--- /srv/reproducible-results/rbuild-debian/r-b-build.Omi6LkY1/b1/pandas_2.2.3+dfsg-9_amd64.changes +++ /srv/reproducible-results/rbuild-debian/r-b-build.Omi6LkY1/b2/pandas_2.2.3+dfsg-9_amd64.changes ├── Files │ @@ -1,5 +1,5 @@ │ │ - 3c3226cc3a948e7a3b056c5b016a3ed2 10795404 doc optional python-pandas-doc_2.2.3+dfsg-9_all.deb │ - adf55bce9c8e0c2b9f7dd2eab38ec31b 35979232 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-9_amd64.deb │ - fdf231fea5cae22e7ebab2f7f247b9da 4593168 python optional python3-pandas-lib_2.2.3+dfsg-9_amd64.deb │ + 8404e1176934696dc3824aa9511629fa 10794888 doc optional python-pandas-doc_2.2.3+dfsg-9_all.deb │ + c47d04d04c9616ce4c934199659e230d 35978848 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-9_amd64.deb │ + 7d8805a7e4bff4f2bc3634d80d996814 4593680 python optional python3-pandas-lib_2.2.3+dfsg-9_amd64.deb │ 26530e0108a14fb2ef2b9fa903eb9d9d 3096852 python optional python3-pandas_2.2.3+dfsg-9_all.deb ├── python-pandas-doc_2.2.3+dfsg-9_all.deb │ ├── file list │ │ @@ -1,3 +1,3 @@ │ │ -rw-r--r-- 0 0 0 4 2025-03-29 13:01:52.000000 debian-binary │ │ --rw-r--r-- 0 0 0 147352 2025-03-29 13:01:52.000000 control.tar.xz │ │ --rw-r--r-- 0 0 0 10647860 2025-03-29 13:01:52.000000 data.tar.xz │ │ +-rw-r--r-- 0 0 0 147356 2025-03-29 13:01:52.000000 control.tar.xz │ │ +-rw-r--r-- 0 0 0 10647340 2025-03-29 13:01:52.000000 data.tar.xz │ ├── control.tar.xz │ │ ├── control.tar │ │ │ ├── ./md5sums │ │ │ │ ├── ./md5sums │ │ │ │ │┄ Files differ │ ├── data.tar.xz │ │ ├── data.tar │ │ │ ├── file list │ │ │ │ @@ -6256,61 +6256,61 @@ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 210184 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 48665 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 48657 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 53295 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/release.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 269 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 17010 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/search.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 2358634 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 2358690 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ -rw-r--r-- 0 root (0) root (0) 259 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/style.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 255 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/text.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 256 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 277 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html │ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 171380 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 283836 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 283838 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 436075 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 36646 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 217515 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 18313 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 66125 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 160414 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 81376 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 115451 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 115730 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 107882 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 300850 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 59715 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 395484 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 41778 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 1145870 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 208885 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 178690 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 112153 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 147524 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 162660 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 115581 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 65863 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 698240 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 87806 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 87749 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz │ │ │ │ -rw-r--r-- 0 root (0) root (0) 165302 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 100947 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 486621 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 204461 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 141947 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 270 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html │ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 107681 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 10569 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz │ │ │ │ -rw-r--r-- 0 root (0) root (0) 83987 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 66492 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 82312 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 104316 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 222516 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 222518 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 89385 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 243730 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 83262 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 252303 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 68280 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 75115 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 145199 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html │ │ │ │ @@ -6322,18 +6322,18 @@ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 171888 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 350916 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 45179 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 48525 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.2.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 407739 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 52898 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.2.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 43404 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.3.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 255811 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.21.0.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 255116 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.21.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 61789 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.21.1.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 59896 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.22.0.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 402831 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.0.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 59841 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.22.0.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 401704 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 59871 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 52005 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.2.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 32373 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.3.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 35785 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.23.4.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 520683 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.24.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 44717 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.24.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 49347 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.24.2.html │ │ │ ├── ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ ├── js-beautify {} │ │ │ │ │ @@ -21596,14 +21596,15 @@ │ │ │ │ │ "011975": 2207, │ │ │ │ │ "012108": 2207, │ │ │ │ │ "012299": 2207, │ │ │ │ │ "0123456789123456": [2164, 2165], │ │ │ │ │ "012549": 2207, │ │ │ │ │ "012694": 2199, │ │ │ │ │ "012922": 2219, │ │ │ │ │ + "013": 2193, │ │ │ │ │ "013086": 15, │ │ │ │ │ "0133": 2202, │ │ │ │ │ "013448": 2207, │ │ │ │ │ "013605": 2207, │ │ │ │ │ "013684": [182, 760], │ │ │ │ │ "013692": [102, 1158], │ │ │ │ │ "013747": 2199, │ │ │ │ │ @@ -21659,15 +21660,15 @@ │ │ │ │ │ "01t01": 2210, │ │ │ │ │ "01t03": 2210, │ │ │ │ │ "01t05": [909, 2210, 2235], │ │ │ │ │ "01t07": 1280, │ │ │ │ │ "01t10": 1005, │ │ │ │ │ "01t12": 953, │ │ │ │ │ "01t23": [893, 2186, 2246], │ │ │ │ │ - "02": [13, 16, 17, 19, 26, 27, 29, 31, 79, 80, 82, 133, 182, 183, 202, 207, 208, 213, 218, 230, 261, 271, 276, 277, 278, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 301, 304, 305, 306, 307, 310, 312, 313, 314, 318, 319, 320, 321, 322, 323, 324, 326, 327, 329, 330, 331, 332, 345, 362, 363, 423, 519, 534, 536, 542, 543, 544, 545, 546, 547, 548, 549, 557, 558, 562, 563, 564, 565, 566, 575, 591, 592, 593, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 656, 657, 658, 659, 665, 666, 667, 673, 674, 675, 677, 678, 679, 680, 684, 685, 686, 688, 708, 760, 761, 781, 782, 788, 793, 804, 893, 899, 902, 903, 904, 919, 939, 940, 943, 945, 948, 949, 953, 957, 970, 997, 1014, 1051, 1075, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1344, 1393, 1452, 1498, 1500, 1506, 1542, 1620, 1699, 1815, 1947, 2054, 2127, 2145, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2220, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2265, 2271, 2283, 2294, 2298, 2301, 2307], │ │ │ │ │ + "02": [13, 16, 17, 19, 26, 27, 29, 31, 79, 80, 82, 133, 182, 183, 202, 207, 208, 213, 218, 230, 261, 271, 276, 277, 278, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 301, 304, 305, 306, 307, 310, 312, 313, 314, 318, 319, 320, 321, 322, 323, 324, 326, 327, 329, 330, 331, 332, 345, 362, 363, 423, 519, 534, 536, 542, 543, 544, 545, 546, 547, 548, 549, 557, 558, 562, 563, 564, 565, 566, 575, 591, 592, 593, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 656, 657, 658, 659, 665, 666, 667, 673, 674, 675, 677, 678, 679, 680, 684, 685, 686, 688, 708, 760, 761, 781, 782, 788, 793, 804, 893, 899, 902, 903, 904, 919, 939, 940, 943, 945, 948, 949, 953, 957, 970, 997, 1014, 1051, 1075, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1344, 1393, 1452, 1498, 1500, 1506, 1542, 1620, 1699, 1815, 1947, 2054, 2127, 2145, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2220, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2265, 2271, 2283, 2294, 2298, 2301, 2307], │ │ │ │ │ "0200": [957, 969, 970, 997, 1498, 2210], │ │ │ │ │ "020161": [102, 1158], │ │ │ │ │ "020208": 2195, │ │ │ │ │ "020376": 2207, │ │ │ │ │ "020399": 2195, │ │ │ │ │ "020485": 2207, │ │ │ │ │ "020544": 2186, │ │ │ │ │ @@ -21817,15 +21818,15 @@ │ │ │ │ │ "039575": [15, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2210, 2214, 2215, 2218, 2225, 2226, 2241, 2260], │ │ │ │ │ "0396": [2184, 2186], │ │ │ │ │ "039624": 2207, │ │ │ │ │ "039926": 2210, │ │ │ │ │ "03c": 2208, │ │ │ │ │ "03t00": [2199, 2210, 2235, 2261], │ │ │ │ │ "03t05": [909, 2210], │ │ │ │ │ - "04": [26, 27, 29, 31, 80, 84, 88, 114, 127, 148, 149, 157, 177, 178, 207, 213, 230, 292, 294, 306, 307, 317, 330, 332, 345, 402, 423, 528, 529, 592, 595, 600, 640, 644, 646, 658, 659, 671, 685, 688, 703, 725, 726, 732, 755, 756, 781, 788, 804, 985, 1075, 1145, 1269, 1270, 1280, 1289, 1344, 1393, 1452, 1498, 1500, 1741, 1776, 1815, 2184, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2250, 2261, 2264, 2271, 2283, 2298], │ │ │ │ │ + "04": [26, 27, 29, 31, 80, 84, 88, 114, 127, 148, 149, 157, 177, 178, 207, 213, 230, 292, 294, 306, 307, 317, 330, 332, 345, 402, 423, 528, 529, 592, 595, 600, 640, 644, 646, 658, 659, 671, 685, 688, 703, 725, 726, 732, 755, 756, 781, 788, 804, 985, 1075, 1145, 1269, 1270, 1280, 1289, 1344, 1393, 1452, 1498, 1500, 1741, 1776, 1815, 2184, 2185, 2186, 2188, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2250, 2261, 2264, 2271, 2283, 2298], │ │ │ │ │ "0400": [2222, 2271], │ │ │ │ │ "040039": 2216, │ │ │ │ │ "040247": 2207, │ │ │ │ │ "0405": [182, 760], │ │ │ │ │ "040775": 2207, │ │ │ │ │ "040863": 2186, │ │ │ │ │ "041": [1447, 2200, 2232], │ │ │ │ │ @@ -21853,15 +21854,14 @@ │ │ │ │ │ "044125": 2207, │ │ │ │ │ "044184": 2199, │ │ │ │ │ "0442": [2184, 2186], │ │ │ │ │ "044236": [16, 17, 18, 19, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2220, 2225, 2235, 2241, 2260], │ │ │ │ │ "044522": 586, │ │ │ │ │ "044546": 2207, │ │ │ │ │ "044933": 2207, │ │ │ │ │ - "045": 2193, │ │ │ │ │ "045691": 2191, │ │ │ │ │ "045759": 2207, │ │ │ │ │ "045976": 2214, │ │ │ │ │ "046": 2207, │ │ │ │ │ "046044": 2199, │ │ │ │ │ "046582": 2207, │ │ │ │ │ "046611": 2210, │ │ │ │ │ @@ -21924,14 +21924,15 @@ │ │ │ │ │ "053667": 2207, │ │ │ │ │ "053768": 2199, │ │ │ │ │ "053785": 2219, │ │ │ │ │ "054325": 2191, │ │ │ │ │ "0549": 2202, │ │ │ │ │ "054932": 2207, │ │ │ │ │ "054972": 2207, │ │ │ │ │ + "055": 2193, │ │ │ │ │ "055224": 2184, │ │ │ │ │ "055300": 2212, │ │ │ │ │ "055457": 2199, │ │ │ │ │ "055473": 2235, │ │ │ │ │ "055501": 2207, │ │ │ │ │ "055556": [69, 109, 129, 171, 173, 182, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 760], │ │ │ │ │ "055758": 2197, │ │ │ │ │ @@ -22145,14 +22146,15 @@ │ │ │ │ │ "086037": 2207, │ │ │ │ │ "086843": 2184, │ │ │ │ │ "087183": 2199, │ │ │ │ │ "087302": 2184, │ │ │ │ │ "0874": [2184, 2186, 2191], │ │ │ │ │ "087401": [2184, 2185, 2186, 2191, 2197, 2199, 2202, 2204, 2210, 2214, 2215, 2216, 2218, 2225, 2226, 2231, 2241, 2264], │ │ │ │ │ "0875": 2202, │ │ │ │ │ + "088": 2193, │ │ │ │ │ "088060": 2210, │ │ │ │ │ "088224": 2199, │ │ │ │ │ "088259": 2186, │ │ │ │ │ "088417": 15, │ │ │ │ │ "088563": 2199, │ │ │ │ │ "088787": 2215, │ │ │ │ │ "089069": 2222, │ │ │ │ │ @@ -22160,15 +22162,15 @@ │ │ │ │ │ "089227": 2207, │ │ │ │ │ "089329": [2184, 2195, 2214], │ │ │ │ │ "089354": 2235, │ │ │ │ │ "089589": 2207, │ │ │ │ │ "089641": 2207, │ │ │ │ │ "089759": 2186, │ │ │ │ │ "08t00": 2261, │ │ │ │ │ - "09": [29, 80, 84, 88, 107, 127, 157, 213, 218, 276, 277, 278, 322, 330, 331, 345, 562, 592, 595, 600, 629, 637, 677, 685, 686, 703, 732, 788, 793, 902, 903, 904, 987, 1008, 1075, 1164, 1221, 1344, 1452, 1489, 1501, 1506, 1524, 1578, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1839, 1876, 1894, 1912, 1964, 2018, 2184, 2185, 2186, 2191, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2218, 2220, 2221, 2222, 2226, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2249, 2250, 2261, 2271], │ │ │ │ │ + "09": [29, 80, 84, 88, 107, 127, 157, 213, 218, 276, 277, 278, 322, 330, 331, 345, 562, 592, 595, 600, 629, 637, 677, 685, 686, 703, 732, 788, 793, 902, 903, 904, 987, 1008, 1075, 1164, 1221, 1344, 1452, 1489, 1501, 1506, 1524, 1578, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1839, 1876, 1894, 1912, 1964, 2018, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2218, 2220, 2221, 2222, 2226, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2249, 2250, 2261, 2271], │ │ │ │ │ "0900": [956, 1013], │ │ │ │ │ "090118": 2219, │ │ │ │ │ "090255": 2197, │ │ │ │ │ "090310": 2207, │ │ │ │ │ "090711": 2207, │ │ │ │ │ "091": [2186, 2227], │ │ │ │ │ "091000": 2207, │ │ │ │ │ @@ -22199,15 +22201,14 @@ │ │ │ │ │ "094676": 2207, │ │ │ │ │ "094709": 2229, │ │ │ │ │ "094899": 2199, │ │ │ │ │ "094948": 2199, │ │ │ │ │ "095019": 2207, │ │ │ │ │ "095025": 2210, │ │ │ │ │ "095031": 2197, │ │ │ │ │ - "096": 2193, │ │ │ │ │ "096061": 2205, │ │ │ │ │ "096271": 2186, │ │ │ │ │ "0963": [182, 760], │ │ │ │ │ "096364": 2235, │ │ │ │ │ "096576": 2207, │ │ │ │ │ "096701": 2214, │ │ │ │ │ "096705": 2207, │ │ │ │ │ @@ -22251,20 +22252,20 @@ │ │ │ │ │ "0n": [1489, 2298], │ │ │ │ │ "0px": 2207, │ │ │ │ │ "0rc0": 13, │ │ │ │ │ "0th": [26, 249, 882, 1202, 2185, 2197, 2199, 2235], │ │ │ │ │ "0x00": 2294, │ │ │ │ │ "0x40": 2294, │ │ │ │ │ "0x7efd0c0b0690": 3, │ │ │ │ │ - "0x7fb0d552a270": 2230, │ │ │ │ │ - "0x7fb0d5dfed50": 2199, │ │ │ │ │ - "0x7fb0df112bc0": 2197, │ │ │ │ │ - "0x7fb0e052e990": 2195, │ │ │ │ │ - "0x7fb10bb29160": 2246, │ │ │ │ │ - "0x7fb115466ac0": 2210, │ │ │ │ │ + "0x7f3312a98d70": 2230, │ │ │ │ │ + "0x7f331628cea0": 2210, │ │ │ │ │ + "0x7f3335a089b0": 2199, │ │ │ │ │ + "0x7f334f8800d0": 2197, │ │ │ │ │ + "0x7f336d0086e0": 2195, │ │ │ │ │ + "0x7f336d190050": 2246, │ │ │ │ │ "1": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310], │ │ │ │ │ "10": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308], │ │ │ │ │ "100": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307], │ │ │ │ │ "1000": [9, 10, 15, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294], │ │ │ │ │ "10000": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266], │ │ │ │ │ "100000": [1354, 1372, 2199, 2201, 2210], │ │ │ │ │ "1000000": [144, 2199, 2228], │ │ │ │ │ @@ -22944,15 +22945,15 @@ │ │ │ │ │ "1169": 2199, │ │ │ │ │ "11690": 2230, │ │ │ │ │ "11692": 2230, │ │ │ │ │ "11693": 2230, │ │ │ │ │ "11696": 2230, │ │ │ │ │ "11698": 2230, │ │ │ │ │ "11699": 2230, │ │ │ │ │ - "117": [29, 268, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2221, 2222, 2230, 2232, 2241], │ │ │ │ │ + "117": [29, 268, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2221, 2222, 2230, 2232, 2241], │ │ │ │ │ "1170": 2199, │ │ │ │ │ "11704": [2241, 2271], │ │ │ │ │ "11708": 2230, │ │ │ │ │ "1171": 2199, │ │ │ │ │ "11711": 2230, │ │ │ │ │ "11713": 2230, │ │ │ │ │ "11718": 2230, │ │ │ │ │ @@ -23376,15 +23377,15 @@ │ │ │ │ │ "12887": 2231, │ │ │ │ │ "12888": 2230, │ │ │ │ │ "1289": 2197, │ │ │ │ │ "128907": 2186, │ │ │ │ │ "12893": 2231, │ │ │ │ │ "12896": 2232, │ │ │ │ │ "128hr": 234, │ │ │ │ │ - "129": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2214, 2218, 2225, 2232, 2283], │ │ │ │ │ + "129": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2214, 2225, 2232, 2283], │ │ │ │ │ "1290": 2197, │ │ │ │ │ "12902": 2231, │ │ │ │ │ "12903": 2231, │ │ │ │ │ "12907": 2232, │ │ │ │ │ "12908": 2231, │ │ │ │ │ "1291": 2197, │ │ │ │ │ "12910": 2231, │ │ │ │ │ @@ -23824,14 +23825,15 @@ │ │ │ │ │ "13971": 2238, │ │ │ │ │ "13972": 2232, │ │ │ │ │ "13977": 2232, │ │ │ │ │ "13980": 2232, │ │ │ │ │ "13981": 2232, │ │ │ │ │ "13985": 2232, │ │ │ │ │ "139853": 2207, │ │ │ │ │ + "139858848011568": 2246, │ │ │ │ │ "13988": 2232, │ │ │ │ │ "13990": 2232, │ │ │ │ │ "13994": 2232, │ │ │ │ │ "139976": 2186, │ │ │ │ │ "13999": 2232, │ │ │ │ │ "139999": 1372, │ │ │ │ │ "14": [3, 6, 15, 16, 17, 18, 19, 25, 26, 28, 29, 30, 31, 32, 133, 187, 190, 193, 197, 208, 213, 245, 268, 277, 345, 420, 632, 708, 718, 763, 766, 768, 782, 788, 799, 879, 903, 955, 956, 957, 958, 963, 964, 965, 966, 967, 968, 970, 973, 975, 976, 977, 978, 979, 980, 981, 992, 994, 995, 997, 999, 1009, 1013, 1014, 1018, 1023, 1025, 1195, 1256, 1292, 1336, 1433, 1437, 1438, 1439, 1598, 1657, 1677, 1815, 1876, 1894, 1912, 1964, 2018, 2054, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2242, 2246, 2249, 2257, 2261, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302, 2307], │ │ │ │ │ @@ -23842,15 +23844,14 @@ │ │ │ │ │ "14007": 2241, │ │ │ │ │ "14012": 2232, │ │ │ │ │ "14013": 2241, │ │ │ │ │ "14015": 2235, │ │ │ │ │ "14021": 2232, │ │ │ │ │ "140249": 2207, │ │ │ │ │ "14039": 2232, │ │ │ │ │ - "140398202577584": 2246, │ │ │ │ │ "14041": 2232, │ │ │ │ │ "140528": 2207, │ │ │ │ │ "14058": 2232, │ │ │ │ │ "14065": 2232, │ │ │ │ │ "14066": 2232, │ │ │ │ │ "14068": [2232, 2233], │ │ │ │ │ "1408": [2197, 2231], │ │ │ │ │ @@ -23859,15 +23860,15 @@ │ │ │ │ │ "1409": [2185, 2197], │ │ │ │ │ "14093": 2283, │ │ │ │ │ "14094": [2232, 2246], │ │ │ │ │ "14095": 2232, │ │ │ │ │ "14096": 2241, │ │ │ │ │ "140983": 2207, │ │ │ │ │ "140min": 2210, │ │ │ │ │ - "141": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2210, 2211, 2212, 2231, 2232, 2253, 2298], │ │ │ │ │ + "141": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2210, 2211, 2212, 2231, 2232, 2253, 2298], │ │ │ │ │ "1410": [2185, 2197], │ │ │ │ │ "14101": 2232, │ │ │ │ │ "14105": 2246, │ │ │ │ │ "1411": [2185, 2197], │ │ │ │ │ "14113": 2241, │ │ │ │ │ "141155": 2207, │ │ │ │ │ "141185": 15, │ │ │ │ │ @@ -23892,15 +23893,15 @@ │ │ │ │ │ "14173": 2232, │ │ │ │ │ "141809": 2214, │ │ │ │ │ "14187": 2246, │ │ │ │ │ "14189": 2235, │ │ │ │ │ "14190": 2232, │ │ │ │ │ "141915": 2207, │ │ │ │ │ "14194": 2241, │ │ │ │ │ - "142": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2203, 2210, 2211, 2212, 2232, 2253, 2298], │ │ │ │ │ + "142": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2210, 2211, 2212, 2232, 2253, 2298], │ │ │ │ │ "1420043460": 2231, │ │ │ │ │ "14203": 2234, │ │ │ │ │ "14204": 2233, │ │ │ │ │ "14207": [2238, 2241], │ │ │ │ │ "14208": 2232, │ │ │ │ │ "14216": 2238, │ │ │ │ │ "14218": 2235, │ │ │ │ │ @@ -24219,15 +24220,15 @@ │ │ │ │ │ "15169": 2239, │ │ │ │ │ "151732": 2207, │ │ │ │ │ "15183": 2241, │ │ │ │ │ "15184": 2241, │ │ │ │ │ "15187": 2235, │ │ │ │ │ "15193": 2235, │ │ │ │ │ "15197": 2235, │ │ │ │ │ - "152": [745, 2184, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2210, 2211, 2265], │ │ │ │ │ + "152": [745, 2184, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2210, 2211, 2265], │ │ │ │ │ "15204": 2246, │ │ │ │ │ "15206": 2238, │ │ │ │ │ "1521": 2199, │ │ │ │ │ "15213": 2235, │ │ │ │ │ "15214": 2238, │ │ │ │ │ "15217": 2241, │ │ │ │ │ "15224": 2235, │ │ │ │ │ @@ -24516,15 +24517,15 @@ │ │ │ │ │ "161657": 2195, │ │ │ │ │ "1617": [16, 17, 18, 19, 2199, 2203, 2235, 2298], │ │ │ │ │ "16179": 2236, │ │ │ │ │ "16180": 2236, │ │ │ │ │ "16189": 2246, │ │ │ │ │ "1619": [16, 17, 18, 19, 2199, 2203, 2235, 2298], │ │ │ │ │ "16199": 2237, │ │ │ │ │ - "162": [2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2201, 2210, 2211, 2231, 2235], │ │ │ │ │ + "162": [2185, 2186, 2188, 2191, 2195, 2197, 2199, 2201, 2210, 2211, 2231, 2235], │ │ │ │ │ "1620": [16, 17, 18, 19, 2199, 2203, 2235, 2298], │ │ │ │ │ "16209": 2236, │ │ │ │ │ "1621": [2194, 2201, 2203, 2283, 2294, 2307], │ │ │ │ │ "16211": 2238, │ │ │ │ │ "162114": 2207, │ │ │ │ │ "16212": 2238, │ │ │ │ │ "16223": [2235, 2241], │ │ │ │ │ @@ -24589,15 +24590,15 @@ │ │ │ │ │ "16468": 2241, │ │ │ │ │ "16469": 2283, │ │ │ │ │ "16471": 2238, │ │ │ │ │ "16472": 2236, │ │ │ │ │ "16488": 2249, │ │ │ │ │ "16493": 2236, │ │ │ │ │ "16496": 2236, │ │ │ │ │ - "165": [144, 2185, 2186, 2188, 2195, 2197, 2199, 2201, 2210, 2211], │ │ │ │ │ + "165": [144, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2210, 2211], │ │ │ │ │ "16503": 2238, │ │ │ │ │ "1651": 2217, │ │ │ │ │ "16511": 2236, │ │ │ │ │ "16515": 2236, │ │ │ │ │ "16519": 2236, │ │ │ │ │ "16524": 2237, │ │ │ │ │ "165258": 2207, │ │ │ │ │ @@ -25003,15 +25004,15 @@ │ │ │ │ │ "17877": 2249, │ │ │ │ │ "178774": 2207, │ │ │ │ │ "17884": 2238, │ │ │ │ │ "178875": 2186, │ │ │ │ │ "17892": 2241, │ │ │ │ │ "17896": 2241, │ │ │ │ │ "178987": 2207, │ │ │ │ │ - "179": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2212, 2218, 2283, 2298], │ │ │ │ │ + "179": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2212, 2283, 2298], │ │ │ │ │ "17901": 2238, │ │ │ │ │ "17905": 2241, │ │ │ │ │ "17912": 2241, │ │ │ │ │ "17917": 2241, │ │ │ │ │ "17924": 2241, │ │ │ │ │ "179241": [182, 760], │ │ │ │ │ "179247": 2204, │ │ │ │ │ @@ -25552,15 +25553,15 @@ │ │ │ │ │ "1977": 2199, │ │ │ │ │ "197720": 2204, │ │ │ │ │ "197727": 2207, │ │ │ │ │ "197749": 2210, │ │ │ │ │ "19776": 2242, │ │ │ │ │ "19788": 2242, │ │ │ │ │ "19789": 2241, │ │ │ │ │ - "198": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2249], │ │ │ │ │ + "198": [2185, 2186, 2188, 2195, 2197, 2199, 2205, 2210, 2211, 2231, 2249], │ │ │ │ │ "1980": [182, 760, 2166, 2204, 2218], │ │ │ │ │ "198053": 2219, │ │ │ │ │ "19806": 2241, │ │ │ │ │ "19810": 2241, │ │ │ │ │ "19819": 2241, │ │ │ │ │ "19820": 2241, │ │ │ │ │ "19822": 2241, │ │ │ │ │ @@ -25746,20 +25747,19 @@ │ │ │ │ │ "2021": [288, 296, 318, 639, 652, 673, 940, 943, 948, 957, 970, 997, 1542, 2201, 2207, 2213, 2277, 2289, 2294], │ │ │ │ │ "2022": [5, 22, 523, 525, 528, 537, 982, 1185, 1246, 1288, 1491, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1542, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1560, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1578, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1598, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1620, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1637, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1657, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1677, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1699, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1720, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1758, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1776, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1793, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1815, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1839, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1857, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1876, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1894, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1912, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1930, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1947, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1964, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1982, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2018, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2036, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2054, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2108, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2127, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2145, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2186, 2203, 2213, 2227, 2298, 2302, 2307], │ │ │ │ │ "2022a": 2294, │ │ │ │ │ "2023": [34, 270, 298, 301, 320, 363, 511, 519, 526, 533, 543, 544, 545, 546, 547, 548, 549, 551, 554, 555, 556, 557, 558, 560, 563, 564, 565, 566, 567, 651, 894, 898, 954, 959, 960, 982, 984, 1000, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1024, 1122, 1141, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1501, 1620, 1930, 2090, 2127, 2145, 2213], │ │ │ │ │ "202380": 2207, │ │ │ │ │ "20239": [2241, 2265], │ │ │ │ │ "2024": [270, 544, 546, 555, 567, 894, 898, 2127, 2213], │ │ │ │ │ - "2025": [36, 544, 546, 555, 567, 894, 898], │ │ │ │ │ + "2025": [36, 544, 546, 555, 567, 894, 898, 2228], │ │ │ │ │ "20251": 2307, │ │ │ │ │ "2026": 2228, │ │ │ │ │ "202602": 2205, │ │ │ │ │ "202646": 2230, │ │ │ │ │ - "2027": 2228, │ │ │ │ │ "20271": 2241, │ │ │ │ │ "202872": [2184, 2214], │ │ │ │ │ "202946": 2207, │ │ │ │ │ "203": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2253], │ │ │ │ │ "2030": 2265, │ │ │ │ │ "20303": 2265, │ │ │ │ │ "20306": 2302, │ │ │ │ │ @@ -26673,15 +26673,15 @@ │ │ │ │ │ "24076": 2249, │ │ │ │ │ "24077": 2246, │ │ │ │ │ "240774": 2191, │ │ │ │ │ "24084": 2246, │ │ │ │ │ "240848": 2207, │ │ │ │ │ "240893": 2207, │ │ │ │ │ "240991": 2186, │ │ │ │ │ - "241": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2207, 2210, 2220, 2246, 2254, 2298], │ │ │ │ │ + "241": [2185, 2186, 2188, 2195, 2197, 2199, 2207, 2210, 2220, 2246, 2254, 2298], │ │ │ │ │ "24103": 2302, │ │ │ │ │ "241039": 2230, │ │ │ │ │ "2411": 2214, │ │ │ │ │ "24110": 2246, │ │ │ │ │ "24112": 2265, │ │ │ │ │ "24113": 2246, │ │ │ │ │ "24114": 2265, │ │ │ │ │ @@ -26876,14 +26876,15 @@ │ │ │ │ │ "25057": 2271, │ │ │ │ │ "25061": 2248, │ │ │ │ │ "25065": 2249, │ │ │ │ │ "250663": 2186, │ │ │ │ │ "25070": 2249, │ │ │ │ │ "25075": 2248, │ │ │ │ │ "25077": 2248, │ │ │ │ │ + "2508": 2193, │ │ │ │ │ "25080": 2248, │ │ │ │ │ "25087": 2249, │ │ │ │ │ "250933": 2186, │ │ │ │ │ "25099": 2265, │ │ │ │ │ "250m": 2210, │ │ │ │ │ "250n": 2202, │ │ │ │ │ "250u": 2202, │ │ │ │ │ @@ -27672,15 +27673,15 @@ │ │ │ │ │ "28987": 2265, │ │ │ │ │ "289997": [2191, 2197], │ │ │ │ │ "28statist": 1457, │ │ │ │ │ "28t00": 2294, │ │ │ │ │ "28t01": 2294, │ │ │ │ │ "28t02": 2294, │ │ │ │ │ "29": [15, 17, 18, 19, 22, 28, 29, 36, 207, 213, 233, 278, 282, 313, 331, 517, 519, 547, 548, 549, 649, 650, 651, 666, 686, 781, 788, 904, 1274, 1336, 1344, 1437, 1438, 1439, 1457, 1524, 1560, 1637, 1720, 1815, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2213, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2271, 2274, 2277, 2283, 2287, 2289, 2292, 2293, 2294, 2298, 2301, 2302, 2307], │ │ │ │ │ - "290": [81, 2186, 2197, 2199, 2205, 2210], │ │ │ │ │ + "290": [81, 2186, 2197, 2199, 2210], │ │ │ │ │ "2900": 2185, │ │ │ │ │ "290018": 2207, │ │ │ │ │ "290098": 15, │ │ │ │ │ "2901": 2185, │ │ │ │ │ "2902": 2185, │ │ │ │ │ "290213": [2184, 2195, 2214], │ │ │ │ │ "2903": 2185, │ │ │ │ │ @@ -28100,15 +28101,15 @@ │ │ │ │ │ "312652": [2220, 2228, 2230], │ │ │ │ │ "31269": 2271, │ │ │ │ │ "31271": 2271, │ │ │ │ │ "31286": 2277, │ │ │ │ │ "312868": 2207, │ │ │ │ │ "312912": 2195, │ │ │ │ │ "31296": 2271, │ │ │ │ │ - "313": [2186, 2197, 2199, 2201, 2205, 2207, 2210, 2255], │ │ │ │ │ + "313": [2186, 2197, 2199, 2201, 2207, 2210, 2255], │ │ │ │ │ "31302": [2277, 2298], │ │ │ │ │ "313068": 2207, │ │ │ │ │ "3131": 203, │ │ │ │ │ "3132": 2199, │ │ │ │ │ "31325": 2271, │ │ │ │ │ "31326": 2283, │ │ │ │ │ "31329": 2271, │ │ │ │ │ @@ -28127,15 +28128,15 @@ │ │ │ │ │ "3136390": 2220, │ │ │ │ │ "31364": 2277, │ │ │ │ │ "31368": 2273, │ │ │ │ │ "313805": 2207, │ │ │ │ │ "31389": 2266, │ │ │ │ │ "313939": 2199, │ │ │ │ │ "31396": 2271, │ │ │ │ │ - "314": [2186, 2197, 2199, 2201, 2210], │ │ │ │ │ + "314": [2186, 2193, 2197, 2199, 2201, 2210], │ │ │ │ │ "31401": 2271, │ │ │ │ │ "3141": [1109, 2217, 2246], │ │ │ │ │ "31413": 2271, │ │ │ │ │ "314148": 2191, │ │ │ │ │ "31415": 2271, │ │ │ │ │ "314159265": 2, │ │ │ │ │ "31422": 2277, │ │ │ │ │ @@ -28196,15 +28197,15 @@ │ │ │ │ │ "31670": 2266, │ │ │ │ │ "316741": [102, 1158], │ │ │ │ │ "31677": 2267, │ │ │ │ │ "316836": 2230, │ │ │ │ │ "316847": 2207, │ │ │ │ │ "316862": 2207, │ │ │ │ │ "316938": 2195, │ │ │ │ │ - "317": [2186, 2193, 2197, 2199, 2210], │ │ │ │ │ + "317": [2186, 2197, 2199, 2210], │ │ │ │ │ "31710": 2268, │ │ │ │ │ "31720": 2267, │ │ │ │ │ "31722": 2271, │ │ │ │ │ "317240": 2218, │ │ │ │ │ "31725": 2298, │ │ │ │ │ "31731": 2267, │ │ │ │ │ "317441": [2185, 2197, 2199, 2202], │ │ │ │ │ @@ -28403,15 +28404,15 @@ │ │ │ │ │ "32766": 30, │ │ │ │ │ "327710": 2191, │ │ │ │ │ "32779": 2271, │ │ │ │ │ "32782": 2271, │ │ │ │ │ "327863": 2186, │ │ │ │ │ "3279": 2199, │ │ │ │ │ "32792": 2271, │ │ │ │ │ - "328": [2184, 2186, 2191, 2193, 2197, 2199, 2205, 2210, 2246], │ │ │ │ │ + "328": [2184, 2186, 2191, 2197, 2199, 2205, 2210, 2246], │ │ │ │ │ "3280": 2199, │ │ │ │ │ "32800": 2269, │ │ │ │ │ "32803": 2289, │ │ │ │ │ "32806": 2271, │ │ │ │ │ "32809": 2271, │ │ │ │ │ "3281": 2199, │ │ │ │ │ "32815": 2271, │ │ │ │ │ @@ -28884,15 +28885,15 @@ │ │ │ │ │ "35028": 2277, │ │ │ │ │ "35038": 2271, │ │ │ │ │ "35046": 2277, │ │ │ │ │ "35058": 2277, │ │ │ │ │ "350621": 2207, │ │ │ │ │ "3507": 2202, │ │ │ │ │ "35076": 2283, │ │ │ │ │ - "351": [2186, 2197, 2199, 2210], │ │ │ │ │ + "351": [2186, 2197, 2199, 2205, 2210], │ │ │ │ │ "35109": 2271, │ │ │ │ │ "35114": 2271, │ │ │ │ │ "35131": 2289, │ │ │ │ │ "35132": 2294, │ │ │ │ │ "351389": 2199, │ │ │ │ │ "35141": 2298, │ │ │ │ │ "35144": 2277, │ │ │ │ │ @@ -30034,15 +30035,15 @@ │ │ │ │ │ "40585": 2283, │ │ │ │ │ "40589": 2294, │ │ │ │ │ "405906": 2207, │ │ │ │ │ "405919": 2195, │ │ │ │ │ "406": [2186, 2199, 2210], │ │ │ │ │ "4060": 2222, │ │ │ │ │ "40606": 2283, │ │ │ │ │ - "4062": 2217, │ │ │ │ │ + "4062": [2193, 2217], │ │ │ │ │ "40628": [2283, 2298], │ │ │ │ │ "4063": 2217, │ │ │ │ │ "406345": 2207, │ │ │ │ │ "40638": 2298, │ │ │ │ │ "4065": 2218, │ │ │ │ │ "40660": 2283, │ │ │ │ │ "40662": 2281, │ │ │ │ │ @@ -31824,15 +31825,15 @@ │ │ │ │ │ "48778": 2295, │ │ │ │ │ "48780": 2295, │ │ │ │ │ "48784": 2295, │ │ │ │ │ "4879": 2218, │ │ │ │ │ "48791": 2298, │ │ │ │ │ "48794": 2295, │ │ │ │ │ "48796": 2298, │ │ │ │ │ - "488": [16, 17, 18, 19, 2184, 2199, 2203, 2205, 2210, 2235], │ │ │ │ │ + "488": [16, 17, 18, 19, 2184, 2193, 2199, 2203, 2205, 2210, 2235], │ │ │ │ │ "48801": 2298, │ │ │ │ │ "48812": 2298, │ │ │ │ │ "48813": 2298, │ │ │ │ │ "488153": 2205, │ │ │ │ │ "48818": 2298, │ │ │ │ │ "48821": 2298, │ │ │ │ │ "48826": 2295, │ │ │ │ │ @@ -32881,15 +32882,15 @@ │ │ │ │ │ "54037": 2302, │ │ │ │ │ "54063": 2302, │ │ │ │ │ "540662": 2207, │ │ │ │ │ "5407": 2220, │ │ │ │ │ "54074": 2302, │ │ │ │ │ "540920": 2195, │ │ │ │ │ "54097": 2302, │ │ │ │ │ - "541": [2193, 2199], │ │ │ │ │ + "541": 2199, │ │ │ │ │ "5410": 2218, │ │ │ │ │ "541257": 2210, │ │ │ │ │ "541335": 2205, │ │ │ │ │ "54134": 2307, │ │ │ │ │ "5414": 2220, │ │ │ │ │ "541630": 2186, │ │ │ │ │ "54167": 2302, │ │ │ │ │ @@ -32998,15 +32999,15 @@ │ │ │ │ │ "54868": 2303, │ │ │ │ │ "54870": 2303, │ │ │ │ │ "548702": [2184, 2214], │ │ │ │ │ "54875": 2303, │ │ │ │ │ "54877": 2303, │ │ │ │ │ "548814": 2166, │ │ │ │ │ "54894": 2303, │ │ │ │ │ - "549": 2199, │ │ │ │ │ + "549": [2199, 2205], │ │ │ │ │ "5490": 2219, │ │ │ │ │ "54904": 2303, │ │ │ │ │ "549047": 2207, │ │ │ │ │ "54918": 2303, │ │ │ │ │ "54920": 2303, │ │ │ │ │ "54922": 2304, │ │ │ │ │ "54931": 2303, │ │ │ │ │ @@ -33122,15 +33123,15 @@ │ │ │ │ │ "55453": 2304, │ │ │ │ │ "5546": 2220, │ │ │ │ │ "55468": 2307, │ │ │ │ │ "55483": 2307, │ │ │ │ │ "55498": 2307, │ │ │ │ │ "55499": 2307, │ │ │ │ │ "554994": 2207, │ │ │ │ │ - "555": 2199, │ │ │ │ │ + "555": [2199, 2205], │ │ │ │ │ "5550": 2218, │ │ │ │ │ "55503": 2307, │ │ │ │ │ "55512": 2307, │ │ │ │ │ "55515": 2307, │ │ │ │ │ "55520": 2304, │ │ │ │ │ "55525": 2307, │ │ │ │ │ "5553": 2218, │ │ │ │ │ @@ -33398,15 +33399,15 @@ │ │ │ │ │ "5695": 2219, │ │ │ │ │ "569522": 2207, │ │ │ │ │ "569605": [2185, 2197, 2199, 2202, 2204, 2215], │ │ │ │ │ "569718": 2207, │ │ │ │ │ "5698": 2218, │ │ │ │ │ "56991": 2308, │ │ │ │ │ "57": [15, 17, 18, 19, 276, 902, 1192, 1253, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2225, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2271], │ │ │ │ │ - "570": [2193, 2199], │ │ │ │ │ + "570": 2199, │ │ │ │ │ "57006": 2308, │ │ │ │ │ "57010": 2308, │ │ │ │ │ "57019": 2308, │ │ │ │ │ "5702": 2218, │ │ │ │ │ "57027": 2308, │ │ │ │ │ "5703": 2218, │ │ │ │ │ "57039": 2308, │ │ │ │ │ @@ -33706,15 +33707,15 @@ │ │ │ │ │ "602": 2199, │ │ │ │ │ "6021": 2219, │ │ │ │ │ "602268": 2207, │ │ │ │ │ "602549": 15, │ │ │ │ │ "6026": 2219, │ │ │ │ │ "602763": 2166, │ │ │ │ │ "6028": 2219, │ │ │ │ │ - "603": [2199, 2205, 2298], │ │ │ │ │ + "603": [2193, 2199, 2298], │ │ │ │ │ "603194": 2207, │ │ │ │ │ "603594": 2207, │ │ │ │ │ "6039": 2186, │ │ │ │ │ "604": [2199, 2298], │ │ │ │ │ "6043": 2219, │ │ │ │ │ "604334": 2235, │ │ │ │ │ "604466": 2197, │ │ │ │ │ @@ -33778,15 +33779,15 @@ │ │ │ │ │ "6121": 2219, │ │ │ │ │ "612245": [2191, 2225], │ │ │ │ │ "6124": 2220, │ │ │ │ │ "612452": 2230, │ │ │ │ │ "6125": 2219, │ │ │ │ │ "6127": 2220, │ │ │ │ │ "6129": 2219, │ │ │ │ │ - "613": [2199, 2205], │ │ │ │ │ + "613": 2199, │ │ │ │ │ "613172": 2186, │ │ │ │ │ "6134": 2220, │ │ │ │ │ "6136": 2219, │ │ │ │ │ "613616": 2202, │ │ │ │ │ "613897": 2230, │ │ │ │ │ "613898": 2207, │ │ │ │ │ "614": [2199, 2232], │ │ │ │ │ @@ -34106,15 +34107,15 @@ │ │ │ │ │ "651": [2184, 2199, 2205, 2298], │ │ │ │ │ "6511": 2228, │ │ │ │ │ "651378": 2230, │ │ │ │ │ "6514": 2220, │ │ │ │ │ "651437": 2229, │ │ │ │ │ "651520": 2195, │ │ │ │ │ "651554": 2207, │ │ │ │ │ - "652": 2199, │ │ │ │ │ + "652": [2193, 2199], │ │ │ │ │ "652317": 1334, │ │ │ │ │ "6525": 2220, │ │ │ │ │ "652692": 2195, │ │ │ │ │ "6527": 2222, │ │ │ │ │ "6529": 2220, │ │ │ │ │ "653": [2184, 2199, 2205, 2298], │ │ │ │ │ "653022": 2207, │ │ │ │ │ @@ -34168,15 +34169,15 @@ │ │ │ │ │ "658444": [2184, 2257], │ │ │ │ │ "658537": 2184, │ │ │ │ │ "658598": 2207, │ │ │ │ │ "6587": 2220, │ │ │ │ │ "6588664275960427": 2206, │ │ │ │ │ "658899": 2207, │ │ │ │ │ "6589": 2206, │ │ │ │ │ - "659": [2193, 2199], │ │ │ │ │ + "659": 2199, │ │ │ │ │ "659221": 2207, │ │ │ │ │ "659369": 2207, │ │ │ │ │ "659584": 2207, │ │ │ │ │ "659955": 2207, │ │ │ │ │ "66": [17, 19, 139, 140, 219, 273, 900, 1174, 1175, 1433, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ "660": [2199, 2201], │ │ │ │ │ "6600": 2220, │ │ │ │ │ @@ -34358,15 +34359,15 @@ │ │ │ │ │ "679430": 2207, │ │ │ │ │ "6796": [2185, 2197], │ │ │ │ │ "6797": [2185, 2197], │ │ │ │ │ "6798": 2185, │ │ │ │ │ "679894": 2207, │ │ │ │ │ "6799": 2185, │ │ │ │ │ "68": [17, 19, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2227, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ - "680": [2185, 2197], │ │ │ │ │ + "680": [2185, 2193, 2197], │ │ │ │ │ "6800": 2185, │ │ │ │ │ "6801": 2185, │ │ │ │ │ "680188": 2207, │ │ │ │ │ "6802": [2185, 2220], │ │ │ │ │ "6803": 2185, │ │ │ │ │ "6804": 2185, │ │ │ │ │ "680539": 2207, │ │ │ │ │ @@ -34584,15 +34585,15 @@ │ │ │ │ │ "704": [2199, 2203], │ │ │ │ │ "7040": [2199, 2220], │ │ │ │ │ "704118": 2207, │ │ │ │ │ "704261": 2230, │ │ │ │ │ "7043": 2220, │ │ │ │ │ "704581": 2230, │ │ │ │ │ "704907": [1148, 1149], │ │ │ │ │ - "705": [1193, 1254, 2193, 2199], │ │ │ │ │ + "705": [1193, 1254, 2199], │ │ │ │ │ "705001": 2207, │ │ │ │ │ "705212": 2207, │ │ │ │ │ "705238": 2207, │ │ │ │ │ "7053": 2221, │ │ │ │ │ "7056": 2249, │ │ │ │ │ "705764": 2219, │ │ │ │ │ "705775": [2184, 2214], │ │ │ │ │ @@ -34630,15 +34631,15 @@ │ │ │ │ │ "709248": 2260, │ │ │ │ │ "709459": 2199, │ │ │ │ │ "7095": 2228, │ │ │ │ │ "7096": 2232, │ │ │ │ │ "709661": [2184, 2214], │ │ │ │ │ "7097": 2222, │ │ │ │ │ "7098": 2220, │ │ │ │ │ - "71": [15, 17, 24, 25, 28, 29, 32, 133, 208, 708, 718, 782, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ + "71": [15, 17, 24, 25, 28, 29, 32, 133, 208, 708, 718, 782, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ "710": 2199, │ │ │ │ │ "7101": 2220, │ │ │ │ │ "7103": 2222, │ │ │ │ │ "7105": 2220, │ │ │ │ │ "7106": 2220, │ │ │ │ │ "711": 2199, │ │ │ │ │ "711409": 2186, │ │ │ │ │ @@ -34765,15 +34766,15 @@ │ │ │ │ │ "729": [16, 17, 18, 19, 2197, 2199, 2231, 2235], │ │ │ │ │ "729161": 2199, │ │ │ │ │ "7292": 2241, │ │ │ │ │ "7297": 2221, │ │ │ │ │ "7299": 2221, │ │ │ │ │ "729907": 2186, │ │ │ │ │ "72hr": 234, │ │ │ │ │ - "73": [15, 17, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271], │ │ │ │ │ + "73": [15, 17, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271], │ │ │ │ │ "730": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ "7300": 2221, │ │ │ │ │ "730057": 2195, │ │ │ │ │ "7302": 2221, │ │ │ │ │ "7306": 2221, │ │ │ │ │ "7308": 2294, │ │ │ │ │ "730951": 2257, │ │ │ │ │ @@ -35384,15 +35385,15 @@ │ │ │ │ │ "809152": 2216, │ │ │ │ │ "809185": 2219, │ │ │ │ │ "8092": 2222, │ │ │ │ │ "809797": 2207, │ │ │ │ │ "809829": 2207, │ │ │ │ │ "809926": 2207, │ │ │ │ │ "80px": 2207, │ │ │ │ │ - "81": [15, 187, 763, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2249, 2271], │ │ │ │ │ + "81": [15, 187, 763, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2249, 2271], │ │ │ │ │ "810": [182, 760, 2200, 2298], │ │ │ │ │ "8100": 2199, │ │ │ │ │ "8103": 2222, │ │ │ │ │ "810332": 2207, │ │ │ │ │ "810340": 2186, │ │ │ │ │ "810847": 2195, │ │ │ │ │ "811": [2200, 2298], │ │ │ │ │ @@ -35572,15 +35573,15 @@ │ │ │ │ │ "838": 2199, │ │ │ │ │ "838161": 2207, │ │ │ │ │ "838166": 2207, │ │ │ │ │ "838258": 2207, │ │ │ │ │ "838665": 2207, │ │ │ │ │ "8387": 2222, │ │ │ │ │ "839002": 2207, │ │ │ │ │ - "84": [31, 228, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246], │ │ │ │ │ + "84": [31, 228, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246], │ │ │ │ │ "8400": 2222, │ │ │ │ │ "840123": 2215, │ │ │ │ │ "840255": 2228, │ │ │ │ │ "840449": 15, │ │ │ │ │ "840607": 2186, │ │ │ │ │ "840870": 2197, │ │ │ │ │ "840938": 2207, │ │ │ │ │ @@ -35807,15 +35808,15 @@ │ │ │ │ │ "868951": 2207, │ │ │ │ │ "869081": 2199, │ │ │ │ │ "869127": 2230, │ │ │ │ │ "869226": 2186, │ │ │ │ │ "869339": 2207, │ │ │ │ │ "869551": 2191, │ │ │ │ │ "8697": 2224, │ │ │ │ │ - "87": [15, 18, 133, 196, 208, 242, 283, 586, 708, 771, 782, 817, 910, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298], │ │ │ │ │ + "87": [15, 18, 133, 196, 208, 242, 283, 586, 708, 771, 782, 817, 910, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298], │ │ │ │ │ "8701": 2223, │ │ │ │ │ "8702": 2223, │ │ │ │ │ "8703": 2223, │ │ │ │ │ "870756e": 2195, │ │ │ │ │ "8710": 2223, │ │ │ │ │ "871016": 2204, │ │ │ │ │ "871018": 2207, │ │ │ │ │ @@ -36042,15 +36043,15 @@ │ │ │ │ │ "90010907": [624, 1215], │ │ │ │ │ "9002": 2230, │ │ │ │ │ "9003": 2228, │ │ │ │ │ "900321": 2199, │ │ │ │ │ "9005": 2232, │ │ │ │ │ "9009": 2225, │ │ │ │ │ "900906": 2207, │ │ │ │ │ - "901": 2199, │ │ │ │ │ + "901": [2193, 2199], │ │ │ │ │ "9011": 2224, │ │ │ │ │ "9012": 2224, │ │ │ │ │ "9016": 2225, │ │ │ │ │ "902": 2199, │ │ │ │ │ "903": 2199, │ │ │ │ │ "9031": 2246, │ │ │ │ │ "903246": 2207, │ │ │ │ │ @@ -36241,26 +36242,24 @@ │ │ │ │ │ "930201": 2191, │ │ │ │ │ "9304": 2283, │ │ │ │ │ "930687": 2217, │ │ │ │ │ "930806": 2210, │ │ │ │ │ "9309": 2271, │ │ │ │ │ "9311": [2225, 2228], │ │ │ │ │ "931203": 2204, │ │ │ │ │ - "931226": 2228, │ │ │ │ │ "931253": 2210, │ │ │ │ │ "9313": 2238, │ │ │ │ │ "931536": 2210, │ │ │ │ │ "931802": 2207, │ │ │ │ │ "932": 2202, │ │ │ │ │ "932053": 2199, │ │ │ │ │ "932132": [2184, 2195, 2214], │ │ │ │ │ "932171": 2199, │ │ │ │ │ "9322": 2225, │ │ │ │ │ "932249": 2191, │ │ │ │ │ - "932466": 2228, │ │ │ │ │ "932592": 2207, │ │ │ │ │ "9327": 2227, │ │ │ │ │ "932714": 2207, │ │ │ │ │ "9330": 2226, │ │ │ │ │ "9331": 2225, │ │ │ │ │ "933140": 2230, │ │ │ │ │ "933653": 2214, │ │ │ │ │ @@ -36359,16 +36358,16 @@ │ │ │ │ │ "949264": 2210, │ │ │ │ │ "9493": [2225, 2265], │ │ │ │ │ "9494": 2230, │ │ │ │ │ "9497": 2225, │ │ │ │ │ "949707": 2207, │ │ │ │ │ "949747": [1269, 1270], │ │ │ │ │ "949965": 2217, │ │ │ │ │ - "95": [15, 133, 208, 586, 708, 782, 1447, 1456, 2184, 2185, 2186, 2188, 2191, 2192, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246, 2298], │ │ │ │ │ - "950": [2193, 2194, 2207], │ │ │ │ │ + "95": [15, 133, 208, 586, 708, 782, 1447, 1456, 2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246, 2298], │ │ │ │ │ + "950": [2194, 2207], │ │ │ │ │ "9500": [183, 761], │ │ │ │ │ "950057": 15, │ │ │ │ │ "950088": 2207, │ │ │ │ │ "950146": 2210, │ │ │ │ │ "950460": 2199, │ │ │ │ │ "950775": 2207, │ │ │ │ │ "950858": 2186, │ │ │ │ │ @@ -36423,15 +36422,15 @@ │ │ │ │ │ "9586": 2307, │ │ │ │ │ "958621": [218, 793], │ │ │ │ │ "9589": 2228, │ │ │ │ │ "9596": 2226, │ │ │ │ │ "9597255933": 2199, │ │ │ │ │ "959726": [2185, 2197, 2199, 2202], │ │ │ │ │ "959844": 2207, │ │ │ │ │ - "96": [586, 1447, 2184, 2185, 2186, 2188, 2191, 2192, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2230, 2231, 2232, 2235, 2246], │ │ │ │ │ + "96": [586, 1447, 2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2230, 2231, 2232, 2235, 2246], │ │ │ │ │ "960": 2205, │ │ │ │ │ "9602": 2225, │ │ │ │ │ "9603": 2226, │ │ │ │ │ "960464477539062e": 2298, │ │ │ │ │ "9605": 2277, │ │ │ │ │ "960500": 2219, │ │ │ │ │ "9607": 2228, │ │ │ │ │ @@ -36570,22 +36569,24 @@ │ │ │ │ │ "9798": 2226, │ │ │ │ │ "98": [15, 1447, 2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2230, 2232, 2235, 2238, 2246, 2294], │ │ │ │ │ "980": 2199, │ │ │ │ │ "9804": 2226, │ │ │ │ │ "9805": 2226, │ │ │ │ │ "9807": 2226, │ │ │ │ │ "980796": 2207, │ │ │ │ │ + "980920": 2228, │ │ │ │ │ "980950": 2195, │ │ │ │ │ "981": [2199, 2207], │ │ │ │ │ "981293": 2207, │ │ │ │ │ "9816": 2228, │ │ │ │ │ "981683": 2207, │ │ │ │ │ "981845": 2199, │ │ │ │ │ "981981": 1306, │ │ │ │ │ "982": 2199, │ │ │ │ │ + "982116": 2228, │ │ │ │ │ "982353": 29, │ │ │ │ │ "982405": 2184, │ │ │ │ │ "9827": 2226, │ │ │ │ │ "982821": 1298, │ │ │ │ │ "9832": 2226, │ │ │ │ │ "983776": 2195, │ │ │ │ │ "984": 2199, │ │ │ │ │ @@ -37794,15 +37795,15 @@ │ │ │ │ │ "begin": [3, 5, 13, 16, 19, 121, 233, 234, 259, 267, 270, 425, 426, 427, 502, 513, 515, 533, 535, 541, 696, 807, 808, 866, 873, 890, 896, 898, 1044, 1345, 1391, 1403, 1404, 1433, 1469, 1476, 1483, 1486, 1488, 1490, 1498, 1499, 1699, 1930, 2127, 2186, 2199, 2202, 2208, 2210, 2212, 2220, 2221, 2225, 2228, 2229, 2271, 2277, 2289], │ │ │ │ │ "behav": [7, 63, 134, 205, 267, 341, 709, 778, 896, 1350, 1387, 2168, 2185, 2187, 2190, 2195, 2198, 2203, 2207, 2209, 2210, 2211, 2220, 2222, 2224, 2225, 2232, 2235, 2238, 2240, 2249, 2261, 2265, 2277, 2283, 2289, 2290, 2294, 2302, 2307], │ │ │ │ │ "behavior": [0, 2, 3, 10, 12, 13, 14, 34, 72, 73, 74, 77, 81, 82, 94, 98, 99, 143, 146, 160, 169, 200, 201, 207, 208, 209, 210, 212, 213, 225, 226, 227, 242, 245, 255, 258, 263, 264, 270, 273, 274, 276, 277, 278, 283, 288, 296, 318, 427, 575, 581, 582, 583, 586, 593, 621, 622, 639, 652, 673, 681, 719, 720, 738, 774, 775, 781, 782, 783, 784, 787, 788, 800, 801, 802, 817, 873, 879, 880, 889, 894, 898, 900, 902, 903, 904, 910, 940, 943, 948, 957, 970, 997, 999, 1014, 1018, 1031, 1068, 1118, 1148, 1149, 1152, 1155, 1168, 1202, 1203, 1207, 1208, 1211, 1213, 1225, 1263, 1264, 1269, 1270, 1304, 1321, 1345, 1391, 1446, 1469, 1470, 1475, 1477, 1478, 1486, 1487, 1488, 1490, 1497, 1498, 2177, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2201, 2202, 2206, 2207, 2210, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2224, 2225, 2226, 2231, 2232, 2235, 2238, 2240, 2241, 2242, 2246, 2247, 2249, 2257, 2260, 2265, 2266, 2271, 2277, 2283, 2289, 2294, 2297, 2298, 2302, 2308], │ │ │ │ │ "behaviour": [18, 75, 77, 97, 98, 169, 205, 242, 247, 584, 620, 621, 634, 778, 808, 817, 864, 880, 1123, 1345, 1391, 1419, 1446, 1468, 1469, 1470, 1471, 1472, 1475, 1476, 1477, 1478, 1481, 1482, 1483, 1484, 1486, 1487, 1488, 1490, 1498, 1499, 2186, 2188, 2199, 2201, 2202, 2206, 2221, 2222, 2223, 2224, 2225, 2226, 2231, 2235, 2241, 2243, 2246, 2249, 2265, 2271, 2277, 2278, 2289, 2294, 2298, 2302, 2307], │ │ │ │ │ "behind": [2197, 2207, 2218, 2302, 2307], │ │ │ │ │ "behr": 32, │ │ │ │ │ "beij": [1145, 2207], │ │ │ │ │ - "being": [1, 2, 3, 4, 10, 13, 17, 141, 150, 152, 160, 188, 189, 209, 212, 214, 223, 241, 253, 257, 259, 262, 263, 269, 276, 346, 352, 375, 376, 563, 617, 699, 717, 738, 764, 765, 783, 787, 798, 830, 835, 858, 859, 864, 886, 890, 902, 1035, 1076, 1117, 1192, 1253, 1387, 1388, 1431, 1433, 1469, 1472, 1475, 1486, 1487, 1493, 1494, 1495, 1496, 1498, 2186, 2188, 2191, 2194, 2195, 2197, 2199, 2201, 2204, 2206, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2233, 2234, 2235, 2237, 2238, 2239, 2241, 2242, 2246, 2249, 2250, 2261, 2265, 2266, 2267, 2271, 2275, 2277, 2278, 2283, 2286, 2287, 2289, 2294, 2296, 2298, 2302, 2304, 2307, 2308], │ │ │ │ │ + "being": [1, 2, 3, 4, 10, 13, 17, 141, 150, 152, 160, 188, 189, 209, 212, 214, 223, 241, 253, 257, 259, 262, 263, 269, 276, 346, 352, 375, 376, 563, 617, 699, 717, 738, 764, 765, 783, 787, 798, 830, 835, 858, 859, 864, 886, 890, 902, 1035, 1076, 1117, 1192, 1253, 1387, 1388, 1431, 1433, 1469, 1472, 1475, 1486, 1487, 1493, 1494, 1495, 1496, 1498, 2186, 2188, 2191, 2193, 2194, 2195, 2197, 2199, 2201, 2204, 2206, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2233, 2234, 2235, 2237, 2238, 2239, 2241, 2242, 2246, 2249, 2250, 2261, 2265, 2266, 2267, 2271, 2275, 2277, 2278, 2283, 2286, 2287, 2289, 2294, 2296, 2298, 2302, 2304, 2307, 2308], │ │ │ │ │ "belal01": 30, │ │ │ │ │ "belhb23": 30, │ │ │ │ │ "belld01": 30, │ │ │ │ │ "belld02": 30, │ │ │ │ │ "belong": [2, 150, 303, 445, 555, 655, 2195, 2210, 2211, 2217, 2222, 2228, 2232], │ │ │ │ │ "below": [1, 3, 5, 6, 9, 10, 13, 15, 16, 17, 19, 22, 79, 92, 98, 102, 107, 117, 160, 196, 213, 252, 276, 378, 380, 465, 489, 591, 616, 621, 629, 693, 738, 771, 788, 902, 1121, 1146, 1148, 1149, 1152, 1158, 1164, 1203, 1207, 1208, 1211, 1221, 1264, 1309, 1323, 1326, 1328, 1343, 1344, 1345, 1354, 1391, 1397, 1403, 1421, 1430, 1433, 1488, 1490, 1498, 1657, 1677, 1699, 1720, 1793, 1815, 2167, 2175, 2184, 2185, 2186, 2188, 2194, 2195, 2197, 2199, 2202, 2206, 2207, 2208, 2210, 2211, 2212, 2218, 2221, 2228, 2231, 2232, 2235, 2241, 2249, 2265, 2271, 2275, 2277, 2283, 2289, 2294, 2298, 2302, 2307], │ │ │ │ │ "belr833": 30, │ │ │ │ │ @@ -38700,15 +38701,15 @@ │ │ │ │ │ "correctli": [6, 7, 1042, 1345, 1391, 1400, 1433, 1469, 1475, 1486, 1488, 1490, 2168, 2186, 2199, 2202, 2215, 2217, 2218, 2220, 2221, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2233, 2235, 2238, 2239, 2242, 2243, 2246, 2249, 2250, 2265, 2267, 2277, 2283, 2284, 2285, 2286, 2289, 2290, 2293, 2298, 2301, 2302, 2303, 2304, 2307], │ │ │ │ │ "correl": [99, 100, 102, 197, 597, 622, 1155, 1156, 1158, 1213, 1298, 1306, 1323, 1433, 1463, 2220, 2229, 2235, 2246, 2256, 2286, 2294, 2295], │ │ │ │ │ "correspond": [2, 13, 21, 27, 30, 32, 35, 56, 65, 69, 79, 109, 111, 119, 121, 129, 131, 144, 163, 171, 173, 183, 186, 192, 199, 204, 206, 207, 210, 215, 216, 217, 220, 221, 222, 244, 249, 269, 272, 275, 280, 284, 285, 286, 330, 350, 363, 378, 380, 383, 405, 420, 455, 462, 465, 489, 510, 532, 540, 578, 591, 599, 631, 685, 694, 695, 696, 706, 707, 710, 734, 739, 740, 741, 747, 749, 750, 753, 761, 762, 773, 777, 780, 781, 783, 784, 790, 791, 792, 795, 796, 797, 799, 821, 830, 834, 835, 856, 858, 859, 876, 877, 878, 882, 901, 907, 912, 913, 938, 953, 972, 1042, 1061, 1128, 1188, 1202, 1249, 1338, 1339, 1340, 1341, 1387, 1397, 1403, 1404, 1421, 1430, 1439, 1441, 1442, 1449, 1450, 1455, 1456, 1469, 1470, 1476, 1480, 1482, 1483, 1484, 1486, 1498, 1506, 1524, 1815, 1982, 2000, 2167, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2208, 2209, 2210, 2211, 2212, 2217, 2220, 2222, 2228, 2230, 2232, 2241, 2246, 2249, 2253, 2271, 2277, 2283, 2289, 2294, 2298, 2302], │ │ │ │ │ "corrupt": [2199, 2220, 2232, 2241, 2265, 2278, 2279, 2282, 2298, 2307], │ │ │ │ │ "corrwith": [99, 597, 622, 1155, 1213, 2241, 2246, 2271, 2294, 2295, 2302], │ │ │ │ │ "cosh": [2193, 2228], │ │ │ │ │ "cost": [3, 13, 118, 132, 135, 144, 159, 161, 175, 1473, 2186, 2197, 2241, 2295], │ │ │ │ │ - "could": [1, 2, 3, 5, 12, 13, 15, 16, 17, 18, 19, 22, 102, 162, 184, 197, 212, 251, 258, 265, 268, 272, 481, 787, 884, 889, 895, 1117, 1158, 1343, 1373, 1453, 1469, 1470, 1471, 1472, 1476, 1477, 1478, 1479, 1480, 1484, 1485, 1486, 1487, 2166, 2185, 2186, 2188, 2192, 2194, 2195, 2197, 2199, 2210, 2211, 2212, 2218, 2220, 2225, 2226, 2227, 2228, 2229, 2230, 2232, 2233, 2234, 2235, 2238, 2239, 2241, 2246, 2247, 2248, 2249, 2250, 2252, 2260, 2265, 2271, 2277, 2278, 2283, 2284, 2289, 2293, 2294, 2295, 2298, 2302, 2307, 2308], │ │ │ │ │ + "could": [1, 2, 3, 5, 12, 13, 15, 16, 17, 18, 19, 22, 102, 162, 184, 197, 212, 251, 258, 265, 268, 272, 481, 787, 884, 889, 895, 1117, 1158, 1343, 1373, 1453, 1469, 1470, 1471, 1472, 1476, 1477, 1478, 1479, 1480, 1484, 1485, 1486, 1487, 2166, 2185, 2186, 2188, 2192, 2193, 2194, 2195, 2197, 2199, 2210, 2211, 2212, 2218, 2220, 2225, 2226, 2227, 2228, 2229, 2230, 2232, 2233, 2234, 2235, 2238, 2239, 2241, 2246, 2247, 2248, 2249, 2250, 2252, 2260, 2265, 2271, 2277, 2278, 2283, 2284, 2289, 2293, 2294, 2295, 2298, 2302, 2307, 2308], │ │ │ │ │ "couldn": [22, 2277, 2286, 2298], │ │ │ │ │ "count": [16, 18, 21, 23, 24, 107, 112, 123, 144, 172, 180, 281, 414, 436, 629, 748, 758, 831, 908, 1164, 1182, 1183, 1184, 1194, 1204, 1221, 1241, 1244, 1255, 1345, 1382, 1391, 1400, 1470, 1488, 1490, 2188, 2191, 2194, 2195, 2199, 2202, 2204, 2205, 2208, 2211, 2215, 2216, 2218, 2219, 2220, 2222, 2223, 2225, 2228, 2229, 2230, 2231, 2232, 2235, 2239, 2241, 2246, 2249, 2254, 2255, 2256, 2257, 2260, 2265, 2271, 2277, 2279, 2283, 2289, 2294, 2302], │ │ │ │ │ "counter": [3, 1416, 2235], │ │ │ │ │ "counterexampl": 2, │ │ │ │ │ "counterpart": [98, 621, 2206, 2225, 2231, 2238, 2265, 2277, 2289, 2294], │ │ │ │ │ "countess": 32, │ │ │ │ │ "counti": [1443, 2199], │ │ │ │ │ @@ -39808,15 +39809,15 @@ │ │ │ │ │ "farmer": 2199, │ │ │ │ │ "farthest": [91, 1458], │ │ │ │ │ "fashion": [34, 39, 46, 2221, 2246, 2283], │ │ │ │ │ "fast": [5, 15, 34, 83, 141, 256, 351, 594, 717, 888, 1203, 1264, 1469, 1470, 1476, 1486, 2184, 2186, 2192, 2193, 2195, 2196, 2199, 2210, 2222, 2226, 2235, 2246, 2249, 2253, 2254, 2255, 2256], │ │ │ │ │ "fast_path": 2199, │ │ │ │ │ "fastavro": [1473, 2249], │ │ │ │ │ "faster": [4, 5, 15, 16, 34, 62, 151, 162, 251, 258, 262, 263, 265, 268, 272, 390, 615, 754, 757, 815, 884, 889, 895, 1152, 1211, 1242, 1243, 1469, 1486, 1498, 2163, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2208, 2211, 2214, 2215, 2216, 2219, 2220, 2222, 2232, 2238, 2246, 2249, 2253, 2255, 2256, 2277, 2289, 2302, 2307], │ │ │ │ │ - "fastest": [2186, 2197, 2199], │ │ │ │ │ + "fastest": [2186, 2193, 2197, 2199], │ │ │ │ │ "fastparquet": [22, 263, 1345, 1391, 1478, 1488, 1490, 2184, 2199, 2202, 2205, 2238, 2246, 2249, 2265, 2271, 2277, 2278, 2283, 2286, 2289, 2294, 2298, 2302, 2307], │ │ │ │ │ "fastparquetimpl": 2199, │ │ │ │ │ "fastpath": [39, 573, 2194, 2201, 2203, 2246, 2265, 2271, 2283, 2294, 2298, 2302, 2307], │ │ │ │ │ "fatal": 2229, │ │ │ │ │ "fault": [2228, 2235, 2239, 2246, 2249, 2271, 2275, 2289], │ │ │ │ │ "faulti": 2220, │ │ │ │ │ "favor": [34, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2239, 2241, 2246, 2249, 2265, 2266, 2283, 2289, 2294, 2298], │ │ │ │ │ @@ -40888,15 +40889,15 @@ │ │ │ │ │ "interchang": [66, 246, 916, 953, 2172, 2299, 2300, 2302, 2307, 2308], │ │ │ │ │ "interchange_object": [66, 1077], │ │ │ │ │ "interest": [1, 2, 3, 13, 23, 24, 25, 28, 29, 32, 34, 35, 789, 2186, 2193, 2197, 2199, 2207, 2210, 2212, 2217, 2219, 2307, 2308], │ │ │ │ │ "interest_r": 3, │ │ │ │ │ "interf": 2265, │ │ │ │ │ "interfac": [2, 10, 12, 13, 16, 17, 18, 19, 40, 77, 119, 695, 914, 1031, 1068, 1090, 2167, 2186, 2199, 2203, 2207, 2210, 2211, 2218, 2220, 2225, 2227, 2228, 2230, 2235, 2246, 2261, 2271, 2298, 2307], │ │ │ │ │ "interleav": 2199, │ │ │ │ │ - "intermedi": [7, 2172, 2195, 2205, 2210, 2212, 2253, 2307], │ │ │ │ │ + "intermedi": [7, 2172, 2193, 2195, 2205, 2210, 2212, 2253, 2307], │ │ │ │ │ "intermix": 2186, │ │ │ │ │ "intern": [0, 7, 11, 22, 191, 194, 203, 268, 286, 364, 376, 430, 622, 624, 699, 767, 769, 873, 932, 938, 1031, 1044, 1123, 1124, 1140, 1148, 1149, 1203, 1207, 1208, 1213, 1215, 1264, 1280, 1345, 1361, 1364, 1388, 1391, 1422, 1423, 1433, 1469, 1486, 1488, 1490, 1493, 1494, 1495, 1496, 1499, 2186, 2188, 2193, 2194, 2195, 2197, 2202, 2207, 2210, 2213, 2216, 2217, 2219, 2220, 2230, 2232, 2235, 2238, 2246, 2249, 2253, 2261, 2263, 2265, 2267, 2271, 2274, 2277, 2280, 2289, 2293, 2298, 2307], │ │ │ │ │ "internal_cach": 10, │ │ │ │ │ "internet": 2, │ │ │ │ │ "interoper": [2167, 2186, 2201, 2203, 2302], │ │ │ │ │ "interp1d": [146, 720, 1280], │ │ │ │ │ "interp_": 2201, │ │ │ │ │ @@ -41505,15 +41506,15 @@ │ │ │ │ │ "logx": [186, 762, 1188, 1249, 2211, 2215, 2249], │ │ │ │ │ "lon": [10, 1069, 1071, 1072], │ │ │ │ │ "london": [26, 27, 29, 30, 31, 586, 2210, 2221, 2271], │ │ │ │ │ "london_mg_per_cub": 27, │ │ │ │ │ "long": [0, 1, 2, 3, 21, 31, 119, 123, 167, 184, 185, 230, 241, 263, 695, 698, 804, 808, 873, 1345, 1391, 1444, 1445, 1453, 1454, 1469, 1486, 1487, 1488, 1490, 2163, 2166, 2185, 2188, 2190, 2199, 2202, 2204, 2205, 2208, 2210, 2214, 2216, 2218, 2220, 2222, 2225, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2239, 2240, 2241, 2243, 2246, 2249, 2277, 2278, 2289, 2302, 2307, 2308], │ │ │ │ │ "long_seri": 2186, │ │ │ │ │ "longdoubl": 2186, │ │ │ │ │ - "longer": [1, 2, 5, 98, 134, 522, 533, 563, 621, 709, 873, 874, 1118, 1178, 1179, 1180, 1181, 1189, 1200, 1237, 1238, 1239, 1240, 1250, 1261, 1284, 1290, 1295, 1469, 1486, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2217, 2218, 2219, 2220, 2221, 2222, 2224, 2225, 2226, 2228, 2230, 2231, 2233, 2235, 2238, 2242, 2243, 2246, 2247, 2257, 2261, 2263, 2264, 2265, 2266, 2271, 2275, 2277, 2278, 2292, 2294, 2295, 2298, 2302], │ │ │ │ │ + "longer": [1, 2, 5, 98, 134, 522, 533, 563, 621, 709, 873, 874, 1118, 1178, 1179, 1180, 1181, 1189, 1200, 1237, 1238, 1239, 1240, 1250, 1261, 1284, 1290, 1295, 1469, 1486, 2191, 2193, 2197, 2199, 2202, 2210, 2214, 2215, 2217, 2218, 2219, 2220, 2221, 2222, 2224, 2225, 2226, 2228, 2230, 2231, 2233, 2235, 2238, 2242, 2243, 2246, 2247, 2257, 2261, 2263, 2264, 2265, 2266, 2271, 2275, 2277, 2278, 2292, 2294, 2295, 2298, 2302], │ │ │ │ │ "longest": [32, 923, 2217, 2272], │ │ │ │ │ "longitud": [10, 30, 197, 1069, 1071, 1072], │ │ │ │ │ "longlong": 2186, │ │ │ │ │ "longpanel": [2228, 2246, 2257], │ │ │ │ │ "longtabl": [259, 890, 1345, 1391, 1433, 1488, 1490, 2202, 2220, 2230, 2239, 2277, 2289, 2291, 2298], │ │ │ │ │ "longtablebuild": 2277, │ │ │ │ │ "longtim": 2228, │ │ │ │ │ @@ -43954,14 +43955,15 @@ │ │ │ │ │ "slight": [3, 2195], │ │ │ │ │ "slightli": [3, 13, 203, 862, 866, 1387, 2185, 2197, 2199, 2217, 2228, 2277, 2294], │ │ │ │ │ "slinear": [146, 720, 1280, 2218], │ │ │ │ │ "sln": 2191, │ │ │ │ │ "sloper": 25, │ │ │ │ │ "slow": [2, 22, 1345, 1391, 1488, 1490, 1492, 1498, 2186, 2193, 2199, 2202, 2217, 2222, 2232, 2238, 2241, 2253, 2307], │ │ │ │ │ "slower": [1152, 1211, 2193, 2197, 2199, 2202, 2210, 2218, 2228], │ │ │ │ │ + "slowest": 2193, │ │ │ │ │ "slshape": 1433, │ │ │ │ │ "sm": [1275, 2186, 2210, 2227, 2232, 2307], │ │ │ │ │ "small": [3, 13, 16, 17, 18, 19, 29, 111, 185, 190, 191, 194, 754, 757, 766, 767, 769, 1242, 1243, 1454, 2185, 2186, 2193, 2195, 2199, 2205, 2207, 2210, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2228, 2230, 2232, 2233, 2234, 2236, 2237, 2239, 2241, 2242, 2243, 2245, 2249, 2271, 2277, 2283, 2289, 2294, 2298, 2302], │ │ │ │ │ "smaller": [0, 94, 144, 268, 745, 1345, 1391, 1488, 1490, 1499, 2186, 2188, 2193, 2202, 2207, 2208, 2210, 2211, 2243, 2249], │ │ │ │ │ "smallest": [176, 179, 360, 588, 754, 757, 1191, 1194, 1242, 1243, 1252, 1255, 1499, 2199, 2205, 2235, 2246, 2264, 2294], │ │ │ │ │ "smallint": [2199, 2307], │ │ │ │ │ "smart": [22, 2186, 2277], │ │ │ │ │ @@ -44791,15 +44793,15 @@ │ │ │ │ │ "tolist": [15, 432, 891, 2199, 2222, 2238, 2246, 2289, 2298, 2302], │ │ │ │ │ "tolong": 2241, │ │ │ │ │ "tom": [13, 35, 2199, 2247, 2248, 2294], │ │ │ │ │ "tomaugsburg": 2231, │ │ │ │ │ "tomaugspurg": [13, 35], │ │ │ │ │ "toml": [2, 22, 2238, 2265], │ │ │ │ │ "too": [2, 3, 233, 807, 831, 1196, 1257, 1358, 1469, 1470, 1486, 2197, 2199, 2205, 2207, 2211, 2215, 2217, 2220, 2231, 2241, 2249, 2257, 2274, 2277, 2283, 2289, 2293, 2294, 2298, 2308], │ │ │ │ │ - "took": [2199, 2223, 2241], │ │ │ │ │ + "took": [2193, 2199, 2223, 2241], │ │ │ │ │ "tool": [2, 5, 6, 8, 10, 15, 21, 22, 34, 36, 1146, 1469, 1472, 1486, 2184, 2185, 2186, 2191, 2193, 2195, 2196, 2210, 2220, 2225, 2226, 2232, 2235, 2241, 2246, 2260, 2283, 2298, 2307], │ │ │ │ │ "tooltip": [1402, 1423, 2196, 2283], │ │ │ │ │ "toordin": 2302, │ │ │ │ │ "top": [22, 34, 91, 107, 148, 149, 177, 178, 185, 186, 203, 205, 212, 214, 241, 259, 341, 348, 376, 402, 413, 629, 699, 725, 726, 755, 756, 762, 778, 787, 890, 905, 1036, 1051, 1164, 1188, 1191, 1221, 1249, 1252, 1345, 1387, 1388, 1391, 1400, 1433, 1454, 1458, 1488, 1490, 2167, 2172, 2184, 2186, 2188, 2193, 2195, 2199, 2202, 2204, 2207, 2209, 2211, 2217, 2218, 2220, 2222, 2227, 2230, 2232, 2235, 2238, 2241, 2260, 2264, 2265, 2283, 2289, 2302], │ │ │ │ │ "topic": [0, 4, 13, 35, 2185, 2196], │ │ │ │ │ "topmost": 2204, │ │ │ │ │ "toprul": [259, 890, 1433, 2277], │ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ @@ -1847,25 +1847,25 @@ │ │ │ │ In [141]: indexer = np.arange(10000) │ │ │ │ │ │ │ │ In [142]: random.shuffle(indexer) │ │ │ │ │ │ │ │ In [143]: %timeit arr[indexer] │ │ │ │ .....: %timeit arr.take(indexer, axis=0) │ │ │ │ .....: │ │ │ │ -169 us +- 20.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ -43.7 us +- 4.17 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ +119 us +- 2.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ +30.4 us +- 63.8 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ │ │ │ │ │ │ │ │
In [144]: ser = pd.Series(arr[:, 0])
│ │ │ │
│ │ │ │ In [145]: %timeit ser.iloc[indexer]
│ │ │ │ .....: %timeit ser.take(indexer)
│ │ │ │ .....:
│ │ │ │ -103 us +- 18.4 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ -104 us +- 12 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ +67.3 us +- 5.53 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ +60.8 us +- 2.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │
We have discussed MultiIndex
in the previous sections pretty extensively.
│ │ │ │ Documentation about DatetimeIndex
and PeriodIndex
are shown here,
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -1245,23 +1245,23 @@
│ │ │ │ │ In [141]: indexer = np.arange(10000)
│ │ │ │ │
│ │ │ │ │ In [142]: random.shuffle(indexer)
│ │ │ │ │
│ │ │ │ │ In [143]: %timeit arr[indexer]
│ │ │ │ │ .....: %timeit arr.take(indexer, axis=0)
│ │ │ │ │ .....:
│ │ │ │ │ -169 us +- 20.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ -43.7 us +- 4.17 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ +119 us +- 2.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ +30.4 us +- 63.8 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ In [144]: ser = pd.Series(arr[:, 0])
│ │ │ │ │
│ │ │ │ │ In [145]: %timeit ser.iloc[indexer]
│ │ │ │ │ .....: %timeit ser.take(indexer)
│ │ │ │ │ .....:
│ │ │ │ │ -103 us +- 18.4 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ -104 us +- 12 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ +67.3 us +- 5.53 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ +60.8 us +- 2.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ ********** IInnddeexx ttyyppeess_## **********
│ │ │ │ │ We have discussed MultiIndex in the previous sections pretty extensively.
│ │ │ │ │ Documentation about DatetimeIndex and PeriodIndex are shown _h_e_r_e, and
│ │ │ │ │ documentation about TimedeltaIndex is found _h_e_r_e.
│ │ │ │ │ In the following sub-sections we will highlight some other index types.
│ │ │ │ │ ******** CCaatteeggoorriiccaallIInnddeexx_## ********
│ │ │ │ │ _C_a_t_e_g_o_r_i_c_a_l_I_n_d_e_x is a type of index that is useful for supporting indexing with
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html
│ │ │ │ @@ -592,30 +592,30 @@
│ │ │ │ ...: s += f(a + i * dx)
│ │ │ │ ...: return s * dx
│ │ │ │ ...:
│ │ │ │
│ │ │ │
│ │ │ │
We achieve our result by using DataFrame.apply()
(row-wise):
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -62.8 ms +- 5.95 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +54.8 ms +- 3.6 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
Let’s take a look and see where the time is spent during this operation │ │ │ │ using the prun ipython magic function:
│ │ │ │# most time consuming 4 calls
│ │ │ │ In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1) # noqa E999
│ │ │ │ - 605946 function calls (605928 primitive calls) in 0.162 seconds
│ │ │ │ + 605946 function calls (605928 primitive calls) in 0.165 seconds
│ │ │ │
│ │ │ │ Ordered by: internal time
│ │ │ │ List reduced from 159 to 4 due to restriction <4>
│ │ │ │
│ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ - 1000 0.096 0.000 0.141 0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)
│ │ │ │ - 552423 0.045 0.000 0.045 0.000 <ipython-input-3-c138bdd570e3>:1(f)
│ │ │ │ - 3000 0.003 0.000 0.014 0.000 series.py:1095(__getitem__)
│ │ │ │ + 1000 0.088 0.000 0.142 0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)
│ │ │ │ + 552423 0.055 0.000 0.055 0.000 <ipython-input-3-c138bdd570e3>:1(f)
│ │ │ │ + 3000 0.004 0.000 0.014 0.000 series.py:1095(__getitem__)
│ │ │ │ 3000 0.003 0.000 0.006 0.000 series.py:1220(_get_value)
│ │ │ │
By far the majority of time is spend inside either integrate_f
or f
,
│ │ │ │ hence we’ll concentrate our efforts cythonizing these two functions.
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -58.6 ms +- 1.66 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +52.9 ms +- 603 us per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
This has improved the performance compared to the pure Python approach by one-third.
│ │ │ │We can annotate the function variables and return types as well as use cdef
│ │ │ │ @@ -658,15 +658,15 @@
│ │ │ │ ....: for i in range(N):
│ │ │ │ ....: s += f_typed(a + i * dx)
│ │ │ │ ....: return s * dx
│ │ │ │ ....:
│ │ │ │
│ │ │ │
│ │ │ │
In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -6.87 ms +- 570 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +6.44 ms +- 488 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
Annotating the functions with C types yields an over ten times performance improvement compared to │ │ │ │ the original Python implementation.
│ │ │ │In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ 52523 function calls (52505 primitive calls) in 0.021 seconds
│ │ │ │
│ │ │ │ Ordered by: internal time
│ │ │ │ List reduced from 157 to 4 due to restriction <4>
│ │ │ │
│ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ - 3000 0.004 0.000 0.014 0.000 series.py:1095(__getitem__)
│ │ │ │ + 3000 0.003 0.000 0.013 0.000 series.py:1095(__getitem__)
│ │ │ │ 3000 0.002 0.000 0.006 0.000 series.py:1220(_get_value)
│ │ │ │ 16098 0.002 0.000 0.003 0.000 {built-in method builtins.isinstance}
│ │ │ │ 3000 0.002 0.000 0.002 0.000 base.py:3777(get_loc)
│ │ │ │
In [13]: %%cython
│ │ │ │ ....: cimport numpy as np
│ │ │ │ @@ -722,15 +722,15 @@
│ │ │ │
This implementation creates an array of zeros and inserts the result
│ │ │ │ of integrate_f_typed
applied over each row. Looping over an ndarray
is faster
│ │ │ │ in Cython than looping over a Series
object.
Since apply_integrate_f
is typed to accept an np.ndarray
, Series.to_numpy()
│ │ │ │ calls are needed to utilize this function.
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())
│ │ │ │ -950 us +- 38.4 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ +901 us +- 14.3 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │
Performance has improved from the prior implementation by almost ten times.
│ │ │ │ │ │ │ │The majority of the time is now spent in apply_integrate_f
. Disabling Cython’s boundscheck
│ │ │ │ @@ -740,16 +740,16 @@
│ │ │ │
│ │ │ │ Ordered by: internal time
│ │ │ │ List reduced from 21 to 4 due to restriction <4>
│ │ │ │
│ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ 1 0.001 0.001 0.001 0.001 <string>:1(<module>)
│ │ │ │ 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
│ │ │ │ - 3 0.000 0.000 0.000 0.000 base.py:541(to_numpy)
│ │ │ │ 1 0.000 0.000 0.001 0.001 {built-in method builtins.exec}
│ │ │ │ + 3 0.000 0.000 0.000 0.000 frame.py:4062(__getitem__)
│ │ │ │
In [16]: %%cython
│ │ │ │ ....: cimport cython
│ │ │ │ ....: cimport numpy as np
│ │ │ │ ....: import numpy as np
│ │ │ │ ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:
│ │ │ │ @@ -782,15 +782,15 @@
│ │ │ │ from /build/reproducible-path/pandas-2.2.3+dfsg/buildtmp/.cache/ipython/cython/_cython_magic_c74b7f65fbc22dc209b018dff44c43205aa88bb6.c:1251:
│ │ │ │ /usr/lib/x86_64-linux-gnu/python3-numpy/numpy/_core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]
│ │ │ │ 17 | #warning "Using deprecated NumPy API, disable it with " \
│ │ │ │ | ^~~~~~~
│ │ │ │
In [17]: %timeit apply_integrate_f_wrap(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())
│ │ │ │ -705 us +- 78.9 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ +680 us +- 3.59 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │
However, a loop indexer i
accessing an invalid location in an array would cause a segfault because memory access isn’t checked.
│ │ │ │ For more about boundscheck
and wraparound
, see the Cython docs on
│ │ │ │ compiler directives.
DataFrame
. This engine requires the
│ │ │ │ optional dependency numexpr
to be installed.
│ │ │ │ The 'python'
engine is generally not useful except for testing
│ │ │ │ other evaluation engines against it. You will achieve no performance
│ │ │ │ benefits using eval()
with engine='python'
and may
│ │ │ │ incur a performance hit.
In [40]: %timeit df1 + df2 + df3 + df4
│ │ │ │ -11 ms +- 317 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +The slowest run took 92.33 times longer than the fastest. This could mean that an intermediate result is being cached.
│ │ │ │ +3.16 s +- 3.73 s per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")
│ │ │ │ -11.7 ms +- 659 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +20.7 s +- 11.5 s per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │
DataFrame.eval()
method#In addition to the top level pandas.eval()
function you can also
│ │ │ │ evaluate an expression in the “context” of a DataFrame
.
In [58]: nrows, ncols = 20000, 100
│ │ │ │
│ │ │ │ In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]
│ │ │ │
DataFrame
arithmetic:
In [60]: %timeit df1 + df2 + df3 + df4
│ │ │ │ -11.1 ms +- 241 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +The slowest run took 2508.90 times longer than the fastest. This could mean that an intermediate result is being cached.
│ │ │ │ +12.6 s +- 30.7 s per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")
│ │ │ │ -5.09 ms +- 90.1 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +3.41 ms +- 652 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
DataFrame
comparison:
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
│ │ │ │ -7.04 ms +- 328 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +4.81 ms +- 152 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")
│ │ │ │ -7.02 ms +- 251 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +5.66 ms +- 314 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
DataFrame
arithmetic with unaligned axes.
In [64]: s = pd.Series(np.random.randn(50))
│ │ │ │
│ │ │ │ In [65]: %timeit df1 + df2 + df3 + df4 + s
│ │ │ │ -22.3 ms +- 8.62 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +54.2 ms +- 3.71 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")
│ │ │ │ -5.96 ms +- 95.3 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +3.84 ms +- 90.8 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
Note
│ │ │ │Operations such as
│ │ │ │1 and 2 # would parse to 1 & 2, but should evaluate to 2
│ │ │ │ 3 or 4 # would parse to 3 | 4, but should evaluate to 3
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -110,31 +110,31 @@
│ │ │ │ │ ...: dx = (b - a) / N
│ │ │ │ │ ...: for i in range(N):
│ │ │ │ │ ...: s += f(a + i * dx)
│ │ │ │ │ ...: return s * dx
│ │ │ │ │ ...:
│ │ │ │ │ We achieve our result by using _D_a_t_a_F_r_a_m_e_._a_p_p_l_y_(_) (row-wise):
│ │ │ │ │ In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ │ -62.8 ms +- 5.95 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +54.8 ms +- 3.6 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ Let’s take a look and see where the time is spent during this operation using
│ │ │ │ │ the _p_r_u_n_ _i_p_y_t_h_o_n_ _m_a_g_i_c_ _f_u_n_c_t_i_o_n:
│ │ │ │ │ # most time consuming 4 calls
│ │ │ │ │ In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]),
│ │ │ │ │ axis=1) # noqa E999
│ │ │ │ │ - 605946 function calls (605928 primitive calls) in 0.162 seconds
│ │ │ │ │ + 605946 function calls (605928 primitive calls) in 0.165 seconds
│ │ │ │ │
│ │ │ │ │ Ordered by: internal time
│ │ │ │ │ List reduced from 159 to 4 due to restriction <4>
│ │ │ │ │
│ │ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ │ - 1000 0.096 0.000 0.141 0.000 :1
│ │ │ │ │ + 1000 0.088 0.000 0.142 0.000 :1
│ │ │ │ │ (integrate_f)
│ │ │ │ │ - 552423 0.045 0.000 0.045 0.000 :1
│ │ │ │ │ + 552423 0.055 0.000 0.055 0.000 :1
│ │ │ │ │ (f)
│ │ │ │ │ - 3000 0.003 0.000 0.014 0.000 series.py:1095(__getitem__)
│ │ │ │ │ + 3000 0.004 0.000 0.014 0.000 series.py:1095(__getitem__)
│ │ │ │ │ 3000 0.003 0.000 0.006 0.000 series.py:1220(_get_value)
│ │ │ │ │ By far the majority of time is spend inside either integrate_f or f, hence
│ │ │ │ │ we’ll concentrate our efforts cythonizing these two functions.
│ │ │ │ │ ******** PPllaaiinn CCyytthhoonn_## ********
│ │ │ │ │ First we’re going to need to import the Cython magic function to IPython:
│ │ │ │ │ In [7]: %load_ext Cython
│ │ │ │ │ Now, let’s simply copy our functions over to Cython:
│ │ │ │ │ @@ -146,15 +146,15 @@
│ │ │ │ │ ...: dx = (b - a) / N
│ │ │ │ │ ...: for i in range(N):
│ │ │ │ │ ...: s += f_plain(a + i * dx)
│ │ │ │ │ ...: return s * dx
│ │ │ │ │ ...:
│ │ │ │ │ In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]),
│ │ │ │ │ axis=1)
│ │ │ │ │ -58.6 ms +- 1.66 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +52.9 ms +- 603 us per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ This has improved the performance compared to the pure Python approach by one-
│ │ │ │ │ third.
│ │ │ │ │ ******** DDeeccllaarriinngg CC ttyyppeess_## ********
│ │ │ │ │ We can annotate the function variables and return types as well as use cdef and
│ │ │ │ │ cpdef to improve performance:
│ │ │ │ │ In [10]: %%cython
│ │ │ │ │ ....: cdef double f_typed(double x) except? -2:
│ │ │ │ │ @@ -166,15 +166,15 @@
│ │ │ │ │ ....: dx = (b - a) / N
│ │ │ │ │ ....: for i in range(N):
│ │ │ │ │ ....: s += f_typed(a + i * dx)
│ │ │ │ │ ....: return s * dx
│ │ │ │ │ ....:
│ │ │ │ │ In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]),
│ │ │ │ │ axis=1)
│ │ │ │ │ -6.87 ms +- 570 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +6.44 ms +- 488 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ Annotating the functions with C types yields an over ten times performance
│ │ │ │ │ improvement compared to the original Python implementation.
│ │ │ │ │ ******** UUssiinngg nnddaarrrraayy_## ********
│ │ │ │ │ When re-profiling, time is spent creating a _S_e_r_i_e_s from each row, and calling
│ │ │ │ │ __getitem__ from both the index and the series (three times for each row).
│ │ │ │ │ These Python function calls are expensive and can be improved by passing an
│ │ │ │ │ np.ndarray.
│ │ │ │ │ @@ -182,15 +182,15 @@
│ │ │ │ │ ["N"]), axis=1)
│ │ │ │ │ 52523 function calls (52505 primitive calls) in 0.021 seconds
│ │ │ │ │
│ │ │ │ │ Ordered by: internal time
│ │ │ │ │ List reduced from 157 to 4 due to restriction <4>
│ │ │ │ │
│ │ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ │ - 3000 0.004 0.000 0.014 0.000 series.py:1095(__getitem__)
│ │ │ │ │ + 3000 0.003 0.000 0.013 0.000 series.py:1095(__getitem__)
│ │ │ │ │ 3000 0.002 0.000 0.006 0.000 series.py:1220(_get_value)
│ │ │ │ │ 16098 0.002 0.000 0.003 0.000 {built-in method
│ │ │ │ │ builtins.isinstance}
│ │ │ │ │ 3000 0.002 0.000 0.002 0.000 base.py:3777(get_loc)
│ │ │ │ │ In [13]: %%cython
│ │ │ │ │ ....: cimport numpy as np
│ │ │ │ │ ....: import numpy as np
│ │ │ │ │ @@ -235,15 +235,15 @@
│ │ │ │ │ This implementation creates an array of zeros and inserts the result of
│ │ │ │ │ integrate_f_typed applied over each row. Looping over an ndarray is faster in
│ │ │ │ │ Cython than looping over a _S_e_r_i_e_s object.
│ │ │ │ │ Since apply_integrate_f is typed to accept an np.ndarray, _S_e_r_i_e_s_._t_o___n_u_m_p_y_(_)
│ │ │ │ │ calls are needed to utilize this function.
│ │ │ │ │ In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df
│ │ │ │ │ ["N"].to_numpy())
│ │ │ │ │ -950 us +- 38.4 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +901 us +- 14.3 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ Performance has improved from the prior implementation by almost ten times.
│ │ │ │ │ ******** DDiissaabblliinngg ccoommppiilleerr ddiirreeccttiivveess_## ********
│ │ │ │ │ The majority of the time is now spent in apply_integrate_f. Disabling Cython’s
│ │ │ │ │ boundscheck and wraparound checks can yield more performance.
│ │ │ │ │ In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(),
│ │ │ │ │ df["N"].to_numpy())
│ │ │ │ │ 78 function calls in 0.001 seconds
│ │ │ │ │ @@ -251,16 +251,16 @@
│ │ │ │ │ Ordered by: internal time
│ │ │ │ │ List reduced from 21 to 4 due to restriction <4>
│ │ │ │ │
│ │ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ │ 1 0.001 0.001 0.001 0.001 :1()
│ │ │ │ │ 1 0.000 0.000 0.000 0.000 {method 'disable' of
│ │ │ │ │ '_lsprof.Profiler' objects}
│ │ │ │ │ - 3 0.000 0.000 0.000 0.000 base.py:541(to_numpy)
│ │ │ │ │ 1 0.000 0.000 0.001 0.001 {built-in method builtins.exec}
│ │ │ │ │ + 3 0.000 0.000 0.000 0.000 frame.py:4062(__getitem__)
│ │ │ │ │ In [16]: %%cython
│ │ │ │ │ ....: cimport cython
│ │ │ │ │ ....: cimport numpy as np
│ │ │ │ │ ....: import numpy as np
│ │ │ │ │ ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:
│ │ │ │ │ ....: return x * (x - 1)
│ │ │ │ │ ....: cpdef np.float64_t integrate_f_typed(np.float64_t a, np.float64_t b,
│ │ │ │ │ @@ -298,15 +298,15 @@
│ │ │ │ │ /usr/lib/x86_64-linux-gnu/python3-numpy/numpy/_core/include/numpy/
│ │ │ │ │ npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API,
│ │ │ │ │ disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]
│ │ │ │ │ 17 | #warning "Using deprecated NumPy API, disable it with " \
│ │ │ │ │ | ^~~~~~~
│ │ │ │ │ In [17]: %timeit apply_integrate_f_wrap(df["a"].to_numpy(), df["b"].to_numpy(),
│ │ │ │ │ df["N"].to_numpy())
│ │ │ │ │ -705 us +- 78.9 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +680 us +- 3.59 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ However, a loop indexer i accessing an invalid location in an array would cause
│ │ │ │ │ a segfault because memory access isn’t checked. For more about boundscheck and
│ │ │ │ │ wraparound, see the Cython docs on _c_o_m_p_i_l_e_r_ _d_i_r_e_c_t_i_v_e_s.
│ │ │ │ │ ********** NNuummbbaa ((JJIITT ccoommppiillaattiioonn))_## **********
│ │ │ │ │ An alternative to statically compiling Cython code is to use a dynamic just-in-
│ │ │ │ │ time (JIT) compiler with _N_u_m_b_a.
│ │ │ │ │ Numba allows you to write a pure Python function which can be JIT compiled to
│ │ │ │ │ @@ -609,17 +609,19 @@
│ │ │ │ │ The 'numexpr' engine is the more performant engine that can yield performance
│ │ │ │ │ improvements compared to standard Python syntax for large _D_a_t_a_F_r_a_m_e. This
│ │ │ │ │ engine requires the optional dependency numexpr to be installed.
│ │ │ │ │ The 'python' engine is generally nnoott useful except for testing other evaluation
│ │ │ │ │ engines against it. You will achieve nnoo performance benefits using _e_v_a_l_(_) with
│ │ │ │ │ engine='python' and may incur a performance hit.
│ │ │ │ │ In [40]: %timeit df1 + df2 + df3 + df4
│ │ │ │ │ -11 ms +- 317 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +The slowest run took 92.33 times longer than the fastest. This could mean that
│ │ │ │ │ +an intermediate result is being cached.
│ │ │ │ │ +3.16 s +- 3.73 s per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")
│ │ │ │ │ -11.7 ms +- 659 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +20.7 s +- 11.5 s per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ ******** TThhee _DD_aa_tt_aa_FF_rr_aa_mm_ee_.._ee_vv_aa_ll_((_)) mmeetthhoodd_## ********
│ │ │ │ │ In addition to the top level _p_a_n_d_a_s_._e_v_a_l_(_) function you can also evaluate an
│ │ │ │ │ expression in the “context” of a _D_a_t_a_F_r_a_m_e.
│ │ │ │ │ In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=["a", "b"])
│ │ │ │ │
│ │ │ │ │ In [43]: df.eval("a + b")
│ │ │ │ │ Out[43]:
│ │ │ │ │ @@ -716,29 +718,31 @@
│ │ │ │ │ _p_a_n_d_a_s_._e_v_a_l_(_) works well with expressions containing large arrays.
│ │ │ │ │ In [58]: nrows, ncols = 20000, 100
│ │ │ │ │
│ │ │ │ │ In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for
│ │ │ │ │ _ in range(4)]
│ │ │ │ │ _D_a_t_a_F_r_a_m_e arithmetic:
│ │ │ │ │ In [60]: %timeit df1 + df2 + df3 + df4
│ │ │ │ │ -11.1 ms +- 241 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +The slowest run took 2508.90 times longer than the fastest. This could mean
│ │ │ │ │ +that an intermediate result is being cached.
│ │ │ │ │ +12.6 s +- 30.7 s per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")
│ │ │ │ │ -5.09 ms +- 90.1 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +3.41 ms +- 652 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ _D_a_t_a_F_r_a_m_e comparison:
│ │ │ │ │ In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
│ │ │ │ │ -7.04 ms +- 328 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +4.81 ms +- 152 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")
│ │ │ │ │ -7.02 ms +- 251 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +5.66 ms +- 314 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ _D_a_t_a_F_r_a_m_e arithmetic with unaligned axes.
│ │ │ │ │ In [64]: s = pd.Series(np.random.randn(50))
│ │ │ │ │
│ │ │ │ │ In [65]: %timeit df1 + df2 + df3 + df4 + s
│ │ │ │ │ -22.3 ms +- 8.62 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +54.2 ms +- 3.71 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")
│ │ │ │ │ -5.96 ms +- 95.3 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +3.84 ms +- 90.8 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ Note
│ │ │ │ │ Operations such as
│ │ │ │ │ 1 and 2 # would parse to 1 & 2, but should evaluate to 2
│ │ │ │ │ 3 or 4 # would parse to 3 | 4, but should evaluate to 3
│ │ │ │ │ ~1 # this is okay, but slower when using eval
│ │ │ │ │ should be performed in Python. An exception will be raised if you try to
│ │ │ │ │ perform any boolean/bitwise operations with scalar operands that are not of
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html
│ │ │ │ @@ -1086,16 +1086,16 @@
│ │ │ │ ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")
│ │ │ │ ....: counts = pd.Series(dtype=int)
│ │ │ │ ....: for path in files:
│ │ │ │ ....: df = pd.read_parquet(path)
│ │ │ │ ....: counts = counts.add(df["name"].value_counts(), fill_value=0)
│ │ │ │ ....: counts.astype(int)
│ │ │ │ ....:
│ │ │ │ -CPU times: user 290 us, sys: 313 us, total: 603 us
│ │ │ │ -Wall time: 613 us
│ │ │ │ +CPU times: user 351 us, sys: 198 us, total: 549 us
│ │ │ │ +Wall time: 555 us
│ │ │ │ Out[32]: Series([], dtype: int64)
│ │ │ │
Some readers, like pandas.read_csv()
, offer parameters to control the
│ │ │ │ chunksize
when reading a single file.
Manually chunking is an OK option for workflows that don’t
│ │ │ │ require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby()
, are
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -644,16 +644,16 @@
│ │ │ │ │ ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")
│ │ │ │ │ ....: counts = pd.Series(dtype=int)
│ │ │ │ │ ....: for path in files:
│ │ │ │ │ ....: df = pd.read_parquet(path)
│ │ │ │ │ ....: counts = counts.add(df["name"].value_counts(), fill_value=0)
│ │ │ │ │ ....: counts.astype(int)
│ │ │ │ │ ....:
│ │ │ │ │ -CPU times: user 290 us, sys: 313 us, total: 603 us
│ │ │ │ │ -Wall time: 613 us
│ │ │ │ │ +CPU times: user 351 us, sys: 198 us, total: 549 us
│ │ │ │ │ +Wall time: 555 us
│ │ │ │ │ Out[32]: Series([], dtype: int64)
│ │ │ │ │ Some readers, like _p_a_n_d_a_s_._r_e_a_d___c_s_v_(_), offer parameters to control the chunksize
│ │ │ │ │ when reading a single file.
│ │ │ │ │ Manually chunking is an OK option for workflows that don’t require too
│ │ │ │ │ sophisticated of operations. Some operations, like _p_a_n_d_a_s_._D_a_t_a_F_r_a_m_e_._g_r_o_u_p_b_y_(_),
│ │ │ │ │ are much harder to do chunkwise. In these cases, you may be better switching to
│ │ │ │ │ a different library that implements these out-of-core algorithms for you.
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz
│ │ │ │ ├── style.ipynb
│ │ │ │ │ ├── Pretty-printed
│ │ │ │ │ │ @@ -39,18 +39,18 @@
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 1,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2026-10-04T13:32:12.117301Z",
│ │ │ │ │ │ - "iopub.status.busy": "2026-10-04T13:32:12.116959Z",
│ │ │ │ │ │ - "iopub.status.idle": "2026-10-04T13:32:12.495354Z",
│ │ │ │ │ │ - "shell.execute_reply": "2026-10-04T13:32:12.494615Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-09-01T08:13:47.542669Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-09-01T08:13:47.542518Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-09-01T08:13:48.105975Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-09-01T08:13:48.105476Z"
│ │ │ │ │ │ },
│ │ │ │ │ │ "nbsphinx": "hidden"
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [],
│ │ │ │ │ │ "source": [
│ │ │ │ │ │ "import matplotlib.pyplot\n",
│ │ │ │ │ │ "# We have this here to trigger matplotlib's font cache stuff.\n",
│ │ │ │ │ │ @@ -77,36 +77,36 @@
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 2,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2026-10-04T13:32:12.497790Z",
│ │ │ │ │ │ - "iopub.status.busy": "2026-10-04T13:32:12.497512Z",
│ │ │ │ │ │ - "iopub.status.idle": "2026-10-04T13:32:12.788806Z",
│ │ │ │ │ │ - "shell.execute_reply": "2026-10-04T13:32:12.788122Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-09-01T08:13:48.108066Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-09-01T08:13:48.107854Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-09-01T08:13:48.365283Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-09-01T08:13:48.364577Z"
│ │ │ │ │ │ }
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [],
│ │ │ │ │ │ "source": [
│ │ │ │ │ │ "import pandas as pd\n",
│ │ │ │ │ │ "import numpy as np\n",
│ │ │ │ │ │ "import matplotlib as mpl\n"
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 3,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2026-10-04T13:32:12.791115Z",
│ │ │ │ │ │ - "iopub.status.busy": "2026-10-04T13:32:12.790834Z",
│ │ │ │ │ │ - "iopub.status.idle": "2026-10-04T13:32:12.844411Z",
│ │ │ │ │ │ - "shell.execute_reply": "2026-10-04T13:32:12.843780Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-09-01T08:13:48.367519Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-09-01T08:13:48.367294Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-09-01T08:13:48.427747Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-09-01T08:13:48.427068Z"
│ │ │ │ │ │ },
│ │ │ │ │ │ "nbsphinx": "hidden"
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [],
│ │ │ │ │ │ "source": [
│ │ │ │ │ │ "# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\n",
│ │ │ │ │ │ "from pandas.io.formats.style import Styler\n",
│ │ │ │ │ │ @@ -123,18 +123,18 @@
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 4,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2026-10-04T13:32:12.846993Z",
│ │ │ │ │ │ - "iopub.status.busy": "2026-10-04T13:32:12.846700Z",
│ │ │ │ │ │ - "iopub.status.idle": "2026-10-04T13:32:12.855679Z",
│ │ │ │ │ │ - "shell.execute_reply": "2026-10-04T13:32:12.855076Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-09-01T08:13:48.430034Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-09-01T08:13:48.429787Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-09-01T08:13:48.437051Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-09-01T08:13:48.436564Z"
│ │ │ │ │ │ }
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [
│ │ │ │ │ │ {
│ │ │ │ │ │ "data": {
│ │ │ │ │ │ "text/html": [
│ │ │ │ │ │ "