{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.CPQD7Kdd/b1/pandas_2.2.3+dfsg-9_i386.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.CPQD7Kdd/b2/pandas_2.2.3+dfsg-9_i386.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,5 +1,5 @@\n \n- 39f30fe22772d4b07a6d835e9f71373d 10795276 doc optional python-pandas-doc_2.2.3+dfsg-9_all.deb\n+ 926cd03e08958cb2271d3a7c4015e91a 10795400 doc optional python-pandas-doc_2.2.3+dfsg-9_all.deb\n ff4af08d5d4be9b6503081ef9dc78c9f 34673412 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-9_i386.deb\n 9fa8e6a808a40e70629057e4c8befb8e 4409080 python optional python3-pandas-lib_2.2.3+dfsg-9_i386.deb\n 6f05a87b66230b056112f4c7c394692b 3096828 python optional python3-pandas_2.2.3+dfsg-9_all.deb\n"}, {"source1": "python-pandas-doc_2.2.3+dfsg-9_all.deb", "source2": "python-pandas-doc_2.2.3+dfsg-9_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2025-03-29 13:01:52.000000 debian-binary\n--rw-r--r-- 0 0 0 147376 2025-03-29 13:01:52.000000 control.tar.xz\n--rw-r--r-- 0 0 0 10647708 2025-03-29 13:01:52.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 147392 2025-03-29 13:01:52.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 10647816 2025-03-29 13:01:52.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./control", "source2": "./control", "unified_diff": "@@ -1,13 +1,13 @@\n Package: python-pandas-doc\n Source: pandas\n Version: 2.2.3+dfsg-9\n Architecture: all\n Maintainer: Debian Science Team \n-Installed-Size: 209906\n+Installed-Size: 209904\n Depends: libjs-sphinxdoc (>= 8.1), libjs-mathjax\n Suggests: python3-pandas\n Section: doc\n Priority: optional\n Multi-Arch: foreign\n Homepage: https://pandas.pydata.org/\n Description: data structures for \"relational\" or \"labeled\" data - documentation\n"}, {"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -6256,74 +6256,74 @@\n -rw-r--r-- 0 root (0) root (0) 210184 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html\n -rw-r--r-- 0 root (0) root (0) 48665 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html\n -rw-r--r-- 0 root (0) root (0) 48657 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html\n -rw-r--r-- 0 root (0) root (0) 53295 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/release.html\n -rw-r--r-- 0 root (0) root (0) 269 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 17010 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/search.html\n--rw-r--r-- 0 root (0) root (0) 2359369 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 2359162 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n -rw-r--r-- 0 root (0) root (0) 259 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html\n -rw-r--r-- 0 root (0) root (0) 244 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/style.html\n -rw-r--r-- 0 root (0) root (0) 255 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/text.html\n -rw-r--r-- 0 root (0) root (0) 256 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 277 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 272 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/\n -rw-r--r-- 0 root (0) root (0) 171380 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html\n--rw-r--r-- 0 root (0) root (0) 283833 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n+-rw-r--r-- 0 root (0) root (0) 283834 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n -rw-r--r-- 0 root (0) root (0) 435940 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html\n -rw-r--r-- 0 root (0) root (0) 36646 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html\n -rw-r--r-- 0 root (0) root (0) 217513 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html\n -rw-r--r-- 0 root (0) root (0) 18313 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html\n -rw-r--r-- 0 root (0) root (0) 66164 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html\n -rw-r--r-- 0 root (0) root (0) 160414 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html\n -rw-r--r-- 0 root (0) root (0) 81376 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html\n--rw-r--r-- 0 root (0) root (0) 121090 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n+-rw-r--r-- 0 root (0) root (0) 121051 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n -rw-r--r-- 0 root (0) root (0) 107882 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html\n -rw-r--r-- 0 root (0) root (0) 300850 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html\n -rw-r--r-- 0 root (0) root (0) 59715 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html\n -rw-r--r-- 0 root (0) root (0) 395486 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html\n -rw-r--r-- 0 root (0) root (0) 41778 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html\n -rw-r--r-- 0 root (0) root (0) 1145820 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html\n -rw-r--r-- 0 root (0) root (0) 208885 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html\n -rw-r--r-- 0 root (0) root (0) 178690 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html\n -rw-r--r-- 0 root (0) root (0) 112153 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html\n--rw-r--r-- 0 root (0) root (0) 147524 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html\n+-rw-r--r-- 0 root (0) root (0) 146148 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html\n -rw-r--r-- 0 root (0) root (0) 162660 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 115581 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n -rw-r--r-- 0 root (0) root (0) 65811 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html\n -rw-r--r-- 0 root (0) root (0) 698240 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html\n--rw-r--r-- 0 root (0) root (0) 87843 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 87800 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 165302 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html\n -rw-r--r-- 0 root (0) root (0) 100947 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 486621 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 204461 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html\n -rw-r--r-- 0 root (0) root (0) 141947 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html\n -rw-r--r-- 0 root (0) root (0) 270 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html\n drwxr-xr-x 0 root (0) root (0) 0 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/\n -rw-r--r-- 0 root (0) root (0) 107681 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html\n -rw-r--r-- 0 root (0) root (0) 10569 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz\n -rw-r--r-- 0 root (0) root (0) 83987 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html\n -rw-r--r-- 0 root (0) root (0) 66492 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html\n -rw-r--r-- 0 root (0) root (0) 82312 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html\n -rw-r--r-- 0 root (0) root (0) 104316 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html\n--rw-r--r-- 0 root (0) root (0) 222537 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n+-rw-r--r-- 0 root (0) root (0) 222535 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n -rw-r--r-- 0 root (0) root (0) 89385 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html\n -rw-r--r-- 0 root (0) root (0) 243730 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html\n -rw-r--r-- 0 root (0) root (0) 83262 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html\n -rw-r--r-- 0 root (0) root (0) 252303 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html\n -rw-r--r-- 0 root (0) root (0) 68280 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html\n -rw-r--r-- 0 root (0) root (0) 75128 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html\n -rw-r--r-- 0 root (0) root (0) 145199 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html\n--rw-r--r-- 0 root (0) root (0) 115292 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.1.html\n+-rw-r--r-- 0 root (0) root (0) 115518 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.1.html\n -rw-r--r-- 0 root (0) root (0) 64656 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.2.html\n--rw-r--r-- 0 root (0) root (0) 230436 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.0.html\n--rw-r--r-- 0 root (0) root (0) 94984 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.1.html\n--rw-r--r-- 0 root (0) root (0) 222566 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.0.html\n--rw-r--r-- 0 root (0) root (0) 171419 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.1.html\n+-rw-r--r-- 0 root (0) root (0) 231394 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.0.html\n+-rw-r--r-- 0 root (0) root (0) 95028 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.1.html\n+-rw-r--r-- 0 root (0) root (0) 224090 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.0.html\n+-rw-r--r-- 0 root (0) root (0) 171888 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.1.html\n -rw-r--r-- 0 root (0) root (0) 349334 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.0.html\n -rw-r--r-- 0 root (0) root (0) 45179 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.1.html\n -rw-r--r-- 0 root (0) root (0) 48525 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.2.html\n -rw-r--r-- 0 root (0) root (0) 406224 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.0.html\n -rw-r--r-- 0 root (0) root (0) 52898 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.2.html\n -rw-r--r-- 0 root (0) root (0) 43404 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.3.html\n -rw-r--r-- 0 root (0) root (0) 255124 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.21.0.html\n"}, {"source1": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "source2": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -21485,24 +21485,24 @@\n \"000830\": 2214,\n \"000895\": 2195,\n \"000951\": 2186,\n \"000k\": 1489,\n \"000m\": 1489,\n \"000n\": 1489,\n \"000z\": 2294,\n- \"001\": [532, 874, 1467, 2193, 2232, 2264],\n+ \"001\": [532, 874, 1467, 2232, 2264],\n \"001000\": [917, 919, 922, 929, 1876, 2209],\n \"001294\": 2210,\n \"001372\": 2207,\n \"001376\": 2207,\n \"001427\": 2214,\n \"001438\": 2195,\n \"001486\": [102, 1158],\n \"00180\": 2294,\n- \"002\": [2193, 2264],\n+ \"002\": 2264,\n \"002000\": 2232,\n \"002040\": 2235,\n \"002118\": [2230, 2231],\n \"002653\": 2207,\n \"002846\": 2229,\n \"003\": [2185, 2193, 2235],\n \"003144\": 2210,\n@@ -21510,15 +21510,15 @@\n \"003494\": 15,\n \"003507\": [2209, 2218],\n \"003556\": 2207,\n \"00360\": 2294,\n \"003733\": 2207,\n \"003932\": 2216,\n \"003945\": 2210,\n- \"004\": [2186, 2227],\n+ \"004\": [2186, 2193, 2227],\n \"004000\": 2232,\n \"004005006\": [287, 939],\n \"004054\": 2229,\n \"004091\": [2204, 2257],\n \"004127\": 2207,\n \"004194\": 2186,\n \"004201\": 2186,\n@@ -21531,32 +21531,35 @@\n \"005000\": 2218,\n \"005361\": 2207,\n \"005383\": 2220,\n \"005446\": 2219,\n \"005462\": 2191,\n \"005977\": 2199,\n \"005979\": 2186,\n+ \"006\": 2193,\n \"006123\": 2207,\n \"006154\": [2185, 2197, 2199, 2202, 2204, 2215, 2257],\n \"0062\": 2191,\n \"006349\": 2195,\n \"006438\": 2215,\n \"006549\": [182, 760],\n \"006695\": 2186,\n \"006747\": [2185, 2197, 2199, 2202, 2204, 2215],\n \"006871\": 2212,\n \"006888\": 2220,\n \"006938\": 2207,\n+ \"007\": 2193,\n \"007200\": 2184,\n \"007207\": [2184, 2214],\n \"007717\": 2199,\n \"007824\": 15,\n \"007952\": 2207,\n \"007996\": 2186,\n \"007f\": 203,\n+ \"008\": 2193,\n \"008182\": 2204,\n \"008298\": 2186,\n \"008344\": 2207,\n \"008358\": 2207,\n \"008500\": 15,\n \"008543\": [102, 1158],\n \"008943\": [102, 1158],\n@@ -21569,54 +21572,54 @@\n \"009783\": 2207,\n \"009797\": 2186,\n \"009826\": [102, 1158, 2205],\n \"009920\": [2184, 2195, 2214],\n \"00am\": 2230,\n \"00index\": 2218,\n \"01\": [3, 15, 16, 17, 19, 29, 30, 31, 79, 80, 82, 88, 107, 121, 182, 187, 207, 213, 218, 219, 230, 242, 261, 270, 271, 276, 277, 278, 283, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 326, 329, 330, 331, 332, 333, 345, 362, 363, 423, 445, 510, 511, 513, 514, 515, 516, 517, 519, 521, 523, 525, 529, 531, 532, 533, 534, 535, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 566, 575, 591, 592, 593, 600, 629, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 684, 685, 686, 688, 689, 696, 760, 763, 781, 788, 793, 804, 817, 874, 893, 898, 899, 902, 903, 904, 905, 909, 910, 917, 919, 922, 929, 934, 939, 940, 943, 944, 945, 948, 949, 953, 954, 957, 959, 960, 969, 972, 982, 984, 997, 1000, 1001, 1003, 1004, 1005, 1011, 1014, 1016, 1017, 1020, 1021, 1024, 1051, 1075, 1078, 1106, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1164, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1221, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1344, 1345, 1367, 1391, 1392, 1393, 1436, 1447, 1452, 1475, 1488, 1490, 1498, 1500, 1501, 1506, 1524, 1542, 1560, 1620, 1699, 1720, 1741, 1793, 1815, 1857, 1930, 1947, 1982, 2036, 2054, 2090, 2108, 2127, 2163, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2261, 2264, 2265, 2271, 2283, 2289, 2294, 2298, 2302, 2307],\n+ \"010\": 2193,\n \"0100\": [575, 893, 957, 970, 997, 1004, 1014, 1016, 1020, 1021, 1498, 2186, 2199, 2210, 2246, 2271],\n \"010000\": [954, 1894],\n \"010010012\": [923, 2209],\n \"010026\": 2191,\n \"010081\": 15,\n \"010165\": 2199,\n \"010589\": 2193,\n \"010670\": [102, 1158],\n \"0108\": 2257,\n \"010903\": 2207,\n+ \"011\": 2193,\n \"011111\": [182, 760],\n \"011342\": 2207,\n \"011351\": 2207,\n \"011374\": 2195,\n \"011470\": 2207,\n \"011736\": 2186,\n \"011829\": 2207,\n \"01183\": 2229,\n \"011860\": [182, 760],\n \"011975\": 2207,\n- \"012\": 2193,\n \"012108\": 2207,\n \"012299\": 2207,\n \"0123456789123456\": [2164, 2165],\n \"012549\": 2207,\n \"012694\": 2199,\n \"012922\": 2219,\n- \"013\": 2193,\n \"013086\": 15,\n \"0133\": 2202,\n \"013448\": 2207,\n \"013605\": 2207,\n \"013684\": [182, 760],\n \"013692\": [102, 1158],\n \"013747\": 2199,\n \"013768\": 2230,\n \"013810\": [182, 760],\n \"013863\": 2199,\n \"013960\": [2185, 2197, 2199, 2202, 2204, 2215, 2257],\n- \"014\": [2191, 2193],\n+ \"014\": 2191,\n \"014061\": 2207,\n \"014073\": 2204,\n \"014103\": 2207,\n \"014138\": 2191,\n \"014144\": [102, 1158],\n \"014648\": 2186,\n \"014752\": 2235,\n@@ -21640,15 +21643,15 @@\n \"017106\": 2207,\n \"017118\": 2199,\n \"017152\": 2186,\n \"017263\": 2207,\n \"017276\": 2191,\n \"017587\": [2184, 2195, 2214],\n \"017796\": 2207,\n- \"018\": [2193, 2199],\n+ \"018\": 2199,\n \"018007\": 2207,\n \"018117\": 2191,\n \"018193\": 2207,\n \"018409\": 2207,\n \"018601\": [2184, 2214],\n \"018808\": 2207,\n \"018904\": 2207,\n@@ -21671,15 +21674,14 @@\n \"020208\": 2195,\n \"020376\": 2207,\n \"020399\": 2195,\n \"020485\": 2207,\n \"020544\": 2186,\n \"020762\": 2220,\n \"020940\": 2230,\n- \"021\": 2193,\n \"021244\": 2207,\n \"021255\": 2230,\n \"021292\": 2186,\n \"021377\": 2207,\n \"021382\": 2184,\n \"021499\": 2186,\n \"02155\": 30,\n@@ -21704,15 +21706,15 @@\n \"024580\": [2184, 2195, 2214],\n \"024738\": [102, 1158],\n \"024786\": 2207,\n \"024810\": 2207,\n \"0249\": [267, 896],\n \"024925\": 2195,\n \"024967\": 2207,\n- \"025\": [2186, 2222, 2227],\n+ \"025\": [2186, 2193, 2222, 2227],\n \"025054\": 2184,\n \"025270\": 2186,\n \"025363\": 2186,\n \"025367\": 2207,\n \"025747\": [2191, 2197, 2207],\n \"026036\": 2207,\n \"026158\": 2210,\n@@ -21774,15 +21776,15 @@\n \"033350\": 2207,\n \"033387\": 2186,\n \"033606\": 2186,\n \"0336061024141463\": 2186,\n \"033695\": 2186,\n \"033718\": 2204,\n \"033823\": 2210,\n- \"034\": [1433, 2193],\n+ \"034\": 1433,\n \"034069\": 2195,\n \"034326\": [2184, 2257],\n \"034374\": 2210,\n \"034446\": 2207,\n \"034512\": 2207,\n \"034523\": 2210,\n \"034571\": 2197,\n@@ -21833,14 +21835,15 @@\n \"041\": [1447, 2200, 2232],\n \"041290\": 2197,\n \"041575\": 2219,\n \"041665\": 2205,\n \"041898\": 2207,\n \"041927\": 2199,\n \"041933\": 2184,\n+ \"042\": 2193,\n \"042041\": 2207,\n \"042275\": [283, 910],\n \"042322\": 2207,\n \"042379\": [2184, 2195, 2214],\n \"0424\": 2257,\n \"042856\": 2218,\n \"042935\": 2207,\n@@ -21964,15 +21967,15 @@\n \"059481\": 2207,\n \"059552\": 2207,\n \"059761\": 2207,\n \"059869e\": 2191,\n \"059881\": 2210,\n \"059904\": 2214,\n \"05t00\": 2261,\n- \"06\": [26, 27, 29, 30, 31, 207, 213, 218, 230, 273, 292, 294, 332, 363, 526, 534, 536, 637, 644, 646, 688, 781, 788, 793, 804, 900, 969, 993, 1075, 1344, 1441, 1442, 1449, 1450, 1452, 1489, 1497, 1500, 1506, 1524, 1598, 1677, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2226, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2264, 2271, 2298, 2302],\n+ \"06\": [26, 27, 29, 30, 31, 207, 213, 218, 230, 273, 292, 294, 332, 363, 526, 534, 536, 637, 644, 646, 688, 781, 788, 793, 804, 900, 969, 993, 1075, 1344, 1441, 1442, 1449, 1450, 1452, 1489, 1497, 1500, 1506, 1524, 1598, 1677, 2184, 2186, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2226, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2264, 2271, 2298, 2302],\n \"060015\": 2207,\n \"060074\": 2185,\n \"060603\": 2207,\n \"060654\": 2207,\n \"060777\": 2207,\n \"061019\": 2199,\n \"061068\": 2210,\n@@ -22002,14 +22005,15 @@\n \"064034\": [15, 2191],\n \"064423\": 2207,\n \"064434\": 2207,\n \"065587\": 2218,\n \"065761\": 2207,\n \"065818\": [2204, 2207],\n \"065934\": [182, 760],\n+ \"066\": 2193,\n \"066126\": 2207,\n \"066510\": 2210,\n \"066533\": 2210,\n \"066786\": 2207,\n \"067091\": 2199,\n \"067137\": 2197,\n \"067503\": 2207,\n@@ -22098,41 +22102,40 @@\n \"079587\": 2230,\n \"079631\": 2207,\n \"0797\": 2202,\n \"079769\": 2207,\n \"079915\": 2193,\n \"07t00\": 2261,\n \"08\": [29, 30, 107, 207, 213, 230, 264, 273, 277, 292, 294, 316, 326, 330, 332, 629, 644, 646, 670, 680, 685, 688, 781, 788, 804, 900, 903, 1075, 1145, 1164, 1221, 1274, 1289, 1344, 1441, 1442, 1449, 1450, 1452, 1495, 1497, 1506, 1598, 1657, 1677, 1699, 1720, 1741, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2218, 2220, 2222, 2226, 2228, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2271, 2294, 2307],\n+ \"080\": 2193,\n \"0800\": [953, 2210],\n \"080174\": 2207,\n \"080372\": 2199,\n \"080952\": [2184, 2214],\n \"081009\": 2195,\n \"081161\": 2216,\n \"081249\": 2207,\n \"081304\": 2207,\n \"081447\": 2210,\n \"081666\": 2211,\n \"081748\": 2210,\n \"081842\": 2207,\n- \"082\": 2193,\n \"082240\": [2185, 2191, 2197, 2199],\n \"082423\": [2191, 2197],\n \"082523\": 2207,\n \"082764\": 2197,\n \"082900\": 2214,\n \"082901\": 2212,\n \"082960\": 2207,\n \"083010\": 2207,\n \"083333\": 2222,\n \"083352\": 2191,\n \"08335394550\": 1371,\n \"083515\": 15,\n \"083675\": 2207,\n- \"084\": 2193,\n \"084601\": 2191,\n \"084844\": [2185, 2191, 2197, 2202, 2204],\n \"084917\": 2195,\n \"084n\": 2202,\n \"084u\": 2202,\n \"085070\": 2207,\n \"085193\": 2207,\n@@ -22253,20 +22256,20 @@\n \"0n\": [1489, 2298],\n \"0px\": 2207,\n \"0rc0\": 13,\n \"0th\": [26, 249, 882, 1202, 2185, 2197, 2199, 2235],\n \"0x00\": 2294,\n \"0x40\": 2294,\n \"0x7efd0c0b0690\": 3,\n- \"0xdb416310\": 2197,\n- \"0xdbeee850\": 2195,\n- \"0xe0d134c8\": 2246,\n- \"0xe0d71580\": 2199,\n- \"0xe18ec480\": 2230,\n- \"0xe5f40938\": 2210,\n+ \"0xbfe91828\": 2230,\n+ \"0xd66d1440\": 2199,\n+ \"0xd8440280\": 2197,\n+ \"0xd8e4ba58\": 2195,\n+ \"0xe40a1398\": 2210,\n+ \"0xe601e3a0\": 2246,\n \"1\": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310],\n \"10\": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308],\n \"100\": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307],\n \"1000\": [9, 10, 15, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294],\n \"10000\": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266],\n \"100000\": [1354, 1372, 2199, 2201, 2210],\n \"1000000\": [144, 2199, 2228],\n@@ -23026,15 +23029,15 @@\n \"118810\": 28,\n \"11885\": 2230,\n \"11886\": 2232,\n \"1189\": [2185, 2197],\n \"11897\": 2235,\n \"11898\": 2235,\n \"11899\": 2230,\n- \"119\": [268, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2230, 2232, 2265],\n+ \"119\": [268, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2230, 2232, 2265],\n \"1190\": [2185, 2197],\n \"1191\": [2185, 2197],\n \"11915\": [2230, 2235],\n \"11916\": 2199,\n \"1192\": [2184, 2186],\n \"11920\": 2232,\n \"11920871129693428\": 2210,\n@@ -23424,15 +23427,15 @@\n \"12988\": 2231,\n \"12995\": 2232,\n \"12997\": 2294,\n \"12h\": [84, 595, 2210, 2231, 2239, 2240],\n \"12pt\": 2207,\n \"12th\": 2199,\n \"13\": [9, 15, 16, 17, 18, 19, 24, 25, 26, 28, 29, 30, 31, 32, 77, 108, 127, 133, 134, 157, 182, 187, 208, 213, 230, 268, 288, 341, 420, 522, 524, 530, 564, 566, 639, 703, 708, 732, 760, 763, 782, 788, 799, 804, 940, 1169, 1226, 1276, 1298, 1299, 1306, 1308, 1397, 1430, 1447, 1498, 1501, 1598, 1657, 1677, 2090, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2231, 2232, 2238, 2240, 2241, 2246, 2249, 2257, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"130\": [15, 1443, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2204, 2208, 2210, 2211, 2225, 2232, 2283],\n+ \"130\": [15, 1443, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2204, 2208, 2210, 2211, 2225, 2232, 2283],\n \"13000\": [2185, 2220],\n \"13000101\": 1498,\n \"13001\": 2232,\n \"13005\": 2231,\n \"13006\": 2232,\n \"13008\": 2231,\n \"13012\": 2241,\n@@ -24073,15 +24076,15 @@\n \"14781\": 2241,\n \"147824074\": 1006,\n \"14784\": 2235,\n \"147855\": 2235,\n \"14792\": 2235,\n \"147970\": 2207,\n \"14798\": 2235,\n- \"148\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2210, 2211, 2232],\n+ \"148\": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2202, 2210, 2211, 2232],\n \"14800\": 2235,\n \"148032\": 2199,\n \"148084\": 15,\n \"148098\": 2210,\n \"14811\": 2277,\n \"14816\": 2235,\n \"1482\": 2202,\n@@ -24150,15 +24153,15 @@\n \"14982\": 2235,\n \"14983\": 2235,\n \"1499\": 2212,\n \"14992\": 2235,\n \"14998\": 2235,\n \"14t15\": [955, 956, 957, 962, 970, 983, 990, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1013, 1014],\n \"15\": [4, 15, 16, 17, 18, 19, 22, 25, 26, 29, 30, 31, 72, 73, 81, 88, 91, 108, 112, 116, 121, 127, 133, 137, 157, 186, 208, 213, 230, 258, 268, 271, 277, 278, 345, 586, 600, 696, 703, 708, 732, 762, 782, 788, 804, 889, 899, 903, 904, 953, 955, 956, 957, 958, 970, 973, 992, 995, 997, 999, 1005, 1008, 1009, 1013, 1014, 1018, 1103, 1147, 1157, 1170, 1171, 1173, 1176, 1180, 1185, 1188, 1195, 1197, 1198, 1202, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1249, 1256, 1258, 1263, 1265, 1268, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1321, 1334, 1458, 1485, 1498, 1500, 1506, 1524, 1542, 1560, 1578, 1598, 1657, 1677, 1758, 1839, 1876, 1894, 1912, 1964, 2018, 2036, 2054, 2090, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2235, 2238, 2240, 2243, 2246, 2249, 2257, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"150\": [15, 111, 118, 132, 135, 159, 161, 175, 213, 233, 788, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2210, 2211],\n+ \"150\": [15, 111, 118, 132, 135, 159, 161, 175, 213, 233, 788, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2204, 2210, 2211],\n \"1500\": [2212, 2241, 2246],\n \"15000\": [2185, 2220],\n \"15001\": 2238,\n \"150025\": 2207,\n \"150031\": 2207,\n \"150036\": [2220, 2230],\n \"15005\": 2235,\n@@ -24319,15 +24322,15 @@\n \"15495\": 2238,\n \"1549507744\": 2199,\n \"1549507744249032\": 2197,\n \"154951\": [15, 2185, 2197, 2199, 2202],\n \"154971\": 22,\n \"154975\": 22,\n \"15498\": 2235,\n- \"155\": [1447, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2207, 2210, 2211, 2232],\n+ \"155\": [1447, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2207, 2210, 2211, 2232],\n \"15501\": 2246,\n \"15503\": 2235,\n \"15504\": 2235,\n \"15506\": 2246,\n \"15507\": 2238,\n \"15516\": 2235,\n \"15520\": 2235,\n@@ -24520,15 +24523,15 @@\n \"161657\": 2195,\n \"1617\": [16, 17, 18, 19, 2199, 2203, 2235, 2298],\n \"16179\": 2236,\n \"16180\": 2236,\n \"16189\": 2246,\n \"1619\": [16, 17, 18, 19, 2199, 2203, 2235, 2298],\n \"16199\": 2237,\n- \"162\": [2185, 2186, 2188, 2191, 2195, 2197, 2199, 2201, 2205, 2210, 2211, 2231, 2235],\n+ \"162\": [2185, 2186, 2188, 2191, 2195, 2197, 2199, 2201, 2210, 2211, 2231, 2235],\n \"1620\": [16, 17, 18, 19, 2199, 2203, 2235, 2298],\n \"16209\": 2236,\n \"1621\": [2194, 2201, 2203, 2283, 2294, 2307],\n \"16211\": 2238,\n \"162114\": 2207,\n \"16212\": 2238,\n \"16223\": [2235, 2241],\n@@ -24550,15 +24553,15 @@\n \"162754\": 2191,\n \"16282\": 2236,\n \"16284\": 2241,\n \"16285\": 2236,\n \"16288\": 2236,\n \"16291\": 2236,\n \"162969\": 2185,\n- \"163\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2210, 2211],\n+ \"163\": [2185, 2186, 2188, 2195, 2197, 2199, 2201, 2210, 2211],\n \"1630\": 2263,\n \"163008\": 2186,\n \"16301\": 2238,\n \"16302\": 2236,\n \"16306\": 2236,\n \"16316\": 2249,\n \"16319\": 2236,\n@@ -24959,15 +24962,15 @@\n \"17656\": 2265,\n \"1766\": 2199,\n \"176896\": 2207,\n \"17690\": 2241,\n \"17691\": 2249,\n \"17697\": 2246,\n \"1769950\": [182, 760],\n- \"177\": [259, 890, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2283, 2298],\n+ \"177\": [259, 890, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2283, 2298],\n \"17704\": 2238,\n \"177045\": 2186,\n \"17710\": 2238,\n \"17717\": 2241,\n \"17722\": 2241,\n \"177310\": 2207,\n \"17738\": 2238,\n@@ -24980,15 +24983,15 @@\n \"17758\": 2241,\n \"1776\": [195, 770, 2263],\n \"17776\": 2239,\n \"17778\": [2241, 2242],\n \"17780\": 2238,\n \"17791\": 2239,\n \"17798\": 2238,\n- \"178\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2212, 2283, 2298],\n+ \"178\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2212, 2283, 2298],\n \"178035\": 2207,\n \"17812\": 2249,\n \"17813\": 2241,\n \"17820\": 2249,\n \"1783\": 2263,\n \"17830\": 2241,\n \"17832\": 2246,\n@@ -25081,15 +25084,15 @@\n \"18178\": 2239,\n \"1818\": 2217,\n \"18184\": 2241,\n \"18186\": 2239,\n \"18187\": 2239,\n \"181873\": 2207,\n \"18198\": 2294,\n- \"182\": [176, 179, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2210, 2211, 2298],\n+ \"182\": [176, 179, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2210, 2211, 2298],\n \"18203\": 2239,\n \"18213\": 2241,\n \"18216\": 2239,\n \"18217\": [2241, 2265],\n \"18218\": 2241,\n \"18221\": 2241,\n \"18222\": 2265,\n@@ -25750,19 +25753,20 @@\n \"2021\": [288, 296, 318, 639, 652, 673, 940, 943, 948, 957, 970, 997, 1542, 2201, 2207, 2213, 2277, 2289, 2294],\n \"2022\": [5, 22, 523, 525, 528, 537, 982, 1185, 1246, 1288, 1491, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1542, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1560, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1578, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1598, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1620, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1637, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1657, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1677, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1699, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1720, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1758, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1776, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1793, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1815, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1839, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1857, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1876, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1894, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1912, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1930, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1947, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1964, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1982, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2018, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2036, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2054, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2108, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2127, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2145, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2186, 2203, 2213, 2227, 2298, 2302, 2307],\n \"2022a\": 2294,\n \"2023\": [34, 270, 298, 301, 320, 363, 511, 519, 526, 533, 543, 544, 545, 546, 547, 548, 549, 551, 554, 555, 556, 557, 558, 560, 563, 564, 565, 566, 567, 651, 894, 898, 954, 959, 960, 982, 984, 1000, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1024, 1122, 1141, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1501, 1620, 1930, 2090, 2127, 2145, 2213],\n \"202380\": 2207,\n \"20239\": [2241, 2265],\n \"2024\": [270, 544, 546, 555, 567, 894, 898, 2127, 2213],\n- \"2025\": [36, 544, 546, 555, 567, 894, 898, 2228],\n+ \"2025\": [36, 544, 546, 555, 567, 894, 898],\n \"20251\": 2307,\n \"2026\": 2228,\n \"202602\": 2205,\n \"202646\": 2230,\n+ \"2027\": 2228,\n \"20271\": 2241,\n \"202872\": [2184, 2214],\n \"202946\": 2207,\n \"203\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2253],\n \"2030\": 2265,\n \"20303\": 2265,\n \"20306\": 2302,\n@@ -26195,15 +26199,15 @@\n \"21867\": 2246,\n \"218745\": 2207,\n \"21877\": 2246,\n \"218792\": 2230,\n \"21891\": 2246,\n \"21892\": 2289,\n \"218983\": 2217,\n- \"219\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211],\n+ \"219\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2218],\n \"219049\": 2207,\n \"219115\": 2184,\n \"219182\": 2205,\n \"219217\": [2185, 2197, 2199, 2202, 2204],\n \"21925\": 2246,\n \"219296\": 2207,\n \"2193\": 2246,\n@@ -26411,15 +26415,15 @@\n \"22818\": [2283, 2298],\n \"22835\": 2246,\n \"22858\": 2246,\n \"22860\": 2246,\n \"22862\": 2246,\n \"22880\": 2246,\n \"22887\": 2246,\n- \"229\": [2185, 2186, 2188, 2195, 2197, 2199, 2210],\n+ \"229\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210],\n \"22903\": 2246,\n \"22905\": 2246,\n \"22912\": 2246,\n \"22922\": 2246,\n \"229349\": 2207,\n \"22938\": 2246,\n \"229453\": 2197,\n@@ -26573,15 +26577,15 @@\n \"23675\": 2246,\n \"23677\": 2246,\n \"23679\": 2249,\n \"23682\": 2246,\n \"23683\": 2249,\n \"23687\": 2246,\n \"23697\": 2289,\n- \"237\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2218, 2220, 2298],\n+ \"237\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220, 2298],\n \"237000\": [2185, 2220],\n \"23705\": 2249,\n \"23711\": 2246,\n \"237124\": 2207,\n \"237159\": 2199,\n \"23719\": 2265,\n \"237242\": [2191, 2207],\n@@ -27051,15 +27055,15 @@\n \"25851\": 2249,\n \"25860\": 2249,\n \"258648\": 2210,\n \"25871\": 2249,\n \"25880\": 2298,\n \"25893\": 2249,\n \"258993\": 2197,\n- \"259\": [2185, 2186, 2188, 2195, 2197, 2199, 2210],\n+ \"259\": [2186, 2188, 2193, 2195, 2197, 2199, 2205, 2210],\n \"25905\": 2249,\n \"25913\": 2249,\n \"259200\": [683, 2298],\n \"259200000000000\": [931, 933, 937],\n \"25922\": 2249,\n \"259260\": 2228,\n \"25928\": 2249,\n@@ -27269,15 +27273,15 @@\n \"268413\": 2207,\n \"2685\": 2221,\n \"268520\": [2184, 2195, 2214],\n \"2686\": 2215,\n \"2687\": 2215,\n \"2689\": 2215,\n \"268968\": 2207,\n- \"269\": [2185, 2186, 2188, 2195, 2197, 2199, 2210],\n+ \"269\": [2186, 2188, 2195, 2197, 2199, 2210],\n \"2690\": 2215,\n \"26916\": 2249,\n \"26919\": 2283,\n \"2692\": 2215,\n \"269219\": [242, 817],\n \"26934\": 2249,\n \"26939\": 2265,\n@@ -27311,15 +27315,15 @@\n \"2707\": 2199,\n \"27080\": 2250,\n \"27081\": 2271,\n \"27082\": 2249,\n \"27083\": 2249,\n \"27084\": 2249,\n \"27088\": 2249,\n- \"271\": [2186, 2188, 2195, 2197, 2199, 2210],\n+ \"271\": [2186, 2188, 2195, 2197, 2199, 2205, 2210],\n \"2710\": [2202, 2216],\n \"27101\": 2277,\n \"2710197\": 2202,\n \"27103\": 2265,\n \"27104\": 2277,\n \"27106\": 2265,\n \"27110\": 2249,\n@@ -27433,15 +27437,14 @@\n \"276183\": 2257,\n \"2762\": [2184, 2186, 2191],\n \"276232\": [15, 2184, 2185, 2186, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2225, 2231, 2241, 2264],\n \"27636\": 2250,\n \"276386\": 2207,\n \"27642\": 2250,\n \"276464\": 2230,\n- \"2765\": 2193,\n \"27656\": [2294, 2298],\n \"27660\": 2265,\n \"2766617129497566\": 2257,\n \"276662\": [2185, 2197, 2199, 2202, 2215, 2257],\n \"27668\": 2265,\n \"2767\": 2191,\n \"27676\": 2265,\n@@ -27797,15 +27800,15 @@\n \"29564\": 2289,\n \"29565\": 2265,\n \"29570\": 2277,\n \"295722\": 2235,\n \"29578\": 2265,\n \"295968\": 2207,\n \"295989\": 2197,\n- \"296\": [514, 516, 2186, 2197, 2199, 2210, 2255],\n+ \"296\": [514, 516, 2186, 2193, 2197, 2199, 2210, 2255],\n \"2960\": 2221,\n \"29608\": 2265,\n \"29618\": 2298,\n \"29623\": 2283,\n \"29624\": 2265,\n \"296326\": 2207,\n \"29641\": 2265,\n@@ -27974,15 +27977,15 @@\n \"304611\": 2197,\n \"30463\": 2265,\n \"304662\": 2199,\n \"304762\": 2207,\n \"30482\": 2298,\n \"30484\": 2271,\n \"30489\": 2298,\n- \"305\": [2186, 2197, 2199, 2210],\n+ \"305\": [2185, 2186, 2197, 2199, 2210],\n \"30511\": 2271,\n \"305288\": 2207,\n \"305384\": 2197,\n \"30543\": 2271,\n \"30546\": 2298,\n \"30562\": 2298,\n \"305657\": 2207,\n@@ -29061,15 +29064,15 @@\n \"35869\": 2277,\n \"35873\": 2283,\n \"35876\": 2273,\n \"35878\": 2273,\n \"35882\": 2273,\n \"35889\": 2277,\n \"35897\": 2274,\n- \"359\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 2186, 2193, 2197, 2199, 2207, 2210, 2255, 2298],\n+ \"359\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 2186, 2197, 2199, 2207, 2210, 2255, 2298],\n \"3590\": 2217,\n \"35923\": 2283,\n \"359235\": 2207,\n \"359261\": 2191,\n \"359284\": 2195,\n \"359299\": 2191,\n \"35931\": 2273,\n@@ -29258,15 +29261,15 @@\n \"36870\": 2277,\n \"368714\": 2184,\n \"368824\": 2230,\n \"36888\": 2277,\n \"36889\": 2275,\n \"36893\": 2283,\n \"36895\": 2277,\n- \"369\": [2186, 2197, 2199, 2210],\n+ \"369\": [2185, 2186, 2197, 2199, 2210],\n \"36900\": 2298,\n \"36904\": 2275,\n \"36907\": 2277,\n \"36908\": 2277,\n \"369081\": 2207,\n \"36909\": 2283,\n \"3691\": 2217,\n@@ -29421,23 +29424,22 @@\n \"37705\": 2277,\n \"37711\": 2276,\n \"37722\": 2277,\n \"377245\": 15,\n \"37725\": 2277,\n \"377263\": 2207,\n \"37733\": 2277,\n- \"3773406912\": 2246,\n \"37748\": 2277,\n \"37750\": 2289,\n \"377535\": 2186,\n \"37755\": 2276,\n \"37758\": 2277,\n \"377642\": 2210,\n \"37768\": 2277,\n- \"3777\": 2218,\n+ \"3777\": [2193, 2218],\n \"37782\": 2302,\n \"377887\": 2207,\n \"37799\": 2277,\n \"378\": [2186, 2197, 2199, 2207, 2210, 2231],\n \"3780\": 2222,\n \"37804\": 2283,\n \"378163\": 2207,\n@@ -29445,18 +29447,20 @@\n \"37821\": 2277,\n \"378261\": 2218,\n \"37827\": 2277,\n \"378298\": 2207,\n \"378430\": 2207,\n \"378528\": 2197,\n \"37867\": 2277,\n+ \"3786966512\": 2246,\n \"3787\": 2228,\n \"37877\": [2277, 2298],\n \"378782\": 993,\n \"378849\": 2191,\n+ \"3788646784\": 2246,\n \"37899\": 2289,\n \"379\": [2186, 2197, 2199, 2210, 2231],\n \"37901\": 2277,\n \"37909\": 2277,\n \"379098\": 2207,\n \"37910\": 2276,\n \"37918\": 2298,\n@@ -29640,15 +29644,14 @@\n \"3877\": 2217,\n \"38774\": 2278,\n \"38778\": 2283,\n \"38780\": 2283,\n \"38782\": 2283,\n \"38787\": 2283,\n \"38788\": 2278,\n- \"3879182560\": 2246,\n \"38792\": 2283,\n \"387949\": 2207,\n \"38798\": 2298,\n \"388\": [2186, 2197, 2199, 2210],\n \"38801\": 2278,\n \"3881\": [2202, 2220],\n \"388138\": 2210,\n@@ -30595,15 +30598,15 @@\n \"430489\": 2199,\n \"4305\": 2218,\n \"430505\": 2186,\n \"43059\": 2289,\n \"43075\": 2286,\n \"43080\": 2289,\n \"430860\": [2207, 2212],\n- \"431\": [28, 2186, 2193, 2199, 2210, 2298],\n+ \"431\": [28, 2186, 2199, 2210, 2298],\n \"43101\": 2289,\n \"43102\": 2289,\n \"43108\": 2286,\n \"431125\": 2184,\n \"43115\": 2289,\n \"431186\": 2199,\n \"4312\": 2218,\n@@ -31309,15 +31312,15 @@\n \"45967\": 2294,\n \"45981\": 2298,\n \"459855\": 2207,\n \"45986\": [2294, 2298],\n \"45991\": 2294,\n \"45999\": 2294,\n \"46\": [17, 19, 23, 29, 278, 331, 686, 904, 1323, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2277, 2283, 2297, 2302],\n- \"460\": [2199, 2205, 2210],\n+ \"460\": [2199, 2210],\n \"46001\": 2294,\n \"4601\": 2218,\n \"46015\": 2294,\n \"46018\": 2291,\n \"46026\": 2294,\n \"46037\": 2291,\n \"4604\": 2218,\n@@ -32060,15 +32063,15 @@\n \"4987\": 2225,\n \"4988\": 2238,\n \"498861\": 2191,\n \"49888\": 2300,\n \"49889\": 2299,\n \"49890\": 2298,\n \"49897\": 2298,\n- \"499\": [2184, 2185, 2199, 2205, 2210, 2249],\n+ \"499\": [2184, 2199, 2205, 2210, 2249],\n \"49907\": 2297,\n \"499148\": 2207,\n \"49921\": 2298,\n \"49922\": 2298,\n \"49929\": 2298,\n \"4993\": 2218,\n \"49944\": 2302,\n@@ -32358,15 +32361,15 @@\n \"5125\": 2218,\n \"51254\": 2302,\n \"51258\": 2298,\n \"512743\": 2193,\n \"51276\": 2302,\n \"5129\": 2220,\n \"51299\": 2298,\n- \"513\": [2193, 2199],\n+ \"513\": 2199,\n \"51302\": 2298,\n \"51316\": 2298,\n \"51349\": 2298,\n \"513520\": 2207,\n \"51353\": 2302,\n \"5136\": [2192, 2197],\n \"513600\": 2207,\n@@ -32684,15 +32687,15 @@\n \"52979\": 2302,\n \"52981\": 2302,\n \"52986\": 2302,\n \"529895\": 2219,\n \"52998\": 2302,\n \"52w\": 1433,\n \"53\": [15, 17, 19, 24, 25, 28, 29, 32, 532, 662, 957, 1377, 1793, 1815, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2271, 2283, 2294],\n- \"530\": 2199,\n+ \"530\": [2199, 2205],\n \"53001\": 2300,\n \"53009\": 2302,\n \"530113\": 2207,\n \"53013\": 2302,\n \"53014\": 2302,\n \"53039\": 2302,\n \"53045\": 2302,\n@@ -32702,15 +32705,15 @@\n \"530570\": 2260,\n \"53058\": 2302,\n \"530606\": 2207,\n \"53077\": 2300,\n \"53088\": 2302,\n \"530905\": 2204,\n \"53093\": 2300,\n- \"531\": [2193, 2199],\n+ \"531\": 2199,\n \"53103\": 2302,\n \"5310949\": 2202,\n \"531096\": 2230,\n \"5311\": 2202,\n \"53111\": 2307,\n \"53117\": 2300,\n \"5312\": 2218,\n@@ -32854,15 +32857,15 @@\n \"53746\": 2302,\n \"53747\": 2302,\n \"53767\": 2302,\n \"5377\": 2271,\n \"53786\": 2302,\n \"537874\": 2207,\n \"53792\": 2302,\n- \"538\": [2191, 2199],\n+ \"538\": [2191, 2199, 2205],\n \"53806\": 2302,\n \"53811\": 2302,\n \"53831\": 2302,\n \"53832\": 2302,\n \"53846\": 2304,\n \"538468\": 2210,\n \"53854\": 2302,\n@@ -32884,15 +32887,15 @@\n \"539708\": 2195,\n \"53979\": 2302,\n \"53983\": 2302,\n \"539890\": 2257,\n \"539990\": 2210,\n \"53h\": 2209,\n \"54\": [15, 17, 19, 29, 213, 345, 788, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2271, 2283],\n- \"540\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 2193, 2199],\n+ \"540\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 2199],\n \"5401\": 2277,\n \"54011\": 2302,\n \"540132\": 2207,\n \"5402\": 2219,\n \"540338\": 2235,\n \"54037\": 2302,\n \"54063\": 2302,\n@@ -32963,15 +32966,15 @@\n \"54466\": 2308,\n \"54467\": 2307,\n \"54477\": 2302,\n \"544785\": 2207,\n \"54480\": 2307,\n \"544883\": 2166,\n \"54495\": 2302,\n- \"545\": [1444, 2193, 2199, 2203, 2257],\n+ \"545\": [1444, 2199, 2203, 2257],\n \"545034\": 2186,\n \"54508\": 2302,\n \"545163\": 2207,\n \"5453\": 2220,\n \"545371\": 2207,\n \"54550\": 2307,\n \"54564\": 2307,\n@@ -33772,15 +33775,15 @@\n \"6098\": 2219,\n \"609836\": 2186,\n \"61\": [15, 17, 19, 26, 27, 31, 242, 283, 532, 817, 910, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2231, 2232, 2235, 2241, 2246, 2271],\n \"610\": 2199,\n \"6105\": 2219,\n \"610691\": 2199,\n \"610871\": 2207,\n- \"611\": 2199,\n+ \"611\": [2193, 2199],\n \"6111\": 2186,\n \"611107\": 2207,\n \"611112\": 2218,\n \"611185\": 2197,\n \"6113\": [2186, 2228],\n \"6114\": 2186,\n \"611510\": 2184,\n@@ -33871,15 +33874,15 @@\n \"6209\": 2219,\n \"621\": 2199,\n \"621034\": 2186,\n \"6212\": 2219,\n \"6214\": 2218,\n \"621452\": 2207,\n \"621592\": 2207,\n- \"622\": [16, 17, 18, 19, 2197, 2199, 2202, 2203, 2205, 2231, 2235, 2298],\n+ \"622\": [16, 17, 18, 19, 2193, 2197, 2199, 2202, 2203, 2231, 2235, 2298],\n \"622109\": 2230,\n \"6223\": 2220,\n \"622526\": 2186,\n \"622638\": 2207,\n \"622727\": 2195,\n \"622970\": 2207,\n \"623\": [16, 17, 18, 19, 2199, 2203, 2235, 2298],\n@@ -33937,23 +33940,21 @@\n \"6289\": 2220,\n \"628992\": 2257,\n \"629\": 2199,\n \"6290\": 2220,\n \"629003\": 2207,\n \"629165\": 2230,\n \"6292\": [2220, 2230],\n- \"6295\": 2203,\n \"629546\": 2219,\n- \"6296\": [2203, 2220],\n+ \"6296\": 2220,\n \"629675\": 2185,\n- \"6297\": [2203, 2220],\n- \"6298\": 2203,\n- \"6299\": [2203, 2220],\n+ \"6297\": 2220,\n+ \"6299\": 2220,\n \"63\": [15, 17, 19, 213, 788, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2227, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n- \"630\": [2199, 2205, 2218],\n+ \"630\": 2199,\n \"630110\": 15,\n \"630256\": 2207,\n \"630482\": 2207,\n \"631\": 2199,\n \"631095\": 2195,\n \"6313\": 2220,\n \"631502\": 2207,\n@@ -34101,15 +34102,14 @@\n \"6496\": [2221, 2222],\n \"649646\": 2207,\n \"649682\": 28,\n \"649711\": 2212,\n \"649727\": 2191,\n \"649748\": 2186,\n \"64bit\": 2298,\n- \"64ec62289cb4\": 2203,\n \"65\": [17, 19, 259, 890, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2255, 2271],\n \"650\": [2199, 2298],\n \"65000000\": [176, 179, 754, 757, 1242, 1243],\n \"6504\": 2220,\n \"650762\": 2199,\n \"650776\": 2202,\n \"650794\": [121, 696],\n@@ -34466,14 +34466,15 @@\n \"689\": 2199,\n \"6893\": 2220,\n \"6894\": 2220,\n \"689569\": 2207,\n \"6897\": 2221,\n \"6899\": 2220,\n \"69\": [17, 19, 188, 189, 764, 765, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"690\": 2218,\n \"6900\": 2220,\n \"6902\": 2199,\n \"690288\": 2191,\n \"6903\": 2199,\n \"6904\": [2199, 2220],\n \"690438\": 2191,\n \"690539\": 2235,\n@@ -34492,28 +34493,26 @@\n \"691592\": 2207,\n \"691944\": 2207,\n \"692\": 2199,\n \"6923\": 2220,\n \"692424\": 2186,\n \"692498\": 2207,\n \"6926\": 2220,\n- \"692651\": 2228,\n \"6927\": 2220,\n \"6929\": 2277,\n \"693\": [1433, 2199],\n \"6930\": 2230,\n \"693043\": 2210,\n \"6932\": 2222,\n \"693205\": [2184, 2214],\n \"693429\": 28,\n \"6937\": 2221,\n \"693884\": 2210,\n \"6939\": 2220,\n \"694\": 2199,\n- \"694263\": 2228,\n \"694268\": 28,\n \"6945\": 2241,\n \"694592\": 2207,\n \"695\": 2199,\n \"6951\": 2220,\n \"695148\": 2186,\n \"6952\": 2220,\n@@ -35401,15 +35400,15 @@\n \"809185\": 2219,\n \"8092\": 2222,\n \"809797\": 2207,\n \"809829\": 2207,\n \"809926\": 2207,\n \"80px\": 2207,\n \"81\": [15, 187, 763, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2249, 2271],\n- \"810\": [182, 760, 2193, 2200, 2298],\n+ \"810\": [182, 760, 2200, 2298],\n \"8100\": 2199,\n \"8103\": 2222,\n \"810332\": 2207,\n \"810340\": 2186,\n \"810847\": 2195,\n \"811\": [2200, 2298],\n \"8110935116651191\": 2186,\n@@ -35652,15 +35651,15 @@\n \"848896\": 2193,\n \"848974\": 2197,\n \"849\": [16, 17, 18, 19, 2199, 2235],\n \"8494\": 2223,\n \"8496\": 2241,\n \"84960\": 2210,\n \"849980\": 2195,\n- \"85\": [182, 190, 193, 718, 760, 766, 768, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n+ \"85\": [182, 190, 193, 718, 760, 766, 768, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n \"850\": [16, 17, 18, 19, 2199, 2235],\n \"850083\": 2207,\n \"8501\": 2222,\n \"850229\": 2235,\n \"850287\": 2207,\n \"8504\": 2202,\n \"850458\": 2207,\n@@ -35729,15 +35728,15 @@\n \"8592\": 2223,\n \"8594\": 2265,\n \"859511\": 2207,\n \"859588\": [2220, 2228, 2230, 2231],\n \"8596\": 2232,\n \"859691\": 2191,\n \"85a3\": 2241,\n- \"86\": [16, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n+ \"86\": [16, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n \"860\": [182, 760, 2199],\n \"860059\": 2204,\n \"8601\": [662, 923, 983, 2199, 2209, 2210, 2230, 2235, 2241, 2271, 2277, 2283, 2298],\n \"8602\": 2224,\n \"860312\": 2199,\n \"8607\": 2223,\n \"860736\": 15,\n@@ -36064,23 +36063,25 @@\n \"901\": 2199,\n \"9011\": 2224,\n \"9012\": 2224,\n \"9016\": 2225,\n \"902\": 2199,\n \"903\": 2199,\n \"9031\": 2246,\n+ \"903170\": 2228,\n \"903246\": 2207,\n \"903450\": 1340,\n \"9037\": 2225,\n \"903794\": 2186,\n \"904\": 2199,\n \"9046\": 2277,\n+ \"904676\": 2228,\n \"904807\": 2191,\n \"9049\": 2225,\n- \"905\": [2193, 2199],\n+ \"905\": 2199,\n \"905029\": 2207,\n \"905122\": 2199,\n \"9052\": 2230,\n \"9054\": 2226,\n \"9057\": 2227,\n \"905793e\": 2204,\n \"905836\": 2215,\n@@ -36802,15 +36803,15 @@\n \"__eq__\": [1031, 1068, 2186, 2246, 2289, 2307],\n \"__finalize__\": [2192, 2194, 2197, 2199, 2218, 2220, 2298],\n \"__floordiv__\": [2241, 2307],\n \"__from_arrow__\": [10, 1068, 2299, 2302],\n \"__fspath__\": 2238,\n \"__func__\": 2202,\n \"__getattr__\": [15, 2199, 2218],\n- \"__getattribute__\": [10, 2203, 2294],\n+ \"__getattribute__\": [10, 2294],\n \"__getitem__\": [2, 203, 1031, 1064, 1387, 2185, 2191, 2193, 2194, 2197, 2217, 2225, 2226, 2246, 2249, 2254, 2257, 2265, 2271, 2274, 2277, 2283, 2286, 2289, 2294, 2295, 2297, 2298, 2300, 2301, 2302, 2306, 2307, 2308],\n \"__getstate__\": 2218,\n \"__git_version__\": 2246,\n \"__globally__\": 2190,\n \"__gt__\": 2188,\n \"__hash__\": [1068, 2246, 2302],\n \"__index_level_\": 9,\n@@ -36844,15 +36845,14 @@\n \"__str__\": 2217,\n \"__sub__\": 2241,\n \"__subclasses__\": 2186,\n \"__truediv__\": 2307,\n \"__unicode__\": [2217, 2220, 2249],\n \"__version__\": [5, 2199],\n \"__xor__\": 2298,\n- \"_accessor\": 2203,\n \"_accumul\": [1031, 2298],\n \"_add_arithmetic_op\": 10,\n \"_add_comparison_op\": 10,\n \"_add_offset\": 2210,\n \"_add_timedeltalike_scalar\": 2210,\n \"_allows_duplicate_label\": 2192,\n \"_array_strptime_with_fallback\": 2210,\n@@ -36866,15 +36866,14 @@\n \"_bootstrap\": [2199, 2203, 2212, 2298],\n \"_buffer\": [16, 17, 18, 19, 2199, 2235],\n \"_built_with_meson\": 5,\n \"_cacheabl\": 2246,\n \"_call_chain\": [16, 17, 18, 19, 2199, 2235],\n \"_call_with_frames_remov\": 2199,\n \"_caller\": 153,\n- \"_can_hold_identifiers_and_holds_nam\": 2203,\n \"_check_deprecated_callable_usag\": [2185, 2197],\n \"_check_for_loc\": 2193,\n \"_check_indexing_error\": [2185, 2191, 2194],\n \"_check_is_chained_assignment_poss\": 2197,\n \"_check_setitem_copi\": 2197,\n \"_check_tokenize_statu\": 2199,\n \"_cmp_method\": 2186,\n@@ -36960,15 +36959,14 @@\n \"_hash\": 2235,\n \"_hash_pandas_object\": 1043,\n \"_ilocindex\": 2197,\n \"_import_class\": 2199,\n \"_indexed_sam\": [2186, 2218],\n \"_indexslic\": 440,\n \"_inferred_dtyp\": [2208, 2249],\n- \"_info_axi\": 2203,\n \"_internal_nam\": 10,\n \"_internal_names_set\": 10,\n \"_is_boolean\": [1056, 1068, 1081],\n \"_is_copi\": 2197,\n \"_is_mixed_typ\": 2197,\n \"_is_numer\": [1068, 2246, 2298],\n \"_is_scalar_access\": [2185, 2197],\n@@ -37609,15 +37607,15 @@\n \"attende\": 0,\n \"attent\": [3, 10, 2197, 2205, 2207, 2214, 2216],\n \"attr\": [15, 227, 705, 802, 1394, 1423, 1475, 1487, 2169, 2180, 2192, 2199, 2203, 2241, 2265, 2277, 2289, 2298, 2302, 2307],\n \"attr_col\": [272, 2199],\n \"attribut\": [4, 9, 10, 15, 24, 25, 31, 37, 38, 39, 46, 49, 63, 85, 107, 142, 153, 203, 210, 230, 249, 257, 266, 267, 272, 280, 286, 334, 337, 341, 342, 343, 344, 354, 386, 423, 441, 442, 443, 444, 445, 457, 459, 478, 487, 494, 509, 510, 514, 516, 532, 538, 540, 568, 573, 596, 629, 783, 784, 804, 882, 896, 914, 915, 916, 927, 930, 938, 953, 1027, 1028, 1029, 1030, 1031, 1068, 1069, 1071, 1072, 1078, 1081, 1090, 1091, 1117, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1140, 1141, 1142, 1143, 1144, 1164, 1168, 1202, 1203, 1221, 1263, 1264, 1342, 1345, 1347, 1374, 1387, 1391, 1394, 1395, 1396, 1402, 1403, 1404, 1405, 1413, 1414, 1420, 1421, 1422, 1424, 1432, 1433, 1435, 1436, 1475, 1487, 1488, 1490, 1494, 1495, 1496, 1506, 1524, 1542, 1560, 1578, 1598, 1620, 1637, 1657, 1677, 1699, 1720, 1741, 1758, 1776, 1793, 1815, 1839, 1857, 1876, 1894, 1912, 1930, 1947, 1964, 1982, 2000, 2018, 2036, 2054, 2072, 2090, 2108, 2127, 2145, 2167, 2172, 2184, 2185, 2192, 2193, 2196, 2199, 2202, 2203, 2204, 2206, 2208, 2210, 2211, 2214, 2216, 2217, 2218, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2239, 2241, 2242, 2246, 2249, 2251, 2253, 2254, 2257, 2259, 2263, 2265, 2271, 2273, 2277, 2278, 2280, 2283, 2289, 2292, 2293, 2295, 2297, 2298, 2302, 2307],\n \"attribute2\": [1395, 1396, 1413, 1414],\n \"attributeconflictwarn\": [2217, 2294],\n- \"attributeerror\": [10, 15, 845, 1069, 1071, 1072, 2203, 2220, 2221, 2222, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2239, 2241, 2246, 2247, 2249, 2250, 2265, 2266, 2269, 2271, 2274, 2275, 2276, 2278, 2279, 2281, 2283, 2286, 2289, 2290, 2294, 2295, 2298, 2301, 2302, 2307, 2308],\n+ \"attributeerror\": [10, 15, 845, 1069, 1071, 1072, 2220, 2221, 2222, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2239, 2241, 2246, 2247, 2249, 2250, 2265, 2266, 2269, 2271, 2274, 2275, 2276, 2278, 2279, 2281, 2283, 2286, 2289, 2290, 2294, 2295, 2298, 2301, 2302, 2307, 2308],\n \"attrs_onli\": [1487, 2199],\n \"audienc\": 2207,\n \"audit\": [16, 17, 18, 19, 2199, 2222, 2235],\n \"aug\": [1699, 1720, 2210, 2213],\n \"augment\": [2225, 2231, 2277],\n \"augspurg\": [35, 2247, 2248],\n \"august\": [586, 2210, 2213],\n@@ -37738,15 +37736,15 @@\n \"barboursvil\": 2199,\n \"bare\": [2, 2199, 2222, 2241, 2277],\n \"barf\": 2217,\n \"barh\": [26, 186, 188, 762, 764, 1188, 1249, 2211, 2220, 2221, 2228, 2260, 2294],\n \"bark\": 1365,\n \"barplot\": 2222,\n \"barycentr\": [146, 720, 1280, 2201, 2218],\n- \"base\": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302],\n+ \"base\": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2193, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302],\n \"base_dtyp\": 2199,\n \"base_pars\": 2199,\n \"base_typ\": [2194, 2201, 2203, 2294, 2302, 2307],\n \"basebal\": [15, 2186, 2191, 2197, 2227, 2231],\n \"baseblockmanag\": [2197, 2199, 2298],\n \"basebooleanreducetest\": 2307,\n \"basebuff\": [16, 17, 18, 19, 2199, 2235],\n@@ -38272,15 +38270,15 @@\n \"cheat\": [21, 2234],\n \"check\": [1, 2, 4, 5, 6, 8, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 30, 32, 36, 62, 75, 80, 81, 147, 153, 163, 169, 228, 256, 284, 346, 384, 386, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 420, 445, 447, 448, 453, 454, 455, 461, 469, 473, 478, 500, 501, 584, 592, 603, 615, 741, 799, 836, 837, 838, 839, 840, 841, 842, 843, 844, 888, 912, 976, 977, 978, 979, 1076, 1079, 1081, 1082, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1093, 1095, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1110, 1111, 1112, 1113, 1114, 1115, 1127, 1136, 1141, 1146, 1184, 1345, 1354, 1370, 1391, 1441, 1442, 1446, 1449, 1450, 1475, 1482, 1483, 1488, 1490, 1493, 1494, 1495, 1496, 1499, 1512, 1530, 1548, 1566, 1586, 1607, 1626, 1643, 1665, 1686, 1707, 1728, 1747, 1765, 1782, 1801, 1823, 1846, 1863, 1883, 1901, 1919, 1936, 1953, 1971, 1988, 2006, 2025, 2043, 2061, 2079, 2096, 2114, 2133, 2151, 2168, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2211, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2253, 2255, 2261, 2265, 2271, 2277, 2279, 2283, 2289, 2294, 2298, 2302, 2307, 2308],\n \"check_array_index\": 2172,\n \"check_categor\": [1494, 1495, 1496, 2242],\n \"check_category_ord\": 1496,\n \"check_column_typ\": 1494,\n \"check_datetimelike_compat\": [1494, 1496],\n- \"check_dict_or_set_index\": [2193, 2197],\n+ \"check_dict_or_set_index\": 2197,\n \"check_dtyp\": [1493, 1494, 1496, 2271, 2272, 2299],\n \"check_dtype_backend\": 2199,\n \"check_exact\": [1493, 1494, 1495, 1496, 2272, 2277, 2307, 2308],\n \"check_extens\": 2294,\n \"check_flag\": [1494, 1496, 2290],\n \"check_frame_typ\": 1494,\n \"check_freq\": [1494, 1496, 2278],\n@@ -40270,15 +40268,15 @@\n \"get_indexer_non_uniqu\": [379, 2192, 2197, 2238, 2243, 2246, 2249, 2265, 2277, 2289],\n \"get_indexer_nonuniqu\": 2302,\n \"get_ipython\": 2193,\n \"get_item\": [2191, 2194],\n \"get_jit_argu\": 2212,\n \"get_letter_typ\": 2195,\n \"get_level_valu\": [1416, 2185, 2218, 2220, 2228, 2232, 2241, 2246, 2253, 2256],\n- \"get_loc\": [2, 362, 383, 426, 492, 2185, 2191, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299],\n+ \"get_loc\": [2, 362, 383, 426, 492, 2185, 2191, 2193, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299],\n \"get_loc_level\": 2246,\n \"get_local\": 2265,\n \"get_local_scop\": 2193,\n \"get_method\": [16, 17, 18, 19, 2199, 2235],\n \"get_near_stock_pric\": [2216, 2223],\n \"get_offset\": [2265, 2298],\n \"get_offset_nam\": [2230, 2238],\n@@ -40838,15 +40836,15 @@\n \"inject\": [120, 1387],\n \"inkwarg\": 2199,\n \"inlin\": [3, 2196, 2199, 2207, 2218, 2229, 2246],\n \"inner\": [16, 17, 19, 25, 30, 74, 96, 110, 153, 169, 241, 279, 404, 583, 619, 821, 1146, 1446, 1448, 2186, 2193, 2200, 2204, 2208, 2220, 2246, 2254, 2283, 2289, 2307],\n \"inner_join\": [16, 17, 19],\n \"innermost\": [247, 880, 1478, 2231],\n \"inplac\": [16, 17, 18, 19, 87, 89, 92, 111, 112, 114, 120, 124, 125, 146, 163, 181, 203, 209, 210, 212, 214, 228, 233, 234, 284, 370, 418, 421, 483, 500, 598, 601, 616, 633, 634, 636, 700, 701, 720, 741, 759, 783, 784, 787, 789, 807, 808, 912, 1166, 1167, 1223, 1224, 1280, 1387, 2190, 2192, 2214, 2215, 2218, 2220, 2221, 2222, 2228, 2229, 2230, 2231, 2235, 2238, 2241, 2246, 2265, 2271, 2273, 2275, 2276, 2277, 2278, 2289, 2290, 2291, 2292, 2293, 2295, 2297, 2298, 2302, 2307],\n- \"input\": [2, 3, 10, 13, 20, 24, 30, 31, 34, 49, 56, 63, 68, 69, 76, 78, 81, 85, 91, 92, 94, 97, 99, 100, 107, 108, 109, 120, 126, 129, 131, 134, 141, 143, 160, 162, 163, 171, 173, 183, 197, 199, 204, 206, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 227, 230, 233, 234, 244, 246, 256, 259, 264, 270, 273, 275, 278, 281, 284, 286, 346, 351, 354, 378, 380, 405, 415, 425, 426, 459, 465, 489, 499, 540, 573, 577, 578, 585, 596, 603, 616, 617, 620, 622, 629, 630, 631, 694, 702, 706, 707, 709, 710, 713, 717, 719, 734, 738, 739, 740, 741, 747, 749, 750, 753, 761, 773, 777, 780, 785, 787, 788, 790, 791, 792, 793, 795, 796, 797, 802, 804, 856, 877, 878, 888, 890, 893, 900, 901, 904, 912, 916, 927, 930, 938, 953, 1031, 1076, 1078, 1090, 1116, 1117, 1118, 1121, 1123, 1124, 1125, 1152, 1154, 1155, 1156, 1164, 1202, 1203, 1204, 1211, 1213, 1221, 1230, 1264, 1298, 1299, 1305, 1306, 1308, 1322, 1323, 1325, 1342, 1343, 1354, 1389, 1390, 1392, 1393, 1395, 1396, 1397, 1398, 1403, 1404, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1417, 1418, 1430, 1433, 1441, 1442, 1449, 1450, 1458, 1467, 1469, 1470, 1475, 1482, 1486, 1487, 1498, 1499, 1500, 2163, 2172, 2184, 2185, 2186, 2187, 2188, 2191, 2193, 2194, 2195, 2196, 2197, 2199, 2200, 2201, 2203, 2204, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2234, 2235, 2236, 2238, 2241, 2242, 2246, 2249, 2250, 2257, 2263, 2264, 2265, 2267, 2269, 2271, 2272, 2273, 2274, 2275, 2277, 2278, 2283, 2284, 2287, 2289, 2291, 2292, 2293, 2294, 2298, 2299, 2302, 2306, 2307, 2308, 2309],\n+ \"input\": [2, 3, 10, 13, 20, 24, 30, 31, 34, 49, 56, 63, 68, 69, 76, 78, 81, 85, 91, 92, 94, 97, 99, 100, 107, 108, 109, 120, 126, 129, 131, 134, 141, 143, 160, 162, 163, 171, 173, 183, 197, 199, 204, 206, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 227, 230, 233, 234, 244, 246, 256, 259, 264, 270, 273, 275, 278, 281, 284, 286, 346, 351, 354, 378, 380, 405, 415, 425, 426, 459, 465, 489, 499, 540, 573, 577, 578, 585, 596, 603, 616, 617, 620, 622, 629, 630, 631, 694, 702, 706, 707, 709, 710, 713, 717, 719, 734, 738, 739, 740, 741, 747, 749, 750, 753, 761, 773, 777, 780, 785, 787, 788, 790, 791, 792, 793, 795, 796, 797, 802, 804, 856, 877, 878, 888, 890, 893, 900, 901, 904, 912, 916, 927, 930, 938, 953, 1031, 1076, 1078, 1090, 1116, 1117, 1118, 1121, 1123, 1124, 1125, 1152, 1154, 1155, 1156, 1164, 1202, 1203, 1204, 1211, 1213, 1221, 1230, 1264, 1298, 1299, 1305, 1306, 1308, 1322, 1323, 1325, 1342, 1343, 1354, 1389, 1390, 1392, 1393, 1395, 1396, 1397, 1398, 1403, 1404, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1417, 1418, 1430, 1433, 1441, 1442, 1449, 1450, 1458, 1467, 1469, 1470, 1475, 1482, 1486, 1487, 1498, 1499, 1500, 2163, 2172, 2184, 2185, 2186, 2187, 2188, 2191, 2193, 2194, 2195, 2196, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2234, 2235, 2236, 2238, 2241, 2242, 2246, 2249, 2250, 2257, 2263, 2264, 2265, 2267, 2269, 2271, 2272, 2273, 2274, 2275, 2277, 2278, 2283, 2284, 2287, 2289, 2291, 2292, 2293, 2294, 2298, 2299, 2302, 2306, 2307, 2308, 2309],\n \"input_arrai\": 2199,\n \"insec\": 873,\n \"insensit\": [533, 857, 1469, 1486, 2202, 2221, 2277],\n \"insert\": [2, 34, 63, 214, 255, 258, 267, 420, 789, 799, 821, 889, 896, 1061, 1345, 1391, 1416, 1488, 1490, 2185, 2186, 2191, 2193, 2195, 2196, 2202, 2207, 2217, 2218, 2219, 2220, 2221, 2222, 2225, 2226, 2228, 2229, 2233, 2238, 2242, 2246, 2249, 2265, 2271, 2277, 2283, 2289, 2293, 2294, 2298, 2302, 2304, 2306, 2307],\n \"insert_on_conflict_noth\": [267, 896],\n \"insert_on_conflict_upd\": [267, 896],\n \"insid\": [2, 8, 13, 22, 25, 77, 89, 124, 146, 203, 251, 259, 375, 466, 601, 700, 720, 884, 890, 1031, 1054, 1118, 1280, 1469, 1486, 1498, 2186, 2193, 2194, 2196, 2197, 2199, 2201, 2227, 2241, 2246, 2249, 2261, 2263, 2264, 2265, 2271, 2307],\n@@ -40972,15 +40970,15 @@\n \"ip\": [10, 2241],\n \"ipaddress\": 10,\n \"iparrai\": 2241,\n \"ipc\": 2199,\n \"ipi\": 2202,\n \"ipv4address\": 10,\n \"ipv6\": [10, 1031],\n- \"ipython\": [4, 26, 257, 1069, 1071, 1072, 1345, 1391, 1488, 1490, 2184, 2186, 2193, 2194, 2196, 2197, 2199, 2203, 2207, 2219, 2222, 2227, 2230, 2232, 2235, 2236, 2242, 2246, 2247, 2251, 2257, 2258, 2265],\n+ \"ipython\": [4, 26, 257, 1069, 1071, 1072, 1345, 1391, 1488, 1490, 2184, 2186, 2193, 2194, 2196, 2197, 2199, 2207, 2219, 2222, 2227, 2230, 2232, 2235, 2236, 2242, 2246, 2247, 2251, 2257, 2258, 2265],\n \"ipythondir\": 2202,\n \"ipywidget\": 2207,\n \"iqr\": [91, 190, 766, 1458],\n \"iri\": [1455, 1461, 2191, 2211, 2225],\n \"irow\": [2216, 2228, 2235, 2257],\n \"irregular\": [15, 2210, 2234, 2235, 2261, 2275, 2277],\n \"irrelev\": [0, 2298],\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "unified_diff": "@@ -1847,25 +1847,25 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....: \n-499 us +- 2.13 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-217 us +- 7.17 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+305 us +- 59.8 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+124 us +- 177 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n \n \n
In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n    .....: %timeit ser.take(indexer)\n    .....: \n-269 us +- 1.29 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-259 us +- 2.03 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+199 us +- 52.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+369 us +- 63.9 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n 
\n
\n \n
\n

Index types#

\n

We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown here,\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -1245,23 +1245,23 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....:\n-499 us +- 2.13 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-217 us +- 7.17 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+305 us +- 59.8 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+124 us +- 177 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n .....: %timeit ser.take(indexer)\n .....:\n-269 us +- 1.29 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-259 us +- 2.03 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+199 us +- 52.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+369 us +- 63.9 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n *\b**\b**\b**\b**\b* I\bIn\bnd\bde\bex\bx t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b**\b*\n We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown _\bh_\be_\br_\be, and\n documentation about TimedeltaIndex is found _\bh_\be_\br_\be.\n In the following sub-sections we will highlight some other index types.\n *\b**\b**\b**\b* C\bCa\bat\bte\beg\bgo\bor\bri\bic\bca\bal\blI\bIn\bnd\bde\bex\bx_\b#\b# *\b**\b**\b**\b*\n _\bC_\ba_\bt_\be_\bg_\bo_\br_\bi_\bc_\ba_\bl_\bI_\bn_\bd_\be_\bx is a type of index that is useful for supporting indexing with\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "unified_diff": "@@ -592,31 +592,31 @@\n ...: s += f(a + i * dx)\n ...: return s * dx\n ...: \n \n \n

We achieve our result by using DataFrame.apply() (row-wise):

\n
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)\n-150 ms +- 5.27 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+177 ms +- 20.7 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

Let\u2019s take a look and see where the time is spent during this operation\n using the prun ipython magic function:

\n
# most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 1.021 seconds\n+         605946 function calls (605928 primitive calls) in 0.296 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.531    0.001    0.905    0.001 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n-   552423    0.374    0.000    0.374    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n-     3000    0.019    0.000    0.082    0.000 series.py:1095(__getitem__)\n-    16098    0.014    0.000    0.018    0.000 {built-in method builtins.isinstance}\n+     1000    0.178    0.000    0.259    0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n+   552423    0.080    0.000    0.080    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n+     3000    0.006    0.000    0.025    0.000 series.py:1095(__getitem__)\n+     3000    0.004    0.000    0.011    0.000 series.py:1220(_get_value)\n 
\n
\n

By far the majority of time is spend inside either integrate_f or f,\n hence we\u2019ll concentrate our efforts cythonizing these two functions.

\n
\n
\n

Plain Cython#

\n@@ -634,15 +634,15 @@\n ...: for i in range(N):\n ...: s += f_plain(a + i * dx)\n ...: return s * dx\n ...: \n \n \n
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)\n-130 ms +- 359 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+182 ms +- 21.5 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

This has improved the performance compared to the pure Python approach by one-third.

\n
\n
\n

Declaring C types#

\n

We can annotate the function variables and return types as well as use cdef\n@@ -658,36 +658,36 @@\n ....: for i in range(N):\n ....: s += f_typed(a + i * dx)\n ....: return s * dx\n ....: \n \n \n

In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-22.8 ms +- 148 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+20.3 ms +- 93.9 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

Annotating the functions with C types yields an over ten times performance improvement compared to\n the original Python implementation.

\n
\n
\n

Using ndarray#

\n

When re-profiling, time is spent creating a Series from each row, and calling __getitem__ from both\n the index and the series (three times for each row). These Python function calls are expensive and\n can be improved by passing an np.ndarray.

\n
In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.119 seconds\n+         52523 function calls (52505 primitive calls) in 0.066 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.019    0.000    0.084    0.000 series.py:1095(__getitem__)\n-    16098    0.014    0.000    0.018    0.000 {built-in method builtins.isinstance}\n-     3000    0.013    0.000    0.034    0.000 series.py:1220(_get_value)\n-     3000    0.012    0.000    0.021    0.000 indexing.py:2765(check_dict_or_set_indexers)\n+     3000    0.010    0.000    0.042    0.000 series.py:1095(__getitem__)\n+     3000    0.007    0.000    0.019    0.000 series.py:1220(_get_value)\n+     3000    0.007    0.000    0.008    0.000 base.py:3777(get_loc)\n+    16098    0.006    0.000    0.008    0.000 {built-in method builtins.isinstance}\n 
\n
\n
In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n@@ -722,33 +722,33 @@\n 
\n

This implementation creates an array of zeros and inserts the result\n of integrate_f_typed applied over each row. Looping over an ndarray is faster\n in Cython than looping over a Series object.

\n

Since apply_integrate_f is typed to accept an np.ndarray, Series.to_numpy()\n calls are needed to utilize this function.

\n
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-2.42 ms +- 2.27 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+3.42 ms +- 20 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

Performance has improved from the prior implementation by almost ten times.

\n
\n
\n

Disabling compiler directives#

\n

The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s boundscheck\n and wraparound checks can yield more performance.

\n
In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-         78 function calls in 0.003 seconds\n+         78 function calls in 0.004 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-        1    0.002    0.002    0.003    0.003 <string>:1(<module>)\n+        1    0.003    0.003    0.004    0.004 <string>:1(<module>)\n         1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}\n-        1    0.000    0.000    0.003    0.003 {built-in method builtins.exec}\n+        1    0.000    0.000    0.004    0.004 {built-in method builtins.exec}\n         3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n 
\n
\n
In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n@@ -1180,19 +1180,19 @@\n compared to standard Python syntax for large DataFrame. This engine requires the\n optional dependency numexpr to be installed.

\n

The 'python' engine is generally not useful except for testing\n other evaluation engines against it. You will achieve no performance\n benefits using eval() with engine='python' and may\n incur a performance hit.

\n
In [40]: %timeit df1 + df2 + df3 + df4\n-540 ms +- 41.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+622 ms +- 31 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")\n-513 ms +- 19.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+585 ms +- 27.6 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
\n
\n

The DataFrame.eval() method#

\n

In addition to the top level pandas.eval() function you can also\n evaluate an expression in the \u201ccontext\u201d of a DataFrame.

\n@@ -1307,39 +1307,39 @@\n
In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]\n 
\n
\n

DataFrame arithmetic:

\n
In [60]: %timeit df1 + df2 + df3 + df4\n-545 ms +- 52.5 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+611 ms +- 45.4 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")\n-163 ms +- 7.86 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+201 ms +- 28.4 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n

DataFrame comparison:

\n
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-32.6 ms +- 431 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+35.7 ms +- 1.29 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")\n-9.13 ms +- 30.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+17.2 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

DataFrame arithmetic with unaligned axes.

\n
In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-810 ms +- 23.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+1.06 s +- 54.5 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")\n-155 ms +- 4.85 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+229 ms +- 42.6 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n
\n

Note

\n

Operations such as

\n
1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -110,33 +110,32 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f(a + i * dx)\n    ...:     return s * dx\n    ...:\n We achieve our result by using _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\ba_\bp_\bp_\bl_\by_\b(_\b) (row-wise):\n In [5]: %timeit df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]), axis=1)\n-150 ms +- 5.27 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+177 ms +- 20.7 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Let\u2019s take a look and see where the time is spent during this operation using\n the _\bp_\br_\bu_\bn_\b _\bi_\bp_\by_\bt_\bh_\bo_\bn_\b _\bm_\ba_\bg_\bi_\bc_\b _\bf_\bu_\bn_\bc_\bt_\bi_\bo_\bn:\n # most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)  # noqa E999\n-         605946 function calls (605928 primitive calls) in 1.021 seconds\n+         605946 function calls (605928 primitive calls) in 0.296 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.531    0.001    0.905    0.001 :1\n+     1000    0.178    0.000    0.259    0.000 :1\n (integrate_f)\n-   552423    0.374    0.000    0.374    0.000 :1\n+   552423    0.080    0.000    0.080    0.000 :1\n (f)\n-     3000    0.019    0.000    0.082    0.000 series.py:1095(__getitem__)\n-    16098    0.014    0.000    0.018    0.000 {built-in method\n-builtins.isinstance}\n+     3000    0.006    0.000    0.025    0.000 series.py:1095(__getitem__)\n+     3000    0.004    0.000    0.011    0.000 series.py:1220(_get_value)\n By far the majority of time is spend inside either integrate_f or f, hence\n we\u2019ll concentrate our efforts cythonizing these two functions.\n *\b**\b**\b**\b* P\bPl\bla\bai\bin\bn C\bCy\byt\bth\bho\bon\bn_\b#\b# *\b**\b**\b**\b*\n First we\u2019re going to need to import the Cython magic function to IPython:\n In [7]: %load_ext Cython\n Now, let\u2019s simply copy our functions over to Cython:\n In [8]: %%cython\n@@ -147,15 +146,15 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f_plain(a + i * dx)\n    ...:     return s * dx\n    ...:\n In [9]: %timeit df.apply(lambda x: integrate_f_plain(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-130 ms +- 359 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+182 ms +- 21.5 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n This has improved the performance compared to the pure Python approach by one-\n third.\n *\b**\b**\b**\b* D\bDe\bec\bcl\bla\bar\bri\bin\bng\bg C\bC t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b*\n We can annotate the function variables and return types as well as use cdef and\n cpdef to improve performance:\n In [10]: %%cython\n    ....: cdef double f_typed(double x) except? -2:\n@@ -167,36 +166,35 @@\n    ....:     dx = (b - a) / N\n    ....:     for i in range(N):\n    ....:         s += f_typed(a + i * dx)\n    ....:     return s * dx\n    ....:\n In [11]: %timeit df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-22.8 ms +- 148 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+20.3 ms +- 93.9 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Annotating the functions with C types yields an over ten times performance\n improvement compared to the original Python implementation.\n *\b**\b**\b**\b* U\bUs\bsi\bin\bng\bg n\bnd\bda\bar\brr\bra\bay\by_\b#\b# *\b**\b**\b**\b*\n When re-profiling, time is spent creating a _\bS_\be_\br_\bi_\be_\bs from each row, and calling\n __getitem__ from both the index and the series (three times for each row).\n These Python function calls are expensive and can be improved by passing an\n np.ndarray.\n In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x\n [\"N\"]), axis=1)\n-         52523 function calls (52505 primitive calls) in 0.119 seconds\n+         52523 function calls (52505 primitive calls) in 0.066 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.019    0.000    0.084    0.000 series.py:1095(__getitem__)\n-    16098    0.014    0.000    0.018    0.000 {built-in method\n+     3000    0.010    0.000    0.042    0.000 series.py:1095(__getitem__)\n+     3000    0.007    0.000    0.019    0.000 series.py:1220(_get_value)\n+     3000    0.007    0.000    0.008    0.000 base.py:3777(get_loc)\n+    16098    0.006    0.000    0.008    0.000 {built-in method\n builtins.isinstance}\n-     3000    0.013    0.000    0.034    0.000 series.py:1220(_get_value)\n-     3000    0.012    0.000    0.021    0.000 indexing.py:2765\n-(check_dict_or_set_indexers)\n In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n    ....: cpdef double integrate_f_typed(double a, double b, int N):\n    ....:     cdef int i\n@@ -237,31 +235,31 @@\n This implementation creates an array of zeros and inserts the result of\n integrate_f_typed applied over each row. Looping over an ndarray is faster in\n Cython than looping over a _\bS_\be_\br_\bi_\be_\bs object.\n Since apply_integrate_f is typed to accept an np.ndarray, _\bS_\be_\br_\bi_\be_\bs_\b._\bt_\bo_\b__\bn_\bu_\bm_\bp_\by_\b(_\b)\n calls are needed to utilize this function.\n In [14]: %timeit apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(), df\n [\"N\"].to_numpy())\n-2.42 ms +- 2.27 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+3.42 ms +- 20 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n Performance has improved from the prior implementation by almost ten times.\n *\b**\b**\b**\b* D\bDi\bis\bsa\bab\bbl\bli\bin\bng\bg c\bco\bom\bmp\bpi\bil\ble\ber\br d\bdi\bir\bre\bec\bct\bti\biv\bve\bes\bs_\b#\b# *\b**\b**\b**\b*\n The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s\n boundscheck and wraparound checks can yield more performance.\n In [15]: %prun -l 4 apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n-         78 function calls in 0.003 seconds\n+         78 function calls in 0.004 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-        1    0.002    0.002    0.003    0.003 :1()\n+        1    0.003    0.003    0.004    0.004 :1()\n         1    0.000    0.000    0.000    0.000 {method 'disable' of\n '_lsprof.Profiler' objects}\n-        1    0.000    0.000    0.003    0.003 {built-in method builtins.exec}\n+        1    0.000    0.000    0.004    0.004 {built-in method builtins.exec}\n         3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:\n    ....:     return x * (x - 1)\n@@ -648,17 +646,17 @@\n The 'numexpr' engine is the more performant engine that can yield performance\n improvements compared to standard Python syntax for large _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be. This\n engine requires the optional dependency numexpr to be installed.\n The 'python' engine is generally n\bno\bot\bt useful except for testing other evaluation\n engines against it. You will achieve n\bno\bo performance benefits using _\be_\bv_\ba_\bl_\b(_\b) with\n engine='python' and may incur a performance hit.\n In [40]: %timeit df1 + df2 + df3 + df4\n-540 ms +- 41.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+622 ms +- 31 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [41]: %timeit pd.eval(\"df1 + df2 + df3 + df4\", engine=\"python\")\n-513 ms +- 19.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+585 ms +- 27.6 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n *\b**\b**\b**\b* T\bTh\bhe\be _\bD\bD_\ba\ba_\bt\bt_\ba\ba_\bF\bF_\br\br_\ba\ba_\bm\bm_\be\be_\b.\b._\be\be_\bv\bv_\ba\ba_\bl\bl_\b(\b(_\b)\b) m\bme\bet\bth\bho\bod\bd_\b#\b# *\b**\b**\b**\b*\n In addition to the top level _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) function you can also evaluate an\n expression in the \u201ccontext\u201d of a _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be.\n In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=[\"a\", \"b\"])\n \n In [43]: df.eval(\"a + b\")\n Out[43]:\n@@ -755,29 +753,29 @@\n _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) works well with expressions containing large arrays.\n In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for\n _ in range(4)]\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic:\n In [60]: %timeit df1 + df2 + df3 + df4\n-545 ms +- 52.5 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+611 ms +- 45.4 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [61]: %timeit pd.eval(\"df1 + df2 + df3 + df4\")\n-163 ms +- 7.86 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+201 ms +- 28.4 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be comparison:\n In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-32.6 ms +- 431 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+35.7 ms +- 1.29 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n In [63]: %timeit pd.eval(\"(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\")\n-9.13 ms +- 30.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+17.2 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic with unaligned axes.\n In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-810 ms +- 23.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+1.06 s +- 54.5 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n In [66]: %timeit pd.eval(\"df1 + df2 + df3 + df4 + s\")\n-155 ms +- 4.85 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+229 ms +- 42.6 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n Note\n Operations such as\n 1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n ~1  # this is okay, but slower when using eval\n should be performed in Python. An exception will be raised if you try to\n perform any boolean/bitwise operations with scalar operands that are not of\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html", "unified_diff": "@@ -986,26 +986,19 @@\n Cell In[33], line 1\n ----> 1 table = pa.table([pa.array([1, 2, 3], type=pa.int64())], names=["a"])\n \n NameError: name 'pa' is not defined\n \n In [34]: df = table.to_pandas(types_mapper=pd.ArrowDtype)\n ---------------------------------------------------------------------------\n-AttributeError                            Traceback (most recent call last)\n-<ipython-input-34-64ec62289cb4> in ?()\n+NameError                                 Traceback (most recent call last)\n+Cell In[34], line 1\n ----> 1 df = table.to_pandas(types_mapper=pd.ArrowDtype)\n \n-/usr/lib/python3/dist-packages/pandas/core/generic.py in ?(self, name)\n-   6295             and name not in self._accessors\n-   6296             and self._info_axis._can_hold_identifiers_and_holds_name(name)\n-   6297         ):\n-   6298             return self[name]\n--> 6299         return object.__getattribute__(self, name)\n-\n-AttributeError: 'DataFrame' object has no attribute 'to_pandas'\n+NameError: name 'table' is not defined\n \n In [35]: df\n Out[35]: \n      a    b\n 0  xxx  yyy\n 1   \u00a1\u00a1   \u00a1\u00a1\n \n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -526,27 +526,19 @@\n Cell In[33], line 1\n ----> 1 table = pa.table([pa.array([1, 2, 3], type=pa.int64())], names=[\"a\"])\n \n NameError: name 'pa' is not defined\n \n In [34]: df = table.to_pandas(types_mapper=pd.ArrowDtype)\n ---------------------------------------------------------------------------\n-AttributeError                            Traceback (most recent call last)\n- in ?()\n+NameError                                 Traceback (most recent call last)\n+Cell In[34], line 1\n ----> 1 df = table.to_pandas(types_mapper=pd.ArrowDtype)\n \n-/usr/lib/python3/dist-packages/pandas/core/generic.py in ?(self, name)\n-   6295             and name not in self._accessors\n-   6296             and self._info_axis._can_hold_identifiers_and_holds_name\n-(name)\n-   6297         ):\n-   6298             return self[name]\n--> 6299         return object.__getattribute__(self, name)\n-\n-AttributeError: 'DataFrame' object has no attribute 'to_pandas'\n+NameError: name 'table' is not defined\n \n In [35]: df\n Out[35]:\n      a    b\n 0  xxx  yyy\n 1   \u00a1\u00a1   \u00a1\u00a1\n \n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "unified_diff": "@@ -1086,16 +1086,16 @@\n    ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")\n    ....: counts = pd.Series(dtype=int)\n    ....: for path in files:\n    ....:     df = pd.read_parquet(path)\n    ....:     counts = counts.add(df["name"].value_counts(), fill_value=0)\n    ....: counts.astype(int)\n    ....: \n-CPU times: user 162 us, sys: 460 us, total: 622 us\n-Wall time: 630 us\n+CPU times: user 271 us, sys: 259 us, total: 530 us\n+Wall time: 538 us\n Out[32]: Series([], dtype: int32)\n 
\n
\n

Some readers, like pandas.read_csv(), offer parameters to control the\n chunksize when reading a single file.

\n

Manually chunking is an OK option for workflows that don\u2019t\n require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby(), are\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -644,16 +644,16 @@\n ....: files = pathlib.Path(\"data/timeseries/\").glob(\"ts*.parquet\")\n ....: counts = pd.Series(dtype=int)\n ....: for path in files:\n ....: df = pd.read_parquet(path)\n ....: counts = counts.add(df[\"name\"].value_counts(), fill_value=0)\n ....: counts.astype(int)\n ....:\n-CPU times: user 162 us, sys: 460 us, total: 622 us\n-Wall time: 630 us\n+CPU times: user 271 us, sys: 259 us, total: 530 us\n+Wall time: 538 us\n Out[32]: Series([], dtype: int32)\n Some readers, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\br_\be_\ba_\bd_\b__\bc_\bs_\bv_\b(_\b), offer parameters to control the chunksize\n when reading a single file.\n Manually chunking is an OK option for workflows that don\u2019t require too\n sophisticated of operations. Some operations, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\bg_\br_\bo_\bu_\bp_\bb_\by_\b(_\b),\n are much harder to do chunkwise. In these cases, you may be better switching to\n a different library that implements these out-of-core algorithms for you.\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "unified_diff": null, "details": [{"source1": "style.ipynb", "source2": "style.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9985610875706213%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2026-05-03T19:44:33.845345Z', \"", " \"'iopub.status.busy': '2026-05-03T19:44:33.845105Z', 'iopub.status.idle': \"", " \"'2026-05-03T19:44:34.235274Z', 'shell.execute_reply': \"", " \"'2026-05-03T19:44:34.234607Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2026-05-03T19:44:34.237753Z', 'iopub.status.busy': \"", " \"'2026-05-03T19:44:34.237445Z', 'iopub.status.idle': '2026-05-03T19:44:3 [\u2026]"], "unified_diff": "@@ -39,18 +39,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-03-31T12:10:18.920313Z\",\n- \"iopub.status.busy\": \"2025-03-31T12:10:18.920009Z\",\n- \"iopub.status.idle\": \"2025-03-31T12:10:19.702226Z\",\n- \"shell.execute_reply\": \"2025-03-31T12:10:19.701242Z\"\n+ \"iopub.execute_input\": \"2026-05-03T19:44:33.845345Z\",\n+ \"iopub.status.busy\": \"2026-05-03T19:44:33.845105Z\",\n+ \"iopub.status.idle\": \"2026-05-03T19:44:34.235274Z\",\n+ \"shell.execute_reply\": \"2026-05-03T19:44:34.234607Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot\\n\",\n \"# We have this here to trigger matplotlib's font cache stuff.\\n\",\n@@ -77,36 +77,36 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-03-31T12:10:19.705752Z\",\n- \"iopub.status.busy\": \"2025-03-31T12:10:19.705364Z\",\n- \"iopub.status.idle\": \"2025-03-31T12:10:20.318721Z\",\n- \"shell.execute_reply\": \"2025-03-31T12:10:20.317763Z\"\n+ \"iopub.execute_input\": \"2026-05-03T19:44:34.237753Z\",\n+ \"iopub.status.busy\": \"2026-05-03T19:44:34.237445Z\",\n+ \"iopub.status.idle\": \"2026-05-03T19:44:34.528179Z\",\n+ \"shell.execute_reply\": \"2026-05-03T19:44:34.527483Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import pandas as pd\\n\",\n \"import numpy as np\\n\",\n \"import matplotlib as mpl\\n\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-03-31T12:10:20.322096Z\",\n- \"iopub.status.busy\": \"2025-03-31T12:10:20.321680Z\",\n- \"iopub.status.idle\": \"2025-03-31T12:10:20.425042Z\",\n- \"shell.execute_reply\": \"2025-03-31T12:10:20.424082Z\"\n+ \"iopub.execute_input\": \"2026-05-03T19:44:34.530470Z\",\n+ \"iopub.status.busy\": \"2026-05-03T19:44:34.530173Z\",\n+ \"iopub.status.idle\": \"2026-05-03T19:44:34.587165Z\",\n+ \"shell.execute_reply\": \"2026-05-03T19:44:34.586556Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\\n\",\n \"from pandas.io.formats.style import Styler\\n\",\n@@ -123,18 +123,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2025-03-31T12:10:20.428297Z\",\n- \"iopub.status.busy\": \"2025-03-31T12:10:20.427918Z\",\n- \"iopub.status.idle\": \"2025-03-31T12:10:20.440991Z\",\n- \"shell.execute_reply\": \"2025-03-31T12:10:20.440123Z\"\n+ \"iopub.execute_input\": \"2026-05-03T19:44:34.589156Z\",\n+ \"iopub.status.busy\": \"2026-05-03T19:44:34.588867Z\",\n+ \"iopub.status.idle\": \"2026-05-03T19:44:34.597950Z\",\n+ \"shell.execute_reply\": \"2026-05-03T19:44:34.597355Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/html\": [\n \"