{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.Bhe7UtWe/b1/numpy_2.2.4+ds-1_i386.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.Bhe7UtWe/b2/numpy_2.2.4+ds-1_i386.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,5 +1,5 @@\n \n- ec57c3af03287470732dff9db408b88c 5814320 doc optional python-numpy-doc_2.2.4+ds-1_all.deb\n+ a9bda27846303a39e116f9b2c7cc5ddb 5813972 doc optional python-numpy-doc_2.2.4+ds-1_all.deb\n d6fcb46411900e5db7d5fe338a86fc95 29558272 debug optional python3-numpy-dbgsym_2.2.4+ds-1_i386.deb\n df1588b87ce74d5a57d75cf3abc9309d 145412 python optional python3-numpy-dev_2.2.4+ds-1_i386.deb\n 7b549317f7f472ce978ceb0b2d7b3271 5060276 python optional python3-numpy_2.2.4+ds-1_i386.deb\n"}, {"source1": "python-numpy-doc_2.2.4+ds-1_all.deb", "source2": "python-numpy-doc_2.2.4+ds-1_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2025-04-01 19:45:23.000000 debian-binary\n -rw-r--r-- 0 0 0 64888 2025-04-01 19:45:23.000000 control.tar.xz\n--rw-r--r-- 0 0 0 5749240 2025-04-01 19:45:23.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 5748892 2025-04-01 19:45:23.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -2578,15 +2578,15 @@\n -rw-r--r-- 0 root (0) root (0) 42758 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/random/generated/numpy.random.wald.html\n -rw-r--r-- 0 root (0) root (0) 47423 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/random/generated/numpy.random.weibull.html\n -rw-r--r-- 0 root (0) root (0) 45546 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/random/generated/numpy.random.zipf.html\n -rw-r--r-- 0 root (0) root (0) 82403 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/random/generator.html\n -rw-r--r-- 0 root (0) root (0) 45982 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/random/index.html\n -rw-r--r-- 0 root (0) root (0) 89078 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/random/legacy.html\n -rw-r--r-- 0 root (0) root (0) 35540 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/random/multithreading.html\n--rw-r--r-- 0 root (0) root (0) 44352 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/random/new-or-different.html\n+-rw-r--r-- 0 root (0) root (0) 44353 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/random/new-or-different.html\n -rw-r--r-- 0 root (0) root (0) 52723 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/random/parallel.html\n -rw-r--r-- 0 root (0) root (0) 38070 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/random/performance.html\n -rw-r--r-- 0 root (0) root (0) 41915 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/random/upgrading-pcg64.html\n -rw-r--r-- 0 root (0) root (0) 45998 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.array-creation.html\n -rw-r--r-- 0 root (0) root (0) 50957 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.array-manipulation.html\n -rw-r--r-- 0 root (0) root (0) 27535 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.bitwise.html\n -rw-r--r-- 0 root (0) root (0) 54450 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.char.html\n@@ -2610,15 +2610,15 @@\n -rw-r--r-- 0 root (0) root (0) 24374 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.matlib.html\n -rw-r--r-- 0 root (0) root (0) 26288 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.other.html\n -rw-r--r-- 0 root (0) root (0) 37419 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.polynomials-package.html\n -rw-r--r-- 0 root (0) root (0) 46847 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.polynomials.chebyshev.html\n -rw-r--r-- 0 root (0) root (0) 51499 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.polynomials.classes.html\n -rw-r--r-- 0 root (0) root (0) 43104 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.polynomials.hermite.html\n -rw-r--r-- 0 root (0) root (0) 43639 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.polynomials.hermite_e.html\n--rw-r--r-- 0 root (0) root (0) 47585 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.polynomials.html\n+-rw-r--r-- 0 root (0) root (0) 47589 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.polynomials.html\n -rw-r--r-- 0 root (0) root (0) 43031 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.polynomials.laguerre.html\n -rw-r--r-- 0 root (0) root (0) 42812 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.polynomials.legendre.html\n -rw-r--r-- 0 root (0) root (0) 28772 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.polynomials.poly1d.html\n -rw-r--r-- 0 root (0) root (0) 41877 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.polynomials.polynomial.html\n -rw-r--r-- 0 root (0) root (0) 26623 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.polynomials.polyutils.html\n -rw-r--r-- 0 root (0) root (0) 26761 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.rec.html\n -rw-r--r-- 0 root (0) root (0) 26422 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/reference/routines.set.html\n@@ -2755,15 +2755,15 @@\n -rw-r--r-- 0 root (0) root (0) 31655 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/release/2.2.1-notes.html\n -rw-r--r-- 0 root (0) root (0) 32348 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/release/2.2.2-notes.html\n -rw-r--r-- 0 root (0) root (0) 32865 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/release/2.2.3-notes.html\n -rw-r--r-- 0 root (0) root (0) 32016 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/release/2.2.4-notes.html\n -rw-r--r-- 0 root (0) root (0) 13407 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/release/template.html\n -rw-r--r-- 0 root (0) root (0) 90990 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/release.html\n -rw-r--r-- 0 root (0) root (0) 12397 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/search.html\n--rw-r--r-- 0 root (0) root (0) 2687933 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 2687889 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/searchindex.js\n drwxr-xr-x 0 root (0) root (0) 0 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/user/\n -rw-r--r-- 0 root (0) root (0) 177614 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/user/absolute_beginners.html\n -rw-r--r-- 0 root (0) root (0) 50529 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/user/basics.broadcasting.html\n -rw-r--r-- 0 root (0) root (0) 33464 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/user/basics.copies.html\n -rw-r--r-- 0 root (0) root (0) 64100 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/user/basics.creation.html\n -rw-r--r-- 0 root (0) root (0) 65763 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/user/basics.dispatch.html\n -rw-r--r-- 0 root (0) root (0) 18746 2025-04-01 19:45:23.000000 ./usr/share/doc/python-numpy/html/user/basics.html\n"}, {"source1": "./usr/share/doc/python-numpy/html/reference/random/new-or-different.html", "source2": "./usr/share/doc/python-numpy/html/reference/random/new-or-different.html", "unified_diff": "@@ -536,30 +536,30 @@\n
In [1]: import numpy.random\n \n In [2]: rng = np.random.default_rng()\n \n In [3]: %timeit -n 1 rng.standard_normal(100000)\n ...: %timeit -n 1 numpy.random.standard_normal(100000)\n ...: \n-7.3 ms +- 72.9 us per loop (mean +- std. dev. of 7 runs, 1 loop each)\n-14.6 ms +- 36.9 us per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+4.15 ms +- 79.9 us per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+6.2 ms +- 22.2 us per loop (mean +- std. dev. of 7 runs, 1 loop each)\n
In [4]: %timeit -n 1 rng.standard_exponential(100000)\n ...: %timeit -n 1 numpy.random.standard_exponential(100000)\n ...: \n-6.17 ms +- 61.5 us per loop (mean +- std. dev. of 7 runs, 1 loop each)\n-17.4 ms +- 223 us per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+3.46 ms +- 15.6 us per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+5.83 ms +- 11.3 us per loop (mean +- std. dev. of 7 runs, 1 loop each)\n
In [5]: %timeit -n 1 rng.standard_gamma(3.0, 100000)\n ...: %timeit -n 1 numpy.random.standard_gamma(3.0, 100000)\n ...: \n-27.1 ms +- 302 us per loop (mean +- std. dev. of 7 runs, 1 loop each)\n-32.6 ms +- 522 us per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+12.1 ms +- 18.6 us per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+14.2 ms +- 12 us per loop (mean +- std. dev. of 7 runs, 1 loop each)\n
integers
is now the canonical way to generate integer\n random numbers from a discrete uniform distribution. This replaces both\n randint
and the deprecated random_integers
.
The rand
and randn
methods are only available through the legacy\n@@ -586,21 +586,21 @@\n
Standard Exponentials (standard_exponential
)
In [6]: rng = np.random.default_rng()\n \n In [7]: rng.random(3, dtype=np.float64)\n-Out[7]: array([0.23463919, 0.72393835, 0.14778879])\n+Out[7]: array([0.62899335, 0.03774 , 0.21407664])\n \n In [8]: rng.random(3, dtype=np.float32)\n-Out[8]: array([0.87651783, 0.8591692 , 0.7715133 ], dtype=float32)\n+Out[8]: array([0.32505184, 0.85750914, 0.6715027 ], dtype=float32)\n \n In [9]: rng.integers(0, 256, size=3, dtype=np.uint8)\n-Out[9]: array([153, 30, 207], dtype=uint8)\n+Out[9]: array([232, 105, 192], dtype=uint8)\n
Optional out
argument that allows existing arrays to be filled for\n select distributions
Uniforms (random
)
In [10]: rng = np.random.default_rng()\n \n In [11]: existing = np.zeros(4)\n \n In [12]: rng.random(out=existing[:2])\n-Out[12]: array([0.64358556, 0.04163277])\n+Out[12]: array([0.35711538, 0.22780344])\n \n In [13]: print(existing)\n-[0.64358556 0.04163277 0. 0. ]\n+[0.35711538 0.22780344 0. 0. ]\n
Optional axis
argument for methods like choice
,\n permutation
and shuffle
that controls which\n axis an operation is performed over for multi-dimensional arrays.
Added a method to sample from the complex normal distribution\n (complex_normal)
With the legacy polynomial module, a linear fit (i.e. polynomial of degree 1)\n could be applied to these data with polyfit
:
In [4]: np.polyfit(x, y, deg=1)\n-Out[4]: array([0.98287535, 0.47084069])\n+Out[4]: array([ 1.1262849 , -0.14201884])\n
With the new polynomial API, the fit
\n class method is preferred:
In [5]: p_fitted = np.polynomial.Polynomial.fit(x, y, deg=1)\n \n In [6]: p_fitted\n-Out[6]: Polynomial([4.89377979, 4.42293909], domain=[0., 9.], window=[-1., 1.], symbol='x')\n+Out[6]: Polynomial([4.9262632 , 5.06828204], domain=[0., 9.], window=[-1., 1.], symbol='x')\n
Note that the coefficients are given in the scaled domain defined by the\n linear mapping between the window
and domain
.\n convert
can be used to get the\n coefficients in the unscaled data domain.
In [7]: p_fitted.convert()\n-Out[7]: Polynomial([0.47084069, 0.98287535], domain=[-1., 1.], window=[-1., 1.], symbol='x')\n+Out[7]: Polynomial([-0.14201884, 1.1262849 ], domain=[-1., 1.], window=[-1., 1.], symbol='x')\n
polynomial
package#In addition to standard power series polynomials, the polynomial package\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -150,26 +150,26 @@\n \n In [2]: x = np.arange(10)\n \n In [3]: y = np.arange(10) + rng.standard_normal(10)\n With the legacy polynomial module, a linear fit (i.e. polynomial of degree 1)\n could be applied to these data with _\bp_\bo_\bl_\by_\bf_\bi_\bt:\n In [4]: np.polyfit(x, y, deg=1)\n-Out[4]: array([0.98287535, 0.47084069])\n+Out[4]: array([ 1.1262849 , -0.14201884])\n With the new polynomial API, the _\bf_\bi_\bt class method is preferred:\n In [5]: p_fitted = np.polynomial.Polynomial.fit(x, y, deg=1)\n \n In [6]: p_fitted\n-Out[6]: Polynomial([4.89377979, 4.42293909], domain=[0., 9.], window=[-1.,\n+Out[6]: Polynomial([4.9262632 , 5.06828204], domain=[0., 9.], window=[-1.,\n 1.], symbol='x')\n Note that the coefficients are given i\bin\bn t\bth\bhe\be s\bsc\bca\bal\ble\bed\bd d\bdo\bom\bma\bai\bin\bn defined by the linear\n mapping between the window and domain. _\bc_\bo_\bn_\bv_\be_\br_\bt can be used to get the\n coefficients in the unscaled data domain.\n In [7]: p_fitted.convert()\n-Out[7]: Polynomial([0.47084069, 0.98287535], domain=[-1., 1.], window=[-1.,\n+Out[7]: Polynomial([-0.14201884, 1.1262849 ], domain=[-1., 1.], window=[-1.,\n 1.], symbol='x')\n *\b**\b**\b**\b**\b* D\bDo\boc\bcu\bum\bme\ben\bnt\bta\bat\bti\bio\bon\bn f\bfo\bor\br t\bth\bhe\be _\bp\bp_\bo\bo_\bl\bl_\by\by_\bn\bn_\bo\bo_\bm\bm_\bi\bi_\ba\ba_\bl\bl p\bpa\bac\bck\bka\bag\bge\be_\b#\b# *\b**\b**\b**\b**\b*\n In addition to standard power series polynomials, the polynomial package\n provides several additional kinds of polynomials including Chebyshev, Hermite\n (two subtypes), Laguerre, and Legendre polynomials. Each of these has an\n associated c\bco\bon\bnv\bve\ben\bni\bie\ben\bnc\bce\be c\bcl\bla\bas\bss\bs available from the _\bn_\bu_\bm_\bp_\by_\b._\bp_\bo_\bl_\by_\bn_\bo_\bm_\bi_\ba_\bl namespace that\n provides a consistent interface for working with polynomials regardless of\n"}]}, {"source1": "./usr/share/doc/python-numpy/html/searchindex.js", "source2": "./usr/share/doc/python-numpy/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -32373,22 +32373,22 @@\n \"02785049\": 1867,\n \"02i\": [513, 2644],\n \"03\": [55, 67, 163, 566, 669, 1335, 1586, 1816, 2658],\n \"03125\": [1585, 2491],\n \"0326911\": [2335, 2378, 2425],\n \"0361\": 2607,\n \"03703704\": 1809,\n+ \"03774\": 2461,\n \"03943254e\": 2104,\n \"03968254\": [1113, 1543],\n \"0396842\": 680,\n \"03t13\": 55,\n \"04\": [54, 55, 164, 410, 547, 1586, 2463, 2594, 2659],\n \"0400\": 360,\n \"04097352\": 2635,\n- \"04163277\": 2461,\n \"04166667\": [1544, 1585],\n \"04211c6\": 2521,\n \"04551152e\": 2104,\n \"04719755\": 1911,\n \"05\": [55, 91, 163, 410, 548, 669, 896, 1095, 1871, 2083, 2173, 2353, 2400, 2450, 2648],\n \"0500\": 360,\n \"05093587\": 2635,\n@@ -32399,14 +32399,15 @@\n \"0596779\": 1153,\n \"06\": [55, 566, 2083, 2508],\n \"0614962j\": [439, 453],\n \"0625\": [418, 624, 1645],\n \"06369197489564249\": 2458,\n \"06381726\": 349,\n \"0660\": [302, 2131],\n+ \"06828204\": 2488,\n \"06959433e\": [420, 947],\n \"07\": [55, 164, 547, 896, 897, 1335, 2170, 2508],\n \"07106781e\": 514,\n \"07407407\": 1809,\n \"07779185\": 2458,\n \"07937323\": 524,\n \"07944154\": [657, 2655],\n@@ -32524,15 +32525,15 @@\n \"10403\": 2536,\n \"10412\": 2536,\n \"10424\": 2536,\n \"10425\": 2536,\n \"10431\": 2536,\n \"10435\": 2536,\n \"1049\": 2098,\n- \"105\": 2463,\n+ \"105\": [2461, 2463],\n \"10534\": 2536,\n \"10536\": 2536,\n \"10537\": 2536,\n \"10539\": 2536,\n \"10540\": 2536,\n \"10541\": 2536,\n \"10542\": 2536,\n@@ -32722,14 +32723,15 @@\n \"1235\": 2091,\n \"123abc\": [302, 305, 2131, 2134],\n \"124\": [98, 905],\n \"125\": [470, 660, 1114, 1142, 1645, 1651, 1899, 1900, 2239, 2339, 2382, 2429, 2460, 2491, 2659, 2666],\n \"12589991e\": 645,\n \"126\": [863, 1048, 1116, 1904],\n \"1261\": 2612,\n+ \"1262849\": 2488,\n \"12658\": 2560,\n \"12697628\": 2635,\n \"127\": [62, 66, 514, 863, 1048, 1102, 1116, 1904, 2301, 2302, 2462, 2463, 2464, 2583, 2639],\n \"12736\": [2548, 2549],\n \"12767\": 2548,\n \"12768\": 2548,\n \"12769\": 2548,\n@@ -32851,14 +32853,15 @@\n \"14194\": 2555,\n \"14197\": 2560,\n \"14198\": 2555,\n \"14199\": 2555,\n \"142\": 655,\n \"14200\": 2555,\n \"14201\": 2555,\n+ \"14201884\": 2488,\n \"14211\": 2553,\n \"14227\": 2560,\n \"14228\": 2555,\n \"14236\": 2555,\n \"14237\": 2555,\n \"14248\": 2560,\n \"14255\": 2560,\n@@ -32941,15 +32944,14 @@\n \"14717\": 2560,\n \"14718\": 2560,\n \"14720\": 2560,\n \"14730\": 2560,\n \"14758\": 2558,\n \"14771\": 2560,\n \"14777\": 2560,\n- \"14778879\": 2461,\n \"14781\": 2558,\n \"14787\": 2569,\n \"148\": [2344, 2386, 2433, 2463],\n \"14812\": 3,\n \"148293216\": 2666,\n \"14841\": 2560,\n \"14851\": 2558,\n@@ -33016,15 +33018,15 @@\n \"15245\": 2561,\n \"15246\": 2561,\n \"15247\": 2561,\n \"15250\": 2561,\n \"15251\": 2566,\n \"15255\": 2566,\n \"15271\": 2576,\n- \"153\": [2461, 2583],\n+ \"153\": 2583,\n \"15302337\": 523,\n \"1534\": 485,\n \"15355\": 2566,\n \"15385\": 2566,\n \"154\": [2463, 2666],\n \"15427\": 2566,\n \"15463\": 2566,\n@@ -33374,15 +33376,15 @@\n \"19062\": 2583,\n \"1908\": [2353, 2400, 2450],\n \"19083\": 2583,\n \"19135\": 2583,\n \"19151\": 2583,\n \"191614240\": 95,\n \"1918\": 2612,\n- \"192\": [69, 669, 1519, 2463],\n+ \"192\": [69, 669, 1519, 2461, 2463],\n \"19211\": 2583,\n \"192163377\": 2098,\n \"19226\": 2588,\n \"1923875335537315\": [2352, 2389, 2399, 2436, 2449],\n \"19249760\": [420, 947],\n \"19259\": 2583,\n \"193\": [2463, 2637],\n@@ -33609,15 +33611,15 @@\n \"2052\": 2615,\n \"20580\": 2588,\n \"20589\": 2588,\n \"206\": 2463,\n \"20613\": 2581,\n \"20618\": 2581,\n \"2063\": 2612,\n- \"207\": [2461, 2463],\n+ \"207\": 2463,\n \"20702\": 2584,\n \"20703\": 2584,\n \"20704\": 2584,\n \"20714\": 2584,\n \"20722\": 2588,\n \"20724\": 2584,\n \"20725\": 2584,\n@@ -33703,14 +33705,15 @@\n \"21277\": 2587,\n \"213\": [12, 2491],\n \"21336384\": 2659,\n \"2134086255804012e\": 1923,\n \"21350\": 2587,\n \"21354\": 2588,\n \"21386\": 2587,\n+ \"21407664\": 2461,\n \"21437\": 2594,\n \"21438\": 2587,\n \"21444\": 2587,\n \"21445\": 2587,\n \"21446\": 2587,\n \"21447\": 2587,\n \"21448\": 2587,\n@@ -33749,15 +33752,15 @@\n \"219\": 2463,\n \"21925\": 2594,\n \"21949\": 2589,\n \"21951\": 2589,\n \"21952\": 2589,\n \"21976\": 2594,\n \"21995\": 2594,\n- \"22\": [21, 22, 29, 30, 40, 47, 52, 54, 55, 58, 59, 98, 107, 108, 109, 163, 270, 336, 378, 425, 485, 628, 658, 669, 880, 905, 1045, 1069, 1113, 1211, 1229, 1294, 1312, 1336, 1337, 1340, 1341, 1343, 1344, 1345, 1346, 1347, 1348, 1349, 1358, 1448, 1466, 1514, 1521, 1522, 1543, 1591, 1905, 1908, 1913, 1968, 1986, 2091, 2208, 2236, 2237, 2342, 2513, 2517, 2519, 2534, 2588, 2635, 2637, 2641, 2657, 2666],\n+ \"22\": [21, 22, 29, 30, 40, 47, 52, 54, 55, 58, 59, 98, 107, 108, 109, 163, 270, 336, 378, 425, 485, 628, 658, 669, 880, 905, 1045, 1069, 1113, 1211, 1229, 1294, 1312, 1336, 1337, 1340, 1341, 1343, 1344, 1345, 1346, 1347, 1348, 1349, 1358, 1448, 1466, 1514, 1521, 1522, 1543, 1591, 1905, 1908, 1913, 1968, 1986, 2091, 2208, 2236, 2237, 2342, 2461, 2513, 2517, 2519, 2534, 2588, 2635, 2637, 2641, 2657, 2666],\n \"220\": [2238, 2576],\n \"22004\": 2594,\n \"22014\": 2594,\n \"22030\": 2590,\n \"22031\": 2590,\n \"22032\": 2590,\n \"22033\": 2590,\n@@ -33792,15 +33795,14 @@\n \"22221\": 2591,\n \"22222\": 2591,\n \"222222\": 1335,\n \"22223\": 2591,\n \"22224\": 2591,\n \"22228\": 2594,\n \"22230\": 2591,\n- \"223\": 2461,\n \"22313\": 2594,\n \"22314355\": 2655,\n \"22315\": 2599,\n \"22316\": 2594,\n \"22357\": 2594,\n \"22368\": 2592,\n \"22370\": 2592,\n@@ -33860,14 +33862,15 @@\n \"22707\": 2599,\n \"22723872\": 349,\n \"22733602246716966\": 2457,\n \"22740995\": 1149,\n \"22769\": 2599,\n \"22776\": 2599,\n \"22776602\": [680, 2659],\n+ \"22780344\": 2461,\n \"22786\": 2599,\n \"228\": 2463,\n \"22820\": 2595,\n \"22830\": 2595,\n \"22831\": 2595,\n \"22832\": 2595,\n \"22834\": 2595,\n@@ -33923,14 +33926,15 @@\n \"23148\": 2596,\n \"23149\": 2596,\n \"23150\": 2596,\n \"23161\": 2596,\n \"2317\": 2620,\n \"23194\": 2597,\n \"23195\": 2599,\n+ \"232\": 2461,\n \"23204345\": [2345, 2391, 2439],\n \"23206\": 2597,\n \"23207\": 2597,\n \"23208\": 2597,\n \"23221\": 2597,\n \"23226\": 2597,\n \"23229\": 2599,\n@@ -33952,15 +33956,14 @@\n \"23371\": 2599,\n \"23376\": 2599,\n \"23385948e\": 54,\n \"234\": 55,\n \"23403\": 2599,\n \"2345672e\": 2172,\n \"234567e\": 2172,\n- \"23463919\": 2461,\n \"23480\": 2599,\n \"23528\": 2599,\n \"23543\": 2597,\n \"23544\": 2597,\n \"23598776\": 1911,\n \"23601\": 2599,\n \"23606798\": 653,\n@@ -34396,15 +34399,15 @@\n \"26963\": 2623,\n \"26971\": 2623,\n \"26978671\": 2635,\n \"26981\": 2625,\n \"2699\": 1643,\n \"26995\": 2623,\n \"26aa21a\": 13,\n- \"27\": [54, 55, 58, 169, 470, 539, 554, 660, 680, 1142, 1884, 1899, 1900, 2208, 2239, 2316, 2361, 2408, 2461, 2463, 2491, 2513, 2533, 2534, 2624, 2639, 2641, 2645, 2657, 2659, 2666],\n+ \"27\": [54, 55, 58, 169, 470, 539, 554, 660, 680, 1142, 1884, 1899, 1900, 2208, 2239, 2316, 2361, 2408, 2463, 2491, 2513, 2533, 2534, 2624, 2639, 2641, 2645, 2657, 2659, 2666],\n \"270\": 363,\n \"27000\": 2624,\n \"2700000\": 2635,\n \"27000000\": 2635,\n \"27001\": 2624,\n \"27008\": 2625,\n \"27021\": 2624,\n@@ -34650,24 +34653,23 @@\n \"2nd\": [513, 641, 642, 655, 658, 669, 1526, 2335, 2378, 2425, 2637, 2641, 2666],\n \"2to3\": 2616,\n \"2x\": [1527, 1542, 2357, 2404, 2454, 2488, 2491, 2616, 2619],\n \"2x2\": 47,\n \"2x3\": [47, 72, 2665],\n \"2x3x5\": 336,\n \"3\": [1, 2, 5, 10, 11, 12, 14, 20, 24, 26, 29, 30, 31, 32, 34, 36, 37, 38, 42, 47, 50, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 72, 74, 76, 78, 79, 87, 89, 94, 96, 97, 98, 99, 100, 105, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 127, 128, 130, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 167, 169, 171, 176, 177, 185, 186, 194, 196, 204, 210, 213, 214, 227, 229, 234, 238, 239, 251, 260, 261, 262, 263, 264, 270, 278, 280, 284, 287, 290, 312, 316, 318, 322, 323, 333, 335, 336, 337, 338, 340, 341, 342, 345, 346, 347, 348, 349, 350, 351, 353, 354, 355, 356, 357, 358, 359, 362, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 396, 398, 401, 404, 408, 409, 410, 416, 417, 420, 421, 422, 423, 432, 435, 436, 440, 441, 442, 443, 447, 448, 450, 451, 454, 456, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 480, 482, 483, 487, 488, 513, 514, 516, 518, 519, 520, 523, 524, 526, 527, 528, 529, 530, 531, 532, 533, 534, 538, 540, 541, 542, 543, 544, 545, 547, 549, 550, 553, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 573, 574, 575, 582, 592, 596, 602, 608, 622, 623, 628, 637, 638, 639, 640, 641, 645, 646, 647, 648, 649, 650, 651, 653, 654, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 674, 675, 677, 678, 679, 680, 751, 799, 819, 820, 822, 823, 824, 826, 827, 830, 831, 834, 835, 836, 838, 840, 843, 844, 847, 848, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 864, 865, 866, 868, 870, 873, 874, 875, 877, 880, 881, 883, 884, 886, 887, 888, 891, 893, 895, 900, 901, 903, 904, 905, 906, 907, 908, 909, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 932, 934, 935, 936, 939, 941, 942, 943, 944, 945, 946, 947, 948, 950, 951, 952, 953, 956, 957, 958, 959, 960, 961, 963, 964, 965, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 980, 981, 983, 984, 985, 986, 988, 989, 990, 992, 993, 995, 997, 999, 1002, 1003, 1006, 1007, 1008, 1010, 1011, 1015, 1018, 1019, 1020, 1023, 1024, 1025, 1026, 1029, 1030, 1031, 1032, 1033, 1035, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1049, 1050, 1051, 1052, 1054, 1056, 1059, 1060, 1061, 1063, 1064, 1066, 1069, 1070, 1072, 1074, 1076, 1077, 1078, 1081, 1083, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1094, 1095, 1096, 1097, 1098, 1099, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1131, 1132, 1133, 1135, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1166, 1167, 1171, 1172, 1178, 1179, 1186, 1189, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1200, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1211, 1212, 1213, 1219, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1234, 1236, 1239, 1240, 1241, 1242, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1258, 1259, 1265, 1266, 1273, 1276, 1278, 1279, 1283, 1285, 1286, 1290, 1291, 1294, 1302, 1305, 1306, 1307, 1308, 1309, 1312, 1317, 1319, 1322, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1349, 1350, 1351, 1413, 1414, 1420, 1421, 1428, 1431, 1433, 1434, 1437, 1439, 1440, 1444, 1445, 1448, 1456, 1459, 1460, 1461, 1462, 1463, 1466, 1471, 1473, 1476, 1478, 1479, 1480, 1481, 1483, 1510, 1512, 1513, 1515, 1516, 1517, 1518, 1519, 1520, 1521, 1522, 1523, 1525, 1526, 1527, 1541, 1542, 1543, 1544, 1545, 1546, 1574, 1575, 1577, 1578, 1579, 1581, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1595, 1596, 1599, 1602, 1604, 1605, 1606, 1607, 1634, 1635, 1637, 1638, 1639, 1640, 1641, 1643, 1644, 1645, 1646, 1647, 1648, 1649, 1650, 1652, 1653, 1654, 1655, 1656, 1657, 1659, 1661, 1662, 1664, 1691, 1692, 1694, 1695, 1696, 1697, 1698, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1709, 1710, 1711, 1713, 1714, 1716, 1718, 1719, 1720, 1721, 1748, 1749, 1750, 1751, 1752, 1753, 1754, 1755, 1756, 1757, 1758, 1759, 1760, 1761, 1762, 1763, 1764, 1766, 1767, 1768, 1769, 1770, 1771, 1773, 1775, 1776, 1778, 1805, 1806, 1808, 1809, 1810, 1812, 1815, 1816, 1817, 1818, 1819, 1820, 1821, 1822, 1823, 1824, 1827, 1830, 1832, 1833, 1834, 1835, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1869, 1870, 1871, 1873, 1874, 1875, 1876, 1878, 1879, 1880, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1889, 1891, 1893, 1895, 1896, 1897, 1899, 1900, 1901, 1902, 1905, 1907, 1908, 1909, 1911, 1912, 1913, 1914, 1916, 1919, 1921, 1922, 1923, 1924, 1932, 1933, 1939, 1940, 1947, 1951, 1953, 1954, 1957, 1959, 1960, 1964, 1965, 1968, 1976, 1979, 1980, 1981, 1982, 1983, 1986, 1991, 1993, 1996, 1998, 1999, 2071, 2072, 2073, 2074, 2075, 2076, 2077, 2079, 2080, 2081, 2082, 2083, 2084, 2085, 2086, 2087, 2088, 2089, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2101, 2102, 2103, 2104, 2105, 2106, 2107, 2108, 2110, 2111, 2113, 2114, 2115, 2116, 2119, 2123, 2140, 2144, 2145, 2146, 2150, 2151, 2158, 2160, 2161, 2163, 2164, 2166, 2167, 2168, 2170, 2173, 2175, 2176, 2178, 2185, 2195, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2216, 2217, 2219, 2223, 2224, 2225, 2229, 2230, 2235, 2236, 2237, 2238, 2239, 2240, 2241, 2242, 2244, 2246, 2247, 2248, 2249, 2250, 2256, 2257, 2270, 2300, 2303, 2304, 2308, 2309, 2311, 2313, 2314, 2316, 2319, 2320, 2321, 2322, 2327, 2328, 2329, 2330, 2331, 2332, 2333, 2334, 2335, 2337, 2338, 2339, 2340, 2341, 2342, 2345, 2346, 2347, 2349, 2350, 2352, 2354, 2357, 2358, 2361, 2363, 2364, 2365, 2366, 2372, 2373, 2374, 2375, 2376, 2377, 2378, 2380, 2381, 2382, 2383, 2384, 2387, 2388, 2389, 2390, 2391, 2392, 2394, 2395, 2396, 2397, 2399, 2401, 2404, 2405, 2408, 2410, 2411, 2412, 2413, 2419, 2420, 2421, 2422, 2423, 2424, 2425, 2427, 2428, 2429, 2430, 2431, 2434, 2435, 2436, 2438, 2439, 2441, 2444, 2445, 2446, 2447, 2449, 2451, 2454, 2455, 2457, 2460, 2461, 2462, 2463, 2464, 2470, 2488, 2489, 2491, 2508, 2510, 2513, 2515, 2516, 2517, 2519, 2521, 2522, 2524, 2525, 2526, 2527, 2529, 2530, 2532, 2533, 2536, 2537, 2539, 2540, 2541, 2542, 2543, 2544, 2546, 2547, 2548, 2549, 2551, 2552, 2553, 2555, 2556, 2558, 2559, 2560, 2561, 2562, 2564, 2565, 2566, 2567, 2570, 2571, 2576, 2577, 2578, 2580, 2581, 2582, 2584, 2585, 2587, 2588, 2589, 2590, 2592, 2593, 2594, 2595, 2596, 2598, 2599, 2600, 2601, 2602, 2603, 2604, 2606, 2608, 2610, 2613, 2614, 2615, 2616, 2617, 2619, 2621, 2622, 2623, 2624, 2626, 2627, 2629, 2630, 2631, 2633, 2635, 2637, 2638, 2640, 2641, 2644, 2645, 2646, 2647, 2648, 2649, 2650, 2653, 2655, 2657, 2658, 2659, 2664, 2665, 2666, 2668],\n- \"30\": [28, 41, 42, 54, 55, 57, 58, 63, 263, 336, 355, 360, 363, 409, 454, 484, 533, 864, 875, 977, 1049, 1064, 1113, 1117, 1118, 1225, 1308, 1462, 1543, 1638, 1906, 1911, 1982, 2089, 2103, 2115, 2165, 2204, 2216, 2224, 2241, 2316, 2319, 2322, 2323, 2325, 2326, 2329, 2339, 2340, 2344, 2371, 2373, 2382, 2383, 2386, 2394, 2418, 2420, 2429, 2430, 2433, 2444, 2461, 2463, 2513, 2531, 2587, 2608, 2637, 2641, 2645, 2657, 2666],\n+ \"30\": [28, 41, 42, 54, 55, 57, 58, 63, 263, 336, 355, 360, 363, 409, 454, 484, 533, 864, 875, 977, 1049, 1064, 1113, 1117, 1118, 1225, 1308, 1462, 1543, 1638, 1906, 1911, 1982, 2089, 2103, 2115, 2165, 2204, 2216, 2224, 2241, 2316, 2319, 2322, 2323, 2325, 2326, 2329, 2339, 2340, 2344, 2371, 2373, 2382, 2383, 2386, 2394, 2418, 2420, 2429, 2430, 2433, 2444, 2463, 2513, 2531, 2587, 2608, 2637, 2641, 2645, 2657, 2666],\n \"300\": [66, 363, 2238, 2576, 2645],\n \"3000\": 2594,\n \"30000\": 533,\n \"3000488281\": 476,\n \"3003003\": 1999,\n \"3006\": 2614,\n \"3007\": 2614,\n \"301\": [438, 1923, 2477],\n- \"302\": 2461,\n \"30220482\": [2345, 2391, 2439],\n \"30278462\": 1154,\n \"3039\": 2614,\n \"304\": 22,\n \"30464\": 2094,\n \"30498948e\": 2666,\n \"305\": [421, 948],\n@@ -34704,19 +34706,20 @@\n \"3173\": 2617,\n \"3175\": 2617,\n \"317811\": 28,\n \"317j\": [411, 617],\n \"318\": 1526,\n \"3192\": 2615,\n \"31962608\": [196, 836, 1008, 1179, 1266, 1421, 1940],\n- \"32\": [1, 13, 21, 50, 54, 55, 56, 59, 61, 62, 63, 65, 69, 74, 137, 144, 215, 270, 336, 390, 434, 514, 584, 661, 880, 893, 1027, 1069, 1083, 1143, 1198, 1229, 1249, 1281, 1312, 1345, 1348, 1435, 1466, 1519, 1884, 1886, 1902, 1955, 1986, 2076, 2091, 2168, 2204, 2208, 2225, 2240, 2261, 2262, 2268, 2269, 2272, 2273, 2274, 2277, 2278, 2279, 2282, 2283, 2284, 2287, 2288, 2299, 2300, 2301, 2302, 2303, 2304, 2314, 2331, 2375, 2422, 2458, 2459, 2460, 2461, 2462, 2508, 2513, 2520, 2521, 2522, 2535, 2543, 2544, 2545, 2546, 2547, 2557, 2562, 2564, 2572, 2574, 2579, 2582, 2587, 2588, 2599, 2602, 2606, 2607, 2617, 2622, 2633, 2637, 2639, 2641, 2645, 2646, 2648, 2649, 2652, 2657, 2658, 2659, 2666],\n+ \"32\": [1, 13, 21, 50, 54, 55, 56, 59, 61, 62, 63, 65, 69, 74, 137, 144, 215, 270, 336, 390, 434, 514, 584, 661, 880, 893, 1027, 1069, 1083, 1143, 1198, 1229, 1249, 1281, 1312, 1345, 1348, 1435, 1466, 1519, 1884, 1886, 1902, 1955, 1986, 2076, 2091, 2168, 2204, 2208, 2225, 2240, 2261, 2262, 2268, 2269, 2272, 2273, 2274, 2277, 2278, 2279, 2282, 2283, 2284, 2287, 2288, 2299, 2300, 2301, 2302, 2303, 2304, 2314, 2331, 2375, 2422, 2458, 2459, 2460, 2462, 2508, 2513, 2520, 2521, 2522, 2535, 2543, 2544, 2545, 2546, 2547, 2557, 2562, 2564, 2572, 2574, 2579, 2582, 2587, 2588, 2599, 2602, 2606, 2607, 2617, 2622, 2633, 2637, 2639, 2641, 2645, 2646, 2648, 2649, 2652, 2657, 2658, 2659, 2666],\n \"320\": 1149,\n \"32000\": 2094,\n \"32119158\": 1867,\n \"323\": [260, 421, 948, 1059, 1222, 1305, 1350, 1459, 1579, 1590, 1604, 1605, 1639, 1649, 1661, 1662, 1696, 1706, 1718, 1719, 1753, 1763, 1775, 1776, 1810, 1820, 1832, 1833, 1866, 1875, 1887, 1888, 1979, 2312],\n+ \"32505184\": 2461,\n \"3263\": 2617,\n \"32767\": 535,\n \"32768\": 535,\n \"32_767\": 62,\n \"32_768\": 62,\n \"32bit\": [50, 61, 62, 2364, 2377, 2379, 2388, 2411, 2424, 2426, 2435, 2517, 2572, 2589],\n \"32x\": 2583,\n@@ -34765,15 +34768,16 @@\n \"35\": [409, 489, 669, 870, 1056, 2204, 2325, 2369, 2416, 2572, 2635, 2641, 2657, 2666],\n \"350\": [544, 635],\n \"3504\": 2617,\n \"3534857623790153\": 666,\n \"35355339\": 1636,\n \"3541\": 2615,\n \"35489284e\": 2104,\n- \"36\": [58, 137, 355, 1752, 1761, 2204, 2225, 2323, 2367, 2414, 2461, 2463, 2491, 2536, 2649, 2657, 2659, 2666],\n+ \"35711538\": 2461,\n+ \"36\": [58, 137, 355, 1752, 1761, 2204, 2225, 2323, 2367, 2414, 2463, 2491, 2536, 2649, 2657, 2659, 2666],\n \"360\": [544, 2103, 2238, 2576],\n \"36045180e\": 147,\n \"3608\": 2615,\n \"361\": [1344, 1346, 1522, 1908],\n \"362\": 12,\n \"3628523\": 2458,\n \"36363636\": 136,\n@@ -34887,15 +34891,14 @@\n \"42\": [31, 58, 63, 147, 349, 669, 896, 897, 974, 1029, 2090, 2208, 2256, 2332, 2376, 2423, 2457, 2566, 2605, 2622, 2635, 2639, 2657, 2664, 2665, 2666],\n \"420\": [2238, 2576],\n \"42016704\": 2666,\n \"4206\": 2617,\n \"4220\": 2617,\n \"4223\": 2617,\n \"4225\": 2617,\n- \"42293909\": 2488,\n \"423\": 55,\n \"42310646\": 1153,\n \"42332645\": 2666,\n \"42457905e\": 1586,\n \"425\": [523, 524],\n \"4253\": 2617,\n \"4254\": 2617,\n@@ -34954,15 +34957,15 @@\n \"4532\": [409, 661, 2168],\n \"4545724517479104\": 2460,\n \"45560727e\": 54,\n \"456\": 1921,\n \"4567\": 2644,\n \"45674898e\": 566,\n \"45a3d84\": 2521,\n- \"46\": [409, 523, 905, 1707, 2204, 2208, 2641, 2657],\n+ \"46\": [409, 523, 905, 1707, 2204, 2208, 2461, 2641, 2657],\n \"460\": [2238, 2576],\n \"46009194e\": 566,\n \"4602\": 2618,\n \"4610935\": 457,\n \"4613\": 2618,\n \"4628\": 2618,\n \"46351241j\": 2081,\n@@ -34977,15 +34980,14 @@\n \"46755891e\": 54,\n \"468\": [136, 147],\n \"4685006\": [2352, 2399, 2449],\n \"4686\": 12,\n \"46957616e\": [470, 1899, 1900],\n \"47\": [52, 2208, 2323, 2367, 2414, 2657, 2666],\n \"4702687338396767\": 2348,\n- \"47084069\": 2488,\n \"471\": [136, 147, 2463],\n \"47108547995356098\": [2345, 2391, 2439],\n \"47140452j\": 2491,\n \"472\": 55,\n \"4722\": 2618,\n \"4723\": 2621,\n \"4730\": [409, 661, 2168],\n@@ -35079,15 +35081,14 @@\n \"5170\": 2620,\n \"5184\": 2620,\n \"51851852\": 1809,\n \"519928\": 2635,\n \"51992837\": 2635,\n \"52\": [10, 50, 62, 457, 1638, 1647, 1650, 2204, 2208, 2554, 2635, 2641, 2648, 2657, 2659, 2660, 2666],\n \"5203\": 2620,\n- \"522\": 2461,\n \"5225\": 2620,\n \"5231\": 2620,\n \"52338984\": [2345, 2391, 2439],\n \"52359878\": 1911,\n \"52380952e\": 1816,\n \"5240\": 2620,\n \"5251\": 2620,\n@@ -35200,15 +35201,15 @@\n \"60546483\": 523,\n \"60663578\": 2635,\n \"607\": [2339, 2382, 2429],\n \"60860684e\": 1594,\n \"609\": 2583,\n \"6094\": 2522,\n \"60x\": 2599,\n- \"61\": [13, 2461, 2657],\n+ \"61\": [13, 2657],\n \"610\": 28,\n \"61119\": 2098,\n \"614064523559687\": 2115,\n \"6143849206349179\": [1113, 1543],\n \"6176\": [99, 906],\n \"61799388\": 1911,\n \"618\": 669,\n@@ -35221,28 +35222,28 @@\n \"623\": [2394, 2444],\n \"62318272\": [2319, 2363, 2410],\n \"62341325\": 514,\n \"62374854\": 2666,\n \"624\": [2300, 2370, 2394, 2417, 2444, 2462],\n \"625\": [99, 478, 645, 906, 2390, 2438],\n \"6273591314603949\": [2335, 2378, 2425],\n+ \"62899335\": 2461,\n \"62949953e\": 645,\n \"63\": [58, 514, 669, 1748, 1777, 2336, 2463, 2520, 2566, 2594, 2642, 2657],\n \"631198583\": 55,\n \"631198588\": 55,\n \"63317787e\": [2166, 2167],\n \"63526532\": 2458,\n \"636363636364\": [2353, 2400, 2450],\n \"63696169\": 2635,\n \"6376\": 2522,\n \"6390\": [2353, 2400, 2450],\n \"64\": [1, 5, 13, 21, 30, 50, 55, 56, 59, 61, 62, 63, 65, 66, 69, 74, 79, 315, 339, 409, 457, 470, 514, 584, 660, 669, 944, 1345, 1348, 1519, 1899, 1900, 2076, 2083, 2143, 2261, 2262, 2264, 2268, 2269, 2273, 2274, 2278, 2279, 2283, 2284, 2287, 2288, 2299, 2300, 2303, 2304, 2314, 2328, 2458, 2462, 2464, 2513, 2520, 2542, 2547, 2578, 2579, 2580, 2583, 2599, 2602, 2603, 2610, 2615, 2616, 2635, 2639, 2648, 2649, 2657, 2659, 2665, 2666],\n \"64023025\": 2098,\n \"6416010000000001\": 1114,\n- \"64358556\": 2461,\n \"64386512\": 349,\n \"64402274e\": 660,\n \"6446\": [2550, 2554],\n \"646\": [2517, 2576],\n \"6460\": 2522,\n \"6462\": 2522,\n \"6467\": 2522,\n@@ -35333,14 +35334,15 @@\n \"6689502\": 2576,\n \"669\": 669,\n \"6695\": 2522,\n \"6697\": 2522,\n \"6698\": 2522,\n \"67\": [409, 670, 671, 672, 1901, 2542, 2644, 2657, 2666],\n \"67046769e\": 147,\n+ \"6715027\": 2461,\n \"6717\": 2522,\n \"6718\": 2522,\n \"6719\": 2522,\n \"6721\": 2522,\n \"6726\": 2522,\n \"6735\": 2522,\n \"6747\": 2522,\n@@ -35412,20 +35414,19 @@\n \"718281\": 431,\n \"71828182845904523536028747135266249775724709369995\": 76,\n \"71828183\": [38, 2666],\n \"718282\": 2642,\n \"7183\": 2642,\n \"7185\": [99, 906],\n \"71946897\": 1153,\n- \"72\": [13, 355, 544, 669, 1764, 2461, 2463, 2572, 2657, 2659],\n+ \"72\": [13, 355, 544, 669, 1764, 2463, 2572, 2657, 2659],\n \"720\": [55, 356, 358, 1897, 2225, 2238, 2576],\n \"72075441\": 680,\n \"721fc64\": 13,\n \"72375\": 1644,\n- \"72393835\": 2461,\n \"72538256\": [103, 126],\n \"72686684e\": 566,\n \"72717132\": 2659,\n \"72727273\": 136,\n \"72847407\": 1154,\n \"729\": 2666,\n \"72904971\": 1153,\n@@ -35485,15 +35486,14 @@\n \"7680\": 2526,\n \"769893\": 2635,\n \"76989341\": 2635,\n \"76991118\": 1891,\n \"77\": [29, 36, 37, 38, 39, 2463, 2635, 2654, 2657],\n \"770\": [287, 1241, 1324, 1478, 1998, 2650],\n \"77086955\": 1526,\n- \"7715133\": 2461,\n \"7724\": 2526,\n \"7725\": [2353, 2400, 2450],\n \"7731\": 2526,\n \"7736\": 2527,\n \"7737\": 2526,\n \"7738\": 2527,\n \"77395605\": [349, 2457, 2639],\n@@ -35521,15 +35521,15 @@\n \"78539816\": [94, 104, 105, 129, 130, 2238],\n \"78539816339744828\": [104, 129],\n \"7854j\": [413, 619],\n \"78571429e\": 1816,\n \"78606431\": [349, 2457, 2639],\n \"789\": 2644,\n \"7896\": 2527,\n- \"79\": [13, 87, 100, 104, 129, 2657],\n+ \"79\": [13, 87, 100, 104, 129, 2461, 2657],\n \"79033856e\": 1149,\n \"7904\": 2527,\n \"7917\": 2527,\n \"7919\": 2527,\n \"7920\": [1212, 2527],\n \"7932\": 2527,\n \"7939\": 2527,\n@@ -35580,15 +35580,15 @@\n \"8255\": 2566,\n \"826716f\": 2521,\n \"82743037\": 524,\n \"82770259\": 2666,\n \"8277025938204418\": 2666,\n \"827941\": [514, 680, 2659],\n \"82842712\": [642, 644],\n- \"83\": [2105, 2167, 2353, 2400, 2450, 2554, 2657],\n+ \"83\": [2105, 2167, 2353, 2400, 2450, 2461, 2554, 2657],\n \"83314899\": 1154,\n \"83333333\": 1702,\n \"833333333333333\": [893, 1083, 1143, 2240],\n \"8341\": 2528,\n \"8346\": 2528,\n \"83571711\": 349,\n \"83697020e\": [470, 1899, 1900],\n@@ -35608,17 +35608,17 @@\n \"85099543\": 1822,\n \"85355339\": 1756,\n \"85569\": 2098,\n \"85602287\": [2335, 2378, 2425],\n \"857\": 410,\n \"8570331885190563e\": [648, 653],\n \"85715698e\": 2171,\n+ \"85750914\": 2461,\n \"8577\": 2539,\n \"85859792\": [349, 2457, 2639],\n- \"8591692\": 2461,\n \"8595784\": 2635,\n \"86\": [59, 88, 101, 103, 106, 126, 131, 542, 968, 969, 2323, 2367, 2414, 2491, 2657],\n \"8601\": [55, 62, 67, 2613],\n \"86260211e\": 54,\n \"8630830\": 13,\n \"86399\": 55,\n \"86400\": 55,\n@@ -35626,15 +35626,14 @@\n \"8660254\": 2103,\n \"86820401\": [2345, 2391, 2439],\n \"86864911e\": 1586,\n \"87\": [2616, 2657],\n \"875\": [478, 2491],\n \"8755\": [186, 827, 999, 1172, 1259, 1414, 1933],\n \"87649168120691\": 674,\n- \"87651783\": 2461,\n \"8770\": [2353, 2400, 2450],\n \"88\": [408, 2462, 2463, 2657, 2659, 2668],\n \"8801\": [99, 906],\n \"88031624\": 2666,\n \"88079259\": 533,\n \"881943016134134\": 666,\n \"88622693\": 1642,\n@@ -35645,15 +35644,14 @@\n \"88975\": 1644,\n \"89\": [28, 2091, 2644, 2657],\n \"890\": 2644,\n \"8900451\": 1154,\n \"89086505\": [2352, 2399, 2449],\n \"89206682e\": 2104,\n \"8922078\": 2458,\n- \"89377979\": 2488,\n \"89442719\": 642,\n \"89442719j\": 642,\n \"89721355\": 349,\n \"89804309e\": 2104,\n \"89920014\": [2319, 2363, 2410],\n \"8999999999999999\": 2107,\n \"8b2\": 2554,\n@@ -35681,14 +35679,15 @@\n \"92362781e\": 2104,\n \"92387953\": 642,\n \"92387953j\": 642,\n \"9240\": 2532,\n \"9255\": 2532,\n \"9261\": 2532,\n \"9262\": 2532,\n+ \"9262632\": 2488,\n \"9263\": 2532,\n \"9267\": 2532,\n \"92676499\": [349, 2639],\n \"927\": [539, 554],\n \"92771843\": 1154,\n \"9299\": 2532,\n \"93\": 2657,\n@@ -35771,15 +35770,14 @@\n \"9800\": 2666,\n \"9801\": 2666,\n \"9802\": 2666,\n \"98024613\": 680,\n \"9807642\": 1153,\n \"981\": 2592,\n \"98136677\": 523,\n- \"98287535\": 2488,\n \"987\": 28,\n \"987654321\": 2393,\n \"98935825\": 2666,\n \"9897\": 2666,\n \"9898\": 2666,\n \"9899\": [105, 130, 2666],\n \"99\": [12, 302, 408, 544, 672, 1096, 1906, 2131, 2460, 2635, 2657, 2658, 2666],\n"}]}]}]}]}]}