\n- bor, lap.tim.ebc,\n+ lap.tim.ebc,\n the.ela.ess,\n- bur.2D, poi.iga,\n- lap.cou.lcb, poi,\n- tim.poi.exp, hyd,\n- wel, aco,\n- tim.hea.equ.mul.mat\n+ lap.flu.2d, tim.poi,\n+ poi.sho.syn, wel,\n+ , \\int_{\\Omega} lap.2D, sto.sli.bc,\n+dw_laplace , c \\nabla q bur.2D, lap.cou.lcb,\n+_\bL_\ba_\bp_\bl_\ba_\bc_\be_\bT_\be_\br_\bm \\cdot \\nabla the.ele, poi,\n+ p poi.par.stu, aco,\n+ poi.fie.dep.mat,\n+ cub, tim.adv.dif,\n+ poi.iga, vib.aco,\n+ tim.hea.equ.mul.mat,\n+ ref.evp, sin, osc,\n+ tim.poi.exp,\n+ adv.dif.2D, aco, hyd\n \\int_{\\Omega}\n ((\\ul{w}\n , \\cdot \\nabla)\n dw_lin_convect , \\ul{u}) \\cdot sta.nav.sto\n _\bL_\bi_\bn_\be_\ba_\br_\bC_\bo_\bn_\bv_\be_\bc_\bt_\bT_\be_\br_\bm \\ul{v}\n ((\\ul{w}\n \\cdot \\nabla)\n@@ -443,42 +439,42 @@\n _\bL_\bi_\bn_\be_\ba_\br_\bD_\bR_\bo_\bt_\bS_\bp_\br_\bi_\bn_\bg_\bT_\be_\br_\bm , \\mbox mul.poi.con\n , { elements }\n T_K^{i,j}\\\\\n \\mbox{ in a\n region\n connecting\n nodes } i, j\n- bio.npb, lin.vis,\n- its.2, pie.ela.mac,\n+ lin.ela.iga,\n+ lin.vis,\n+ two.bod.con,\n+ pie.ela, lin.ela.mM,\n+ pre.fib,\n+ the.ela.ess,\n mul.poi.con,\n- vib.aco,\n- lin.ela.dam,\n+ wed.mes, its.3,\n ela.shi.per,\n- two.bod.con,\n- bio.npb.lag,\n- nod.lcb, pie.ela,\n- bio.sho.syn,\n- mix.mes,\n- \\int_{\\Omega} lin.ela.up, bio,\n- , D_{ijkl}\\ e_ lin.ela.tra,\n-dw_lin_elastic , {ij}(\\ul{v}) pie.ela,\n-_\bL_\bi_\bn_\be_\ba_\br_\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bT_\be_\br_\bm e_{kl}(\\ul lin.ela.mM,\n- {u}) ela.con.sph,\n- wed.mes,\n+ ela.con.sph, ela,\n+ lin.ela.up, sei.loa,\n+ \\int_{\\Omega} its.1, its.2,\n+ , D_{ijkl}\\ e_ mod.ana.dec,\n+dw_lin_elastic , {ij}(\\ul{v}) bio.npb.lag, bio,\n+_\bL_\bi_\bn_\be_\ba_\br_\bE_\bl_\ba_\bs_\bt_\bi_\bc_\bT_\be_\br_\bm e_{kl}(\\ul lin.ela, nod.lcb,\n+ {u}) its.4, lin.ela.opt,\n+ mat.non,\n+ com.ela.mat,\n+ pie.ela,\n+ lin.ela.tra,\n+ lin.ela.dam,\n ela.con.pla,\n- mat.non, its.1,\n- lin.ela, its.4,\n- lin.ela.iga, its.3,\n- the.ela.ess, ela,\n- sei.loa, pre.fib,\n+ pie.ela.mac,\n+ vib.aco,\n mul.nod.lcb,\n- com.ela.mat,\n- mod.ana.dec,\n- lin.ela.opt,\n- the.ela, tru.bri\n+ the.ela, bio.npb,\n+ mix.mes, tru.bri,\n+ bio.sho.syn\n \\int_{\\Omega}\n D_{ijkl}\\ e_\n {ij}(\\ul{v})\n e_{kl}(\\ul\n {u})\\\\ \\mbox\n , { with } \\\\\n dw_lin_elastic_iso , D_{ijkl} =\n@@ -488,15 +484,15 @@\n {il} \\delta_\n {jk}) +\n \\lambda \\\n \\delta_{ij}\n \\delta_{kl}\n \\int_{\\Omega}\n dw_lin_prestress , \\sigma_{ij} pie.ela.mac,\n-_\bL_\bi_\bn_\be_\ba_\br_\bP_\br_\be_\bs_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm e_{ij}(\\ul non.hyp.mM, pre.fib\n+_\bL_\bi_\bn_\be_\ba_\br_\bP_\br_\be_\bs_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm e_{ij}(\\ul pre.fib, non.hyp.mM\n {v})\n \\ul{f}^{(i)}\n = - \\ul{f}^{\n (j)} = k (\\ul\n {u}^{(j)} -\n \\ul{u}^{\n dw_lin_spring , (i)})\\\\ \\quad\n@@ -591,17 +587,17 @@\n _\bP_\bi_\be_\bz_\bo_\bS_\bt_\br_\ba_\bi_\bn_\bT_\be_\br_\bm g_{kij} e_\n {ij}(\\ul{u})\n ev_piezo_stress , \\int_{\\Omega}\n _\bP_\bi_\be_\bz_\bo_\bS_\bt_\br_\be_\bs_\bs_\bT_\be_\br_\bm g_{kij}\n \\nabla_k p\n \\ul{f}^i =\n \\ul{\\bar f}^i\n-dw_point_load , \\quad \\forall its.2, tru.bri,\n-_\bC_\bo_\bn_\bc_\be_\bn_\bt_\br_\ba_\bt_\be_\bd_\bP_\bo_\bi_\bn_\bt_\bL_\bo_\ba_\bd_\bT_\be_\br_\bm \\mbox{ FE she.can, its.1,\n- node } i its.4, its.3\n+dw_point_load , \\quad \\forall its.2, its.4,\n+_\bC_\bo_\bn_\bc_\be_\bn_\bt_\br_\ba_\bt_\be_\bd_\bP_\bo_\bi_\bn_\bt_\bL_\bo_\ba_\bd_\bT_\be_\br_\bm \\mbox{ FE she.can, tru.bri,\n+ node } i its.1, its.3\n \\mbox{ in a\n region }\n \\ul{f}^i = -\n k \\ul{u}^i\n dw_point_lspring , \\quad \\forall\n _\bL_\bi_\bn_\be_\ba_\br_\bP_\bo_\bi_\bn_\bt_\bS_\bp_\br_\bi_\bn_\bg_\bT_\be_\br_\bm , \\mbox{ FE\n node } i\n@@ -609,34 +605,34 @@\n region }\n dw_s_dot_grad_i_s , Z^i = \\int_\n _\bS_\bc_\ba_\bl_\ba_\br_\bD_\bo_\bt_\bG_\br_\ba_\bd_\bI_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , {\\Omega} q\n \\nabla_i p\n \\int_{\\Omega}\n q \\ul{y}\n , \\cdot \\nabla\n-dw_s_dot_mgrad_s , p \\mbox{ , } adv.1D, adv.dif.2D,\n-_\bS_\bc_\ba_\bl_\ba_\br_\bD_\bo_\bt_\bM_\bG_\br_\ba_\bd_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , \\int_{\\Omega} adv.2D\n+dw_s_dot_mgrad_s , p \\mbox{ , } adv.dif.2D, adv.2D,\n+_\bS_\bc_\ba_\bl_\ba_\br_\bD_\bo_\bt_\bM_\bG_\br_\ba_\bd_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm , \\int_{\\Omega} adv.1D\n , p \\ul{y}\n \\cdot \\nabla\n q\n \\int_{\\Omega}\n dw_shell10x , D_{ijkl}\\ e_\n _\bS_\bh_\be_\bl_\bl_\b1_\b0_\bX_\bT_\be_\br_\bm , {ij}(\\ul{v}) she.can\n , e_{kl}(\\ul\n {u})\n \\int_{\\Omega}\n p\\ \\nabla\n \\cdot \\ul{v}\n \\mbox{ , }\n \\int_{\\Omega}\n- , q\\ \\nabla lin.ela.up,\n- , \\cdot \\ul sta.nav.sto,\n-dw_stokes {u}\\\\ \\mbox sto.sli.bc,\n-_\bS_\bt_\bo_\bk_\be_\bs_\bT_\be_\br_\bm , { or } \\int_ nav.sto, nav.sto,\n- , {\\Omega} c\\ nav.sto.iga, sto\n+ , q\\ \\nabla\n+ , \\cdot \\ul sta.nav.sto, sto,\n+dw_stokes {u}\\\\ \\mbox nav.sto, lin.ela.up,\n+_\bS_\bt_\bo_\bk_\be_\bs_\bT_\be_\br_\bm , { or } \\int_ sto.sli.bc, nav.sto,\n+ , {\\Omega} c\\ nav.sto.iga\n p\\ \\nabla\n \\cdot \\ul{v}\n \\mbox{ , }\n \\int_{\\Omega}\n c\\ q\\ \\nabla\n \\cdot \\ul{u}\n \\int_{\\Omega}\n@@ -653,29 +649,29 @@\n , (\\ul{\\kappa}\n \\cdot \\ul{u})\n (\\nabla \\cdot\n \\ul{v})\n ev_sum_vals \n _\bS_\bu_\bm_\bN_\bo_\bd_\ba_\bl_\bV_\ba_\bl_\bu_\be_\bs_\bT_\be_\br_\bm\n \\int_{\\Gamma}\n-ev_surface_flux , \\ul{n} \\cdot\n-_\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm K_{ij}\n- \\nabla_j p\n- \\int_{\\Gamma}\n dw_surface_flux , q \\ul{n}\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bO_\bp_\be_\br_\ba_\bt_\bo_\br_\bT_\be_\br_\bm , \\cdot \\ull{K}\n \\cdot \\nabla\n p\n- \\int_{\\Gamma} lin.vis, mix.mes,\n- \\ul{v} \\cdot com.ela.mat,\n-dw_surface_ltr , \\ull{\\sigma} lin.ela.opt,\n-_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm \\cdot \\ul{n}, wed.mes, tru.bri,\n+ \\int_{\\Gamma}\n+ev_surface_flux , \\ul{n} \\cdot\n+_\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bT_\be_\br_\bm K_{ij}\n+ \\nabla_j p\n \\int_{\\Gamma} ela.shi.per,\n- \\ul{v} \\cdot nod.lcb,\n- \\ul{n}, lin.ela.tra\n+ \\ul{v} \\cdot lin.vis, nod.lcb,\n+dw_surface_ltr , \\ull{\\sigma} lin.ela.opt,\n+_\bL_\bi_\bn_\be_\ba_\br_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\be_\br_\bm \\cdot \\ul{n}, mix.mes,\n+ \\int_{\\Gamma} com.ela.mat,\n+ \\ul{v} \\cdot tru.bri,\n+ \\ul{n}, lin.ela.tra, wed.mes\n \\int_{\\Gamma}\n ev_surface_moment , \\ul{n} (\\ul\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bM_\bo_\bm_\be_\bn_\bt_\bT_\be_\br_\bm {x} - \\ul\n {x}_0)\n dw_surface_ndot , \\int_{\\Gamma}\n _\bS_\bu_\bf_\ba_\bc_\be_\bN_\bo_\br_\bm_\ba_\bl_\bD_\bo_\bt_\bT_\be_\br_\bm q \\ul{c} lap.flu.2d\n \\cdot \\ul{n}\n@@ -713,17 +709,17 @@\n _\bV_\be_\bc_\bt_\bo_\br_\bD_\bo_\bt_\bS_\bc_\ba_\bl_\ba_\br_\bT_\be_\br_\bm \\mbox{ , }\n , \\int_{\\Omega}\n , \\ul{u} \\cdot\n \\ul{c} q\\\\\n ev_volume \\int_{\\cal\n _\bV_\bo_\bl_\bu_\bm_\be_\bT_\be_\br_\bm {D}} 1\n \\int_{\\Omega}\n-dw_volume_lvf , \\ul{f} \\cdot poi.iga,\n-_\bL_\bi_\bn_\be_\ba_\br_\bV_\bo_\bl_\bu_\bm_\be_\bF_\bo_\br_\bc_\be_\bT_\be_\br_\bm \\ul{v} \\mbox adv.dif.2D, bur.2D,\n- { or } \\int_ poi.par.stu\n+dw_volume_lvf , \\ul{f} \\cdot adv.dif.2D, bur.2D,\n+_\bL_\bi_\bn_\be_\ba_\br_\bV_\bo_\bl_\bu_\bm_\be_\bF_\bo_\br_\bc_\be_\bT_\be_\br_\bm \\ul{v} \\mbox poi.iga, poi.par.stu\n+ { or } \\int_\n {\\Omega} f q\n dw_volume_nvf , , \\int_{\\Omega} poi.non.mat\n _\bN_\bo_\bn_\bl_\bi_\bn_\be_\ba_\br_\bV_\bo_\bl_\bu_\bm_\be_\bF_\bo_\br_\bc_\be_\bT_\be_\br_\bm , q f(p)\n 1 / D\n ev_volume_surface \\int_\\Gamma\n _\bV_\bo_\bl_\bu_\bm_\be_\bS_\bu_\br_\bf_\ba_\bc_\be_\bT_\be_\br_\bm \\ul{x} \\cdot\n \\ul{n}\n@@ -935,168 +931,158 @@\n , , \\hat{I}_{ij} =\n \\delta_{ij} \\nabla\n \\cdot \\Vcal -\n {\\partial \\Vcal_j\n \\over \\partial x_i}\n *\b**\b**\b**\b* T\bTa\bab\bbl\ble\be o\bof\bf l\bla\bar\brg\bge\be d\bde\bef\bfo\bor\brm\bma\bat\bti\bio\bon\bn t\bte\ber\brm\bms\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n L\bLa\bar\brg\bge\be d\bde\bef\bfo\bor\brm\bma\bat\bti\bio\bon\bn t\bte\ber\brm\bms\bs_\b?\b\u00b6\n-n\bna\bam\bme\be/\b/c\bcl\bla\bas\bss\bs a\bar\brg\bgu\bum\bme\ben\bnt\bts\bs d\bde\bef\bfi\bin\bni\bit\bti\bio\bon\bn e\bex\bxa\bam\bmp\bpl\ble\bes\bs\n- \\int_{\\Omega}\n-dw_tl_bulk_active , S_{ij}(\\ul{u})\n-_\bB_\bu_\bl_\bk_\bA_\bc_\bt_\bi_\bv_\be_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij}\n- (\\ul{u};\\ul\n- {v})\n- \\int_{\\Omega}\n-dw_tl_bulk_penalty , S_{ij}(\\ul{u}) com.ela.mat,\n-_\bB_\bu_\bl_\bk_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij} hyp, act.fib\n- (\\ul{u};\\ul\n- {v})\n- \\int_{\\Omega}\n-dw_tl_bulk_pressure , S_{ij}(p)\n-_\bB_\bu_\bl_\bk_\bP_\br_\be_\bs_\bs_\bu_\br_\be_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij} bal, per.tl\n- (\\ul{u};\\ul\n- {v})\n+n\bna\bam\bme\be/\b/c\bcl\bla\bas\bss\bs a\bar\brg\bgu\bum\bme\ben\bnt\bts\bs d\bde\bef\bfi\bin\bni\bit\bti\bio\bon\bn e\bex\bxa\bam\bmp\bpl\ble\bes\bs\n+ , \\int_{\\Omega}\n+dw_tl_bulk_active , S_{ij}(\\ul{u})\n+_\bB_\bu_\bl_\bk_\bA_\bc_\bt_\bi_\bv_\be_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n+ (\\ul{u};\\ul{v})\n+ , \\int_{\\Omega}\n+dw_tl_bulk_penalty , S_{ij}(\\ul{u}) hyp, act.fib,\n+_\bB_\bu_\bl_\bk_\bP_\be_\bn_\ba_\bl_\bt_\by_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} com.ela.mat\n+ (\\ul{u};\\ul{v})\n+ , \\int_{\\Omega}\n+dw_tl_bulk_pressure , S_{ij}(p) bal, per.tl\n+_\bB_\bu_\bl_\bk_\bP_\br_\be_\bs_\bs_\bu_\br_\be_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n+ (\\ul{u};\\ul{v})\n , \\int_{\\Omega}\n- , \\ull{K}(\\ul\n-dw_tl_diffusion , {u}^{(n-1)}) : per.tl\n+ , \\ull{K}(\\ul{u}^\n+dw_tl_diffusion , {(n-1)}) : per.tl\n _\bD_\bi_\bf_\bf_\bu_\bs_\bi_\bo_\bn_\bT_\bL_\bT_\be_\br_\bm , \\pdiff{q}{\\ul\n {X}} \\pdiff{p}\n {\\ul{X}}\n ,\n , \\int_{\\Omega}\n dw_tl_fib_a , S_{ij}(\\ul{u})\n-_\bF_\bi_\bb_\br_\be_\bs_\bA_\bc_\bt_\bi_\bv_\be_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij} act.fib\n- , (\\ul{u};\\ul\n- , {v})\n+_\bF_\bi_\bb_\br_\be_\bs_\bA_\bc_\bt_\bi_\bv_\be_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij} act.fib\n+ , (\\ul{u};\\ul{v})\n+ ,\n \n- , \\int_{\\Omega}\n- , S_{ij}(\\ul{u})\n-dw_tl_fib_e , \\delta E_{ij}\n-_\bF_\bi_\bb_\br_\be_\bs_\bE_\bx_\bp_\bo_\bn_\be_\bn_\bt_\bi_\ba_\bl_\bT_\bL_\bT_\be_\br_\bm , (\\ul{u};\\ul\n- , {v})\n+ ,\n+ , \\int_{\\Omega}\n+dw_tl_fib_e , S_{ij}(\\ul{u})\n+_\bF_\bi_\bb_\br_\be_\bs_\bE_\bx_\bp_\bo_\bn_\be_\bn_\bt_\bi_\ba_\bl_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij}\n+ , (\\ul{u};\\ul{v})\n \n ,\n , \\int_{\\Omega}\n dw_tl_fib_spe , S_{ij}(\\ul{u})\n _\bF_\bi_\bb_\br_\be_\bs_\bS_\bo_\bf_\bt_\bP_\bl_\bu_\bs_\bE_\bx_\bp_\bo_\bn_\be_\bn_\bt_\bi_\ba_\bl_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij}\n- , (\\ul{u};\\ul\n- , {v})\n+ , (\\ul{u};\\ul{v})\n+ ,\n \n- \\int_{\\Omega}\n-dw_tl_he_genyeoh , S_{ij}(\\ul{u})\n-_\bG_\be_\bn_\bY_\be_\bo_\bh_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij}\n- (\\ul{u};\\ul\n- {v})\n- \\int_{\\Omega}\n-dw_tl_he_mooney_rivlin , S_{ij}(\\ul{u}) bal,\n-_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij} com.ela.mat,\n- (\\ul{u};\\ul hyp\n- {v})\n- \\int_{\\Omega} hyp, bal,\n-dw_tl_he_neohook , S_{ij}(\\ul{u}) com.ela.mat,\n-_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij} per.tl,\n- (\\ul{u};\\ul act.fib\n- {v})\n- \\int_{\\Omega}\n-dw_tl_he_ogden , S_{ij}(\\ul{u})\n-_\bO_\bg_\bd_\be_\bn_\bT_\bL_\bT_\be_\br_\bm , \\delta E_{ij}\n- (\\ul{u};\\ul\n- {v})\n+ , \\int_{\\Omega}\n+dw_tl_he_genyeoh , S_{ij}(\\ul{u})\n+_\bG_\be_\bn_\bY_\be_\bo_\bh_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n+ (\\ul{u};\\ul{v})\n+ , \\int_{\\Omega}\n+dw_tl_he_mooney_rivlin , S_{ij}(\\ul{u}) hyp, bal,\n+_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} com.ela.mat\n+ (\\ul{u};\\ul{v})\n+ , \\int_{\\Omega} act.fib,\n+dw_tl_he_neohook , S_{ij}(\\ul{u}) com.ela.mat,\n+_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij} hyp, bal,\n+ (\\ul{u};\\ul{v}) per.tl\n+ , \\int_{\\Omega}\n+dw_tl_he_ogden , S_{ij}(\\ul{u})\n+_\bO_\bg_\bd_\be_\bn_\bT_\bL_\bT_\be_\br_\bm \\delta E_{ij}\n+ (\\ul{u};\\ul{v})\n ,\n dw_tl_membrane ,\n-_\bT_\bL_\bM_\be_\bm_\bb_\br_\ba_\bn_\be_\bT_\be_\br_\bm , bal\n+_\bT_\bL_\bM_\be_\bm_\bb_\br_\ba_\bn_\be_\bT_\be_\br_\bm , bal\n ,\n \n- \\int_{\\Gamma}\n- , \\ul{\\nu} \\cdot\n-ev_tl_surface_flux , \\ull{K}(\\ul\n-_\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bT_\bL_\bT_\be_\br_\bm , {u}^{(n-1)})\n- \\pdiff{p}{\\ul\n- {X}}\n+ , \\int_{\\Gamma}\n+ev_tl_surface_flux , \\ul{\\nu} \\cdot\n+_\bS_\bu_\br_\bf_\ba_\bc_\be_\bF_\bl_\bu_\bx_\bT_\bL_\bT_\be_\br_\bm , \\ull{K}(\\ul{u}^\n+ {(n-1)}) \\pdiff\n+ {p}{\\ul{X}}\n \\int_{\\Gamma}\n , \\ul{\\nu} \\cdot\n-dw_tl_surface_traction , \\ull{F}^{-1} per.tl\n+dw_tl_surface_traction , \\ull{F}^{-1} per.tl\n _\bS_\bu_\br_\bf_\ba_\bc_\be_\bT_\br_\ba_\bc_\bt_\bi_\bo_\bn_\bT_\bL_\bT_\be_\br_\bm \\cdot \\ull\n {\\sigma} \\cdot\n \\ul{v} J\n \\begin{array}\n {l} \\int_\n {\\Omega} q J\n (\\ul{u}) \\\\\n \\mbox{volume\n mode: vector\n for } K \\from\n- \\Ical_h: \\int_\n-dw_tl_volume , {T_K} J(\\ul bal, per.tl\n-_\bV_\bo_\bl_\bu_\bm_\be_\bT_\bL_\bT_\be_\br_\bm {u}) \\\\ \\mbox\n+dw_tl_volume , \\Ical_h: \\int_\n+_\bV_\bo_\bl_\bu_\bm_\be_\bT_\bL_\bT_\be_\br_\bm {T_K} J(\\ul{u}) bal, per.tl\n+ \\\\ \\mbox\n {rel\\_volume\n mode: vector\n for } K \\from\n \\Ical_h: \\int_\n- {T_K} J(\\ul\n- {u}) / \\int_\n- {T_K} 1 \\end\n- {array}\n+ {T_K} J(\\ul{u})\n+ / \\int_{T_K} 1\n+ \\end{array}\n 1 / D \\int_\n ev_tl_volume_surface {\\Gamma} \\ul\n _\bV_\bo_\bl_\bu_\bm_\be_\bS_\bu_\br_\bf_\ba_\bc_\be_\bT_\bL_\bT_\be_\br_\bm {\\nu} \\cdot\n \\ull{F}^{-1}\n \\cdot \\ul{x} J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_bulk_penalty , {L}\\tau_{ij} hyp.ul\n-_\bB_\bu_\bl_\bk_\bP_\be_\bn_\ba_\bl_\bt_\by_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_\n- {ij}(\\delta\\ul\n- {v})/J\n+dw_ul_bulk_penalty , {L}\\tau_{ij} hyp.ul\n+_\bB_\bu_\bl_\bk_\bP_\be_\bn_\ba_\bl_\bt_\by_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij}\n+ (\\delta\\ul{v})/\n+ J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_bulk_pressure , {L}\\tau_{ij} hyp.ul.up\n-_\bB_\bu_\bl_\bk_\bP_\br_\be_\bs_\bs_\bu_\br_\be_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_\n- {ij}(\\delta\\ul\n- {v})/J\n+dw_ul_bulk_pressure , {L}\\tau_{ij} hyp.ul.up\n+_\bB_\bu_\bl_\bk_\bP_\br_\be_\bs_\bs_\bu_\br_\be_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij}\n+ (\\delta\\ul{v})/\n+ J\n , \\int_{\\Omega}\n-dw_ul_compressible , 1\\over \\gamma hyp.ul.up\n-_\bC_\bo_\bm_\bp_\br_\be_\bs_\bs_\bi_\bb_\bi_\bl_\bi_\bt_\by_\bU_\bL_\bT_\be_\br_\bm , p \\, q\n+dw_ul_compressible , 1\\over \\gamma p hyp.ul.up\n+_\bC_\bo_\bm_\bp_\br_\be_\bs_\bs_\bi_\bb_\bi_\bl_\bi_\bt_\by_\bU_\bL_\bT_\be_\br_\bm , \\, q\n \n \\int_{\\Omega}\n \\mathcal\n-dw_ul_he_by_fun , , {L}\\tau_{ij} hyp.ul.by.fun\n-_\bH_\by_\bp_\be_\br_\be_\bl_\ba_\bs_\bt_\bi_\bc_\bB_\by_\bF_\bu_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_\n- {ij}(\\delta\\ul\n- {v})/J\n+dw_ul_he_by_fun , , {L}\\tau_{ij} hyp.ul.by.fun\n+_\bH_\by_\bp_\be_\br_\be_\bl_\ba_\bs_\bt_\bi_\bc_\bB_\by_\bF_\bu_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij}\n+ (\\delta\\ul{v})/\n+ J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_he_mooney_rivlin , {L}\\tau_{ij} hyp.ul.up,\n-_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_ hyp.ul\n- {ij}(\\delta\\ul\n- {v})/J\n+dw_ul_he_mooney_rivlin , {L}\\tau_{ij} hyp.ul.up,\n+_\bM_\bo_\bo_\bn_\be_\by_\bR_\bi_\bv_\bl_\bi_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij} hyp.ul\n+ (\\delta\\ul{v})/\n+ J\n \\int_{\\Omega}\n , \\mathcal\n-dw_ul_he_neohook , {L}\\tau_{ij} hyp.ul.up,\n-_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_ hyp.ul\n- {ij}(\\delta\\ul\n- {v})/J\n+dw_ul_he_neohook , {L}\\tau_{ij} hyp.ul.up,\n+_\bN_\be_\bo_\bH_\bo_\bo_\bk_\be_\ba_\bn_\bU_\bL_\bT_\be_\br_\bm (\\ul{u}) e_{ij} hyp.ul\n+ (\\delta\\ul{v})/\n+ J\n \\begin{array}\n {l} \\int_\n {\\Omega} q J\n (\\ul{u}) \\\\\n \\mbox{volume\n mode: vector\n for } K \\from\n- \\Ical_h: \\int_\n-dw_ul_volume , {T_K} J(\\ul hyp.ul.up\n-_\bV_\bo_\bl_\bu_\bm_\be_\bU_\bL_\bT_\be_\br_\bm {u}) \\\\ \\mbox\n+dw_ul_volume , \\Ical_h: \\int_\n+_\bV_\bo_\bl_\bu_\bm_\be_\bU_\bL_\bT_\be_\br_\bm {T_K} J(\\ul{u}) hyp.ul.up\n+ \\\\ \\mbox\n {rel\\_volume\n mode: vector\n for } K \\from\n \\Ical_h: \\int_\n- {T_K} J(\\ul\n- {u}) / \\int_\n- {T_K} 1 \\end\n- {array}\n+ {T_K} J(\\ul{u})\n+ / \\int_{T_K} 1\n+ \\end{array}\n *\b**\b**\b**\b* T\bTa\bab\bbl\ble\be o\bof\bf s\bsp\bpe\bec\bci\bia\bal\bl t\bte\ber\brm\bms\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n S\bSp\bpe\bec\bci\bia\bal\bl t\bte\ber\brm\bms\bs_\b?\b\u00b6\n n\bna\bam\bme\be/\b/c\bcl\bla\bas\bss\bs a\bar\brg\bgu\bum\bme\ben\bnt\bts\bs d\bde\bef\bfi\bin\bni\bit\bti\bio\bon\bn e\bex\bxa\bam\bmp\bpl\ble\bes\bs\n \\begin{array}{l}\n \\int_{\\Omega}\n \\left [\\int_0^t\n , \\alpha_{ij}(t-\n@@ -1378,15 +1364,15 @@\n {\\delta w}) \\ e_\n {lm,n}(\\ull{w})\n M^C = \\int_{\\cal\n {D}} \\rho \\ul{v}\n \\cdot \\ul{u} \\\\\n , M^L = \\mathrm\n de_mass , {lumping}(M^C) \\\\\n-_\bM_\ba_\bs_\bs_\bT_\be_\br_\bm , M^A = (1 - \\beta) sei.loa, ela\n+_\bM_\ba_\bs_\bs_\bT_\be_\br_\bm , M^A = (1 - \\beta) ela, sei.loa\n , M^C + \\beta M^L\n \\\\ A = \\sum_e A_e\n \\\\ C = \\sum_e\n A_e^T (M_e^A)^{-\n 1} A_e\n \\int_{\\Gamma} c\n de_non_penetration_p , (\\ul{n} \\cdot \\ul\n"}]}]}]}]}]}