{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.Npg327ZI/b1/pandas_2.2.3+dfsg-8_i386.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.Npg327ZI/b2/pandas_2.2.3+dfsg-8_i386.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,5 +1,5 @@\n \n- 74f47cf544c0cfb39a296ccecd935b02 10793564 doc optional python-pandas-doc_2.2.3+dfsg-8_all.deb\n- c0cba754e40597583f61c8030500ead3 71243076 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-8_i386.deb\n- b6d9034931efa6fbf490ec55af617ceb 6847900 python optional python3-pandas-lib_2.2.3+dfsg-8_i386.deb\n+ 9caedf60c38df638f0d83e5935e51e43 10793344 doc optional python-pandas-doc_2.2.3+dfsg-8_all.deb\n+ e59da80ebcd526603b17c18b486127fe 71246096 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-8_i386.deb\n+ f02a20ed7545972a0600300b3104fe16 6847780 python optional python3-pandas-lib_2.2.3+dfsg-8_i386.deb\n ad1d0d3815c32f9db583cfe0dd79d880 3096896 python optional python3-pandas_2.2.3+dfsg-8_all.deb\n"}, {"source1": "python-pandas-doc_2.2.3+dfsg-8_all.deb", "source2": "python-pandas-doc_2.2.3+dfsg-8_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2025-02-01 18:39:17.000000 debian-binary\n--rw-r--r-- 0 0 0 147404 2025-02-01 18:39:17.000000 control.tar.xz\n--rw-r--r-- 0 0 0 10645968 2025-02-01 18:39:17.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 147356 2025-02-01 18:39:17.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 10645796 2025-02-01 18:39:17.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./control", "source2": "./control", "unified_diff": "@@ -1,13 +1,13 @@\n Package: python-pandas-doc\n Source: pandas\n Version: 2.2.3+dfsg-8\n Architecture: all\n Maintainer: Debian Science Team \n-Installed-Size: 209896\n+Installed-Size: 209898\n Depends: libjs-sphinxdoc (>= 8.1), libjs-mathjax\n Suggests: python3-pandas\n Section: doc\n Priority: optional\n Multi-Arch: foreign\n Homepage: https://pandas.pydata.org/\n Description: data structures for \"relational\" or \"labeled\" data - documentation\n"}, {"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -6256,74 +6256,74 @@\n -rw-r--r-- 0 root (0) root (0) 210184 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html\n -rw-r--r-- 0 root (0) root (0) 48665 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html\n -rw-r--r-- 0 root (0) root (0) 48657 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html\n -rw-r--r-- 0 root (0) root (0) 53295 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/release.html\n -rw-r--r-- 0 root (0) root (0) 269 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 17010 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/search.html\n--rw-r--r-- 0 root (0) root (0) 2359159 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 2359360 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n -rw-r--r-- 0 root (0) root (0) 259 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/style.html\n -rw-r--r-- 0 root (0) root (0) 255 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/text.html\n -rw-r--r-- 0 root (0) root (0) 256 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 277 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 272 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/\n -rw-r--r-- 0 root (0) root (0) 171380 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html\n--rw-r--r-- 0 root (0) root (0) 283835 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n+-rw-r--r-- 0 root (0) root (0) 283829 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n -rw-r--r-- 0 root (0) root (0) 435940 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html\n -rw-r--r-- 0 root (0) root (0) 36646 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html\n -rw-r--r-- 0 root (0) root (0) 217513 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html\n -rw-r--r-- 0 root (0) root (0) 18313 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html\n -rw-r--r-- 0 root (0) root (0) 66164 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html\n -rw-r--r-- 0 root (0) root (0) 160414 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html\n -rw-r--r-- 0 root (0) root (0) 81376 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html\n--rw-r--r-- 0 root (0) root (0) 121077 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n+-rw-r--r-- 0 root (0) root (0) 121084 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n -rw-r--r-- 0 root (0) root (0) 107882 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html\n -rw-r--r-- 0 root (0) root (0) 300850 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html\n -rw-r--r-- 0 root (0) root (0) 59715 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html\n -rw-r--r-- 0 root (0) root (0) 395486 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html\n -rw-r--r-- 0 root (0) root (0) 41778 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html\n -rw-r--r-- 0 root (0) root (0) 1145820 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html\n -rw-r--r-- 0 root (0) root (0) 208885 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html\n -rw-r--r-- 0 root (0) root (0) 178690 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html\n -rw-r--r-- 0 root (0) root (0) 112153 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html\n--rw-r--r-- 0 root (0) root (0) 146148 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html\n+-rw-r--r-- 0 root (0) root (0) 147524 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html\n -rw-r--r-- 0 root (0) root (0) 162660 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 115579 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n -rw-r--r-- 0 root (0) root (0) 65494 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html\n -rw-r--r-- 0 root (0) root (0) 698240 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html\n--rw-r--r-- 0 root (0) root (0) 87825 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 87862 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 165302 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html\n -rw-r--r-- 0 root (0) root (0) 100947 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 486621 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 204341 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html\n -rw-r--r-- 0 root (0) root (0) 141947 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html\n -rw-r--r-- 0 root (0) root (0) 270 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/\n -rw-r--r-- 0 root (0) root (0) 107681 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html\n -rw-r--r-- 0 root (0) root (0) 10566 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz\n -rw-r--r-- 0 root (0) root (0) 83987 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html\n -rw-r--r-- 0 root (0) root (0) 66492 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html\n -rw-r--r-- 0 root (0) root (0) 82312 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html\n -rw-r--r-- 0 root (0) root (0) 104316 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html\n--rw-r--r-- 0 root (0) root (0) 222541 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n+-rw-r--r-- 0 root (0) root (0) 222536 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n -rw-r--r-- 0 root (0) root (0) 89385 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html\n -rw-r--r-- 0 root (0) root (0) 243730 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html\n -rw-r--r-- 0 root (0) root (0) 83262 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html\n -rw-r--r-- 0 root (0) root (0) 252303 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html\n -rw-r--r-- 0 root (0) root (0) 68280 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html\n -rw-r--r-- 0 root (0) root (0) 75128 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html\n -rw-r--r-- 0 root (0) root (0) 145199 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html\n--rw-r--r-- 0 root (0) root (0) 115518 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.1.html\n+-rw-r--r-- 0 root (0) root (0) 115292 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.1.html\n -rw-r--r-- 0 root (0) root (0) 64656 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.2.html\n--rw-r--r-- 0 root (0) root (0) 231394 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.0.html\n--rw-r--r-- 0 root (0) root (0) 95028 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.1.html\n--rw-r--r-- 0 root (0) root (0) 224090 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.0.html\n--rw-r--r-- 0 root (0) root (0) 171888 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.1.html\n+-rw-r--r-- 0 root (0) root (0) 230436 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.0.html\n+-rw-r--r-- 0 root (0) root (0) 94984 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.1.html\n+-rw-r--r-- 0 root (0) root (0) 222566 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.0.html\n+-rw-r--r-- 0 root (0) root (0) 171419 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.1.html\n -rw-r--r-- 0 root (0) root (0) 349334 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.0.html\n -rw-r--r-- 0 root (0) root (0) 45179 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.1.html\n -rw-r--r-- 0 root (0) root (0) 48525 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.2.html\n -rw-r--r-- 0 root (0) root (0) 406081 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.0.html\n -rw-r--r-- 0 root (0) root (0) 52898 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.2.html\n -rw-r--r-- 0 root (0) root (0) 43404 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.3.html\n -rw-r--r-- 0 root (0) root (0) 255124 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.21.0.html\n"}, {"source1": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "source2": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -21485,15 +21485,15 @@\n \"000830\": 2214,\n \"000895\": 2195,\n \"000951\": 2186,\n \"000k\": 1489,\n \"000m\": 1489,\n \"000n\": 1489,\n \"000z\": 2294,\n- \"001\": [532, 874, 1467, 2232, 2264],\n+ \"001\": [532, 874, 1467, 2193, 2232, 2264],\n \"001000\": [917, 919, 922, 929, 1876, 2209],\n \"001294\": 2210,\n \"001372\": 2207,\n \"001376\": 2207,\n \"001427\": 2214,\n \"001438\": 2195,\n \"001486\": [102, 1158],\n@@ -21510,15 +21510,15 @@\n \"003494\": 15,\n \"003507\": [2209, 2218],\n \"003556\": 2207,\n \"00360\": 2294,\n \"003733\": 2207,\n \"003932\": 2216,\n \"003945\": 2210,\n- \"004\": [2186, 2193, 2227],\n+ \"004\": [2186, 2227],\n \"004000\": 2232,\n \"004005006\": [287, 939],\n \"004054\": 2229,\n \"004091\": [2204, 2257],\n \"004127\": 2207,\n \"004194\": 2186,\n \"004201\": 2186,\n@@ -21531,15 +21531,14 @@\n \"005000\": 2218,\n \"005361\": 2207,\n \"005383\": 2220,\n \"005446\": 2219,\n \"005462\": 2191,\n \"005977\": 2199,\n \"005979\": 2186,\n- \"006\": 2193,\n \"006123\": 2207,\n \"006154\": [2185, 2197, 2199, 2202, 2204, 2215, 2257],\n \"0062\": 2191,\n \"006349\": 2195,\n \"006438\": 2215,\n \"006549\": [182, 760],\n \"006695\": 2186,\n@@ -21557,29 +21556,27 @@\n \"008182\": 2204,\n \"008298\": 2186,\n \"008344\": 2207,\n \"008358\": 2207,\n \"008500\": 15,\n \"008543\": [102, 1158],\n \"008943\": [102, 1158],\n- \"009\": 2193,\n \"009059\": 2191,\n \"009207\": 2207,\n \"009420\": 2195,\n \"009424\": 2207,\n \"009572\": 2207,\n \"009673\": 2195,\n \"009783\": 2207,\n \"009797\": 2186,\n \"009826\": [102, 1158, 2205],\n \"009920\": [2184, 2195, 2214],\n \"00am\": 2230,\n \"00index\": 2218,\n \"01\": [3, 15, 16, 17, 19, 29, 30, 31, 36, 79, 80, 82, 88, 107, 121, 182, 187, 207, 213, 218, 219, 230, 242, 261, 270, 271, 276, 277, 278, 283, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 326, 329, 330, 331, 332, 333, 345, 362, 363, 423, 445, 510, 511, 513, 514, 515, 516, 517, 519, 521, 523, 525, 529, 531, 532, 533, 534, 535, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 566, 575, 591, 592, 593, 600, 629, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 684, 685, 686, 688, 689, 696, 760, 763, 781, 788, 793, 804, 817, 874, 893, 898, 899, 902, 903, 904, 905, 909, 910, 917, 919, 922, 929, 934, 939, 940, 943, 944, 945, 948, 949, 953, 954, 957, 959, 960, 969, 972, 982, 984, 997, 1000, 1001, 1003, 1004, 1005, 1011, 1014, 1016, 1017, 1020, 1021, 1024, 1051, 1075, 1078, 1106, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1164, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1221, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1344, 1345, 1367, 1391, 1392, 1393, 1436, 1447, 1452, 1475, 1488, 1490, 1498, 1500, 1501, 1506, 1524, 1542, 1560, 1620, 1699, 1720, 1741, 1793, 1815, 1857, 1930, 1947, 1982, 2036, 2054, 2090, 2108, 2127, 2163, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2261, 2264, 2265, 2271, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"010\": 2193,\n \"0100\": [575, 893, 957, 970, 997, 1004, 1014, 1016, 1020, 1021, 1498, 2186, 2199, 2210, 2246, 2271],\n \"010000\": [954, 1894],\n \"010010012\": [923, 2209],\n \"010026\": 2191,\n \"010081\": 15,\n \"010165\": 2199,\n \"010589\": 2193,\n@@ -21592,20 +21589,22 @@\n \"011374\": 2195,\n \"011470\": 2207,\n \"011736\": 2186,\n \"011829\": 2207,\n \"01183\": 2229,\n \"011860\": [182, 760],\n \"011975\": 2207,\n+ \"012\": 2193,\n \"012108\": 2207,\n \"012299\": 2207,\n \"0123456789123456\": [2164, 2165],\n \"012549\": 2207,\n \"012694\": 2199,\n \"012922\": 2219,\n+ \"013\": 2193,\n \"013086\": 15,\n \"0133\": 2202,\n \"013448\": 2207,\n \"013605\": 2207,\n \"013684\": [182, 760],\n \"013692\": [102, 1158],\n \"013747\": 2199,\n@@ -21620,14 +21619,15 @@\n \"014138\": 2191,\n \"014144\": [102, 1158],\n \"014648\": 2186,\n \"014752\": 2235,\n \"014805\": 2202,\n \"014871\": [2185, 2197, 2199, 2202],\n \"014888\": 2207,\n+ \"015\": 2193,\n \"015083\": 2186,\n \"015420\": 2195,\n \"015458\": 2207,\n \"015696\": [2220, 2228, 2230],\n \"015906\": 2186,\n \"015962\": [2184, 2214],\n \"015988\": 2186,\n@@ -21651,47 +21651,48 @@\n \"018193\": 2207,\n \"018409\": 2207,\n \"018601\": [2184, 2214],\n \"018808\": 2207,\n \"018904\": 2207,\n \"018941\": 2207,\n \"018993\": 2214,\n- \"019\": 2207,\n+ \"019\": [2193, 2207],\n \"019449\": 2207,\n \"019794\": 2197,\n \"01t00\": [2163, 2199, 2210, 2235, 2246, 2261],\n \"01t01\": 2210,\n \"01t03\": 2210,\n \"01t05\": [909, 2210, 2235],\n \"01t07\": 1280,\n \"01t10\": 1005,\n \"01t12\": 953,\n \"01t23\": [893, 2186, 2246],\n- \"02\": [13, 16, 17, 19, 26, 27, 29, 31, 79, 80, 82, 133, 182, 183, 202, 207, 208, 213, 218, 230, 261, 271, 276, 277, 278, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 301, 304, 305, 306, 307, 310, 312, 313, 314, 318, 319, 320, 321, 322, 323, 324, 326, 327, 329, 330, 331, 332, 345, 362, 363, 423, 519, 534, 536, 542, 543, 544, 545, 546, 547, 548, 549, 557, 558, 562, 563, 564, 565, 566, 575, 591, 592, 593, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 656, 657, 658, 659, 665, 666, 667, 673, 674, 675, 677, 678, 679, 680, 684, 685, 686, 688, 708, 760, 761, 781, 782, 788, 793, 804, 893, 899, 902, 903, 904, 919, 939, 940, 943, 945, 948, 949, 953, 957, 970, 997, 1014, 1051, 1075, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1344, 1393, 1452, 1498, 1500, 1506, 1542, 1620, 1699, 1815, 1947, 2054, 2127, 2145, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2220, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2265, 2271, 2283, 2294, 2298, 2301, 2307],\n+ \"02\": [13, 16, 17, 19, 26, 27, 29, 31, 79, 80, 82, 133, 182, 183, 202, 207, 208, 213, 218, 230, 261, 271, 276, 277, 278, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 301, 304, 305, 306, 307, 310, 312, 313, 314, 318, 319, 320, 321, 322, 323, 324, 326, 327, 329, 330, 331, 332, 345, 362, 363, 423, 519, 534, 536, 542, 543, 544, 545, 546, 547, 548, 549, 557, 558, 562, 563, 564, 565, 566, 575, 591, 592, 593, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 656, 657, 658, 659, 665, 666, 667, 673, 674, 675, 677, 678, 679, 680, 684, 685, 686, 688, 708, 760, 761, 781, 782, 788, 793, 804, 893, 899, 902, 903, 904, 919, 939, 940, 943, 945, 948, 949, 953, 957, 970, 997, 1014, 1051, 1075, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1344, 1393, 1452, 1498, 1500, 1506, 1542, 1620, 1699, 1815, 1947, 2054, 2127, 2145, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2220, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2265, 2271, 2283, 2294, 2298, 2301, 2307],\n+ \"020\": 2193,\n \"0200\": [957, 969, 970, 997, 1498, 2210],\n \"020161\": [102, 1158],\n \"020208\": 2195,\n \"020376\": 2207,\n \"020399\": 2195,\n \"020485\": 2207,\n \"020544\": 2186,\n \"020762\": 2220,\n \"020940\": 2230,\n+ \"021\": 2193,\n \"021244\": 2207,\n \"021255\": 2230,\n \"021292\": 2186,\n \"021377\": 2207,\n \"021382\": 2184,\n \"021499\": 2186,\n \"02155\": 30,\n- \"022\": 2193,\n \"022070\": 2184,\n \"022196\": 2207,\n \"022777\": 2207,\n- \"023\": [1447, 2193, 2200, 2232],\n+ \"023\": [1447, 2200, 2232],\n \"023100\": 2195,\n \"023167\": 15,\n \"023202\": 2199,\n \"023526\": 2191,\n \"023640\": 2230,\n \"023688\": [15, 2185, 2191, 2197],\n \"0237\": 2204,\n@@ -21719,14 +21720,15 @@\n \"026158\": 2210,\n \"026220\": 2191,\n \"026437\": 2197,\n \"026458\": 2216,\n \"0266708\": 2202,\n \"026692\": 2207,\n \"0267\": 2202,\n+ \"027\": 2193,\n \"027496\": 2207,\n \"027778\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275],\n \"028096\": 2210,\n \"028152\": 2207,\n \"028166\": 15,\n \"028182\": 2207,\n \"028578\": 2207,\n@@ -22031,15 +22033,15 @@\n \"069486\": 2230,\n \"069546\": 2199,\n \"069718\": 2186,\n \"069887\": 2207,\n \"069908\": 2207,\n \"069949\": 2207,\n \"06t00\": 2261,\n- \"07\": [26, 27, 29, 30, 31, 187, 202, 207, 213, 230, 273, 277, 292, 294, 330, 332, 345, 644, 646, 685, 688, 763, 781, 788, 804, 900, 903, 1075, 1280, 1344, 1441, 1442, 1449, 1450, 1452, 1598, 1677, 1720, 2184, 2186, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2226, 2227, 2228, 2230, 2231, 2235, 2261, 2271, 2294, 2298],\n+ \"07\": [26, 27, 29, 30, 31, 187, 202, 207, 213, 230, 273, 277, 292, 294, 330, 332, 345, 644, 646, 685, 688, 763, 781, 788, 804, 900, 903, 1075, 1280, 1344, 1441, 1442, 1449, 1450, 1452, 1598, 1677, 1720, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2226, 2227, 2228, 2230, 2231, 2235, 2261, 2271, 2294, 2298],\n \"0700\": 995,\n \"070087\": 2218,\n \"070816\": 2235,\n \"071068\": 2222,\n \"071357\": 2191,\n \"071665\": 2219,\n \"0718\": [2184, 2186],\n@@ -22084,30 +22086,29 @@\n \"076879\": 2207,\n \"077007\": 2207,\n \"077118\": [2184, 2195, 2214],\n \"077151\": 2199,\n \"077324\": 2195,\n \"077807\": 2207,\n \"077988\": 2207,\n- \"078\": 2193,\n \"078638\": [2185, 2197, 2199, 2202, 2204],\n \"078716\": 2207,\n \"078718\": 2197,\n \"078832\": 2207,\n \"079115\": 2207,\n \"079150\": 2185,\n \"079255\": 2207,\n \"079307\": 15,\n \"079587\": 2230,\n \"079631\": 2207,\n \"0797\": 2202,\n \"079769\": 2207,\n \"079915\": 2193,\n \"07t00\": 2261,\n- \"08\": [29, 30, 107, 207, 213, 230, 264, 273, 277, 292, 294, 316, 326, 330, 332, 629, 644, 646, 670, 680, 685, 688, 781, 788, 804, 900, 903, 1075, 1145, 1164, 1221, 1274, 1289, 1344, 1441, 1442, 1449, 1450, 1452, 1495, 1497, 1506, 1598, 1657, 1677, 1699, 1720, 1741, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2218, 2220, 2222, 2226, 2228, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2271, 2294, 2307],\n+ \"08\": [29, 30, 107, 207, 213, 230, 264, 273, 277, 292, 294, 316, 326, 330, 332, 629, 644, 646, 670, 680, 685, 688, 781, 788, 804, 900, 903, 1075, 1145, 1164, 1221, 1274, 1289, 1344, 1441, 1442, 1449, 1450, 1452, 1495, 1497, 1506, 1598, 1657, 1677, 1699, 1720, 1741, 2184, 2185, 2186, 2191, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2218, 2220, 2222, 2226, 2228, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2271, 2294, 2307],\n \"0800\": [953, 2210],\n \"080174\": 2207,\n \"080372\": 2199,\n \"080952\": [2184, 2214],\n \"081009\": 2195,\n \"081161\": 2216,\n \"081249\": 2207,\n@@ -22125,14 +22126,15 @@\n \"082960\": 2207,\n \"083010\": 2207,\n \"083333\": 2222,\n \"083352\": 2191,\n \"08335394550\": 1371,\n \"083515\": 15,\n \"083675\": 2207,\n+ \"084\": 2193,\n \"084601\": 2191,\n \"084844\": [2185, 2191, 2197, 2202, 2204],\n \"084917\": 2195,\n \"084n\": 2202,\n \"084u\": 2202,\n \"085070\": 2207,\n \"085193\": 2207,\n@@ -22253,20 +22255,20 @@\n \"0n\": [1489, 2298],\n \"0px\": 2207,\n \"0rc0\": 13,\n \"0th\": [26, 249, 882, 1202, 2185, 2197, 2199, 2235],\n \"0x00\": 2294,\n \"0x40\": 2294,\n \"0x7efd0c0b0690\": 3,\n- \"0xc0ced738\": 2230,\n- \"0xd511a030\": 2199,\n- \"0xd6c9a820\": 2197,\n- \"0xd83543d8\": 2195,\n- \"0xdf565528\": 2210,\n- \"0xe44f3190\": 2246,\n+ \"0xbcb8d118\": 2210,\n+ \"0xd7ddd350\": 2199,\n+ \"0xd99fa328\": 2197,\n+ \"0xda533648\": 2195,\n+ \"0xdf359228\": 2246,\n+ \"0xe4bbc5f0\": 2230,\n \"1\": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310],\n \"10\": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308],\n \"100\": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307],\n \"1000\": [9, 10, 15, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294],\n \"10000\": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266],\n \"100000\": [1354, 1372, 2199, 2201, 2210],\n \"1000000\": [144, 2199, 2228],\n@@ -22533,15 +22535,14 @@\n \"10633\": [2228, 2249],\n \"10636\": 2228,\n \"10637\": 2228,\n \"10638\": 2228,\n \"10639\": 2228,\n \"1064\": [2194, 2212],\n \"10645\": 2228,\n- \"106472\": 2228,\n \"10648\": 2231,\n \"1065\": [2194, 2212],\n \"10652\": 2228,\n \"10657\": 2228,\n \"1066\": 2212,\n \"10660\": 2229,\n \"10661\": 2229,\n@@ -22565,15 +22566,14 @@\n \"10711\": 2235,\n \"10713\": 2228,\n \"10726\": [2235, 2265],\n \"10728\": 2228,\n \"1073\": 2218,\n \"10735\": [2228, 2235],\n \"10738\": 2228,\n- \"107398\": 2228,\n \"10741\": 2228,\n \"10744\": 2228,\n \"10747\": 2228,\n \"10748\": [2228, 2235],\n \"10750\": 2228,\n \"10757\": 2228,\n \"10758\": 2232,\n@@ -23028,15 +23028,15 @@\n \"118810\": 28,\n \"11885\": 2230,\n \"11886\": 2232,\n \"1189\": [2185, 2197],\n \"11897\": 2235,\n \"11898\": 2235,\n \"11899\": 2230,\n- \"119\": [268, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2230, 2232, 2265],\n+ \"119\": [268, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2230, 2232, 2265],\n \"1190\": [2185, 2197],\n \"1191\": [2185, 2197],\n \"11915\": [2230, 2235],\n \"11916\": 2199,\n \"1192\": [2184, 2186],\n \"11920\": 2232,\n \"11920871129693428\": 2210,\n@@ -23228,15 +23228,15 @@\n \"12473\": 2231,\n \"12486\": 2231,\n \"124862\": 2191,\n \"12489\": 2230,\n \"12492\": 2230,\n \"12493\": 2231,\n \"12494\": 2230,\n- \"125\": [1186, 1247, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2210, 2211, 2225, 2227, 2232],\n+ \"125\": [1186, 1247, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2210, 2211, 2225, 2227, 2232],\n \"1250\": [2193, 2246],\n \"125000\": [28, 2218],\n \"12506\": 2231,\n \"1251\": 2193,\n \"12513\": 2265,\n \"125195\": 2207,\n \"1252\": 2265,\n@@ -23500,15 +23500,15 @@\n \"13176\": 2232,\n \"13179\": 2235,\n \"1318\": [16, 17, 18, 19, 2199, 2235],\n \"13180\": 2232,\n \"1319\": [16, 17, 18, 19, 2199, 2235],\n \"13191\": 2232,\n \"13193\": 30,\n- \"132\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2208, 2210, 2211, 2232, 2249, 2265, 2283],\n+ \"132\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2208, 2210, 2211, 2232, 2249, 2265, 2283],\n \"1320\": [16, 17, 18, 19, 2199, 2235],\n \"13200\": 2232,\n \"132003\": [15, 2185, 2197, 2199, 2202, 2215, 2257],\n \"13200317033032927\": 2197,\n \"132009\": 2207,\n \"13202\": 2234,\n \"132023\": 2199,\n@@ -24595,15 +24595,15 @@\n \"16468\": 2241,\n \"16469\": 2283,\n \"16471\": 2238,\n \"16472\": 2236,\n \"16488\": 2249,\n \"16493\": 2236,\n \"16496\": 2236,\n- \"165\": [144, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2210, 2211],\n+ \"165\": [144, 2185, 2186, 2188, 2195, 2197, 2199, 2201, 2210, 2211],\n \"16503\": 2238,\n \"1651\": 2217,\n \"16511\": 2236,\n \"16515\": 2236,\n \"16519\": 2236,\n \"16524\": 2237,\n \"165258\": 2207,\n@@ -24934,15 +24934,15 @@\n \"17574\": 2238,\n \"17575\": 2238,\n \"175829\": 2229,\n \"1759\": 2199,\n \"17594\": 2241,\n \"17596\": 2238,\n \"175988\": 2207,\n- \"176\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2231, 2253, 2283],\n+ \"176\": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2231, 2253, 2283],\n \"1760\": 2199,\n \"17602\": 2241,\n \"17605\": 2265,\n \"17607\": 2238,\n \"1761\": 2199,\n \"17610\": 2241,\n \"17613\": 2238,\n@@ -25142,15 +25142,15 @@\n \"18372\": 2239,\n \"183798\": [2199, 2207],\n \"18386\": 2241,\n \"183865\": 2207,\n \"18390\": 2239,\n \"183951\": 2191,\n \"18398\": 2241,\n- \"184\": [28, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2210, 2211, 2212],\n+ \"184\": [28, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2210, 2211, 2212],\n \"18400\": 2241,\n \"184083\": 2207,\n \"1841\": [2186, 2227],\n \"18413\": 2239,\n \"18414\": 2283,\n \"184161\": 2205,\n \"18417\": 2241,\n@@ -25656,15 +25656,15 @@\n \"1stuff\": 2201,\n \"1ty\": 2201,\n \"1u\": [2209, 2222],\n \"1w\": 345,\n \"1xn\": 2217,\n \"2\": [2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 42, 43, 44, 46, 50, 54, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 134, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 155, 156, 157, 158, 160, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 194, 195, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 209, 210, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 252, 253, 254, 255, 256, 257, 258, 259, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 278, 279, 280, 281, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 364, 366, 367, 370, 372, 375, 376, 377, 378, 379, 380, 385, 386, 387, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 401, 402, 404, 405, 406, 407, 408, 409, 411, 412, 413, 414, 415, 416, 419, 420, 421, 422, 424, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 442, 443, 444, 445, 446, 449, 450, 451, 452, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 509, 513, 515, 517, 519, 528, 532, 535, 540, 547, 548, 549, 551, 557, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 609, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 625, 626, 627, 628, 629, 630, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 709, 710, 711, 712, 713, 714, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 746, 748, 750, 751, 752, 755, 756, 758, 759, 760, 761, 762, 763, 764, 765, 767, 769, 770, 772, 774, 775, 776, 777, 778, 779, 783, 784, 785, 786, 787, 788, 789, 793, 794, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 811, 812, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 872, 874, 875, 876, 877, 879, 880, 881, 882, 883, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 902, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 916, 918, 920, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 1027, 1028, 1029, 1030, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1065, 1066, 1067, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1081, 1082, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1093, 1095, 1097, 1099, 1100, 1101, 1102, 1104, 1105, 1106, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1117, 1118, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1213, 1214, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1349, 1350, 1352, 1355, 1358, 1359, 1360, 1362, 1367, 1368, 1369, 1374, 1375, 1377, 1380, 1381, 1382, 1384, 1385, 1386, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1458, 1459, 1463, 1464, 1465, 1466, 1467, 1468, 1469, 1470, 1471, 1472, 1473, 1475, 1476, 1477, 1478, 1479, 1481, 1482, 1483, 1484, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1508, 1509, 1524, 1526, 1527, 1542, 1544, 1545, 1562, 1563, 1581, 1583, 1602, 1604, 1622, 1623, 1639, 1640, 1660, 1662, 1681, 1683, 1702, 1704, 1723, 1725, 1741, 1743, 1744, 1761, 1762, 1778, 1779, 1793, 1795, 1798, 1815, 1817, 1820, 1842, 1843, 1857, 1859, 1860, 1879, 1880, 1897, 1898, 1915, 1916, 1932, 1933, 1949, 1950, 1967, 1968, 1982, 1984, 1985, 2000, 2002, 2003, 2021, 2022, 2039, 2040, 2057, 2058, 2075, 2076, 2092, 2093, 2108, 2110, 2111, 2127, 2129, 2130, 2145, 2147, 2148, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2233, 2235, 2237, 2238, 2239, 2240, 2241, 2242, 2245, 2246, 2247, 2249, 2257, 2260, 2261, 2263, 2264, 2265, 2271, 2289, 2294, 2295, 2297],\n \"20\": [2, 3, 10, 15, 17, 18, 19, 25, 26, 28, 29, 30, 31, 68, 74, 80, 83, 85, 88, 97, 100, 102, 108, 111, 119, 134, 138, 139, 140, 142, 160, 162, 187, 188, 189, 190, 192, 193, 195, 230, 234, 278, 302, 331, 345, 577, 583, 586, 592, 594, 596, 600, 620, 648, 686, 695, 709, 714, 738, 763, 764, 765, 766, 768, 770, 804, 904, 942, 944, 1069, 1071, 1072, 1156, 1158, 1174, 1175, 1259, 1264, 1345, 1387, 1391, 1479, 1488, 1490, 1501, 1657, 2090, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2228, 2230, 2231, 2232, 2238, 2240, 2241, 2246, 2249, 2257, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"200\": [15, 97, 111, 118, 132, 135, 141, 142, 159, 161, 175, 207, 345, 617, 618, 620, 633, 717, 781, 1280, 1433, 1455, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2210, 2211, 2220, 2230, 2231, 2235, 2241, 2253],\n+ \"200\": [15, 97, 111, 118, 132, 135, 141, 142, 159, 161, 175, 207, 345, 617, 618, 620, 633, 717, 781, 1280, 1433, 1455, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2210, 2211, 2220, 2230, 2231, 2235, 2241, 2253],\n \"2000\": [10, 79, 107, 141, 183, 213, 261, 290, 299, 311, 312, 313, 315, 319, 326, 333, 345, 420, 540, 575, 591, 629, 637, 642, 654, 663, 665, 666, 668, 674, 680, 689, 717, 761, 788, 799, 893, 969, 1118, 1164, 1169, 1192, 1221, 1226, 1253, 1276, 1437, 1438, 1439, 1462, 2184, 2186, 2188, 2195, 2197, 2199, 2205, 2210, 2211, 2214, 2215, 2218, 2219, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2261, 2265, 2271, 2298],\n \"20000\": [2193, 2194, 2218, 2222],\n \"200000\": [1309, 1326, 2201, 2210, 2218],\n \"200001\": 1497,\n \"20000101\": 2199,\n \"20000102\": 2214,\n \"20000103\": 2214,\n@@ -25752,24 +25752,23 @@\n \"2021\": [288, 296, 318, 639, 652, 673, 940, 943, 948, 957, 970, 997, 1542, 2201, 2207, 2213, 2277, 2289, 2294],\n \"2022\": [5, 22, 523, 525, 528, 537, 982, 1185, 1246, 1288, 1491, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1542, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1560, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1578, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1598, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1620, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1637, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1657, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1677, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1699, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1720, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1758, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1776, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1793, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1815, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1839, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1857, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1876, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1894, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1912, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1930, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1947, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1964, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1982, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2018, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2036, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2054, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2108, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2127, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2145, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2186, 2203, 2213, 2227, 2298, 2302, 2307],\n \"2022a\": 2294,\n \"2023\": [34, 270, 298, 301, 320, 363, 511, 519, 526, 533, 543, 544, 545, 546, 547, 548, 549, 551, 554, 555, 556, 557, 558, 560, 563, 564, 565, 566, 567, 651, 894, 898, 954, 959, 960, 982, 984, 1000, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1024, 1122, 1141, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1501, 1620, 1930, 2090, 2127, 2145, 2213],\n \"202380\": 2207,\n \"20239\": [2241, 2265],\n \"2024\": [270, 544, 546, 555, 567, 894, 898, 2127, 2213],\n- \"2025\": [36, 544, 546, 555, 567, 894, 898],\n+ \"2025\": [36, 544, 546, 555, 567, 894, 898, 2228],\n \"20251\": 2307,\n \"2026\": 2228,\n \"202602\": 2205,\n \"202646\": 2230,\n- \"2027\": 2228,\n \"20271\": 2241,\n \"202872\": [2184, 2214],\n \"202946\": 2207,\n- \"203\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2253],\n+ \"203\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211, 2231, 2253],\n \"2030\": 2265,\n \"20303\": 2265,\n \"20306\": 2302,\n \"203098\": 2186,\n \"20342\": 2246,\n \"2035\": 2199,\n \"20353\": 2246,\n@@ -26354,15 +26353,15 @@\n \"22556\": 2246,\n \"22557\": 2246,\n \"22578\": 2246,\n \"22579\": 2246,\n \"22580\": 2246,\n \"22591\": 2246,\n \"225944\": 2207,\n- \"226\": [2185, 2186, 2188, 2195, 2197, 2199, 2207, 2210],\n+ \"226\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2207, 2210],\n \"226001\": 2207,\n \"22610\": 2271,\n \"226127\": 28,\n \"226169\": [2185, 2197, 2199, 2202, 2204, 2215, 2257],\n \"2262\": [985, 2210, 2220, 2250],\n \"22628\": 2246,\n \"22631\": 2246,\n@@ -26433,15 +26432,15 @@\n \"22981\": 2246,\n \"22984\": 2246,\n \"229864\": 2207,\n \"22988\": 2246,\n \"229938\": 2207,\n \"22994\": 2246,\n \"23\": [15, 17, 18, 19, 24, 25, 26, 27, 29, 30, 31, 32, 213, 230, 259, 276, 277, 341, 345, 363, 511, 514, 516, 519, 522, 531, 532, 549, 561, 651, 676, 788, 804, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 890, 902, 903, 924, 985, 1192, 1253, 1657, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2235, 2238, 2246, 2247, 2249, 2264, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"230\": [2185, 2186, 2188, 2195, 2197, 2199, 2207, 2210, 2218, 2254],\n+ \"230\": [2185, 2186, 2188, 2195, 2197, 2199, 2207, 2210, 2254],\n \"23000\": [2199, 2246],\n \"230012\": 23,\n \"230066\": 2191,\n \"23009\": 2246,\n \"2301\": 2217,\n \"23011\": 2249,\n \"23013\": 2249,\n@@ -26949,15 +26948,15 @@\n \"253128\": 2191,\n \"25317\": 2248,\n \"25318\": 2248,\n \"253355\": 2210,\n \"25338\": 2248,\n \"253495\": 2207,\n \"253881\": 2229,\n- \"254\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2220],\n+ \"254\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220],\n \"254000\": [2185, 2220],\n \"25403\": 2248,\n \"25405\": 2249,\n \"25409\": 2248,\n \"254161\": [2184, 2195, 2214],\n \"25433\": 2249,\n \"25435\": 2249,\n@@ -27436,14 +27435,15 @@\n \"276183\": 2257,\n \"2762\": [2184, 2186, 2191],\n \"276232\": [15, 2184, 2185, 2186, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2225, 2231, 2241, 2264],\n \"27636\": 2250,\n \"276386\": 2207,\n \"27642\": 2250,\n \"276464\": 2230,\n+ \"2765\": 2193,\n \"27656\": [2294, 2298],\n \"27660\": 2265,\n \"2766617129497566\": 2257,\n \"276662\": [2185, 2197, 2199, 2202, 2215, 2257],\n \"27668\": 2265,\n \"2767\": 2191,\n \"27676\": 2265,\n@@ -27480,15 +27480,15 @@\n \"27840\": 2250,\n \"27841\": 2250,\n \"278445\": 2184,\n \"2786\": 2217,\n \"27865\": 2250,\n \"27874\": 2265,\n \"27892\": 2271,\n- \"279\": [15, 2186, 2195, 2197, 2199, 2210],\n+ \"279\": [15, 2186, 2193, 2195, 2197, 2199, 2210],\n \"27900\": 2251,\n \"279321\": 2186,\n \"279344\": 2186,\n \"27943\": 2250,\n \"27951\": 2265,\n \"27952\": 2265,\n \"27953\": 2271,\n@@ -27619,15 +27619,15 @@\n \"2854\": 2185,\n \"28556\": 2283,\n \"285569\": 2207,\n \"28557\": 2265,\n \"285737\": 2207,\n \"285805\": 2207,\n \"28584\": 2271,\n- \"286\": [16, 17, 18, 19, 27, 2186, 2193, 2197, 2199, 2210, 2235, 2255],\n+ \"286\": [16, 17, 18, 19, 27, 2186, 2197, 2199, 2210, 2235, 2255],\n \"286094\": 2207,\n \"28619\": 2265,\n \"28621\": [2265, 2298],\n \"28631\": 2251,\n \"28652\": 2265,\n \"286539\": 2210,\n \"28663\": 2265,\n@@ -27646,15 +27646,15 @@\n \"28766\": 2265,\n \"28769\": 2265,\n \"287725\": 2185,\n \"28779\": 2265,\n \"28787\": 2265,\n \"28791\": 2265,\n \"28795\": 2265,\n- \"288\": [2186, 2193, 2197, 2199, 2210, 2257],\n+ \"288\": [2186, 2197, 2199, 2210, 2257],\n \"28805\": 2265,\n \"288098\": 2207,\n \"2881\": 2238,\n \"288112\": 2186,\n \"28814\": 2265,\n \"288256\": 2207,\n \"288374\": 2207,\n@@ -28065,27 +28065,27 @@\n \"30am\": [84, 595],\n \"30d\": [2210, 2271],\n \"30min\": [1272, 1275, 2209],\n \"30t\": 2222,\n \"30th\": 2199,\n \"30x\": 2225,\n \"31\": [2, 15, 17, 18, 19, 25, 28, 31, 107, 133, 207, 208, 213, 228, 264, 270, 276, 282, 288, 292, 294, 296, 303, 306, 307, 308, 309, 313, 314, 318, 326, 332, 333, 341, 345, 362, 513, 514, 515, 516, 517, 518, 519, 532, 535, 542, 547, 548, 549, 560, 629, 637, 639, 644, 646, 649, 650, 651, 652, 655, 658, 659, 660, 661, 666, 667, 673, 680, 688, 689, 708, 781, 782, 788, 898, 902, 940, 943, 948, 957, 967, 968, 970, 976, 978, 980, 997, 1164, 1192, 1221, 1253, 1271, 1323, 1344, 1487, 1524, 1560, 1699, 1720, 1741, 1793, 1815, 1857, 1947, 2000, 2054, 2145, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2213, 2216, 2217, 2218, 2219, 2221, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2264, 2265, 2271, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"310\": [2185, 2186, 2197, 2199, 2201, 2210, 2231],\n+ \"310\": [2186, 2197, 2199, 2201, 2210, 2218, 2231],\n \"31016\": 2271,\n \"31025\": [2265, 2298],\n \"310274\": 2191,\n \"31043\": 2271,\n \"31048\": 2277,\n \"310530\": 2207,\n \"31064\": 2271,\n \"310823\": 2207,\n \"3109\": [2184, 2199, 2205],\n \"310957\": 2230,\n \"31096\": 2271,\n- \"311\": [176, 179, 2186, 2197, 2199, 2201, 2210, 2231],\n+ \"311\": [176, 179, 2186, 2197, 2199, 2201, 2210, 2218, 2231],\n \"3110\": [2184, 2199, 2205],\n \"3111\": [2184, 2199, 2205],\n \"311128\": 2191,\n \"31126\": 2271,\n \"3113\": [2184, 2199, 2205],\n \"31131\": 2265,\n \"311389\": 2207,\n@@ -28095,15 +28095,15 @@\n \"3116\": [2184, 2199, 2205],\n \"3117\": [2184, 2199, 2205],\n \"31172\": 2271,\n \"3118\": [2184, 2199, 2205],\n \"31183\": 2266,\n \"311877\": 2199,\n \"3119\": [2184, 2199, 2205],\n- \"312\": [2186, 2193, 2197, 2199, 2210, 2219, 2255],\n+ \"312\": [2186, 2197, 2199, 2210, 2219, 2255],\n \"3120\": [2184, 2199, 2205],\n \"31200\": 2271,\n \"31204\": 2271,\n \"31205\": 2266,\n \"3121\": [2184, 2199, 2205],\n \"3122\": [2184, 2199, 2205],\n \"312403\": 2191,\n@@ -28401,15 +28401,15 @@\n \"32668\": 2271,\n \"326687\": 15,\n \"32669\": 2271,\n \"32670\": 2271,\n \"32682\": 2271,\n \"32684\": 2271,\n \"32685\": 2268,\n- \"327\": [29, 2184, 2186, 2197, 2199, 2205, 2210, 2246, 2255],\n+ \"327\": [29, 2184, 2186, 2193, 2197, 2199, 2205, 2210, 2246, 2255],\n \"32727\": 2294,\n \"327364\": 2230,\n \"32747\": 2271,\n \"32749\": 2283,\n \"3275\": 2216,\n \"32755\": 2271,\n \"32761\": 2277,\n@@ -29405,15 +29405,14 @@\n \"376\": [2186, 2197, 2199, 2210, 2255],\n \"37601\": [2277, 2298],\n \"37605\": 2289,\n \"37609\": 2277,\n \"37610\": 2277,\n \"37615\": 2283,\n \"37621\": 2277,\n- \"3762104704\": 2246,\n \"37626\": 2277,\n \"37631\": 2276,\n \"37635\": 2277,\n \"37641\": 2276,\n \"37643\": [2277, 2283, 2294],\n \"3765\": 2218,\n \"37667\": 2277,\n@@ -29430,17 +29429,16 @@\n \"37733\": 2277,\n \"37748\": 2277,\n \"37750\": 2289,\n \"377535\": 2186,\n \"37755\": 2276,\n \"37758\": 2277,\n \"377642\": 2210,\n- \"3776588400\": 2246,\n \"37768\": 2277,\n- \"3777\": [2193, 2218],\n+ \"3777\": 2218,\n \"37782\": 2302,\n \"377887\": 2207,\n \"37799\": 2277,\n \"378\": [2186, 2197, 2199, 2207, 2210, 2231],\n \"3780\": 2222,\n \"37804\": 2283,\n \"378163\": 2207,\n@@ -29537,15 +29535,15 @@\n \"38268\": 2277,\n \"38271\": 2277,\n \"38274\": 2277,\n \"38278\": 2283,\n \"38282\": 2277,\n \"38286\": 2276,\n \"38292\": 2283,\n- \"383\": [16, 17, 18, 19, 2186, 2197, 2199, 2210, 2235],\n+ \"383\": [16, 17, 18, 19, 2186, 2193, 2197, 2199, 2210, 2235],\n \"3830\": 2218,\n \"38303\": 2283,\n \"38312\": 2298,\n \"383309\": [2191, 2199],\n \"38335\": 2283,\n \"3834\": 2217,\n \"38340\": 2283,\n@@ -29557,26 +29555,28 @@\n \"383696\": 2207,\n \"38372\": 2283,\n \"383784\": 2222,\n \"38380\": 2283,\n \"38386\": 2277,\n \"383981\": 2184,\n \"384\": [16, 17, 18, 19, 2186, 2197, 2199, 2210, 2235, 2246],\n+ \"3840222320\": 2246,\n \"38415\": 2283,\n \"384329\": 2207,\n \"38433\": [2283, 2298],\n \"38439\": 2283,\n \"38453\": 2289,\n \"38454\": 2289,\n \"384724\": 2197,\n \"3849\": 2218,\n \"384941\": 2207,\n \"385\": [16, 17, 18, 19, 2186, 2197, 2199, 2210, 2235],\n \"38502\": 2283,\n \"385062\": 2207,\n+ \"3850856400\": 2246,\n \"38516\": 2283,\n \"38521\": 2283,\n \"38522\": 30,\n \"38523\": 2283,\n \"38525\": 2277,\n \"38527\": 2283,\n \"385327\": 2214,\n@@ -31122,15 +31122,15 @@\n \"45162\": 2294,\n \"45170\": 2289,\n \"45174\": 2289,\n \"45180\": 2289,\n \"451849\": 2199,\n \"4519\": 2218,\n \"451921\": 2207,\n- \"452\": [2199, 2207, 2210, 2249],\n+ \"452\": [2185, 2193, 2199, 2207, 2210, 2249],\n \"4520\": [176, 179, 2218],\n \"452012\": 2207,\n \"45218\": 2294,\n \"452214\": 2199,\n \"45224\": 2294,\n \"45227\": 2289,\n \"45236\": 2294,\n@@ -31167,15 +31167,15 @@\n \"45361\": 2294,\n \"45362\": 2294,\n \"453684\": 2207,\n \"453749\": [2184, 2214],\n \"45384\": 2289,\n \"453846\": 2201,\n \"45387\": 2294,\n- \"454\": [28, 2199, 2207, 2210, 2249],\n+ \"454\": [28, 2193, 2199, 2207, 2210, 2249],\n \"454020\": 2207,\n \"45404\": 2294,\n \"454118\": 2207,\n \"454131\": 2197,\n \"45414\": 2294,\n \"4542\": 28,\n \"454200\": 28,\n@@ -31199,15 +31199,15 @@\n \"4548\": 2218,\n \"45481\": 2302,\n \"454811\": 15,\n \"45484\": 2294,\n \"454870\": 2186,\n \"45494\": 2294,\n \"454980\": 2207,\n- \"455\": [2193, 2199, 2210, 2249],\n+ \"455\": [2199, 2210, 2249],\n \"4550\": 2218,\n \"45506\": 2294,\n \"4551\": 2220,\n \"455109\": 2207,\n \"455173\": 2207,\n \"45523\": 2298,\n \"455299\": [2205, 2210],\n@@ -31247,15 +31247,15 @@\n \"45661\": 2290,\n \"456620\": 2207,\n \"456789\": 2228,\n \"45681\": 2294,\n \"45684\": 2290,\n \"45691\": 2294,\n \"45694\": 2294,\n- \"457\": [2199, 2210],\n+ \"457\": [2185, 2199, 2210],\n \"457071\": 2199,\n \"45708\": 2294,\n \"45715\": 2294,\n \"45722\": 2294,\n \"45725\": 2296,\n \"457395\": 2207,\n \"45740\": 2302,\n@@ -32360,15 +32360,15 @@\n \"5125\": 2218,\n \"51254\": 2302,\n \"51258\": 2298,\n \"512743\": 2193,\n \"51276\": 2302,\n \"5129\": 2220,\n \"51299\": 2298,\n- \"513\": 2199,\n+ \"513\": [2193, 2199],\n \"51302\": 2298,\n \"51316\": 2298,\n \"51349\": 2298,\n \"513520\": 2207,\n \"51353\": 2302,\n \"5136\": [2192, 2197],\n \"513600\": 2207,\n@@ -33639,15 +33639,15 @@\n \"5940742896293756\": [16, 19],\n \"5944\": 2219,\n \"59444\": 2310,\n \"594454\": 2207,\n \"5945\": 2220,\n \"5947\": 2219,\n \"594943\": 2207,\n- \"595\": [2199, 2205, 2257],\n+ \"595\": [2199, 2257],\n \"5950\": [2220, 2232],\n \"595013\": 2199,\n \"5952\": 2219,\n \"595307\": 2197,\n \"595334\": 2204,\n \"595393\": 2210,\n \"595447\": [2184, 2214],\n@@ -33708,15 +33708,15 @@\n \"600337\": 2186,\n \"6004\": 2199,\n \"6007\": 2219,\n \"600705\": 2197,\n \"600794\": 2184,\n \"6008\": 2219,\n \"600874\": 2215,\n- \"601\": [2199, 2205, 2298],\n+ \"601\": [2199, 2298],\n \"6013\": 2219,\n \"6014\": 2220,\n \"601544\": 2185,\n \"601618\": 2207,\n \"6018\": 2219,\n \"601965\": 15,\n \"602\": 2199,\n@@ -33939,19 +33939,21 @@\n \"6289\": 2220,\n \"628992\": 2257,\n \"629\": 2199,\n \"6290\": 2220,\n \"629003\": 2207,\n \"629165\": 2230,\n \"6292\": [2220, 2230],\n+ \"6295\": 2203,\n \"629546\": 2219,\n- \"6296\": 2220,\n+ \"6296\": [2203, 2220],\n \"629675\": 2185,\n- \"6297\": 2220,\n- \"6299\": 2220,\n+ \"6297\": [2203, 2220],\n+ \"6298\": 2203,\n+ \"6299\": [2203, 2220],\n \"63\": [15, 17, 19, 213, 788, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2227, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"630\": 2199,\n \"630110\": 15,\n \"630256\": 2207,\n \"630482\": 2207,\n \"631\": 2199,\n \"631095\": 2195,\n@@ -33964,15 +33966,15 @@\n \"632038\": 2207,\n \"6322\": 2235,\n \"6326\": 2246,\n \"632633\": 2217,\n \"6327\": 2220,\n \"632779\": 2186,\n \"6329\": 2220,\n- \"633\": 2199,\n+ \"633\": [2185, 2199],\n \"633165\": 2230,\n \"6332\": 2220,\n \"633372\": 2215,\n \"6335\": 2220,\n \"633678\": 2185,\n \"6337\": 2220,\n \"634\": 2199,\n@@ -34101,14 +34103,15 @@\n \"6496\": [2221, 2222],\n \"649646\": 2207,\n \"649682\": 28,\n \"649711\": 2212,\n \"649727\": 2191,\n \"649748\": 2186,\n \"64bit\": 2298,\n+ \"64ec62289cb4\": 2203,\n \"65\": [17, 19, 259, 890, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2255, 2271],\n \"650\": [2199, 2298],\n \"65000000\": [176, 179, 754, 757, 1242, 1243],\n \"6504\": 2220,\n \"650762\": 2199,\n \"650776\": 2202,\n \"650794\": [121, 696],\n@@ -34899,14 +34902,15 @@\n \"742682\": 2219,\n \"742802\": [195, 770],\n \"7429\": 2221,\n \"743089\": 2207,\n \"7431\": 2221,\n \"7431609117\": 2199,\n \"743161\": [2185, 2191, 2197, 2199, 2202],\n+ \"743480\": 2228,\n \"743875\": 2191,\n \"743894\": 2191,\n \"7439\": 2222,\n \"744095\": 2207,\n \"7441\": [2202, 2222],\n \"744154\": 2204,\n \"744376\": 2207,\n@@ -34963,14 +34967,15 @@\n \"752239\": 2207,\n \"7523\": 2221,\n \"752332\": 2186,\n \"752441\": 2207,\n \"7528\": 2222,\n \"752861\": 2195,\n \"7529\": 2221,\n+ \"753279\": 2228,\n \"7534\": 2221,\n \"753444\": 2207,\n \"753606\": 2199,\n \"753611\": 2207,\n \"753623\": 2191,\n \"753747\": 2207,\n \"7539\": 2221,\n@@ -35047,14 +35052,15 @@\n \"764\": 2207,\n \"7640\": 2235,\n \"764052\": 2207,\n \"764443e\": 2204,\n \"764851\": 2186,\n \"7655\": 2222,\n \"7656\": 2221,\n+ \"766\": 2193,\n \"7660\": [2202, 2222],\n \"7661\": 2222,\n \"766822\": 2207,\n \"767\": [268, 2265],\n \"767101\": 2185,\n \"767252\": 2184,\n \"767440\": 2186,\n@@ -35064,15 +35070,15 @@\n \"7683\": 2222,\n \"768681\": 2207,\n \"7687\": [2246, 2271],\n \"7692\": 2228,\n \"769691\": 2207,\n \"7697\": 2222,\n \"769804\": [2185, 2191, 2197, 2199, 2202, 2204],\n- \"77\": [15, 81, 1447, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"77\": [15, 81, 1447, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"770\": [2193, 2207],\n \"7701\": 2221,\n \"770309\": 2207,\n \"7704\": 2222,\n \"770555\": 2204,\n \"770743\": 2207,\n \"7708\": 2222,\n@@ -35649,15 +35655,15 @@\n \"848896\": 2193,\n \"848974\": 2197,\n \"849\": [16, 17, 18, 19, 2199, 2235],\n \"8494\": 2223,\n \"8496\": 2241,\n \"84960\": 2210,\n \"849980\": 2195,\n- \"85\": [182, 190, 193, 718, 760, 766, 768, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n+ \"85\": [182, 190, 193, 718, 760, 766, 768, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n \"850\": [16, 17, 18, 19, 2199, 2235],\n \"850083\": 2207,\n \"8501\": 2222,\n \"850229\": 2235,\n \"850287\": 2207,\n \"8504\": 2202,\n \"850458\": 2207,\n@@ -35751,15 +35757,14 @@\n \"861549\": 2214,\n \"8616\": [2243, 2246],\n \"861651\": 2207,\n \"861755\": 2229,\n \"8618\": [2184, 2186],\n \"861816\": 2216,\n \"861849\": [15, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2206, 2210, 2214, 2215, 2220, 2225, 2231, 2235, 2241, 2257, 2260],\n- \"862\": 2185,\n \"862071\": 1340,\n \"862093\": 2207,\n \"8621\": 2224,\n \"862288\": 2207,\n \"8623\": 2223,\n \"8624\": 2223,\n \"862495\": [2184, 2195, 2214],\n@@ -35961,15 +35966,15 @@\n \"889\": [24, 25, 32, 2199],\n \"8890\": [2224, 2225],\n \"889157\": 2235,\n \"889273\": 2235,\n \"889493\": 2186,\n \"889659\": 2186,\n \"889987\": 2205,\n- \"89\": [207, 781, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298],\n+ \"89\": [207, 781, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298],\n \"890\": [24, 25, 32, 2197, 2199],\n \"8904\": 2224,\n \"890546\": 2186,\n \"890819\": 2206,\n \"8909\": 2224,\n \"891\": [24, 25, 28, 32, 2197, 2199],\n \"8910\": [2243, 2246],\n@@ -36301,15 +36306,15 @@\n \"938819\": 2204,\n \"939\": 2230,\n \"939036\": 2207,\n \"939145\": 2207,\n \"939470\": 2199,\n \"939652\": 2207,\n \"9398\": 2225,\n- \"94\": [15, 282, 2184, 2185, 2186, 2188, 2191, 2192, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246],\n+ \"94\": [15, 282, 2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246],\n \"9402\": 2228,\n \"941248\": 2199,\n \"9413\": 2238,\n \"941451\": 2210,\n \"9416\": 2228,\n \"9422\": 2238,\n \"942321\": 2207,\n@@ -36498,15 +36503,15 @@\n \"969883\": 1010,\n \"969917\": 2207,\n \"96hr\": 234,\n \"97\": [31, 196, 771, 1447, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2228, 2230, 2232, 2235, 2246],\n \"970\": 2197,\n \"9700\": 2226,\n \"970121\": 28,\n- \"971\": [2197, 2294],\n+ \"971\": [2197, 2205, 2294],\n \"9710\": 2226,\n \"971205\": 15,\n \"9713\": 2226,\n \"9714\": 2230,\n \"971495\": 2230,\n \"971944\": 2207,\n \"972\": 2193,\n@@ -36632,15 +36637,15 @@\n \"988693\": [155, 156, 730, 731],\n \"9890\": 2226,\n \"9894\": 2228,\n \"9895\": 2235,\n \"989634\": 2204,\n \"989726\": 2207,\n \"989859\": 2185,\n- \"99\": [15, 22, 145, 163, 284, 532, 741, 912, 1447, 1456, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2230, 2232, 2235, 2246, 2294, 2307],\n+ \"99\": [15, 22, 145, 163, 284, 532, 741, 912, 1447, 1456, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2230, 2232, 2235, 2246, 2294, 2307],\n \"990\": [2199, 2230],\n \"9900\": 2199,\n \"990000\": 1894,\n \"990317\": 2199,\n \"990340\": 2207,\n \"9905\": 2226,\n \"990582\": [2184, 2195, 2214],\n@@ -36800,15 +36805,15 @@\n \"__eq__\": [1031, 1068, 2186, 2246, 2289, 2307],\n \"__finalize__\": [2192, 2194, 2197, 2199, 2218, 2220, 2298],\n \"__floordiv__\": [2241, 2307],\n \"__from_arrow__\": [10, 1068, 2299, 2302],\n \"__fspath__\": 2238,\n \"__func__\": 2202,\n \"__getattr__\": [15, 2199, 2218],\n- \"__getattribute__\": [10, 2294],\n+ \"__getattribute__\": [10, 2203, 2294],\n \"__getitem__\": [2, 203, 1031, 1064, 1387, 2185, 2191, 2193, 2194, 2197, 2217, 2225, 2226, 2246, 2249, 2254, 2257, 2265, 2271, 2274, 2277, 2283, 2286, 2289, 2294, 2295, 2297, 2298, 2300, 2301, 2302, 2306, 2307, 2308],\n \"__getstate__\": 2218,\n \"__git_version__\": 2246,\n \"__globally__\": 2190,\n \"__gt__\": 2188,\n \"__hash__\": [1068, 2246, 2302],\n \"__index_level_\": 9,\n@@ -36842,14 +36847,15 @@\n \"__str__\": 2217,\n \"__sub__\": 2241,\n \"__subclasses__\": 2186,\n \"__truediv__\": 2307,\n \"__unicode__\": [2217, 2220, 2249],\n \"__version__\": [5, 2199],\n \"__xor__\": 2298,\n+ \"_accessor\": 2203,\n \"_accumul\": [1031, 2298],\n \"_add_arithmetic_op\": 10,\n \"_add_comparison_op\": 10,\n \"_add_offset\": 2210,\n \"_add_timedeltalike_scalar\": 2210,\n \"_allows_duplicate_label\": 2192,\n \"_array_strptime_with_fallback\": 2210,\n@@ -36863,14 +36869,15 @@\n \"_bootstrap\": [2199, 2203, 2212, 2298],\n \"_buffer\": [16, 17, 18, 19, 2199, 2235],\n \"_built_with_meson\": 5,\n \"_cacheabl\": 2246,\n \"_call_chain\": [16, 17, 18, 19, 2199, 2235],\n \"_call_with_frames_remov\": 2199,\n \"_caller\": 153,\n+ \"_can_hold_identifiers_and_holds_nam\": 2203,\n \"_check_deprecated_callable_usag\": [2185, 2197],\n \"_check_for_loc\": 2193,\n \"_check_indexing_error\": [2185, 2191, 2194],\n \"_check_is_chained_assignment_poss\": 2197,\n \"_check_setitem_copi\": 2197,\n \"_check_tokenize_statu\": 2199,\n \"_cmp_method\": 2186,\n@@ -36956,14 +36963,15 @@\n \"_hash\": 2235,\n \"_hash_pandas_object\": 1043,\n \"_ilocindex\": 2197,\n \"_import_class\": 2199,\n \"_indexed_sam\": [2186, 2218],\n \"_indexslic\": 440,\n \"_inferred_dtyp\": [2208, 2249],\n+ \"_info_axi\": 2203,\n \"_internal_nam\": 10,\n \"_internal_names_set\": 10,\n \"_is_boolean\": [1056, 1068, 1081],\n \"_is_copi\": 2197,\n \"_is_mixed_typ\": 2197,\n \"_is_numer\": [1068, 2246, 2298],\n \"_is_scalar_access\": [2185, 2197],\n@@ -37604,15 +37612,15 @@\n \"attende\": 0,\n \"attent\": [3, 10, 2197, 2205, 2207, 2214, 2216],\n \"attr\": [15, 227, 705, 802, 1394, 1423, 1475, 1487, 2169, 2180, 2192, 2199, 2203, 2241, 2265, 2277, 2289, 2298, 2302, 2307],\n \"attr_col\": [272, 2199],\n \"attribut\": [4, 9, 10, 15, 24, 25, 31, 37, 38, 39, 46, 49, 63, 85, 107, 142, 153, 203, 210, 230, 249, 257, 266, 267, 272, 280, 286, 334, 337, 341, 342, 343, 344, 354, 386, 423, 441, 442, 443, 444, 445, 457, 459, 478, 487, 494, 509, 510, 514, 516, 532, 538, 540, 568, 573, 596, 629, 783, 784, 804, 882, 896, 914, 915, 916, 927, 930, 938, 953, 1027, 1028, 1029, 1030, 1031, 1068, 1069, 1071, 1072, 1078, 1081, 1090, 1091, 1117, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1140, 1141, 1142, 1143, 1144, 1164, 1168, 1202, 1203, 1221, 1263, 1264, 1342, 1345, 1347, 1374, 1387, 1391, 1394, 1395, 1396, 1402, 1403, 1404, 1405, 1413, 1414, 1420, 1421, 1422, 1424, 1432, 1433, 1435, 1436, 1475, 1487, 1488, 1490, 1494, 1495, 1496, 1506, 1524, 1542, 1560, 1578, 1598, 1620, 1637, 1657, 1677, 1699, 1720, 1741, 1758, 1776, 1793, 1815, 1839, 1857, 1876, 1894, 1912, 1930, 1947, 1964, 1982, 2000, 2018, 2036, 2054, 2072, 2090, 2108, 2127, 2145, 2167, 2172, 2184, 2185, 2192, 2193, 2196, 2199, 2202, 2203, 2204, 2206, 2208, 2210, 2211, 2214, 2216, 2217, 2218, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2239, 2241, 2242, 2246, 2249, 2251, 2253, 2254, 2257, 2259, 2263, 2265, 2271, 2273, 2277, 2278, 2280, 2283, 2289, 2292, 2293, 2295, 2297, 2298, 2302, 2307],\n \"attribute2\": [1395, 1396, 1413, 1414],\n \"attributeconflictwarn\": [2217, 2294],\n- \"attributeerror\": [10, 15, 845, 1069, 1071, 1072, 2220, 2221, 2222, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2239, 2241, 2246, 2247, 2249, 2250, 2265, 2266, 2269, 2271, 2274, 2275, 2276, 2278, 2279, 2281, 2283, 2286, 2289, 2290, 2294, 2295, 2298, 2301, 2302, 2307, 2308],\n+ \"attributeerror\": [10, 15, 845, 1069, 1071, 1072, 2203, 2220, 2221, 2222, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2239, 2241, 2246, 2247, 2249, 2250, 2265, 2266, 2269, 2271, 2274, 2275, 2276, 2278, 2279, 2281, 2283, 2286, 2289, 2290, 2294, 2295, 2298, 2301, 2302, 2307, 2308],\n \"attrs_onli\": [1487, 2199],\n \"audienc\": 2207,\n \"audit\": [16, 17, 18, 19, 2199, 2222, 2235],\n \"aug\": [1699, 1720, 2210, 2213],\n \"augment\": [2225, 2231, 2277],\n \"augspurg\": [35, 2247, 2248],\n \"august\": [586, 2210, 2213],\n@@ -37733,15 +37741,15 @@\n \"barboursvil\": 2199,\n \"bare\": [2, 2199, 2222, 2241, 2277],\n \"barf\": 2217,\n \"barh\": [26, 186, 188, 762, 764, 1188, 1249, 2211, 2220, 2221, 2228, 2260, 2294],\n \"bark\": 1365,\n \"barplot\": 2222,\n \"barycentr\": [146, 720, 1280, 2201, 2218],\n- \"base\": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2193, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302],\n+ \"base\": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302],\n \"base_dtyp\": 2199,\n \"base_pars\": 2199,\n \"base_typ\": [2194, 2201, 2203, 2294, 2302, 2307],\n \"basebal\": [15, 2186, 2191, 2197, 2227, 2231],\n \"baseblockmanag\": [2197, 2199, 2298],\n \"basebooleanreducetest\": 2307,\n \"basebuff\": [16, 17, 18, 19, 2199, 2235],\n@@ -38267,15 +38275,15 @@\n \"cheat\": [21, 2234],\n \"check\": [1, 2, 4, 5, 6, 8, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 30, 32, 36, 62, 75, 80, 81, 147, 153, 163, 169, 228, 256, 284, 346, 384, 386, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 420, 445, 447, 448, 453, 454, 455, 461, 469, 473, 478, 500, 501, 584, 592, 603, 615, 741, 799, 836, 837, 838, 839, 840, 841, 842, 843, 844, 888, 912, 976, 977, 978, 979, 1076, 1079, 1081, 1082, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1093, 1095, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1110, 1111, 1112, 1113, 1114, 1115, 1127, 1136, 1141, 1146, 1184, 1345, 1354, 1370, 1391, 1441, 1442, 1446, 1449, 1450, 1475, 1482, 1483, 1488, 1490, 1493, 1494, 1495, 1496, 1499, 1512, 1530, 1548, 1566, 1586, 1607, 1626, 1643, 1665, 1686, 1707, 1728, 1747, 1765, 1782, 1801, 1823, 1846, 1863, 1883, 1901, 1919, 1936, 1953, 1971, 1988, 2006, 2025, 2043, 2061, 2079, 2096, 2114, 2133, 2151, 2168, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2211, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2253, 2255, 2261, 2265, 2271, 2277, 2279, 2283, 2289, 2294, 2298, 2302, 2307, 2308],\n \"check_array_index\": 2172,\n \"check_categor\": [1494, 1495, 1496, 2242],\n \"check_category_ord\": 1496,\n \"check_column_typ\": 1494,\n \"check_datetimelike_compat\": [1494, 1496],\n- \"check_dict_or_set_index\": 2197,\n+ \"check_dict_or_set_index\": [2193, 2197],\n \"check_dtyp\": [1493, 1494, 1496, 2271, 2272, 2299],\n \"check_dtype_backend\": 2199,\n \"check_exact\": [1493, 1494, 1495, 1496, 2272, 2277, 2307, 2308],\n \"check_extens\": 2294,\n \"check_flag\": [1494, 1496, 2290],\n \"check_frame_typ\": 1494,\n \"check_freq\": [1494, 1496, 2278],\n@@ -40265,15 +40273,15 @@\n \"get_indexer_non_uniqu\": [379, 2192, 2197, 2238, 2243, 2246, 2249, 2265, 2277, 2289],\n \"get_indexer_nonuniqu\": 2302,\n \"get_ipython\": 2193,\n \"get_item\": [2191, 2194],\n \"get_jit_argu\": 2212,\n \"get_letter_typ\": 2195,\n \"get_level_valu\": [1416, 2185, 2218, 2220, 2228, 2232, 2241, 2246, 2253, 2256],\n- \"get_loc\": [2, 362, 383, 426, 492, 2185, 2191, 2193, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299],\n+ \"get_loc\": [2, 362, 383, 426, 492, 2185, 2191, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299],\n \"get_loc_level\": 2246,\n \"get_local\": 2265,\n \"get_local_scop\": 2193,\n \"get_method\": [16, 17, 18, 19, 2199, 2235],\n \"get_near_stock_pric\": [2216, 2223],\n \"get_offset\": [2265, 2298],\n \"get_offset_nam\": [2230, 2238],\n@@ -40833,15 +40841,15 @@\n \"inject\": [120, 1387],\n \"inkwarg\": 2199,\n \"inlin\": [3, 2196, 2199, 2207, 2218, 2229, 2246],\n \"inner\": [16, 17, 19, 25, 30, 74, 96, 110, 153, 169, 241, 279, 404, 583, 619, 821, 1146, 1446, 1448, 2186, 2193, 2200, 2204, 2208, 2220, 2246, 2254, 2283, 2289, 2307],\n \"inner_join\": [16, 17, 19],\n \"innermost\": [247, 880, 1478, 2231],\n \"inplac\": [16, 17, 18, 19, 87, 89, 92, 111, 112, 114, 120, 124, 125, 146, 163, 181, 203, 209, 210, 212, 214, 228, 233, 234, 284, 370, 418, 421, 483, 500, 598, 601, 616, 633, 634, 636, 700, 701, 720, 741, 759, 783, 784, 787, 789, 807, 808, 912, 1166, 1167, 1223, 1224, 1280, 1387, 2190, 2192, 2214, 2215, 2218, 2220, 2221, 2222, 2228, 2229, 2230, 2231, 2235, 2238, 2241, 2246, 2265, 2271, 2273, 2275, 2276, 2277, 2278, 2289, 2290, 2291, 2292, 2293, 2295, 2297, 2298, 2302, 2307],\n- \"input\": [2, 3, 10, 13, 20, 24, 30, 31, 34, 49, 56, 63, 68, 69, 76, 78, 81, 85, 91, 92, 94, 97, 99, 100, 107, 108, 109, 120, 126, 129, 131, 134, 141, 143, 160, 162, 163, 171, 173, 183, 197, 199, 204, 206, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 227, 230, 233, 234, 244, 246, 256, 259, 264, 270, 273, 275, 278, 281, 284, 286, 346, 351, 354, 378, 380, 405, 415, 425, 426, 459, 465, 489, 499, 540, 573, 577, 578, 585, 596, 603, 616, 617, 620, 622, 629, 630, 631, 694, 702, 706, 707, 709, 710, 713, 717, 719, 734, 738, 739, 740, 741, 747, 749, 750, 753, 761, 773, 777, 780, 785, 787, 788, 790, 791, 792, 793, 795, 796, 797, 802, 804, 856, 877, 878, 888, 890, 893, 900, 901, 904, 912, 916, 927, 930, 938, 953, 1031, 1076, 1078, 1090, 1116, 1117, 1118, 1121, 1123, 1124, 1125, 1152, 1154, 1155, 1156, 1164, 1202, 1203, 1204, 1211, 1213, 1221, 1230, 1264, 1298, 1299, 1305, 1306, 1308, 1322, 1323, 1325, 1342, 1343, 1354, 1389, 1390, 1392, 1393, 1395, 1396, 1397, 1398, 1403, 1404, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1417, 1418, 1430, 1433, 1441, 1442, 1449, 1450, 1458, 1467, 1469, 1470, 1475, 1482, 1486, 1487, 1498, 1499, 1500, 2163, 2172, 2184, 2185, 2186, 2187, 2188, 2191, 2193, 2194, 2195, 2196, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2234, 2235, 2236, 2238, 2241, 2242, 2246, 2249, 2250, 2257, 2263, 2264, 2265, 2267, 2269, 2271, 2272, 2273, 2274, 2275, 2277, 2278, 2283, 2284, 2287, 2289, 2291, 2292, 2293, 2294, 2298, 2299, 2302, 2306, 2307, 2308, 2309],\n+ \"input\": [2, 3, 10, 13, 20, 24, 30, 31, 34, 49, 56, 63, 68, 69, 76, 78, 81, 85, 91, 92, 94, 97, 99, 100, 107, 108, 109, 120, 126, 129, 131, 134, 141, 143, 160, 162, 163, 171, 173, 183, 197, 199, 204, 206, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 227, 230, 233, 234, 244, 246, 256, 259, 264, 270, 273, 275, 278, 281, 284, 286, 346, 351, 354, 378, 380, 405, 415, 425, 426, 459, 465, 489, 499, 540, 573, 577, 578, 585, 596, 603, 616, 617, 620, 622, 629, 630, 631, 694, 702, 706, 707, 709, 710, 713, 717, 719, 734, 738, 739, 740, 741, 747, 749, 750, 753, 761, 773, 777, 780, 785, 787, 788, 790, 791, 792, 793, 795, 796, 797, 802, 804, 856, 877, 878, 888, 890, 893, 900, 901, 904, 912, 916, 927, 930, 938, 953, 1031, 1076, 1078, 1090, 1116, 1117, 1118, 1121, 1123, 1124, 1125, 1152, 1154, 1155, 1156, 1164, 1202, 1203, 1204, 1211, 1213, 1221, 1230, 1264, 1298, 1299, 1305, 1306, 1308, 1322, 1323, 1325, 1342, 1343, 1354, 1389, 1390, 1392, 1393, 1395, 1396, 1397, 1398, 1403, 1404, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1417, 1418, 1430, 1433, 1441, 1442, 1449, 1450, 1458, 1467, 1469, 1470, 1475, 1482, 1486, 1487, 1498, 1499, 1500, 2163, 2172, 2184, 2185, 2186, 2187, 2188, 2191, 2193, 2194, 2195, 2196, 2197, 2199, 2200, 2201, 2203, 2204, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2234, 2235, 2236, 2238, 2241, 2242, 2246, 2249, 2250, 2257, 2263, 2264, 2265, 2267, 2269, 2271, 2272, 2273, 2274, 2275, 2277, 2278, 2283, 2284, 2287, 2289, 2291, 2292, 2293, 2294, 2298, 2299, 2302, 2306, 2307, 2308, 2309],\n \"input_arrai\": 2199,\n \"insec\": 873,\n \"insensit\": [533, 857, 1469, 1486, 2202, 2221, 2277],\n \"insert\": [2, 34, 63, 214, 255, 258, 267, 420, 789, 799, 821, 889, 896, 1061, 1345, 1391, 1416, 1488, 1490, 2185, 2186, 2191, 2193, 2195, 2196, 2202, 2207, 2217, 2218, 2219, 2220, 2221, 2222, 2225, 2226, 2228, 2229, 2233, 2238, 2242, 2246, 2249, 2265, 2271, 2277, 2283, 2289, 2293, 2294, 2298, 2302, 2304, 2306, 2307],\n \"insert_on_conflict_noth\": [267, 896],\n \"insert_on_conflict_upd\": [267, 896],\n \"insid\": [2, 8, 13, 22, 25, 77, 89, 124, 146, 203, 251, 259, 375, 466, 601, 700, 720, 884, 890, 1031, 1054, 1118, 1280, 1469, 1486, 1498, 2186, 2193, 2194, 2196, 2197, 2199, 2201, 2227, 2241, 2246, 2249, 2261, 2263, 2264, 2265, 2271, 2307],\n@@ -40967,15 +40975,15 @@\n \"ip\": [10, 2241],\n \"ipaddress\": 10,\n \"iparrai\": 2241,\n \"ipc\": 2199,\n \"ipi\": 2202,\n \"ipv4address\": 10,\n \"ipv6\": [10, 1031],\n- \"ipython\": [4, 26, 257, 1069, 1071, 1072, 1345, 1391, 1488, 1490, 2184, 2186, 2193, 2194, 2196, 2197, 2199, 2207, 2219, 2222, 2227, 2230, 2232, 2235, 2236, 2242, 2246, 2247, 2251, 2257, 2258, 2265],\n+ \"ipython\": [4, 26, 257, 1069, 1071, 1072, 1345, 1391, 1488, 1490, 2184, 2186, 2193, 2194, 2196, 2197, 2199, 2203, 2207, 2219, 2222, 2227, 2230, 2232, 2235, 2236, 2242, 2246, 2247, 2251, 2257, 2258, 2265],\n \"ipythondir\": 2202,\n \"ipywidget\": 2207,\n \"iqr\": [91, 190, 766, 1458],\n \"iri\": [1455, 1461, 2191, 2211, 2225],\n \"irow\": [2216, 2228, 2235, 2257],\n \"irregular\": [15, 2210, 2234, 2235, 2261, 2275, 2277],\n \"irrelev\": [0, 2298],\n@@ -44981,15 +44989,15 @@\n \"tzfile\": [286, 329, 330, 331, 684, 685, 686, 953, 956, 972, 1013, 1014, 2210, 2221],\n \"tzinfo\": [277, 278, 286, 324, 329, 330, 331, 334, 575, 679, 684, 685, 686, 903, 904, 953, 983, 995, 1001, 1004, 1012, 1344, 2210, 2221, 2222, 2238, 2239, 2241, 2283, 2294, 2303],\n \"tzlocal\": [2232, 2246, 2298],\n \"tzname\": 2294,\n \"tzoffset\": 2222,\n \"tzser\": 575,\n \"tzutc\": [2210, 2246],\n- \"u\": [1, 3, 4, 5, 7, 13, 17, 18, 31, 203, 258, 287, 311, 330, 331, 532, 663, 664, 685, 686, 889, 905, 909, 916, 917, 918, 920, 921, 927, 930, 938, 939, 941, 946, 953, 954, 957, 995, 1017, 1085, 1087, 1088, 1204, 1476, 1482, 1483, 1484, 1498, 1500, 2163, 2184, 2185, 2186, 2193, 2194, 2195, 2199, 2203, 2205, 2207, 2208, 2209, 2210, 2218, 2222, 2226, 2228, 2230, 2235, 2238, 2241, 2246, 2249, 2294, 2298, 2302, 2307],\n+ \"u\": [1, 3, 4, 5, 7, 13, 17, 18, 31, 203, 258, 287, 311, 330, 331, 532, 663, 664, 685, 686, 889, 905, 909, 916, 917, 918, 920, 921, 927, 930, 938, 939, 941, 946, 953, 954, 957, 995, 1017, 1085, 1087, 1088, 1204, 1476, 1482, 1483, 1484, 1498, 1500, 2163, 2184, 2185, 2186, 2193, 2194, 2195, 2199, 2203, 2205, 2207, 2208, 2209, 2210, 2222, 2226, 2228, 2230, 2235, 2238, 2241, 2246, 2249, 2294, 2298, 2302, 2307],\n \"u1\": [131, 1118, 2185, 2186, 2199],\n \"u4\": 2197,\n \"u5\": 2197,\n \"u8\": 2186,\n \"ubuntu\": 5,\n \"udf\": [72, 73, 77, 273, 581, 582, 586, 900, 1148, 1149, 1152, 1168, 1203, 1207, 1208, 1211, 1225, 1264, 1269, 1270, 1304, 1321, 2195, 2196, 2294],\n \"ufunc\": [10, 586, 808, 1031, 2185, 2186, 2191, 2206, 2213, 2219, 2221, 2232, 2246, 2265, 2277, 2281, 2289, 2293, 2294, 2298, 2307],\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "unified_diff": "@@ -1847,25 +1847,25 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....: \n-310 us +- 4.77 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-126 us +- 862 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+633 us +- 127 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+223 us +- 7.74 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n \n \n
In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n    .....: %timeit ser.take(indexer)\n    .....: \n-147 us +- 8.29 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n-126 us +- 3.59 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+452 us +- 89 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+457 us +- 167 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n 
\n
\n \n
\n

Index types#

\n

We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown here,\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -1245,23 +1245,23 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....:\n-310 us +- 4.77 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-126 us +- 862 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+633 us +- 127 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+223 us +- 7.74 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n .....: %timeit ser.take(indexer)\n .....:\n-147 us +- 8.29 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n-126 us +- 3.59 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+452 us +- 89 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+457 us +- 167 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n *\b**\b**\b**\b**\b* I\bIn\bnd\bde\bex\bx t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b**\b*\n We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown _\bh_\be_\br_\be, and\n documentation about TimedeltaIndex is found _\bh_\be_\br_\be.\n In the following sub-sections we will highlight some other index types.\n *\b**\b**\b**\b* C\bCa\bat\bte\beg\bgo\bor\bri\bic\bca\bal\blI\bIn\bnd\bde\bex\bx_\b#\b# *\b**\b**\b**\b*\n _\bC_\ba_\bt_\be_\bg_\bo_\br_\bi_\bc_\ba_\bl_\bI_\bn_\bd_\be_\bx is a type of index that is useful for supporting indexing with\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "unified_diff": "@@ -592,31 +592,31 @@\n ...: s += f(a + i * dx)\n ...: return s * dx\n ...: \n \n \n

We achieve our result by using DataFrame.apply() (row-wise):

\n
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)\n-85.1 ms +- 78.9 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+184 ms +- 7.08 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

Let\u2019s take a look and see where the time is spent during this operation\n using the prun ipython magic function:

\n
# most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 0.288 seconds\n+         605946 function calls (605928 primitive calls) in 1.454 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.176    0.000    0.254    0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n-   552423    0.078    0.000    0.078    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n-     3000    0.006    0.000    0.023    0.000 series.py:1095(__getitem__)\n-     3000    0.004    0.000    0.010    0.000 series.py:1220(_get_value)\n+     1000    0.766    0.001    1.279    0.001 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n+   552423    0.513    0.000    0.513    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n+     3000    0.027    0.000    0.119    0.000 series.py:1095(__getitem__)\n+    16098    0.020    0.000    0.027    0.000 {built-in method builtins.isinstance}\n 
\n
\n

By far the majority of time is spend inside either integrate_f or f,\n hence we\u2019ll concentrate our efforts cythonizing these two functions.

\n
\n
\n

Plain Cython#

\n@@ -634,15 +634,15 @@\n ...: for i in range(N):\n ...: s += f_plain(a + i * dx)\n ...: return s * dx\n ...: \n \n \n
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)\n-77.9 ms +- 1.18 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+145 ms +- 12.1 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

This has improved the performance compared to the pure Python approach by one-third.

\n
\n
\n

Declaring C types#

\n

We can annotate the function variables and return types as well as use cdef\n@@ -658,36 +658,36 @@\n ....: for i in range(N):\n ....: s += f_typed(a + i * dx)\n ....: return s * dx\n ....: \n \n \n

In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-10.2 ms +- 17.2 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+28.3 ms +- 3.28 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

Annotating the functions with C types yields an over ten times performance improvement compared to\n the original Python implementation.

\n
\n
\n

Using ndarray#

\n

When re-profiling, time is spent creating a Series from each row, and calling __getitem__ from both\n the index and the series (three times for each row). These Python function calls are expensive and\n can be improved by passing an np.ndarray.

\n
In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.034 seconds\n+         52523 function calls (52505 primitive calls) in 0.119 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.006    0.000    0.022    0.000 series.py:1095(__getitem__)\n-     3000    0.004    0.000    0.009    0.000 series.py:1220(_get_value)\n-    16098    0.003    0.000    0.004    0.000 {built-in method builtins.isinstance}\n-     3000    0.003    0.000    0.003    0.000 base.py:3777(get_loc)\n+     3000    0.019    0.000    0.084    0.000 series.py:1095(__getitem__)\n+    16098    0.015    0.000    0.019    0.000 {built-in method builtins.isinstance}\n+     3000    0.013    0.000    0.034    0.000 series.py:1220(_get_value)\n+     3000    0.012    0.000    0.021    0.000 indexing.py:2765(check_dict_or_set_indexers)\n 
\n
\n
In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n@@ -722,33 +722,33 @@\n 
\n

This implementation creates an array of zeros and inserts the result\n of integrate_f_typed applied over each row. Looping over an ndarray is faster\n in Cython than looping over a Series object.

\n

Since apply_integrate_f is typed to accept an np.ndarray, Series.to_numpy()\n calls are needed to utilize this function.

\n
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-1.89 ms +- 455 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+2.43 ms +- 55.3 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

Performance has improved from the prior implementation by almost ten times.

\n
\n
\n

Disabling compiler directives#

\n

The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s boundscheck\n and wraparound checks can yield more performance.

\n
In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-         78 function calls in 0.002 seconds\n+         78 function calls in 0.003 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-        1    0.002    0.002    0.002    0.002 <string>:1(<module>)\n+        1    0.002    0.002    0.003    0.003 <string>:1(<module>)\n         1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}\n-        1    0.000    0.000    0.002    0.002 {built-in method builtins.exec}\n+        1    0.000    0.000    0.003    0.003 {built-in method builtins.exec}\n         3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n 
\n
\n
In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n@@ -1180,19 +1180,19 @@\n compared to standard Python syntax for large DataFrame. This engine requires the\n optional dependency numexpr to be installed.

\n

The 'python' engine is generally not useful except for testing\n other evaluation engines against it. You will achieve no performance\n benefits using eval() with engine='python' and may\n incur a performance hit.

\n
In [40]: %timeit df1 + df2 + df3 + df4\n-14.8 ms +- 154 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.23 s +- 154 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")\n-15.3 ms +- 286 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.28 s +- 203 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
\n
\n

The DataFrame.eval() method#

\n

In addition to the top level pandas.eval() function you can also\n evaluate an expression in the \u201ccontext\u201d of a DataFrame.

\n@@ -1307,39 +1307,39 @@\n
In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]\n 
\n
\n

DataFrame arithmetic:

\n
In [60]: %timeit df1 + df2 + df3 + df4\n-15.3 ms +- 312 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.27 s +- 226 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")\n-7.99 ms +- 165 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+327 ms +- 44.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n

DataFrame comparison:

\n
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-16.1 ms +- 94.9 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+58.2 ms +- 4.26 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")\n-5.07 ms +- 20.3 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+18.5 ms +- 1.08 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

DataFrame arithmetic with unaligned axes.

\n
In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-36.2 ms +- 200 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+2.02 s +- 452 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")\n-16.2 ms +- 125 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+383 ms +- 132 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
\n

Note

\n

Operations such as

\n
1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -110,32 +110,33 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f(a + i * dx)\n    ...:     return s * dx\n    ...:\n We achieve our result by using _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\ba_\bp_\bp_\bl_\by_\b(_\b) (row-wise):\n In [5]: %timeit df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]), axis=1)\n-85.1 ms +- 78.9 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+184 ms +- 7.08 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Let\u2019s take a look and see where the time is spent during this operation using\n the _\bp_\br_\bu_\bn_\b _\bi_\bp_\by_\bt_\bh_\bo_\bn_\b _\bm_\ba_\bg_\bi_\bc_\b _\bf_\bu_\bn_\bc_\bt_\bi_\bo_\bn:\n # most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 0.288 seconds\n+         605946 function calls (605928 primitive calls) in 1.454 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.176    0.000    0.254    0.000 :1\n+     1000    0.766    0.001    1.279    0.001 :1\n (integrate_f)\n-   552423    0.078    0.000    0.078    0.000 :1\n+   552423    0.513    0.000    0.513    0.000 :1\n (f)\n-     3000    0.006    0.000    0.023    0.000 series.py:1095(__getitem__)\n-     3000    0.004    0.000    0.010    0.000 series.py:1220(_get_value)\n+     3000    0.027    0.000    0.119    0.000 series.py:1095(__getitem__)\n+    16098    0.020    0.000    0.027    0.000 {built-in method\n+builtins.isinstance}\n By far the majority of time is spend inside either integrate_f or f, hence\n we\u2019ll concentrate our efforts cythonizing these two functions.\n *\b**\b**\b**\b* P\bPl\bla\bai\bin\bn C\bCy\byt\bth\bho\bon\bn_\b#\b# *\b**\b**\b**\b*\n First we\u2019re going to need to import the Cython magic function to IPython:\n In [7]: %load_ext Cython\n Now, let\u2019s simply copy our functions over to Cython:\n In [8]: %%cython\n@@ -146,15 +147,15 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f_plain(a + i * dx)\n    ...:     return s * dx\n    ...:\n In [9]: %timeit df.apply(lambda x: integrate_f_plain(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-77.9 ms +- 1.18 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+145 ms +- 12.1 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n This has improved the performance compared to the pure Python approach by one-\n third.\n *\b**\b**\b**\b* D\bDe\bec\bcl\bla\bar\bri\bin\bng\bg C\bC t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b*\n We can annotate the function variables and return types as well as use cdef and\n cpdef to improve performance:\n In [10]: %%cython\n    ....: cdef double f_typed(double x) except? -2:\n@@ -166,35 +167,36 @@\n    ....:     dx = (b - a) / N\n    ....:     for i in range(N):\n    ....:         s += f_typed(a + i * dx)\n    ....:     return s * dx\n    ....:\n In [11]: %timeit df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-10.2 ms +- 17.2 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+28.3 ms +- 3.28 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Annotating the functions with C types yields an over ten times performance\n improvement compared to the original Python implementation.\n *\b**\b**\b**\b* U\bUs\bsi\bin\bng\bg n\bnd\bda\bar\brr\bra\bay\by_\b#\b# *\b**\b**\b**\b*\n When re-profiling, time is spent creating a _\bS_\be_\br_\bi_\be_\bs from each row, and calling\n __getitem__ from both the index and the series (three times for each row).\n These Python function calls are expensive and can be improved by passing an\n np.ndarray.\n In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x\n [\"N\"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.034 seconds\n+         52523 function calls (52505 primitive calls) in 0.119 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.006    0.000    0.022    0.000 series.py:1095(__getitem__)\n-     3000    0.004    0.000    0.009    0.000 series.py:1220(_get_value)\n-    16098    0.003    0.000    0.004    0.000 {built-in method\n+     3000    0.019    0.000    0.084    0.000 series.py:1095(__getitem__)\n+    16098    0.015    0.000    0.019    0.000 {built-in method\n builtins.isinstance}\n-     3000    0.003    0.000    0.003    0.000 base.py:3777(get_loc)\n+     3000    0.013    0.000    0.034    0.000 series.py:1220(_get_value)\n+     3000    0.012    0.000    0.021    0.000 indexing.py:2765\n+(check_dict_or_set_indexers)\n In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n    ....: cpdef double integrate_f_typed(double a, double b, int N):\n    ....:     cdef int i\n@@ -235,31 +237,31 @@\n This implementation creates an array of zeros and inserts the result of\n integrate_f_typed applied over each row. Looping over an ndarray is faster in\n Cython than looping over a _\bS_\be_\br_\bi_\be_\bs object.\n Since apply_integrate_f is typed to accept an np.ndarray, _\bS_\be_\br_\bi_\be_\bs_\b._\bt_\bo_\b__\bn_\bu_\bm_\bp_\by_\b(_\b)\n calls are needed to utilize this function.\n In [14]: %timeit apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(), df\n [\"N\"].to_numpy())\n-1.89 ms +- 455 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+2.43 ms +- 55.3 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n Performance has improved from the prior implementation by almost ten times.\n *\b**\b**\b**\b* D\bDi\bis\bsa\bab\bbl\bli\bin\bng\bg c\bco\bom\bmp\bpi\bil\ble\ber\br d\bdi\bir\bre\bec\bct\bti\biv\bve\bes\bs_\b#\b# *\b**\b**\b**\b*\n The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s\n boundscheck and wraparound checks can yield more performance.\n In [15]: %prun -l 4 apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n-         78 function calls in 0.002 seconds\n+         78 function calls in 0.003 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-        1    0.002    0.002    0.002    0.002 :1()\n+        1    0.002    0.002    0.003    0.003 :1()\n         1    0.000    0.000    0.000    0.000 {method 'disable' of\n '_lsprof.Profiler' objects}\n-        1    0.000    0.000    0.002    0.002 {built-in method builtins.exec}\n+        1    0.000    0.000    0.003    0.003 {built-in method builtins.exec}\n         3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:\n    ....:     return x * (x - 1)\n@@ -646,17 +648,17 @@\n The 'numexpr' engine is the more performant engine that can yield performance\n improvements compared to standard Python syntax for large _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be. This\n engine requires the optional dependency numexpr to be installed.\n The 'python' engine is generally n\bno\bot\bt useful except for testing other evaluation\n engines against it. You will achieve n\bno\bo performance benefits using _\be_\bv_\ba_\bl_\b(_\b) with\n engine='python' and may incur a performance hit.\n In [40]: %timeit df1 + df2 + df3 + df4\n-14.8 ms +- 154 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.23 s +- 154 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [41]: %timeit pd.eval(\"df1 + df2 + df3 + df4\", engine=\"python\")\n-15.3 ms +- 286 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.28 s +- 203 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n *\b**\b**\b**\b* T\bTh\bhe\be _\bD\bD_\ba\ba_\bt\bt_\ba\ba_\bF\bF_\br\br_\ba\ba_\bm\bm_\be\be_\b.\b._\be\be_\bv\bv_\ba\ba_\bl\bl_\b(\b(_\b)\b) m\bme\bet\bth\bho\bod\bd_\b#\b# *\b**\b**\b**\b*\n In addition to the top level _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) function you can also evaluate an\n expression in the \u201ccontext\u201d of a _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be.\n In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=[\"a\", \"b\"])\n \n In [43]: df.eval(\"a + b\")\n Out[43]:\n@@ -753,29 +755,29 @@\n _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) works well with expressions containing large arrays.\n In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for\n _ in range(4)]\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic:\n In [60]: %timeit df1 + df2 + df3 + df4\n-15.3 ms +- 312 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+1.27 s +- 226 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [61]: %timeit pd.eval(\"df1 + df2 + df3 + df4\")\n-7.99 ms +- 165 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+327 ms +- 44.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be comparison:\n In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-16.1 ms +- 94.9 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+58.2 ms +- 4.26 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n In [63]: %timeit pd.eval(\"(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\")\n-5.07 ms +- 20.3 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+18.5 ms +- 1.08 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic with unaligned axes.\n In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-36.2 ms +- 200 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+2.02 s +- 452 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [66]: %timeit pd.eval(\"df1 + df2 + df3 + df4 + s\")\n-16.2 ms +- 125 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+383 ms +- 132 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n Note\n Operations such as\n 1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n ~1  # this is okay, but slower when using eval\n should be performed in Python. An exception will be raised if you try to\n perform any boolean/bitwise operations with scalar operands that are not of\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html", "unified_diff": "@@ -986,19 +986,26 @@\n Cell In[33], line 1\n ----> 1 table = pa.table([pa.array([1, 2, 3], type=pa.int64())], names=["a"])\n \n NameError: name 'pa' is not defined\n \n In [34]: df = table.to_pandas(types_mapper=pd.ArrowDtype)\n ---------------------------------------------------------------------------\n-NameError                                 Traceback (most recent call last)\n-Cell In[34], line 1\n+AttributeError                            Traceback (most recent call last)\n+<ipython-input-34-64ec62289cb4> in ?()\n ----> 1 df = table.to_pandas(types_mapper=pd.ArrowDtype)\n \n-NameError: name 'table' is not defined\n+/usr/lib/python3/dist-packages/pandas/core/generic.py in ?(self, name)\n+   6295             and name not in self._accessors\n+   6296             and self._info_axis._can_hold_identifiers_and_holds_name(name)\n+   6297         ):\n+   6298             return self[name]\n+-> 6299         return object.__getattribute__(self, name)\n+\n+AttributeError: 'DataFrame' object has no attribute 'to_pandas'\n \n In [35]: df\n Out[35]: \n      a    b\n 0  xxx  yyy\n 1   \u00a1\u00a1   \u00a1\u00a1\n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -526,19 +526,27 @@\n Cell In[33], line 1\n ----> 1 table = pa.table([pa.array([1, 2, 3], type=pa.int64())], names=[\"a\"])\n \n NameError: name 'pa' is not defined\n \n In [34]: df = table.to_pandas(types_mapper=pd.ArrowDtype)\n ---------------------------------------------------------------------------\n-NameError                                 Traceback (most recent call last)\n-Cell In[34], line 1\n+AttributeError                            Traceback (most recent call last)\n+ in ?()\n ----> 1 df = table.to_pandas(types_mapper=pd.ArrowDtype)\n \n-NameError: name 'table' is not defined\n+/usr/lib/python3/dist-packages/pandas/core/generic.py in ?(self, name)\n+   6295             and name not in self._accessors\n+   6296             and self._info_axis._can_hold_identifiers_and_holds_name\n+(name)\n+   6297         ):\n+   6298             return self[name]\n+-> 6299         return object.__getattribute__(self, name)\n+\n+AttributeError: 'DataFrame' object has no attribute 'to_pandas'\n \n In [35]: df\n Out[35]:\n      a    b\n 0  xxx  yyy\n 1   \u00a1\u00a1   \u00a1\u00a1\n \n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "unified_diff": "@@ -1086,16 +1086,16 @@\n    ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")\n    ....: counts = pd.Series(dtype=int)\n    ....: for path in files:\n    ....:     df = pd.read_parquet(path)\n    ....:     counts = counts.add(df["name"].value_counts(), fill_value=0)\n    ....: counts.astype(int)\n    ....: \n-CPU times: user 595 us, sys: 0 ns, total: 595 us\n-Wall time: 601 us\n+CPU times: user 960 us, sys: 0 ns, total: 960 us\n+Wall time: 971 us\n Out[32]: Series([], dtype: int32)\n 
\n
\n

Some readers, like pandas.read_csv(), offer parameters to control the\n chunksize when reading a single file.

\n

Manually chunking is an OK option for workflows that don\u2019t\n require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby(), are\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -644,16 +644,16 @@\n ....: files = pathlib.Path(\"data/timeseries/\").glob(\"ts*.parquet\")\n ....: counts = pd.Series(dtype=int)\n ....: for path in files:\n ....: df = pd.read_parquet(path)\n ....: counts = counts.add(df[\"name\"].value_counts(), fill_value=0)\n ....: counts.astype(int)\n ....:\n-CPU times: user 595 us, sys: 0 ns, total: 595 us\n-Wall time: 601 us\n+CPU times: user 960 us, sys: 0 ns, total: 960 us\n+Wall time: 971 us\n Out[32]: Series([], dtype: int32)\n Some readers, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\br_\be_\ba_\bd_\b__\bc_\bs_\bv_\b(_\b), offer parameters to control the chunksize\n when reading a single file.\n Manually chunking is an OK option for workflows that don\u2019t require too\n sophisticated of operations. Some operations, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\bg_\br_\bo_\bu_\bp_\bb_\by_\b(_\b),\n are much harder to do chunkwise. In these cases, you may be better switching to\n a different library that implements these out-of-core algorithms for you.\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "unified_diff": null, "details": [{"source1": "style.ipynb", "source2": "style.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9985610875706213%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2025-02-07T20:54:16.552859Z', \"", " \"'iopub.status.busy': '2025-02-07T20:54:16.552451Z', 'iopub.status.idle': \"", " \"'2025-02-07T20:54:18.442922Z', 'shell.execute_reply': \"", " \"'2025-02-07T20:54:18.442092Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2025-02-07T20:54:18.446880Z', 'iopub.status.busy': \"", " \"'2025-02-07T20:54:18.446470Z', 'iopub.status.idle': '2025-02-07T20:54:2 [\u2026]"], "unified_diff": "@@ -39,18 +39,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-03-13T06:59:48.318246Z\",\n- \"iopub.status.busy\": \"2026-03-13T06:59:48.318010Z\",\n- \"iopub.status.idle\": \"2026-03-13T06:59:48.751525Z\",\n- \"shell.execute_reply\": \"2026-03-13T06:59:48.750812Z\"\n+ \"iopub.execute_input\": \"2025-02-07T20:54:16.552859Z\",\n+ \"iopub.status.busy\": \"2025-02-07T20:54:16.552451Z\",\n+ \"iopub.status.idle\": \"2025-02-07T20:54:18.442922Z\",\n+ \"shell.execute_reply\": \"2025-02-07T20:54:18.442092Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot\\n\",\n \"# We have this here to trigger matplotlib's font cache stuff.\\n\",\n@@ -77,36 +77,36 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-03-13T06:59:48.754634Z\",\n- \"iopub.status.busy\": \"2026-03-13T06:59:48.754297Z\",\n- \"iopub.status.idle\": \"2026-03-13T06:59:49.018604Z\",\n- \"shell.execute_reply\": \"2026-03-13T06:59:49.018024Z\"\n+ \"iopub.execute_input\": \"2025-02-07T20:54:18.446880Z\",\n+ \"iopub.status.busy\": \"2025-02-07T20:54:18.446470Z\",\n+ \"iopub.status.idle\": \"2025-02-07T20:54:20.856915Z\",\n+ \"shell.execute_reply\": \"2025-02-07T20:54:20.855684Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import pandas as pd\\n\",\n \"import numpy as np\\n\",\n \"import matplotlib as mpl\\n\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-03-13T06:59:49.021503Z\",\n- \"iopub.status.busy\": \"2026-03-13T06:59:49.021180Z\",\n- \"iopub.status.idle\": \"2026-03-13T06:59:49.133038Z\",\n- \"shell.execute_reply\": \"2026-03-13T06:59:49.132438Z\"\n+ \"iopub.execute_input\": \"2025-02-07T20:54:20.860745Z\",\n+ \"iopub.status.busy\": \"2025-02-07T20:54:20.860182Z\",\n+ \"iopub.status.idle\": \"2025-02-07T20:54:21.196932Z\",\n+ \"shell.execute_reply\": \"2025-02-07T20:54:21.195753Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\\n\",\n \"from pandas.io.formats.style import Styler\\n\",\n@@ -123,18 +123,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-03-13T06:59:49.135729Z\",\n- \"iopub.status.busy\": \"2026-03-13T06:59:49.135435Z\",\n- \"iopub.status.idle\": \"2026-03-13T06:59:49.145087Z\",\n- \"shell.execute_reply\": \"2026-03-13T06:59:49.144549Z\"\n+ \"iopub.execute_input\": \"2025-02-07T20:54:21.201717Z\",\n+ \"iopub.status.busy\": \"2025-02-07T20:54:21.201184Z\",\n+ \"iopub.status.idle\": \"2025-02-07T20:54:21.221163Z\",\n+ \"shell.execute_reply\": \"2025-02-07T20:54:21.219979Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/html\": [\n \"