{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.ypNJkTEE/b1/pandas_2.2.3+dfsg-8_armhf.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.ypNJkTEE/b2/pandas_2.2.3+dfsg-8_armhf.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,5 +1,5 @@\n \n- 4c7c639636c85becd5a2c59731c9f528 10795248 doc optional python-pandas-doc_2.2.3+dfsg-8_all.deb\n- 68d107c5b6f1c9308125a1e18eca2cb9 73051688 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-8_armhf.deb\n- cd47bf87902c4406e7178bf72b30aebf 6480044 python optional python3-pandas-lib_2.2.3+dfsg-8_armhf.deb\n+ d09054ae9ac817155f5a4ed5d58d5508 10795700 doc optional python-pandas-doc_2.2.3+dfsg-8_all.deb\n+ bc6cdfcf7bf1135f5d2e1f5b5248761e 73055800 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-8_armhf.deb\n+ 6d123174f4d42338ed38b4cf38a49865 6480140 python optional python3-pandas-lib_2.2.3+dfsg-8_armhf.deb\n ad1d0d3815c32f9db583cfe0dd79d880 3096896 python optional python3-pandas_2.2.3+dfsg-8_all.deb\n"}, {"source1": "python-pandas-doc_2.2.3+dfsg-8_all.deb", "source2": "python-pandas-doc_2.2.3+dfsg-8_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2025-02-01 18:39:17.000000 debian-binary\n--rw-r--r-- 0 0 0 147404 2025-02-01 18:39:17.000000 control.tar.xz\n--rw-r--r-- 0 0 0 10647652 2025-02-01 18:39:17.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 147392 2025-02-01 18:39:17.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 10648116 2025-02-01 18:39:17.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./control", "source2": "./control", "unified_diff": "@@ -1,13 +1,13 @@\n Package: python-pandas-doc\n Source: pandas\n Version: 2.2.3+dfsg-8\n Architecture: all\n Maintainer: Debian Science Team \n-Installed-Size: 209909\n+Installed-Size: 209910\n Depends: libjs-sphinxdoc (>= 8.1), libjs-mathjax\n Suggests: python3-pandas\n Section: doc\n Priority: optional\n Multi-Arch: foreign\n Homepage: https://pandas.pydata.org/\n Description: data structures for \"relational\" or \"labeled\" data - documentation\n"}, {"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -6256,61 +6256,61 @@\n -rw-r--r-- 0 root (0) root (0) 210184 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html\n -rw-r--r-- 0 root (0) root (0) 48665 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html\n -rw-r--r-- 0 root (0) root (0) 48657 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html\n -rw-r--r-- 0 root (0) root (0) 53295 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/release.html\n -rw-r--r-- 0 root (0) root (0) 269 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 17010 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/search.html\n--rw-r--r-- 0 root (0) root (0) 2359431 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 2359442 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n -rw-r--r-- 0 root (0) root (0) 259 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/style.html\n -rw-r--r-- 0 root (0) root (0) 255 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/text.html\n -rw-r--r-- 0 root (0) root (0) 256 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 277 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 272 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/\n -rw-r--r-- 0 root (0) root (0) 171380 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html\n--rw-r--r-- 0 root (0) root (0) 283832 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n+-rw-r--r-- 0 root (0) root (0) 283830 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n -rw-r--r-- 0 root (0) root (0) 435939 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html\n -rw-r--r-- 0 root (0) root (0) 36646 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html\n -rw-r--r-- 0 root (0) root (0) 217513 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html\n -rw-r--r-- 0 root (0) root (0) 18313 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html\n -rw-r--r-- 0 root (0) root (0) 66164 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html\n -rw-r--r-- 0 root (0) root (0) 160414 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html\n -rw-r--r-- 0 root (0) root (0) 81376 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html\n--rw-r--r-- 0 root (0) root (0) 121095 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n+-rw-r--r-- 0 root (0) root (0) 121104 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n -rw-r--r-- 0 root (0) root (0) 107882 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html\n -rw-r--r-- 0 root (0) root (0) 300850 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html\n -rw-r--r-- 0 root (0) root (0) 59715 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html\n -rw-r--r-- 0 root (0) root (0) 395484 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html\n -rw-r--r-- 0 root (0) root (0) 41778 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html\n -rw-r--r-- 0 root (0) root (0) 1145820 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html\n -rw-r--r-- 0 root (0) root (0) 208885 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html\n -rw-r--r-- 0 root (0) root (0) 178690 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html\n -rw-r--r-- 0 root (0) root (0) 112153 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html\n -rw-r--r-- 0 root (0) root (0) 147524 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html\n -rw-r--r-- 0 root (0) root (0) 162660 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html\n--rw-r--r-- 0 root (0) root (0) 115582 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n+-rw-r--r-- 0 root (0) root (0) 115583 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n -rw-r--r-- 0 root (0) root (0) 65494 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html\n -rw-r--r-- 0 root (0) root (0) 698240 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html\n--rw-r--r-- 0 root (0) root (0) 87912 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 88186 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 165302 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html\n -rw-r--r-- 0 root (0) root (0) 100947 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 486621 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 204341 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html\n -rw-r--r-- 0 root (0) root (0) 141947 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html\n -rw-r--r-- 0 root (0) root (0) 270 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/\n -rw-r--r-- 0 root (0) root (0) 107681 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html\n -rw-r--r-- 0 root (0) root (0) 10566 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz\n -rw-r--r-- 0 root (0) root (0) 83987 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html\n -rw-r--r-- 0 root (0) root (0) 66492 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html\n -rw-r--r-- 0 root (0) root (0) 82312 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html\n -rw-r--r-- 0 root (0) root (0) 104316 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html\n--rw-r--r-- 0 root (0) root (0) 222542 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n+-rw-r--r-- 0 root (0) root (0) 222538 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n -rw-r--r-- 0 root (0) root (0) 89385 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html\n -rw-r--r-- 0 root (0) root (0) 243730 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html\n -rw-r--r-- 0 root (0) root (0) 83262 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html\n -rw-r--r-- 0 root (0) root (0) 252303 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html\n -rw-r--r-- 0 root (0) root (0) 68280 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html\n -rw-r--r-- 0 root (0) root (0) 75128 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html\n -rw-r--r-- 0 root (0) root (0) 145199 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html\n"}, {"source1": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "source2": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -21494,15 +21494,15 @@\n \"001294\": 2210,\n \"001372\": 2207,\n \"001376\": 2207,\n \"001427\": 2214,\n \"001438\": 2195,\n \"001486\": [102, 1158],\n \"00180\": 2294,\n- \"002\": 2264,\n+ \"002\": [2193, 2264],\n \"002000\": 2232,\n \"002040\": 2235,\n \"002118\": [2230, 2231],\n \"002653\": 2207,\n \"002846\": 2229,\n \"003\": [2185, 2235],\n \"003144\": 2210,\n@@ -21531,15 +21531,14 @@\n \"005000\": 2218,\n \"005361\": 2207,\n \"005383\": 2220,\n \"005446\": 2219,\n \"005462\": 2191,\n \"005977\": 2199,\n \"005979\": 2186,\n- \"006\": 2193,\n \"006123\": 2207,\n \"006154\": [2185, 2197, 2199, 2202, 2204, 2215, 2257],\n \"0062\": 2191,\n \"006349\": 2195,\n \"006438\": 2215,\n \"006549\": [182, 760],\n \"006695\": 2186,\n@@ -21580,33 +21579,30 @@\n \"010026\": 2191,\n \"010081\": 15,\n \"010165\": 2199,\n \"010589\": 2193,\n \"010670\": [102, 1158],\n \"0108\": 2257,\n \"010903\": 2207,\n- \"011\": 2193,\n \"011111\": [182, 760],\n \"011342\": 2207,\n \"011351\": 2207,\n \"011374\": 2195,\n \"011470\": 2207,\n \"011736\": 2186,\n \"011829\": 2207,\n \"01183\": 2229,\n \"011860\": [182, 760],\n \"011975\": 2207,\n- \"012\": 2193,\n \"012108\": 2207,\n \"012299\": 2207,\n \"0123456789123456\": [2164, 2165],\n \"012549\": 2207,\n \"012694\": 2199,\n \"012922\": 2219,\n- \"013\": 2193,\n \"013086\": 15,\n \"0133\": 2202,\n \"013448\": 2207,\n \"013605\": 2207,\n \"013684\": [182, 760],\n \"013692\": [102, 1158],\n \"013747\": 2199,\n@@ -21621,14 +21617,15 @@\n \"014138\": 2191,\n \"014144\": [102, 1158],\n \"014648\": 2186,\n \"014752\": 2235,\n \"014805\": 2202,\n \"014871\": [2185, 2197, 2199, 2202],\n \"014888\": 2207,\n+ \"015\": 2193,\n \"015083\": 2186,\n \"015420\": 2195,\n \"015458\": 2207,\n \"015696\": [2220, 2228, 2230],\n \"015906\": 2186,\n \"015962\": [2184, 2214],\n \"015988\": 2186,\n@@ -21642,37 +21639,36 @@\n \"017106\": 2207,\n \"017118\": 2199,\n \"017152\": 2186,\n \"017263\": 2207,\n \"017276\": 2191,\n \"017587\": [2184, 2195, 2214],\n \"017796\": 2207,\n- \"018\": [2193, 2199],\n+ \"018\": 2199,\n \"018007\": 2207,\n \"018117\": 2191,\n \"018193\": 2207,\n \"018409\": 2207,\n \"018601\": [2184, 2214],\n \"018808\": 2207,\n \"018904\": 2207,\n \"018941\": 2207,\n \"018993\": 2214,\n- \"019\": [2193, 2207],\n+ \"019\": 2207,\n \"019449\": 2207,\n \"019794\": 2197,\n \"01t00\": [2163, 2199, 2210, 2235, 2246, 2261],\n \"01t01\": 2210,\n \"01t03\": 2210,\n \"01t05\": [909, 2210, 2235],\n \"01t07\": 1280,\n \"01t10\": 1005,\n \"01t12\": 953,\n \"01t23\": [893, 2186, 2246],\n \"02\": [13, 16, 17, 19, 26, 27, 29, 31, 79, 80, 82, 133, 182, 183, 202, 207, 208, 213, 218, 230, 261, 271, 276, 277, 278, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 301, 304, 305, 306, 307, 310, 312, 313, 314, 318, 319, 320, 321, 322, 323, 324, 326, 327, 329, 330, 331, 332, 345, 362, 363, 423, 519, 534, 536, 542, 543, 544, 545, 546, 547, 548, 549, 557, 558, 562, 563, 564, 565, 566, 575, 591, 592, 593, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 656, 657, 658, 659, 665, 666, 667, 673, 674, 675, 677, 678, 679, 680, 684, 685, 686, 688, 708, 760, 761, 781, 782, 788, 793, 804, 893, 899, 902, 903, 904, 919, 939, 940, 943, 945, 948, 949, 953, 957, 970, 997, 1014, 1051, 1075, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1344, 1393, 1452, 1498, 1500, 1506, 1542, 1620, 1699, 1815, 1947, 2054, 2127, 2145, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2220, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2265, 2271, 2283, 2294, 2298, 2301, 2307],\n- \"020\": 2193,\n \"0200\": [957, 969, 970, 997, 1498, 2210],\n \"020161\": [102, 1158],\n \"020208\": 2195,\n \"020376\": 2207,\n \"020399\": 2195,\n \"020485\": 2207,\n \"020544\": 2186,\n@@ -21695,15 +21691,14 @@\n \"023526\": 2191,\n \"023640\": 2230,\n \"023688\": [15, 2185, 2191, 2197],\n \"0237\": 2204,\n \"023721\": 2207,\n \"023888\": 2186,\n \"023898\": 2195,\n- \"024\": 2193,\n \"024121\": 2207,\n \"024180\": [2185, 2197, 2199, 2202, 2204, 2215],\n \"024320\": 2210,\n \"02458\": 2195,\n \"024580\": [2184, 2195, 2214],\n \"024738\": [102, 1158],\n \"024786\": 2207,\n@@ -21713,14 +21708,15 @@\n \"024967\": 2207,\n \"025\": [2186, 2222, 2227],\n \"025054\": 2184,\n \"025270\": 2186,\n \"025363\": 2186,\n \"025367\": 2207,\n \"025747\": [2191, 2197, 2207],\n+ \"026\": 2193,\n \"026036\": 2207,\n \"026158\": 2210,\n \"026220\": 2191,\n \"026437\": 2197,\n \"026458\": 2216,\n \"0266708\": 2202,\n \"026692\": 2207,\n@@ -21794,22 +21790,24 @@\n \"034870\": 2207,\n \"034899\": 2186,\n \"034905\": 2207,\n \"035310\": 2220,\n \"035312\": 2210,\n \"035476\": 2210,\n \"035962\": 2186,\n+ \"036\": 2193,\n \"036047\": 2214,\n \"036104\": 2207,\n \"036142\": [2220, 2231],\n \"0362\": 2202,\n \"0362196\": 2202,\n \"036235\": 2205,\n \"036660\": 2199,\n \"036854\": 2199,\n+ \"037\": 2193,\n \"037181\": 2191,\n \"037528\": 2235,\n \"037651\": 2207,\n \"037772\": 2214,\n \"037882\": [2184, 2214],\n \"038\": [1447, 2200, 2232],\n \"038031\": 2207,\n@@ -21824,27 +21822,29 @@\n \"0396\": [2184, 2186],\n \"039624\": 2207,\n \"039926\": 2210,\n \"03c\": 2208,\n \"03t00\": [2199, 2210, 2235, 2261],\n \"03t05\": [909, 2210],\n \"04\": [26, 27, 29, 31, 80, 84, 88, 114, 127, 148, 149, 157, 177, 178, 207, 213, 230, 292, 294, 306, 307, 317, 330, 332, 345, 402, 423, 528, 529, 592, 595, 600, 640, 644, 646, 658, 659, 671, 685, 688, 703, 725, 726, 732, 755, 756, 781, 788, 804, 985, 1075, 1145, 1269, 1270, 1280, 1289, 1344, 1393, 1452, 1498, 1500, 1741, 1776, 1815, 2184, 2185, 2186, 2188, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2250, 2261, 2264, 2271, 2283, 2298],\n+ \"040\": 2193,\n \"0400\": [2222, 2271],\n \"040039\": 2216,\n \"040247\": 2207,\n \"0405\": [182, 760],\n \"040775\": 2207,\n \"040863\": 2186,\n- \"041\": [1447, 2200, 2232],\n+ \"041\": [1447, 2193, 2200, 2232],\n \"041290\": 2197,\n \"041575\": 2219,\n \"041665\": 2205,\n \"041898\": 2207,\n \"041927\": 2199,\n \"041933\": 2184,\n+ \"042\": 2193,\n \"042041\": 2207,\n \"042275\": [283, 910],\n \"042322\": 2207,\n \"042379\": [2184, 2195, 2214],\n \"0424\": 2257,\n \"042856\": 2218,\n \"042935\": 2207,\n@@ -21859,15 +21859,14 @@\n \"044125\": 2207,\n \"044184\": 2199,\n \"0442\": [2184, 2186],\n \"044236\": [16, 17, 18, 19, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2220, 2225, 2235, 2241, 2260],\n \"044522\": 586,\n \"044546\": 2207,\n \"044933\": 2207,\n- \"045\": 2193,\n \"045691\": 2191,\n \"045759\": 2207,\n \"045976\": 2214,\n \"046\": 2207,\n \"046044\": 2199,\n \"046582\": 2207,\n \"046611\": 2210,\n@@ -21888,15 +21887,15 @@\n \"048074\": 2207,\n \"048089\": 2197,\n \"048543\": 2207,\n \"048553\": 2207,\n \"048693\": 2230,\n \"048777\": 2204,\n \"048788\": 2197,\n- \"049\": [1447, 2200, 2232],\n+ \"049\": [1447, 2193, 2200, 2232],\n \"049245\": 2195,\n \"049355\": 2217,\n \"049421\": 2199,\n \"049647\": 2191,\n \"049695\": 2199,\n \"049748\": 2204,\n \"049783\": 2207,\n@@ -21930,14 +21929,15 @@\n \"053667\": 2207,\n \"053768\": 2199,\n \"053785\": 2219,\n \"054325\": 2191,\n \"0549\": 2202,\n \"054932\": 2207,\n \"054972\": 2207,\n+ \"055\": 2193,\n \"055224\": 2184,\n \"055300\": 2212,\n \"055457\": 2199,\n \"055473\": 2235,\n \"055501\": 2207,\n \"055556\": [69, 109, 129, 171, 173, 182, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 760],\n \"055758\": 2197,\n@@ -22035,15 +22035,15 @@\n \"069486\": 2230,\n \"069546\": 2199,\n \"069718\": 2186,\n \"069887\": 2207,\n \"069908\": 2207,\n \"069949\": 2207,\n \"06t00\": 2261,\n- \"07\": [26, 27, 29, 30, 31, 187, 202, 207, 213, 230, 273, 277, 292, 294, 330, 332, 345, 644, 646, 685, 688, 763, 781, 788, 804, 900, 903, 1075, 1280, 1344, 1441, 1442, 1449, 1450, 1452, 1598, 1677, 1720, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2226, 2227, 2228, 2230, 2231, 2235, 2261, 2271, 2294, 2298],\n+ \"07\": [26, 27, 29, 30, 31, 187, 202, 207, 213, 230, 273, 277, 292, 294, 330, 332, 345, 644, 646, 685, 688, 763, 781, 788, 804, 900, 903, 1075, 1280, 1344, 1441, 1442, 1449, 1450, 1452, 1598, 1677, 1720, 2184, 2186, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2226, 2227, 2228, 2230, 2231, 2235, 2261, 2271, 2294, 2298],\n \"0700\": 995,\n \"070087\": 2218,\n \"070816\": 2235,\n \"071068\": 2222,\n \"071357\": 2191,\n \"071665\": 2219,\n \"0718\": [2184, 2186],\n@@ -22062,14 +22062,15 @@\n \"073711\": 2184,\n \"073934\": 2207,\n \"074\": [2186, 2227],\n \"074315\": 2197,\n \"074354\": 2207,\n \"074597\": 2210,\n \"074752\": 2210,\n+ \"074861\": 2228,\n \"074978\": [2220, 2231],\n \"075\": [1447, 2200, 2232],\n \"0750\": [24, 25],\n \"075381\": 2230,\n \"075422\": 2207,\n \"075499\": 2219,\n \"075718\": 2207,\n@@ -22088,15 +22089,15 @@\n \"076879\": 2207,\n \"077007\": 2207,\n \"077118\": [2184, 2195, 2214],\n \"077151\": 2199,\n \"077324\": 2195,\n \"077807\": 2207,\n \"077988\": 2207,\n- \"078\": 2193,\n+ \"078246\": 2228,\n \"078638\": [2185, 2197, 2199, 2202, 2204],\n \"078716\": 2207,\n \"078718\": 2197,\n \"078832\": 2207,\n \"079115\": 2207,\n \"079150\": 2185,\n \"079255\": 2207,\n@@ -22206,15 +22207,14 @@\n \"094676\": 2207,\n \"094709\": 2229,\n \"094899\": 2199,\n \"094948\": 2199,\n \"095019\": 2207,\n \"095025\": 2210,\n \"095031\": 2197,\n- \"096\": 2193,\n \"096061\": 2205,\n \"096271\": 2186,\n \"0963\": [182, 760],\n \"096364\": 2235,\n \"096576\": 2207,\n \"096701\": 2214,\n \"096705\": 2207,\n@@ -22258,20 +22258,20 @@\n \"0n\": [1489, 2298],\n \"0px\": 2207,\n \"0rc0\": 13,\n \"0th\": [26, 249, 882, 1202, 2185, 2197, 2199, 2235],\n \"0x00\": 2294,\n \"0x40\": 2294,\n \"0x7efd0c0b0690\": 3,\n- \"0x841e84c8\": 2246,\n- \"0x85d8a648\": 2230,\n- \"0x9ab45b70\": 2199,\n- \"0x9c841460\": 2197,\n- \"0x9da16850\": 2195,\n- \"0xacb4d4d8\": 2210,\n+ \"0xc4ea14c8\": 2246,\n+ \"0xc69ef120\": 2230,\n+ \"0xdb8438a0\": 2199,\n+ \"0xdd50e3a0\": 2197,\n+ \"0xde325a58\": 2195,\n+ \"0xe8f822f8\": 2210,\n \"1\": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310],\n \"10\": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308],\n \"100\": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307],\n \"1000\": [9, 10, 15, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294],\n \"10000\": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266],\n \"100000\": [1354, 1372, 2199, 2201, 2210],\n \"1000000\": [144, 2199, 2228],\n@@ -22313,15 +22313,15 @@\n \"10083\": 2226,\n \"100845\": 2207,\n \"10087\": 2227,\n \"10089\": 2229,\n \"10092\": 2226,\n \"10096\": 2227,\n \"100y\": 1344,\n- \"101\": [207, 781, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2230, 2231, 2232, 2235, 2246],\n+ \"101\": [207, 781, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2230, 2231, 2232, 2235, 2246],\n \"10103\": 2231,\n \"10110\": 2228,\n \"10114\": 2228,\n \"10115\": 2228,\n \"101154\": 2207,\n \"10117\": 2246,\n \"10119\": 2227,\n@@ -22352,15 +22352,15 @@\n \"10178\": 2228,\n \"1018\": [2185, 2205],\n \"10181\": 2227,\n \"10182\": 2227,\n \"101830\": 2207,\n \"10184\": 2227,\n \"10193\": 2228,\n- \"102\": [1491, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2230, 2232, 2235, 2246, 2249],\n+ \"102\": [1491, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2230, 2232, 2235, 2246, 2249],\n \"1020\": 2185,\n \"10209\": 2227,\n \"1021\": [2185, 2197, 2231],\n \"10214\": [2227, 2228],\n \"10217\": 2227,\n \"10218\": 2228,\n \"1022\": [16, 17, 18, 19, 2185, 2199, 2203, 2205, 2232, 2235, 2298],\n@@ -22435,15 +22435,15 @@\n \"10387\": 2228,\n \"10388\": 2228,\n \"1039\": 2202,\n \"10390\": 2246,\n \"10392\": 2228,\n \"10393\": 2228,\n \"10395\": 2228,\n- \"104\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246, 2253, 2294],\n+ \"104\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246, 2253, 2294],\n \"1040\": 2202,\n \"104011\": 2235,\n \"10408\": 2228,\n \"10409\": 2235,\n \"1041\": 2205,\n \"10411\": 2228,\n \"10412\": 2228,\n@@ -22517,15 +22517,15 @@\n \"10577\": 2228,\n \"10581\": 2228,\n \"10583\": 2228,\n \"105845\": 2207,\n \"10587\": 2228,\n \"10590\": 2228,\n \"10591\": 2228,\n- \"106\": [28, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246],\n+ \"106\": [28, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246],\n \"1060\": 2212,\n \"10604\": 2228,\n \"106068\": 2207,\n \"1061\": [2194, 2212],\n \"10610\": 2228,\n \"10611\": 2246,\n \"10618\": 2228,\n@@ -22586,15 +22586,15 @@\n \"107780\": 2235,\n \"10779\": 2228,\n \"1078\": 2194,\n \"10789\": 2230,\n \"1079\": [2194, 2228],\n \"10791\": 2228,\n \"10792\": [2228, 2235],\n- \"108\": [273, 900, 2184, 2185, 2186, 2188, 2191, 2192, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246],\n+ \"108\": [273, 900, 2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246],\n \"1080\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 2194, 2212],\n \"10804\": 2228,\n \"10806\": 2232,\n \"1081\": [2194, 2212],\n \"10817\": 2228,\n \"10819\": 2228,\n \"1082\": [2194, 2212],\n@@ -22749,15 +22749,15 @@\n \"11181\": 2229,\n \"11185\": 2228,\n \"11188\": 2249,\n \"11192\": 2230,\n \"111926\": 2207,\n \"11193\": 2230,\n \"11198\": 2228,\n- \"112\": [27, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2230, 2232, 2235, 2246],\n+ \"112\": [27, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2230, 2232, 2235, 2246],\n \"1120\": [2185, 2191, 2194],\n \"112016\": 2257,\n \"11205\": 2228,\n \"11206\": 2229,\n \"1121\": [2185, 2191, 2194],\n \"11215\": 2229,\n \"11221\": [2238, 2249],\n@@ -22987,15 +22987,15 @@\n \"11788\": 2199,\n \"117887\": 2195,\n \"11790\": 2230,\n \"11792\": 2246,\n \"11794\": 2230,\n \"117949\": 2214,\n \"117967\": 2216,\n- \"118\": [268, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2228, 2230, 2232, 2242, 2249, 2265],\n+ \"118\": [268, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2228, 2230, 2232, 2242, 2249, 2265],\n \"11804\": 2230,\n \"11805\": 2230,\n \"11806\": 2199,\n \"118076\": 2186,\n \"11808\": 2230,\n \"118091\": 2207,\n \"11818\": 2230,\n@@ -23065,15 +23065,15 @@\n \"11974\": 2230,\n \"11981\": 2232,\n \"11986\": 2230,\n \"11990\": 2230,\n \"11995\": 2230,\n \"11h\": 2210,\n \"12\": [15, 17, 18, 19, 22, 24, 25, 26, 28, 29, 30, 31, 32, 69, 72, 73, 77, 78, 84, 88, 102, 107, 109, 111, 113, 129, 133, 134, 160, 162, 171, 173, 183, 187, 188, 189, 190, 193, 199, 202, 204, 206, 207, 208, 213, 215, 216, 217, 220, 221, 222, 244, 253, 259, 265, 275, 288, 292, 294, 296, 303, 308, 309, 313, 316, 318, 332, 333, 345, 362, 363, 420, 423, 509, 513, 514, 515, 516, 522, 524, 526, 530, 532, 535, 541, 557, 575, 586, 595, 600, 629, 635, 639, 644, 646, 652, 655, 660, 661, 666, 670, 673, 688, 689, 708, 738, 761, 763, 764, 765, 766, 768, 781, 782, 788, 799, 873, 886, 890, 893, 895, 923, 926, 940, 943, 948, 953, 976, 980, 987, 1017, 1075, 1154, 1158, 1162, 1164, 1169, 1189, 1192, 1195, 1205, 1219, 1221, 1226, 1250, 1253, 1256, 1267, 1274, 1276, 1290, 1292, 1336, 1344, 1392, 1431, 1433, 1452, 1482, 1487, 1497, 1498, 1560, 1578, 1598, 1620, 1637, 1657, 1677, 1699, 1720, 1758, 1793, 1815, 1839, 1876, 1894, 1912, 1930, 1964, 2018, 2127, 2145, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2257, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"120\": [15, 78, 162, 273, 359, 360, 587, 588, 900, 930, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2230, 2232],\n+ \"120\": [15, 78, 162, 273, 359, 360, 587, 588, 900, 930, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2230, 2232],\n \"12000\": [2185, 2188, 2220],\n \"12004\": 2265,\n \"120055\": 2228,\n \"12011\": [176, 179],\n \"12014\": 2230,\n \"12017\": 2230,\n \"12019\": 2230,\n@@ -23805,15 +23805,15 @@\n \"13873\": 2238,\n \"13874\": [2232, 2241],\n \"13876\": 2232,\n \"13879\": 2234,\n \"13884\": 2232,\n \"13894\": 2232,\n \"13898\": 2232,\n- \"139\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2212, 2232, 2298],\n+ \"139\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2212, 2232, 2298],\n \"13900\": 2232,\n \"13902\": 2232,\n \"13905\": 2241,\n \"13907\": 2232,\n \"139168\": 2197,\n \"13917\": 2232,\n \"13918\": 2238,\n@@ -24500,15 +24500,14 @@\n \"16059\": 2246,\n \"16063\": 2294,\n \"16071\": 2235,\n \"16073\": 2241,\n \"16078\": 2238,\n \"160910\": 2207,\n \"160915\": 2186,\n- \"16098\": 2193,\n \"161\": [2185, 2186, 2188, 2195, 2197, 2199, 2201, 2210, 2211],\n \"161007\": 2207,\n \"161099\": 2193,\n \"16111\": 2235,\n \"16112\": 2238,\n \"161137\": 2235,\n \"16120\": 2235,\n@@ -24626,15 +24625,15 @@\n \"1657\": [2199, 2200, 2263],\n \"16572\": 2241,\n \"1658\": [2200, 2202],\n \"16583\": 2237,\n \"1659\": 2200,\n \"165916\": 2207,\n \"165984\": 2207,\n- \"166\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2210, 2211, 2257],\n+ \"166\": [2185, 2186, 2188, 2195, 2197, 2199, 2201, 2210, 2211, 2257],\n \"16603\": 2241,\n \"16604\": 2235,\n \"16605\": 2241,\n \"16607\": 2249,\n \"166078\": 2199,\n \"16608\": 2237,\n \"1661\": 2200,\n@@ -25180,15 +25179,15 @@\n \"18478\": 2241,\n \"1848\": 2220,\n \"18480\": 2241,\n \"18482\": 2241,\n \"18485\": 2241,\n \"18489\": 2241,\n \"18493\": 2239,\n- \"185\": [134, 709, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2212],\n+ \"185\": [134, 709, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211, 2212],\n \"18501\": 2241,\n \"18502\": 2249,\n \"185043\": 2195,\n \"18505\": 2241,\n \"18509\": 2241,\n \"18510\": 2241,\n \"18515\": 2241,\n@@ -26075,15 +26074,15 @@\n \"2136\": 2204,\n \"21365\": 2246,\n \"21369\": 2246,\n \"21372\": 2246,\n \"21374\": 2310,\n \"21380\": 2243,\n \"21390\": 2243,\n- \"214\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2212, 2254],\n+ \"214\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211, 2212, 2254],\n \"21400\": 2265,\n \"21404\": 2246,\n \"214041\": 2207,\n \"214154\": 2207,\n \"21417\": 2249,\n \"21422\": 2298,\n \"214235\": 2207,\n@@ -26270,15 +26269,14 @@\n \"22163\": 2246,\n \"2217\": 1344,\n \"22199\": 2246,\n \"222\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220],\n \"22205\": 2274,\n \"222082\": 2197,\n \"222103\": 2207,\n- \"2221427072\": 2246,\n \"22221\": 2246,\n \"22227\": 2246,\n \"2224\": [2214, 2220],\n \"22242\": 2246,\n \"2225\": 2220,\n \"22252\": 2249,\n \"222522\": 2207,\n@@ -26318,15 +26316,14 @@\n \"224077\": 2207,\n \"22420\": 2246,\n \"224283\": 2197,\n \"22435\": 2289,\n \"224364\": 2186,\n \"22441\": 2246,\n \"224426\": 2191,\n- \"2244382448\": 2246,\n \"22451\": 2289,\n \"22457\": 2246,\n \"22458\": [2246, 2265],\n \"22468\": 2246,\n \"22476\": 2246,\n \"22477\": 2246,\n \"224824\": 2207,\n@@ -27274,15 +27271,15 @@\n \"268413\": 2207,\n \"2685\": 2221,\n \"268520\": [2184, 2195, 2214],\n \"2686\": 2215,\n \"2687\": 2215,\n \"2689\": 2215,\n \"268968\": 2207,\n- \"269\": [2186, 2188, 2195, 2197, 2199, 2210],\n+ \"269\": [2186, 2188, 2195, 2197, 2199, 2210, 2218],\n \"2690\": 2215,\n \"26916\": 2249,\n \"26919\": 2283,\n \"2692\": 2215,\n \"269219\": [242, 817],\n \"26934\": 2249,\n \"26939\": 2265,\n@@ -27438,14 +27435,15 @@\n \"276183\": 2257,\n \"2762\": [2184, 2186, 2191],\n \"276232\": [15, 2184, 2185, 2186, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2225, 2231, 2241, 2264],\n \"27636\": 2250,\n \"276386\": 2207,\n \"27642\": 2250,\n \"276464\": 2230,\n+ \"2765\": 2193,\n \"27656\": [2294, 2298],\n \"27660\": 2265,\n \"2766617129497566\": 2257,\n \"276662\": [2185, 2197, 2199, 2202, 2215, 2257],\n \"27668\": 2265,\n \"2767\": 2191,\n \"27676\": 2265,\n@@ -27669,15 +27667,15 @@\n \"28867\": 2277,\n \"28869\": 2265,\n \"28870\": 2265,\n \"288725\": 2207,\n \"28882\": 2252,\n \"288911\": 2207,\n \"288977\": 2207,\n- \"289\": [16, 17, 18, 19, 2186, 2197, 2199, 2210, 2235, 2255],\n+ \"289\": [16, 17, 18, 19, 2186, 2193, 2197, 2199, 2210, 2235, 2255],\n \"289092\": 2230,\n \"28917\": 2271,\n \"289216\": 2207,\n \"2893\": 2217,\n \"28930\": 2265,\n \"289388\": 2186,\n \"289409\": 2207,\n@@ -27765,15 +27763,15 @@\n \"2936\": [2199, 2249],\n \"293601\": 2199,\n \"293786\": 2191,\n \"2938\": 2199,\n \"29388\": 2265,\n \"293906\": 2207,\n \"293926\": 2204,\n- \"294\": [2186, 2197, 2199, 2210],\n+ \"294\": [2185, 2186, 2197, 2199, 2210],\n \"29403\": 2265,\n \"29405\": 2298,\n \"294122\": 2199,\n \"294348\": 2199,\n \"294389\": 2207,\n \"29442\": 2275,\n \"2945\": 2191,\n@@ -28337,15 +28335,15 @@\n \"323510\": 2207,\n \"32377\": [2271, 2274],\n \"32380\": [2271, 2298],\n \"32385\": 2267,\n \"32392\": 2277,\n \"32394\": 2271,\n \"32395\": [2269, 2271],\n- \"324\": [2186, 2193, 2197, 2199, 2210, 2227, 2235, 2255],\n+ \"324\": [2186, 2197, 2199, 2210, 2227, 2235, 2255],\n \"32402\": 2271,\n \"324071\": 2199,\n \"32408\": 2271,\n \"32409\": 2269,\n \"32420\": 2271,\n \"32423\": 2271,\n \"32426\": 2271,\n@@ -28488,14 +28486,15 @@\n \"33043\": 2289,\n \"33064\": 2271,\n \"33069\": 2271,\n \"330698\": 2207,\n \"330704\": 2214,\n \"33071\": 2269,\n \"33091\": 2298,\n+ \"3309124976\": 2246,\n \"33092\": 2271,\n \"331\": [2184, 2186, 2197, 2199, 2205, 2210, 2246],\n \"331053\": 2207,\n \"33113\": 2271,\n \"33115\": 2269,\n \"331152\": 2210,\n \"331279\": 2195,\n@@ -28520,14 +28519,15 @@\n \"33215\": 2271,\n \"332214\": 15,\n \"332258\": 2218,\n \"3323\": 2220,\n \"332511\": 2207,\n \"33253\": 2271,\n \"33256\": 2269,\n+ \"3325884128\": 2246,\n \"33261\": 2271,\n \"33288\": 2269,\n \"33296\": 2271,\n \"333\": [15, 1343, 2184, 2186, 2197, 2199, 2204, 2205, 2210, 2246],\n \"33302\": 2302,\n \"333109\": 15,\n \"33314\": 2276,\n@@ -28762,15 +28762,15 @@\n \"34331\": 2271,\n \"34339\": 2271,\n \"343401\": 2207,\n \"34352\": 2271,\n \"34360\": 2277,\n \"34392\": 2271,\n \"34395\": 2271,\n- \"344\": [2186, 2188, 2193, 2197, 2199, 2210],\n+ \"344\": [2186, 2188, 2197, 2199, 2210],\n \"3440\": 2218,\n \"34402\": 2271,\n \"3441\": 2246,\n \"34411\": 2283,\n \"34418\": 2298,\n \"34422\": 2271,\n \"3443\": 2191,\n@@ -28890,15 +28890,15 @@\n \"349825\": 2207,\n \"34986\": 2298,\n \"349893\": 2185,\n \"3499\": 2217,\n \"34994\": 2271,\n \"34998\": 2298,\n \"35\": [15, 17, 18, 19, 23, 25, 27, 133, 142, 160, 190, 193, 208, 213, 345, 708, 738, 766, 768, 782, 788, 823, 953, 957, 997, 1323, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2222, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2294, 2298],\n- \"350\": [134, 268, 271, 709, 899, 1259, 1264, 1485, 2186, 2197, 2199, 2210],\n+ \"350\": [134, 268, 271, 709, 899, 1259, 1264, 1485, 2185, 2186, 2197, 2199, 2210],\n \"35003\": 2298,\n \"35014\": 2277,\n \"35028\": 2277,\n \"35038\": 2271,\n \"35046\": 2277,\n \"35058\": 2277,\n \"350621\": 2207,\n@@ -29134,15 +29134,15 @@\n \"3616\": 2217,\n \"361719\": 2197,\n \"361733\": 2207,\n \"36176\": 2277,\n \"36179\": [2277, 2298],\n \"36189\": 2274,\n \"36197\": 2273,\n- \"362\": [1193, 1254, 2186, 2197, 2199, 2210, 2255, 2298],\n+ \"362\": [1193, 1254, 2186, 2197, 2199, 2205, 2210, 2255, 2298],\n \"36204\": 2277,\n \"36210\": 2277,\n \"36212\": 2277,\n \"362228\": 2210,\n \"36226\": 30,\n \"36240\": 2277,\n \"36241\": 2274,\n@@ -29185,15 +29185,15 @@\n \"36373\": 2275,\n \"36377\": 2274,\n \"363777\": 2199,\n \"3638\": 2217,\n \"363825\": 2210,\n \"36383\": 2274,\n \"36384\": 2277,\n- \"364\": [2186, 2193, 2197, 2199, 2209, 2210, 2249, 2255, 2298],\n+ \"364\": [2186, 2197, 2199, 2209, 2210, 2249, 2255, 2298],\n \"364034\": 2230,\n \"36418\": 2298,\n \"36419\": 2289,\n \"36430\": 2274,\n \"36432\": 2277,\n \"36451\": 2274,\n \"364628\": 2207,\n@@ -29776,15 +29776,15 @@\n \"39272\": 2289,\n \"39274\": 2283,\n \"39276\": 2283,\n \"392823\": 2207,\n \"392855\": 2235,\n \"392940\": 2195,\n \"392958\": 2207,\n- \"393\": [2186, 2193, 2197, 2199, 2210],\n+ \"393\": [2186, 2197, 2199, 2210],\n \"39306\": 2283,\n \"39307\": 2298,\n \"393160\": 2207,\n \"39317\": 2283,\n \"39328\": [2283, 2294, 2298],\n \"39329\": 2279,\n \"393301\": 2207,\n@@ -30132,15 +30132,15 @@\n \"40978\": 2283,\n \"40986\": 2282,\n \"40988\": 2302,\n \"40989\": 2289,\n \"4099\": 1776,\n \"40g\": 2199,\n \"41\": [15, 17, 18, 19, 29, 213, 345, 788, 823, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2217, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2298],\n- \"410\": [2186, 2199, 2210],\n+ \"410\": [2186, 2193, 2199, 2210],\n \"410001\": [2185, 2197, 2199, 2202, 2204],\n \"41010\": 2283,\n \"410179\": [15, 2185, 2191, 2197],\n \"4102\": [2204, 2218],\n \"41021\": 2289,\n \"410317\": 2199,\n \"410395\": 2199,\n@@ -30353,15 +30353,15 @@\n \"41965\": 2289,\n \"41967\": 2289,\n \"41974\": 2283,\n \"419814\": 2207,\n \"41993\": 2289,\n \"41995\": 2289,\n \"419977\": 2207,\n- \"42\": [3, 15, 17, 18, 19, 102, 187, 287, 763, 918, 920, 921, 927, 930, 939, 941, 1158, 1462, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2217, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2298],\n+ \"42\": [3, 15, 17, 18, 19, 102, 187, 287, 763, 918, 920, 921, 927, 930, 939, 941, 1158, 1462, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2217, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2298],\n \"420\": [2186, 2199, 2210],\n \"420000\": 28,\n \"420018\": 2207,\n \"4201\": 2218,\n \"42014\": 2289,\n \"4202\": 2218,\n \"42021\": 2289,\n@@ -30994,15 +30994,15 @@\n \"44564\": 2289,\n \"44572\": 2289,\n \"44574\": 2289,\n \"44575\": 2289,\n \"44580\": 2289,\n \"44595\": 2289,\n \"44597\": 2289,\n- \"446\": [2193, 2199, 2210, 2249],\n+ \"446\": [2199, 2210, 2249],\n \"44603\": 2294,\n \"44609\": 2289,\n \"44616\": 2289,\n \"44629\": 2298,\n \"4463\": 2218,\n \"446531\": 2191,\n \"4466\": 2222,\n@@ -31166,15 +31166,15 @@\n \"45361\": 2294,\n \"45362\": 2294,\n \"453684\": 2207,\n \"453749\": [2184, 2214],\n \"45384\": 2289,\n \"453846\": 2201,\n \"45387\": 2294,\n- \"454\": [28, 2185, 2199, 2207, 2210, 2249],\n+ \"454\": [28, 2199, 2207, 2210, 2249],\n \"454020\": 2207,\n \"45404\": 2294,\n \"454118\": 2207,\n \"454131\": 2197,\n \"45414\": 2294,\n \"4542\": 28,\n \"454200\": 28,\n@@ -31246,15 +31246,15 @@\n \"45661\": 2290,\n \"456620\": 2207,\n \"456789\": 2228,\n \"45681\": 2294,\n \"45684\": 2290,\n \"45691\": 2294,\n \"45694\": 2294,\n- \"457\": [2199, 2210],\n+ \"457\": [2193, 2199, 2210],\n \"457071\": 2199,\n \"45708\": 2294,\n \"45715\": 2294,\n \"45722\": 2294,\n \"45725\": 2296,\n \"457395\": 2207,\n \"45740\": 2302,\n@@ -32687,15 +32687,15 @@\n \"52969\": 2302,\n \"52979\": 2302,\n \"52981\": 2302,\n \"52986\": 2302,\n \"529895\": 2219,\n \"52998\": 2302,\n \"52w\": 1433,\n- \"53\": [15, 17, 19, 24, 25, 28, 29, 32, 532, 662, 957, 1377, 1793, 1815, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2271, 2283, 2294],\n+ \"53\": [15, 17, 19, 24, 25, 28, 29, 32, 532, 662, 957, 1377, 1793, 1815, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2271, 2283, 2294],\n \"530\": 2199,\n \"53001\": 2300,\n \"53009\": 2302,\n \"530113\": 2207,\n \"53013\": 2302,\n \"53014\": 2302,\n \"53039\": 2302,\n@@ -32886,15 +32886,15 @@\n \"53956\": 2302,\n \"539708\": 2195,\n \"53979\": 2302,\n \"53983\": 2302,\n \"539890\": 2257,\n \"539990\": 2210,\n \"53h\": 2209,\n- \"54\": [15, 17, 19, 29, 213, 345, 788, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2271, 2283],\n+ \"54\": [15, 17, 19, 29, 213, 345, 788, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2271, 2283],\n \"540\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 2199],\n \"5401\": 2277,\n \"54011\": 2302,\n \"540132\": 2207,\n \"5402\": 2219,\n \"540338\": 2235,\n \"54037\": 2302,\n@@ -33737,15 +33737,15 @@\n \"604334\": 2235,\n \"604466\": 2197,\n \"604675\": 2197,\n \"604736\": 2207,\n \"604745\": [2214, 2235],\n \"6048\": 2220,\n \"6049\": 2257,\n- \"605\": [2193, 2199, 2298],\n+ \"605\": [2199, 2298],\n \"605081\": 2207,\n \"6051\": [196, 771],\n \"6055\": 2219,\n \"6056\": 2219,\n \"605632\": 2207,\n \"605656\": 2197,\n \"6059\": 2219,\n@@ -33909,15 +33909,15 @@\n \"6256\": [2192, 2202],\n \"6257\": 2192,\n \"625733\": 2230,\n \"625771\": 2199,\n \"6258\": [2192, 2220],\n \"6259\": 2192,\n \"625909\": 2207,\n- \"626\": [2199, 2203, 2298],\n+ \"626\": [2193, 2199, 2203, 2298],\n \"6260\": 2192,\n \"6262\": 2192,\n \"6263\": 2192,\n \"626300\": 1323,\n \"6263001\": 1323,\n \"6264\": 2192,\n \"626404\": 2235,\n@@ -34163,15 +34163,15 @@\n \"655440\": 2207,\n \"655457\": 2214,\n \"6555\": 2220,\n \"655514\": 2212,\n \"655824\": 2197,\n \"655873\": 2207,\n \"655969\": 2230,\n- \"656\": [2184, 2185, 2199, 2205],\n+ \"656\": [2184, 2199, 2205],\n \"656279\": 2207,\n \"656430\": 2207,\n \"656789\": 2205,\n \"656823\": 2207,\n \"657\": [2184, 2199, 2205],\n \"6573\": 2220,\n \"6574\": 2220,\n@@ -34192,15 +34192,15 @@\n \"6589\": 2206,\n \"659\": 2199,\n \"659221\": 2207,\n \"659369\": 2207,\n \"659584\": 2207,\n \"659955\": 2207,\n \"66\": [17, 19, 24, 139, 140, 219, 273, 900, 1174, 1175, 1433, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n- \"660\": [2193, 2199, 2201],\n+ \"660\": [2199, 2201],\n \"6600\": 2220,\n \"660294\": 2195,\n \"6604\": 2220,\n \"660402\": 2207,\n \"660515\": 2210,\n \"660522\": 2199,\n \"6606\": 2221,\n@@ -34404,15 +34404,15 @@\n \"6814\": 2185,\n \"681456\": [15, 2219],\n \"6815\": 2185,\n \"6816\": 2220,\n \"6817\": [2185, 2220],\n \"6818\": [2185, 2220],\n \"681973\": 2207,\n- \"682\": 2197,\n+ \"682\": [2193, 2197],\n \"682402\": 2199,\n \"682596e\": 2191,\n \"682781\": 2207,\n \"683276\": 2207,\n \"683333\": 2222,\n \"6834\": 2220,\n \"683463\": 2230,\n@@ -34648,25 +34648,25 @@\n \"709248\": 2260,\n \"709459\": 2199,\n \"7095\": 2228,\n \"7096\": 2232,\n \"709661\": [2184, 2214],\n \"7097\": 2222,\n \"7098\": 2220,\n- \"71\": [15, 17, 24, 25, 28, 29, 32, 133, 208, 708, 718, 782, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"71\": [15, 17, 24, 25, 28, 29, 32, 133, 208, 708, 718, 782, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"710\": 2199,\n \"7101\": 2220,\n \"7103\": 2222,\n \"7105\": 2220,\n \"7106\": 2220,\n \"711\": 2199,\n \"711409\": 2186,\n \"7115\": 2223,\n \"7117\": 2235,\n- \"712\": [3, 2185, 2192, 2193],\n+ \"712\": [3, 2185, 2192],\n \"712009\": 2199,\n \"712369\": 2186,\n \"7124\": 2229,\n \"712702\": 2230,\n \"712795\": 2199,\n \"713\": [2192, 2199],\n \"713216\": 2217,\n@@ -34727,15 +34727,15 @@\n \"7200\": 2210,\n \"720000\": [2191, 2225],\n \"720521\": 2210,\n \"720589\": [2220, 2228, 2230, 2231],\n \"7206\": 2220,\n \"7207\": 2222,\n \"720780\": 15,\n- \"721\": [2185, 2202],\n+ \"721\": 2202,\n \"7210\": 2220,\n \"721025\": 2207,\n \"721104\": 2210,\n \"7212\": 2227,\n \"721555\": [15, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2210, 2214, 2215, 2218, 2225, 2241, 2260],\n \"721559\": 2191,\n \"7216\": [2184, 2186],\n@@ -35005,23 +35005,23 @@\n \"757772\": 2207,\n \"758\": [27, 2185, 2298],\n \"758070\": 2207,\n \"758294\": 2191,\n \"7586\": 2221,\n \"758602\": 2207,\n \"7588\": 2231,\n- \"759\": 32,\n+ \"759\": [32, 2193],\n \"759104\": 2185,\n \"7592\": 2221,\n \"759328\": 2199,\n \"759606\": 2199,\n \"759644\": 2222,\n \"7599\": 2228,\n \"75th\": [107, 629, 1164, 1221],\n- \"76\": [18, 190, 193, 766, 768, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"76\": [18, 190, 193, 766, 768, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"760\": [32, 2298],\n \"7601\": 2221,\n \"760109\": 2195,\n \"7606\": 2221,\n \"760643\": 2199,\n \"7609\": 2221,\n \"760970\": 2207,\n@@ -35547,14 +35547,15 @@\n \"8302\": 2224,\n \"8303\": 2222,\n \"830429\": 2207,\n \"8305\": 2222,\n \"830545\": 2199,\n \"8306\": [2243, 2246],\n \"830957\": 2207,\n+ \"831\": 2193,\n \"831269\": 2186,\n \"831973\": 2207,\n \"8325\": [2224, 2228],\n \"832585\": 2204,\n \"8327\": 2226,\n \"832706\": 2207,\n \"833069\": 2207,\n@@ -35722,15 +35723,14 @@\n \"858377\": 2207,\n \"8584\": 2224,\n \"858447\": [15, 2202],\n \"858632e\": 2191,\n \"858644\": 2199,\n \"858888\": 2218,\n \"8589\": 2223,\n- \"859\": 2193,\n \"8591\": 2223,\n \"859155\": 31,\n \"8592\": 2223,\n \"8594\": 2265,\n \"859511\": 2207,\n \"859588\": [2220, 2228, 2230, 2231],\n \"8596\": 2232,\n@@ -35895,15 +35895,15 @@\n \"8790\": 2228,\n \"8791\": 2224,\n \"879103\": 2207,\n \"8794\": 2225,\n \"8795\": 2224,\n \"879536\": 2229,\n \"879758\": 2216,\n- \"88\": [15, 188, 189, 207, 764, 765, 781, 1447, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298],\n+ \"88\": [15, 188, 189, 207, 764, 765, 781, 1447, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298],\n \"880\": 5,\n \"880077\": 2207,\n \"8801\": 2226,\n \"880331\": 2207,\n \"880609\": 15,\n \"880680\": 2207,\n \"880838\": 2218,\n@@ -36069,15 +36069,14 @@\n \"9011\": 2224,\n \"9012\": 2224,\n \"9016\": 2225,\n \"902\": 2199,\n \"903\": 2199,\n \"9031\": 2246,\n \"903246\": 2207,\n- \"903446\": 2228,\n \"903450\": 1340,\n \"9037\": 2225,\n \"903794\": 2186,\n \"904\": 2199,\n \"9046\": 2277,\n \"904807\": 2191,\n \"9049\": 2225,\n@@ -36094,15 +36093,14 @@\n \"9066\": 2225,\n \"9067\": 2202,\n \"9068\": 2226,\n \"9070\": 2249,\n \"9071\": 2225,\n \"907105\": 2229,\n \"907108\": 2207,\n- \"907268\": 2228,\n \"9075\": 2225,\n \"907653\": 2207,\n \"9079\": 2225,\n \"908102\": 2199,\n \"9082\": 2225,\n \"908296\": 2199,\n \"9083\": 2225,\n@@ -36309,15 +36307,15 @@\n \"938819\": 2204,\n \"939\": 2230,\n \"939036\": 2207,\n \"939145\": 2207,\n \"939470\": 2199,\n \"939652\": 2207,\n \"9398\": 2225,\n- \"94\": [15, 282, 2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246],\n+ \"94\": [15, 282, 2184, 2185, 2186, 2188, 2191, 2192, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246],\n \"9402\": 2228,\n \"941248\": 2199,\n \"9413\": 2238,\n \"941451\": 2210,\n \"9416\": 2228,\n \"9422\": 2238,\n \"942321\": 2207,\n@@ -37097,15 +37095,15 @@\n \"_validate_integ\": 2197,\n \"_validate_kei\": [2185, 2197],\n \"_validate_nam\": [16, 17, 18, 19, 2199, 2203, 2232, 2235, 2298],\n \"_validate_parse_dates_pres\": 2199,\n \"_validate_tuple_index\": 2197,\n \"_validate_usecols_nam\": 2199,\n \"_validate_validate_kwd\": 2200,\n- \"_valu\": [12, 1031, 2185, 2186, 2191, 2194],\n+ \"_valu\": [12, 1031, 2185, 2186, 2191, 2193, 2194],\n \"_values_for_argsort\": 1031,\n \"_values_for_factor\": [1031, 1039],\n \"_verbose_info\": 2218,\n \"_verify_integr\": 2249,\n \"_where\": 2199,\n \"_window\": 2235,\n \"_wrap_arrai\": 2218,\n@@ -38279,15 +38277,15 @@\n \"cheat\": [21, 2234],\n \"check\": [1, 2, 4, 5, 6, 8, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 30, 32, 36, 62, 75, 80, 81, 147, 153, 163, 169, 228, 256, 284, 346, 384, 386, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 420, 445, 447, 448, 453, 454, 455, 461, 469, 473, 478, 500, 501, 584, 592, 603, 615, 741, 799, 836, 837, 838, 839, 840, 841, 842, 843, 844, 888, 912, 976, 977, 978, 979, 1076, 1079, 1081, 1082, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1093, 1095, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1110, 1111, 1112, 1113, 1114, 1115, 1127, 1136, 1141, 1146, 1184, 1345, 1354, 1370, 1391, 1441, 1442, 1446, 1449, 1450, 1475, 1482, 1483, 1488, 1490, 1493, 1494, 1495, 1496, 1499, 1512, 1530, 1548, 1566, 1586, 1607, 1626, 1643, 1665, 1686, 1707, 1728, 1747, 1765, 1782, 1801, 1823, 1846, 1863, 1883, 1901, 1919, 1936, 1953, 1971, 1988, 2006, 2025, 2043, 2061, 2079, 2096, 2114, 2133, 2151, 2168, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2211, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2253, 2255, 2261, 2265, 2271, 2277, 2279, 2283, 2289, 2294, 2298, 2302, 2307, 2308],\n \"check_array_index\": 2172,\n \"check_categor\": [1494, 1495, 1496, 2242],\n \"check_category_ord\": 1496,\n \"check_column_typ\": 1494,\n \"check_datetimelike_compat\": [1494, 1496],\n- \"check_dict_or_set_index\": 2197,\n+ \"check_dict_or_set_index\": [2193, 2197],\n \"check_dtyp\": [1493, 1494, 1496, 2271, 2272, 2299],\n \"check_dtype_backend\": 2199,\n \"check_exact\": [1493, 1494, 1495, 1496, 2272, 2277, 2307, 2308],\n \"check_extens\": 2294,\n \"check_flag\": [1494, 1496, 2290],\n \"check_frame_typ\": 1494,\n \"check_freq\": [1494, 1496, 2278],\n@@ -41091,15 +41089,15 @@\n \"isanchor\": [2265, 2298],\n \"isdecim\": [836, 837, 839, 840, 841, 842, 843, 844, 2208, 2225],\n \"isdigit\": [836, 837, 838, 840, 841, 842, 843, 844, 2208, 2225],\n \"isetitem\": [2294, 2298, 2302],\n \"isfinit\": 2289,\n \"isin\": [15, 25, 439, 2184, 2194, 2196, 2207, 2218, 2220, 2222, 2228, 2231, 2235, 2236, 2237, 2238, 2241, 2246, 2249, 2255, 2257, 2271, 2274, 2275, 2277, 2283, 2284, 2285, 2289, 2294, 2295, 2297, 2298, 2299, 2302, 2305, 2307],\n \"isinf\": 2289,\n- \"isinst\": [2, 392, 395, 1082, 1088, 1094, 1099, 1106, 1111, 1403, 1404, 2184, 2185, 2186, 2191, 2193, 2194, 2197, 2199, 2201, 2203, 2205, 2208, 2218, 2232, 2261, 2283, 2289, 2294, 2298, 2302, 2307],\n+ \"isinst\": [2, 392, 395, 1082, 1088, 1094, 1099, 1106, 1111, 1403, 1404, 2184, 2185, 2186, 2191, 2194, 2197, 2199, 2201, 2203, 2205, 2208, 2218, 2232, 2261, 2283, 2289, 2294, 2298, 2302, 2307],\n \"isleapyear\": [2232, 2241],\n \"islow\": [836, 837, 838, 839, 841, 842, 843, 844, 2208, 2225],\n \"ismethod\": 2265,\n \"isn\": [5, 13, 17, 77, 133, 708, 1348, 2186, 2190, 2192, 2193, 2197, 2207, 2208, 2210, 2220, 2221, 2232, 2241, 2246, 2250, 2265, 2289],\n \"isna\": [10, 16, 18, 19, 101, 114, 149, 177, 178, 413, 636, 726, 755, 756, 1031, 1042, 1182, 1241, 1415, 1442, 1449, 1450, 2184, 2186, 2188, 2194, 2201, 2203, 2238, 2241, 2246, 2250, 2269, 2271, 2283, 2289, 2298, 2302],\n \"isnan\": [2221, 2289],\n \"isnul\": [148, 725, 2214, 2218, 2219, 2220, 2221, 2225, 2228, 2229, 2232, 2235, 2238, 2250, 2253, 2298],\n@@ -44993,15 +44991,15 @@\n \"tzfile\": [286, 329, 330, 331, 684, 685, 686, 953, 956, 972, 1013, 1014, 2210, 2221],\n \"tzinfo\": [277, 278, 286, 324, 329, 330, 331, 334, 575, 679, 684, 685, 686, 903, 904, 953, 983, 995, 1001, 1004, 1012, 1344, 2210, 2221, 2222, 2238, 2239, 2241, 2283, 2294, 2303],\n \"tzlocal\": [2232, 2246, 2298],\n \"tzname\": 2294,\n \"tzoffset\": 2222,\n \"tzser\": 575,\n \"tzutc\": [2210, 2246],\n- \"u\": [1, 3, 4, 5, 7, 13, 17, 18, 31, 203, 258, 287, 311, 330, 331, 532, 663, 664, 685, 686, 889, 905, 909, 916, 917, 918, 920, 921, 927, 930, 938, 939, 941, 946, 953, 954, 957, 995, 1017, 1085, 1087, 1088, 1204, 1476, 1482, 1483, 1484, 1498, 1500, 2163, 2184, 2185, 2186, 2193, 2194, 2195, 2199, 2203, 2207, 2208, 2209, 2210, 2222, 2226, 2228, 2230, 2235, 2238, 2241, 2246, 2249, 2294, 2298, 2302, 2307],\n+ \"u\": [1, 3, 4, 5, 7, 13, 17, 18, 31, 203, 258, 287, 311, 330, 331, 532, 663, 664, 685, 686, 889, 905, 909, 916, 917, 918, 920, 921, 927, 930, 938, 939, 941, 946, 953, 954, 957, 995, 1017, 1085, 1087, 1088, 1204, 1476, 1482, 1483, 1484, 1498, 1500, 2163, 2184, 2185, 2186, 2193, 2194, 2195, 2199, 2203, 2205, 2207, 2208, 2209, 2210, 2222, 2226, 2228, 2230, 2235, 2238, 2241, 2246, 2249, 2294, 2298, 2302, 2307],\n \"u1\": [131, 1118, 2185, 2186, 2199],\n \"u4\": 2197,\n \"u5\": 2197,\n \"u8\": 2186,\n \"ubuntu\": 5,\n \"udf\": [72, 73, 77, 273, 581, 582, 586, 900, 1148, 1149, 1152, 1168, 1203, 1207, 1208, 1211, 1225, 1264, 1269, 1270, 1304, 1321, 2195, 2196, 2294],\n \"ufunc\": [10, 586, 808, 1031, 2185, 2186, 2191, 2206, 2213, 2219, 2221, 2232, 2246, 2265, 2277, 2281, 2289, 2293, 2294, 2298, 2307],\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "unified_diff": "@@ -1847,25 +1847,25 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....: \n-1.08 ms +- 36.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-454 us +- 17 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+3.13 ms +- 350 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.35 ms +- 101 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n \n \n
In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n    .....: %timeit ser.take(indexer)\n    .....: \n-721 us +- 25.7 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-656 us +- 5.31 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+2.35 ms +- 294 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.92 ms +- 92.7 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n 
\n
\n \n
\n

Index types#

\n

We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown here,\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -1245,23 +1245,23 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....:\n-1.08 ms +- 36.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-454 us +- 17 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+3.13 ms +- 350 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.35 ms +- 101 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n .....: %timeit ser.take(indexer)\n .....:\n-721 us +- 25.7 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-656 us +- 5.31 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+2.35 ms +- 294 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.92 ms +- 92.7 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n *\b**\b**\b**\b**\b* I\bIn\bnd\bde\bex\bx t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b**\b*\n We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown _\bh_\be_\br_\be, and\n documentation about TimedeltaIndex is found _\bh_\be_\br_\be.\n In the following sub-sections we will highlight some other index types.\n *\b**\b**\b**\b* C\bCa\bat\bte\beg\bgo\bor\bri\bic\bca\bal\blI\bIn\bnd\bde\bex\bx_\b#\b# *\b**\b**\b**\b*\n _\bC_\ba_\bt_\be_\bg_\bo_\br_\bi_\bc_\ba_\bl_\bI_\bn_\bd_\be_\bx is a type of index that is useful for supporting indexing with\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "unified_diff": "@@ -592,31 +592,31 @@\n ...: s += f(a + i * dx)\n ...: return s * dx\n ...: \n \n \n

We achieve our result by using DataFrame.apply() (row-wise):

\n
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)\n-344 ms +- 8.34 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+759 ms +- 29.4 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n

Let\u2019s take a look and see where the time is spent during this operation\n using the prun ipython magic function:

\n
# most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 1.019 seconds\n+         605946 function calls (605928 primitive calls) in 2.457 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.605    0.001    0.859    0.001 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n-   552423    0.254    0.000    0.254    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n-     3000    0.024    0.000    0.096    0.000 series.py:1095(__getitem__)\n-     3000    0.018    0.000    0.045    0.000 series.py:1220(_get_value)\n+     1000    1.410    0.001    2.036    0.002 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n+   552423    0.626    0.000    0.626    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n+     3000    0.055    0.000    0.254    0.000 series.py:1095(__getitem__)\n+     3000    0.049    0.000    0.139    0.000 series.py:1220(_get_value)\n 
\n
\n

By far the majority of time is spend inside either integrate_f or f,\n hence we\u2019ll concentrate our efforts cythonizing these two functions.

\n
\n
\n

Plain Cython#

\n@@ -634,15 +634,15 @@\n ...: for i in range(N):\n ...: s += f_plain(a + i * dx)\n ...: return s * dx\n ...: \n \n \n
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)\n-324 ms +- 10 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+682 ms +- 94.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n

This has improved the performance compared to the pure Python approach by one-third.

\n
\n
\n

Declaring C types#

\n

We can annotate the function variables and return types as well as use cdef\n@@ -658,36 +658,36 @@\n ....: for i in range(N):\n ....: s += f_typed(a + i * dx)\n ....: return s * dx\n ....: \n \n \n

In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-43.2 ms +- 101 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+106 ms +- 7.07 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

Annotating the functions with C types yields an over ten times performance improvement compared to\n the original Python implementation.

\n
\n
\n

Using ndarray#

\n

When re-profiling, time is spent creating a Series from each row, and calling __getitem__ from both\n the index and the series (three times for each row). These Python function calls are expensive and\n can be improved by passing an np.ndarray.

\n
In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.120 seconds\n+         52523 function calls (52505 primitive calls) in 0.289 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.020    0.000    0.078    0.000 series.py:1095(__getitem__)\n-     3000    0.013    0.000    0.033    0.000 series.py:1220(_get_value)\n-    16098    0.012    0.000    0.016    0.000 {built-in method builtins.isinstance}\n-     3000    0.011    0.000    0.013    0.000 base.py:3777(get_loc)\n+     3000    0.040    0.000    0.041    0.000 base.py:3777(get_loc)\n+     3000    0.037    0.000    0.185    0.000 series.py:1095(__getitem__)\n+     3000    0.033    0.000    0.036    0.000 series.py:831(_values)\n+     3000    0.026    0.000    0.042    0.000 indexing.py:2765(check_dict_or_set_indexers)\n 
\n
\n
In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n@@ -722,32 +722,32 @@\n 
\n

This implementation creates an array of zeros and inserts the result\n of integrate_f_typed applied over each row. Looping over an ndarray is faster\n in Cython than looping over a Series object.

\n

Since apply_integrate_f is typed to accept an np.ndarray, Series.to_numpy()\n calls are needed to utilize this function.

\n
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-5.76 ms +- 12 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+12.2 ms +- 1.71 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

Performance has improved from the prior implementation by almost ten times.

\n
\n
\n

Disabling compiler directives#

\n

The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s boundscheck\n and wraparound checks can yield more performance.

\n
In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-         78 function calls in 0.006 seconds\n+         78 function calls in 0.016 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-        1    0.006    0.006    0.006    0.006 <string>:1(<module>)\n-        1    0.000    0.000    0.006    0.006 {built-in method builtins.exec}\n+        1    0.015    0.015    0.016    0.016 <string>:1(<module>)\n+        1    0.000    0.000    0.016    0.016 {built-in method builtins.exec}\n         1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}\n         3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n 
\n
\n
In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n@@ -1180,19 +1180,19 @@\n compared to standard Python syntax for large DataFrame. This engine requires the\n optional dependency numexpr to be installed.

\n

The 'python' engine is generally not useful except for testing\n other evaluation engines against it. You will achieve no performance\n benefits using eval() with engine='python' and may\n incur a performance hit.

\n
In [40]: %timeit df1 + df2 + df3 + df4\n-58.9 ms +- 102 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+214 ms +- 51.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")\n-61.4 ms +- 166 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+112 ms +- 14.9 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
\n
\n

The DataFrame.eval() method#

\n

In addition to the top level pandas.eval() function you can also\n evaluate an expression in the \u201ccontext\u201d of a DataFrame.

\n@@ -1307,39 +1307,39 @@\n
In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]\n 
\n
\n

DataFrame arithmetic:

\n
In [60]: %timeit df1 + df2 + df3 + df4\n-60.9 ms +- 393 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+78.8 ms +- 5.88 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")\n-30.6 ms +- 446 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+40.5 ms +- 1.37 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

DataFrame comparison:

\n
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-58.4 ms +- 2.58 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+118 ms +- 3.38 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")\n-25.3 ms +- 712 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+63.2 ms +- 4.19 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

DataFrame arithmetic with unaligned axes.

\n
In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-108 ms +- 660 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+104 ms +- 13.5 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")\n-31.4 ms +- 364 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+47.8 ms +- 1.24 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
\n

Note

\n

Operations such as

\n
1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -110,32 +110,32 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f(a + i * dx)\n    ...:     return s * dx\n    ...:\n We achieve our result by using _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\ba_\bp_\bp_\bl_\by_\b(_\b) (row-wise):\n In [5]: %timeit df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]), axis=1)\n-344 ms +- 8.34 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+759 ms +- 29.4 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n Let\u2019s take a look and see where the time is spent during this operation using\n the _\bp_\br_\bu_\bn_\b _\bi_\bp_\by_\bt_\bh_\bo_\bn_\b _\bm_\ba_\bg_\bi_\bc_\b _\bf_\bu_\bn_\bc_\bt_\bi_\bo_\bn:\n # most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 1.019 seconds\n+         605946 function calls (605928 primitive calls) in 2.457 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.605    0.001    0.859    0.001 :1\n+     1000    1.410    0.001    2.036    0.002 :1\n (integrate_f)\n-   552423    0.254    0.000    0.254    0.000 :1\n+   552423    0.626    0.000    0.626    0.000 :1\n (f)\n-     3000    0.024    0.000    0.096    0.000 series.py:1095(__getitem__)\n-     3000    0.018    0.000    0.045    0.000 series.py:1220(_get_value)\n+     3000    0.055    0.000    0.254    0.000 series.py:1095(__getitem__)\n+     3000    0.049    0.000    0.139    0.000 series.py:1220(_get_value)\n By far the majority of time is spend inside either integrate_f or f, hence\n we\u2019ll concentrate our efforts cythonizing these two functions.\n *\b**\b**\b**\b* P\bPl\bla\bai\bin\bn C\bCy\byt\bth\bho\bon\bn_\b#\b# *\b**\b**\b**\b*\n First we\u2019re going to need to import the Cython magic function to IPython:\n In [7]: %load_ext Cython\n Now, let\u2019s simply copy our functions over to Cython:\n In [8]: %%cython\n@@ -146,15 +146,15 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f_plain(a + i * dx)\n    ...:     return s * dx\n    ...:\n In [9]: %timeit df.apply(lambda x: integrate_f_plain(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-324 ms +- 10 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+682 ms +- 94.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n This has improved the performance compared to the pure Python approach by one-\n third.\n *\b**\b**\b**\b* D\bDe\bec\bcl\bla\bar\bri\bin\bng\bg C\bC t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b*\n We can annotate the function variables and return types as well as use cdef and\n cpdef to improve performance:\n In [10]: %%cython\n    ....: cdef double f_typed(double x) except? -2:\n@@ -166,35 +166,35 @@\n    ....:     dx = (b - a) / N\n    ....:     for i in range(N):\n    ....:         s += f_typed(a + i * dx)\n    ....:     return s * dx\n    ....:\n In [11]: %timeit df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-43.2 ms +- 101 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+106 ms +- 7.07 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Annotating the functions with C types yields an over ten times performance\n improvement compared to the original Python implementation.\n *\b**\b**\b**\b* U\bUs\bsi\bin\bng\bg n\bnd\bda\bar\brr\bra\bay\by_\b#\b# *\b**\b**\b**\b*\n When re-profiling, time is spent creating a _\bS_\be_\br_\bi_\be_\bs from each row, and calling\n __getitem__ from both the index and the series (three times for each row).\n These Python function calls are expensive and can be improved by passing an\n np.ndarray.\n In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x\n [\"N\"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.120 seconds\n+         52523 function calls (52505 primitive calls) in 0.289 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.020    0.000    0.078    0.000 series.py:1095(__getitem__)\n-     3000    0.013    0.000    0.033    0.000 series.py:1220(_get_value)\n-    16098    0.012    0.000    0.016    0.000 {built-in method\n-builtins.isinstance}\n-     3000    0.011    0.000    0.013    0.000 base.py:3777(get_loc)\n+     3000    0.040    0.000    0.041    0.000 base.py:3777(get_loc)\n+     3000    0.037    0.000    0.185    0.000 series.py:1095(__getitem__)\n+     3000    0.033    0.000    0.036    0.000 series.py:831(_values)\n+     3000    0.026    0.000    0.042    0.000 indexing.py:2765\n+(check_dict_or_set_indexers)\n In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n    ....: cpdef double integrate_f_typed(double a, double b, int N):\n    ....:     cdef int i\n@@ -235,29 +235,29 @@\n This implementation creates an array of zeros and inserts the result of\n integrate_f_typed applied over each row. Looping over an ndarray is faster in\n Cython than looping over a _\bS_\be_\br_\bi_\be_\bs object.\n Since apply_integrate_f is typed to accept an np.ndarray, _\bS_\be_\br_\bi_\be_\bs_\b._\bt_\bo_\b__\bn_\bu_\bm_\bp_\by_\b(_\b)\n calls are needed to utilize this function.\n In [14]: %timeit apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(), df\n [\"N\"].to_numpy())\n-5.76 ms +- 12 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+12.2 ms +- 1.71 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n Performance has improved from the prior implementation by almost ten times.\n *\b**\b**\b**\b* D\bDi\bis\bsa\bab\bbl\bli\bin\bng\bg c\bco\bom\bmp\bpi\bil\ble\ber\br d\bdi\bir\bre\bec\bct\bti\biv\bve\bes\bs_\b#\b# *\b**\b**\b**\b*\n The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s\n boundscheck and wraparound checks can yield more performance.\n In [15]: %prun -l 4 apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n-         78 function calls in 0.006 seconds\n+         78 function calls in 0.016 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-        1    0.006    0.006    0.006    0.006 :1()\n-        1    0.000    0.000    0.006    0.006 {built-in method builtins.exec}\n+        1    0.015    0.015    0.016    0.016 :1()\n+        1    0.000    0.000    0.016    0.016 {built-in method builtins.exec}\n         1    0.000    0.000    0.000    0.000 {method 'disable' of\n '_lsprof.Profiler' objects}\n         3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n@@ -646,17 +646,17 @@\n The 'numexpr' engine is the more performant engine that can yield performance\n improvements compared to standard Python syntax for large _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be. This\n engine requires the optional dependency numexpr to be installed.\n The 'python' engine is generally n\bno\bot\bt useful except for testing other evaluation\n engines against it. You will achieve n\bno\bo performance benefits using _\be_\bv_\ba_\bl_\b(_\b) with\n engine='python' and may incur a performance hit.\n In [40]: %timeit df1 + df2 + df3 + df4\n-58.9 ms +- 102 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+214 ms +- 51.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [41]: %timeit pd.eval(\"df1 + df2 + df3 + df4\", engine=\"python\")\n-61.4 ms +- 166 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+112 ms +- 14.9 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n *\b**\b**\b**\b* T\bTh\bhe\be _\bD\bD_\ba\ba_\bt\bt_\ba\ba_\bF\bF_\br\br_\ba\ba_\bm\bm_\be\be_\b.\b._\be\be_\bv\bv_\ba\ba_\bl\bl_\b(\b(_\b)\b) m\bme\bet\bth\bho\bod\bd_\b#\b# *\b**\b**\b**\b*\n In addition to the top level _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) function you can also evaluate an\n expression in the \u201ccontext\u201d of a _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be.\n In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=[\"a\", \"b\"])\n \n In [43]: df.eval(\"a + b\")\n Out[43]:\n@@ -753,29 +753,29 @@\n _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) works well with expressions containing large arrays.\n In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for\n _ in range(4)]\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic:\n In [60]: %timeit df1 + df2 + df3 + df4\n-60.9 ms +- 393 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+78.8 ms +- 5.88 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n In [61]: %timeit pd.eval(\"df1 + df2 + df3 + df4\")\n-30.6 ms +- 446 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+40.5 ms +- 1.37 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be comparison:\n In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-58.4 ms +- 2.58 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+118 ms +- 3.38 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n In [63]: %timeit pd.eval(\"(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\")\n-25.3 ms +- 712 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+63.2 ms +- 4.19 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic with unaligned axes.\n In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-108 ms +- 660 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+104 ms +- 13.5 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n In [66]: %timeit pd.eval(\"df1 + df2 + df3 + df4 + s\")\n-31.4 ms +- 364 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+47.8 ms +- 1.24 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Note\n Operations such as\n 1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n ~1  # this is okay, but slower when using eval\n should be performed in Python. An exception will be raised if you try to\n perform any boolean/bitwise operations with scalar operands that are not of\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "unified_diff": "@@ -1086,16 +1086,16 @@\n    ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")\n    ....: counts = pd.Series(dtype=int)\n    ....: for path in files:\n    ....:     df = pd.read_parquet(path)\n    ....:     counts = counts.add(df["name"].value_counts(), fill_value=0)\n    ....: counts.astype(int)\n    ....: \n-CPU times: user 1.53 ms, sys: 0 ns, total: 1.53 ms\n-Wall time: 1.54 ms\n+CPU times: user 1.42 ms, sys: 362 us, total: 1.78 ms\n+Wall time: 1.8 ms\n Out[32]: Series([], dtype: int32)\n 
\n
\n

Some readers, like pandas.read_csv(), offer parameters to control the\n chunksize when reading a single file.

\n

Manually chunking is an OK option for workflows that don\u2019t\n require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby(), are\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -644,16 +644,16 @@\n ....: files = pathlib.Path(\"data/timeseries/\").glob(\"ts*.parquet\")\n ....: counts = pd.Series(dtype=int)\n ....: for path in files:\n ....: df = pd.read_parquet(path)\n ....: counts = counts.add(df[\"name\"].value_counts(), fill_value=0)\n ....: counts.astype(int)\n ....:\n-CPU times: user 1.53 ms, sys: 0 ns, total: 1.53 ms\n-Wall time: 1.54 ms\n+CPU times: user 1.42 ms, sys: 362 us, total: 1.78 ms\n+Wall time: 1.8 ms\n Out[32]: Series([], dtype: int32)\n Some readers, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\br_\be_\ba_\bd_\b__\bc_\bs_\bv_\b(_\b), offer parameters to control the chunksize\n when reading a single file.\n Manually chunking is an OK option for workflows that don\u2019t require too\n sophisticated of operations. Some operations, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\bg_\br_\bo_\bu_\bp_\bb_\by_\b(_\b),\n are much harder to do chunkwise. In these cases, you may be better switching to\n a different library that implements these out-of-core algorithms for you.\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "unified_diff": null, "details": [{"source1": "style.ipynb", "source2": "style.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9985610875706213%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2025-02-11T02:08:40.670203Z', \"", " \"'iopub.status.busy': '2025-02-11T02:08:40.669326Z', 'iopub.status.idle': \"", " \"'2025-02-11T02:08:45.762217Z', 'shell.execute_reply': \"", " \"'2025-02-11T02:08:45.759822Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2025-02-11T02:08:45.773257Z', 'iopub.status.busy': \"", " \"'2025-02-11T02:08:45.772197Z', 'iopub.status.idle': '2025-02-11T02:08:4 [\u2026]"], "unified_diff": "@@ -39,18 +39,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-02-10T20:01:30.891209Z\",\n- \"iopub.status.busy\": \"2025-02-10T20:01:30.890452Z\",\n- \"iopub.status.idle\": \"2025-02-10T20:01:32.267572Z\",\n- \"shell.execute_reply\": \"2025-02-10T20:01:32.265637Z\"\n+ \"iopub.execute_input\": \"2025-02-11T02:08:40.670203Z\",\n+ \"iopub.status.busy\": \"2025-02-11T02:08:40.669326Z\",\n+ \"iopub.status.idle\": \"2025-02-11T02:08:45.762217Z\",\n+ \"shell.execute_reply\": \"2025-02-11T02:08:45.759822Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot\\n\",\n \"# We have this here to trigger matplotlib's font cache stuff.\\n\",\n@@ -77,36 +77,36 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-02-10T20:01:32.276714Z\",\n- \"iopub.status.busy\": \"2025-02-10T20:01:32.275749Z\",\n- \"iopub.status.idle\": \"2025-02-10T20:01:33.076424Z\",\n- \"shell.execute_reply\": \"2025-02-10T20:01:33.074404Z\"\n+ \"iopub.execute_input\": \"2025-02-11T02:08:45.773257Z\",\n+ \"iopub.status.busy\": \"2025-02-11T02:08:45.772197Z\",\n+ \"iopub.status.idle\": \"2025-02-11T02:08:48.578189Z\",\n+ \"shell.execute_reply\": \"2025-02-11T02:08:48.575831Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import pandas as pd\\n\",\n \"import numpy as np\\n\",\n \"import matplotlib as mpl\\n\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-02-10T20:01:33.085208Z\",\n- \"iopub.status.busy\": \"2025-02-10T20:01:33.084199Z\",\n- \"iopub.status.idle\": \"2025-02-10T20:01:33.429416Z\",\n- \"shell.execute_reply\": \"2025-02-10T20:01:33.427607Z\"\n+ \"iopub.execute_input\": \"2025-02-11T02:08:48.590365Z\",\n+ \"iopub.status.busy\": \"2025-02-11T02:08:48.589300Z\",\n+ \"iopub.status.idle\": \"2025-02-11T02:08:49.946107Z\",\n+ \"shell.execute_reply\": \"2025-02-11T02:08:49.943807Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\\n\",\n \"from pandas.io.formats.style import Styler\\n\",\n@@ -123,18 +123,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-02-10T20:01:33.437264Z\",\n- \"iopub.status.busy\": \"2025-02-10T20:01:33.436416Z\",\n- \"iopub.status.idle\": \"2025-02-10T20:01:33.482847Z\",\n- \"shell.execute_reply\": \"2025-02-10T20:01:33.481106Z\"\n+ \"iopub.execute_input\": \"2025-02-11T02:08:49.964194Z\",\n+ \"iopub.status.busy\": \"2025-02-11T02:08:49.963064Z\",\n+ \"iopub.status.idle\": \"2025-02-11T02:08:50.083805Z\",\n+ \"shell.execute_reply\": \"2025-02-11T02:08:50.071798Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/html\": [\n \"