--- /srv/reproducible-results/rbuild-debian/r-b-build.rNFcGD0m/b1/pandas_2.2.3+dfsg-9_arm64.changes +++ /srv/reproducible-results/rbuild-debian/r-b-build.rNFcGD0m/b2/pandas_2.2.3+dfsg-9_arm64.changes ├── Files │ @@ -1,5 +1,5 @@ │ │ - 2fcb91bad257f2260780a487054d0e4e 10794888 doc optional python-pandas-doc_2.2.3+dfsg-9_all.deb │ - 2ef7b07845d75780b48eb8b4a1133d59 34798212 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-9_arm64.deb │ - 5bd70cfbc1622130745f3241517f04d9 3872388 python optional python3-pandas-lib_2.2.3+dfsg-9_arm64.deb │ + e393a92774c4383966cc10b571ed387a 10793412 doc optional python-pandas-doc_2.2.3+dfsg-9_all.deb │ + 9d3b61c9fa704165e7c6195271981db9 34797924 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-9_arm64.deb │ + e0382e1b3f855b22477551568ba19f70 3872404 python optional python3-pandas-lib_2.2.3+dfsg-9_arm64.deb │ 26530e0108a14fb2ef2b9fa903eb9d9d 3096852 python optional python3-pandas_2.2.3+dfsg-9_all.deb ├── python-pandas-doc_2.2.3+dfsg-9_all.deb │ ├── file list │ │ @@ -1,3 +1,3 @@ │ │ -rw-r--r-- 0 0 0 4 2025-03-29 13:01:52.000000 debian-binary │ │ --rw-r--r-- 0 0 0 147380 2025-03-29 13:01:52.000000 control.tar.xz │ │ --rw-r--r-- 0 0 0 10647316 2025-03-29 13:01:52.000000 data.tar.xz │ │ +-rw-r--r-- 0 0 0 147360 2025-03-29 13:01:52.000000 control.tar.xz │ │ +-rw-r--r-- 0 0 0 10645860 2025-03-29 13:01:52.000000 data.tar.xz │ ├── control.tar.xz │ │ ├── control.tar │ │ │ ├── ./md5sums │ │ │ │ ├── ./md5sums │ │ │ │ │┄ Files differ │ ├── data.tar.xz │ │ ├── data.tar │ │ │ ├── file list │ │ │ │ @@ -6256,61 +6256,61 @@ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 210184 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 48665 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 48657 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 53295 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/release.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 269 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 17010 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/search.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 2358683 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 2358653 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ -rw-r--r-- 0 root (0) root (0) 259 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/style.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 255 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/text.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 256 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 277 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html │ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 171380 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 283835 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 283836 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 436075 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 36646 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 217515 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 18313 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 66125 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 160414 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 81376 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 115604 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 115461 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 107882 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 300850 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 59715 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 395484 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 41778 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 1145870 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 208885 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 178690 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 112153 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 147524 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 162660 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 115580 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 115581 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 65863 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 698240 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 87860 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 87868 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz │ │ │ │ -rw-r--r-- 0 root (0) root (0) 165302 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 100947 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 486621 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 204461 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 141947 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 270 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html │ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 107681 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 10569 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz │ │ │ │ -rw-r--r-- 0 root (0) root (0) 83987 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 66492 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 82312 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 104316 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 222518 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 222517 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 89385 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 243730 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 83262 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 252303 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 68280 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 75115 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 145199 2025-03-29 13:01:52.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html │ │ │ ├── ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ ├── js-beautify {} │ │ │ │ │ @@ -21662,15 +21662,15 @@ │ │ │ │ │ "01t01": 2210, │ │ │ │ │ "01t03": 2210, │ │ │ │ │ "01t05": [909, 2210, 2235], │ │ │ │ │ "01t07": 1280, │ │ │ │ │ "01t10": 1005, │ │ │ │ │ "01t12": 953, │ │ │ │ │ "01t23": [893, 2186, 2246], │ │ │ │ │ - "02": [13, 16, 17, 19, 26, 27, 29, 31, 79, 80, 82, 133, 182, 183, 202, 207, 208, 213, 218, 230, 261, 271, 276, 277, 278, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 301, 304, 305, 306, 307, 310, 312, 313, 314, 318, 319, 320, 321, 322, 323, 324, 326, 327, 329, 330, 331, 332, 345, 362, 363, 423, 519, 534, 536, 542, 543, 544, 545, 546, 547, 548, 549, 557, 558, 562, 563, 564, 565, 566, 575, 591, 592, 593, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 656, 657, 658, 659, 665, 666, 667, 673, 674, 675, 677, 678, 679, 680, 684, 685, 686, 688, 708, 760, 761, 781, 782, 788, 793, 804, 893, 899, 902, 903, 904, 919, 939, 940, 943, 945, 948, 949, 953, 957, 970, 997, 1014, 1051, 1075, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1344, 1393, 1452, 1498, 1500, 1506, 1542, 1620, 1699, 1815, 1947, 2054, 2127, 2145, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2220, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2265, 2271, 2283, 2294, 2298, 2301, 2307], │ │ │ │ │ + "02": [13, 16, 17, 19, 26, 27, 29, 31, 79, 80, 82, 133, 182, 183, 202, 207, 208, 213, 218, 230, 261, 271, 276, 277, 278, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 301, 304, 305, 306, 307, 310, 312, 313, 314, 318, 319, 320, 321, 322, 323, 324, 326, 327, 329, 330, 331, 332, 345, 362, 363, 423, 519, 534, 536, 542, 543, 544, 545, 546, 547, 548, 549, 557, 558, 562, 563, 564, 565, 566, 575, 591, 592, 593, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 656, 657, 658, 659, 665, 666, 667, 673, 674, 675, 677, 678, 679, 680, 684, 685, 686, 688, 708, 760, 761, 781, 782, 788, 793, 804, 893, 899, 902, 903, 904, 919, 939, 940, 943, 945, 948, 949, 953, 957, 970, 997, 1014, 1051, 1075, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1344, 1393, 1452, 1498, 1500, 1506, 1542, 1620, 1699, 1815, 1947, 2054, 2127, 2145, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2220, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2265, 2271, 2283, 2294, 2298, 2301, 2307], │ │ │ │ │ "0200": [957, 969, 970, 997, 1498, 2210], │ │ │ │ │ "020161": [102, 1158], │ │ │ │ │ "020208": 2195, │ │ │ │ │ "020376": 2207, │ │ │ │ │ "020399": 2195, │ │ │ │ │ "020485": 2207, │ │ │ │ │ "020544": 2186, │ │ │ │ │ @@ -21704,21 +21704,20 @@ │ │ │ │ │ "024580": [2184, 2195, 2214], │ │ │ │ │ "024738": [102, 1158], │ │ │ │ │ "024786": 2207, │ │ │ │ │ "024810": 2207, │ │ │ │ │ "0249": [267, 896], │ │ │ │ │ "024925": 2195, │ │ │ │ │ "024967": 2207, │ │ │ │ │ - "025": [2186, 2222, 2227], │ │ │ │ │ + "025": [2186, 2193, 2222, 2227], │ │ │ │ │ "025054": 2184, │ │ │ │ │ "025270": 2186, │ │ │ │ │ "025363": 2186, │ │ │ │ │ "025367": 2207, │ │ │ │ │ "025747": [2191, 2197, 2207], │ │ │ │ │ - "026": 2193, │ │ │ │ │ "026036": 2207, │ │ │ │ │ "026158": 2210, │ │ │ │ │ "026220": 2191, │ │ │ │ │ "026437": 2197, │ │ │ │ │ "026458": 2216, │ │ │ │ │ "0266708": 2202, │ │ │ │ │ "026692": 2207, │ │ │ │ │ @@ -21740,15 +21739,15 @@ │ │ │ │ │ "029587": 2193, │ │ │ │ │ "029630": 2195, │ │ │ │ │ "029766": 2197, │ │ │ │ │ "02d": 2205, │ │ │ │ │ "02t00": [2199, 2210, 2235, 2261], │ │ │ │ │ "02t02": 2235, │ │ │ │ │ "02t05": [909, 2210], │ │ │ │ │ - "03": [26, 27, 29, 31, 79, 80, 82, 121, 182, 207, 213, 218, 219, 230, 264, 278, 286, 287, 290, 291, 292, 294, 296, 298, 301, 302, 304, 305, 306, 307, 310, 313, 314, 318, 321, 322, 326, 330, 331, 332, 362, 420, 423, 512, 517, 518, 519, 522, 524, 530, 534, 536, 543, 544, 545, 546, 547, 548, 549, 551, 557, 558, 562, 563, 564, 565, 566, 591, 592, 593, 637, 640, 642, 643, 644, 646, 651, 652, 656, 657, 658, 659, 666, 667, 673, 675, 677, 680, 681, 685, 686, 688, 696, 760, 781, 788, 793, 799, 804, 904, 939, 941, 943, 944, 945, 948, 949, 953, 955, 956, 957, 958, 962, 970, 973, 983, 990, 992, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1013, 1014, 1018, 1051, 1075, 1145, 1169, 1192, 1226, 1253, 1269, 1270, 1276, 1280, 1289, 1344, 1393, 1447, 1452, 1489, 1498, 1500, 1506, 1542, 1699, 1741, 1793, 1815, 1982, 2000, 2108, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2271, 2283, 2298, 2302], │ │ │ │ │ + "03": [26, 27, 29, 31, 79, 80, 82, 121, 182, 207, 213, 218, 219, 230, 264, 278, 286, 287, 290, 291, 292, 294, 296, 298, 301, 302, 304, 305, 306, 307, 310, 313, 314, 318, 321, 322, 326, 330, 331, 332, 362, 420, 423, 512, 517, 518, 519, 522, 524, 530, 534, 536, 543, 544, 545, 546, 547, 548, 549, 551, 557, 558, 562, 563, 564, 565, 566, 591, 592, 593, 637, 640, 642, 643, 644, 646, 651, 652, 656, 657, 658, 659, 666, 667, 673, 675, 677, 680, 681, 685, 686, 688, 696, 760, 781, 788, 793, 799, 804, 904, 939, 941, 943, 944, 945, 948, 949, 953, 955, 956, 957, 958, 962, 970, 973, 983, 990, 992, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1013, 1014, 1018, 1051, 1075, 1145, 1169, 1192, 1226, 1253, 1269, 1270, 1276, 1280, 1289, 1344, 1393, 1447, 1452, 1489, 1498, 1500, 1506, 1542, 1699, 1741, 1793, 1815, 1982, 2000, 2108, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2271, 2283, 2298, 2302], │ │ │ │ │ "030": [1447, 2200, 2232], │ │ │ │ │ "0300": 2271, │ │ │ │ │ "030000": 18, │ │ │ │ │ "030015": 2207, │ │ │ │ │ "030045": 2186, │ │ │ │ │ "030178": 2207, │ │ │ │ │ "030388": 2207, │ │ │ │ │ @@ -21965,15 +21964,15 @@ │ │ │ │ │ "059481": 2207, │ │ │ │ │ "059552": 2207, │ │ │ │ │ "059761": 2207, │ │ │ │ │ "059869e": 2191, │ │ │ │ │ "059881": 2210, │ │ │ │ │ "059904": 2214, │ │ │ │ │ "05t00": 2261, │ │ │ │ │ - "06": [26, 27, 29, 30, 31, 207, 213, 218, 230, 273, 292, 294, 332, 363, 526, 534, 536, 637, 644, 646, 688, 781, 788, 793, 804, 900, 969, 993, 1075, 1344, 1441, 1442, 1449, 1450, 1452, 1489, 1497, 1500, 1506, 1524, 1598, 1677, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2226, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2264, 2271, 2298, 2302], │ │ │ │ │ + "06": [26, 27, 29, 30, 31, 207, 213, 218, 230, 273, 292, 294, 332, 363, 526, 534, 536, 637, 644, 646, 688, 781, 788, 793, 804, 900, 969, 993, 1075, 1344, 1441, 1442, 1449, 1450, 1452, 1489, 1497, 1500, 1506, 1524, 1598, 1677, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2226, 2228, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2264, 2271, 2298, 2302], │ │ │ │ │ "060015": 2207, │ │ │ │ │ "060074": 2185, │ │ │ │ │ "060603": 2207, │ │ │ │ │ "060654": 2207, │ │ │ │ │ "060777": 2207, │ │ │ │ │ "061019": 2199, │ │ │ │ │ "061068": 2210, │ │ │ │ │ @@ -21983,14 +21982,15 @@ │ │ │ │ │ "061810": 2204, │ │ │ │ │ "061876": [182, 760], │ │ │ │ │ "061932": 2186, │ │ │ │ │ "062191": 2230, │ │ │ │ │ "062320": 2207, │ │ │ │ │ "062433": 2199, │ │ │ │ │ "062993": 2197, │ │ │ │ │ + "063": 2193, │ │ │ │ │ "0630": 2246, │ │ │ │ │ "063038": 2199, │ │ │ │ │ "063123": 2210, │ │ │ │ │ "0633": 2204, │ │ │ │ │ "063327": [2185, 2197], │ │ │ │ │ "063328": 2235, │ │ │ │ │ "063367": 2216, │ │ │ │ │ @@ -22032,15 +22032,14 @@ │ │ │ │ │ "069546": 2199, │ │ │ │ │ "069718": 2186, │ │ │ │ │ "069887": 2207, │ │ │ │ │ "069908": 2207, │ │ │ │ │ "069949": 2207, │ │ │ │ │ "06t00": 2261, │ │ │ │ │ "07": [26, 27, 29, 30, 31, 187, 202, 207, 213, 230, 273, 277, 292, 294, 330, 332, 345, 644, 646, 685, 688, 763, 781, 788, 804, 900, 903, 1075, 1280, 1344, 1441, 1442, 1449, 1450, 1452, 1598, 1677, 1720, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2226, 2227, 2228, 2230, 2231, 2235, 2261, 2271, 2294, 2298], │ │ │ │ │ - "070": 2193, │ │ │ │ │ "0700": 995, │ │ │ │ │ "070087": 2218, │ │ │ │ │ "070816": 2235, │ │ │ │ │ "071068": 2222, │ │ │ │ │ "071357": 2191, │ │ │ │ │ "071665": 2219, │ │ │ │ │ "0718": [2184, 2186], │ │ │ │ │ @@ -22163,15 +22162,15 @@ │ │ │ │ │ "089227": 2207, │ │ │ │ │ "089329": [2184, 2195, 2214], │ │ │ │ │ "089354": 2235, │ │ │ │ │ "089589": 2207, │ │ │ │ │ "089641": 2207, │ │ │ │ │ "089759": 2186, │ │ │ │ │ "08t00": 2261, │ │ │ │ │ - "09": [29, 80, 84, 88, 107, 127, 157, 213, 218, 276, 277, 278, 322, 330, 331, 345, 562, 592, 595, 600, 629, 637, 677, 685, 686, 703, 732, 788, 793, 902, 903, 904, 987, 1008, 1075, 1164, 1221, 1344, 1452, 1489, 1501, 1506, 1524, 1578, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1839, 1876, 1894, 1912, 1964, 2018, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2218, 2220, 2221, 2222, 2226, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2249, 2250, 2261, 2271], │ │ │ │ │ + "09": [29, 80, 84, 88, 107, 127, 157, 213, 218, 276, 277, 278, 322, 330, 331, 345, 562, 592, 595, 600, 629, 637, 677, 685, 686, 703, 732, 788, 793, 902, 903, 904, 987, 1008, 1075, 1164, 1221, 1344, 1452, 1489, 1501, 1506, 1524, 1578, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1839, 1876, 1894, 1912, 1964, 2018, 2184, 2185, 2186, 2191, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2218, 2220, 2221, 2222, 2226, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2249, 2250, 2261, 2271], │ │ │ │ │ "0900": [956, 1013], │ │ │ │ │ "090118": 2219, │ │ │ │ │ "090255": 2197, │ │ │ │ │ "090310": 2207, │ │ │ │ │ "090711": 2207, │ │ │ │ │ "091": [2186, 2227], │ │ │ │ │ "091000": 2207, │ │ │ │ │ @@ -22253,20 +22252,20 @@ │ │ │ │ │ "0n": [1489, 2298], │ │ │ │ │ "0px": 2207, │ │ │ │ │ "0rc0": 13, │ │ │ │ │ "0th": [26, 249, 882, 1202, 2185, 2197, 2199, 2235], │ │ │ │ │ "0x00": 2294, │ │ │ │ │ "0x40": 2294, │ │ │ │ │ "0x7efd0c0b0690": 3, │ │ │ │ │ - "0xffff467de430": 2230, │ │ │ │ │ - "0xffff482a6ca0": 2210, │ │ │ │ │ - "0xffff68300050": 2199, │ │ │ │ │ - "0xffff8209c820": 2197, │ │ │ │ │ - "0xffffa1a5ec60": 2195, │ │ │ │ │ - "0xffffa22eeba0": 2246, │ │ │ │ │ + "0xffff25444130": 2230, │ │ │ │ │ + "0xffff260ad300": 2210, │ │ │ │ │ + "0xffff56113070": 2199, │ │ │ │ │ + "0xffff5fda33d0": 2197, │ │ │ │ │ + "0xffff7cef0980": 2246, │ │ │ │ │ + "0xffff7fe4d310": 2195, │ │ │ │ │ "1": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310], │ │ │ │ │ "10": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308], │ │ │ │ │ "100": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307], │ │ │ │ │ "1000": [9, 10, 15, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294], │ │ │ │ │ "10000": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266], │ │ │ │ │ "100000": [1354, 1372, 2199, 2201, 2210], │ │ │ │ │ "1000000": [144, 2199, 2228], │ │ │ │ │ @@ -22347,15 +22346,15 @@ │ │ │ │ │ "10178": 2228, │ │ │ │ │ "1018": [2185, 2205], │ │ │ │ │ "10181": 2227, │ │ │ │ │ "10182": 2227, │ │ │ │ │ "101830": 2207, │ │ │ │ │ "10184": 2227, │ │ │ │ │ "10193": 2228, │ │ │ │ │ - "102": [1491, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2230, 2232, 2235, 2246, 2249], │ │ │ │ │ + "102": [1491, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2230, 2232, 2235, 2246, 2249], │ │ │ │ │ "1020": 2185, │ │ │ │ │ "10209": 2227, │ │ │ │ │ "1021": [2185, 2197, 2231], │ │ │ │ │ "10214": [2227, 2228], │ │ │ │ │ "10217": 2227, │ │ │ │ │ "10218": 2228, │ │ │ │ │ "1022": [16, 17, 18, 19, 2185, 2199, 2203, 2205, 2232, 2235, 2298], │ │ │ │ │ @@ -22668,15 +22667,15 @@ │ │ │ │ │ "10h": [2210, 2235], │ │ │ │ │ "10m": [16, 1447, 2200], │ │ │ │ │ "10min": 2230, │ │ │ │ │ "10t00": 2261, │ │ │ │ │ "10th": [2205, 2241], │ │ │ │ │ "10x": [1469, 1486, 1498, 2216, 2219, 2225, 2257], │ │ │ │ │ "11": [2, 10, 15, 17, 18, 19, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 108, 111, 113, 120, 127, 139, 140, 157, 162, 196, 213, 286, 288, 289, 293, 295, 296, 300, 316, 317, 318, 323, 324, 329, 330, 420, 423, 440, 509, 512, 518, 522, 524, 526, 530, 534, 536, 554, 556, 600, 635, 639, 641, 645, 647, 649, 650, 652, 670, 671, 673, 678, 679, 681, 684, 685, 703, 732, 771, 788, 799, 940, 943, 948, 985, 993, 1010, 1019, 1023, 1025, 1169, 1174, 1175, 1195, 1200, 1226, 1256, 1261, 1276, 1292, 1298, 1299, 1306, 1308, 1321, 1433, 1452, 1482, 1498, 1542, 1560, 1598, 1620, 1637, 1677, 1699, 1720, 1741, 1839, 1930, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2217, 2218, 2219, 2220, 2222, 2223, 2224, 2225, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2250, 2257, 2261, 2264, 2265, 2271, 2277, 2278, 2283, 2289, 2294, 2297, 2298, 2302, 2307], │ │ │ │ │ - "110": [213, 359, 360, 587, 588, 788, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2223, 2230, 2232, 2235, 2246], │ │ │ │ │ + "110": [213, 359, 360, 587, 588, 788, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2223, 2230, 2232, 2235, 2246], │ │ │ │ │ "1100": [2195, 2210], │ │ │ │ │ "11000": [2185, 2220], │ │ │ │ │ "11002": 2228, │ │ │ │ │ "11007": 2229, │ │ │ │ │ "1101": 2210, │ │ │ │ │ "11010": 2228, │ │ │ │ │ "11014": 2228, │ │ │ │ │ @@ -23224,15 +23223,15 @@ │ │ │ │ │ "12473": 2231, │ │ │ │ │ "12486": 2231, │ │ │ │ │ "124862": 2191, │ │ │ │ │ "12489": 2230, │ │ │ │ │ "12492": 2230, │ │ │ │ │ "12493": 2231, │ │ │ │ │ "12494": 2230, │ │ │ │ │ - "125": [1186, 1247, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2210, 2211, 2225, 2227, 2232], │ │ │ │ │ + "125": [1186, 1247, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2210, 2211, 2218, 2225, 2227, 2232], │ │ │ │ │ "1250": [2193, 2246], │ │ │ │ │ "125000": [28, 2218], │ │ │ │ │ "12506": 2231, │ │ │ │ │ "1251": 2193, │ │ │ │ │ "12513": 2265, │ │ │ │ │ "125195": 2207, │ │ │ │ │ "1252": 2265, │ │ │ │ │ @@ -23634,15 +23633,15 @@ │ │ │ │ │ "1349720105200": 2210, │ │ │ │ │ "1349720105300": 2210, │ │ │ │ │ "1349720105400": 2210, │ │ │ │ │ "1349720105500": 2210, │ │ │ │ │ "1349806505": 2210, │ │ │ │ │ "1349892905": 2210, │ │ │ │ │ "1349979305": 2210, │ │ │ │ │ - "135": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2210, 2211, 2232, 2235, 2249, 2253], │ │ │ │ │ + "135": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2210, 2211, 2232, 2235, 2249, 2253], │ │ │ │ │ "13500": 2232, │ │ │ │ │ "1350065705": 2210, │ │ │ │ │ "13503": 2249, │ │ │ │ │ "13509": 2232, │ │ │ │ │ "13511": 2232, │ │ │ │ │ "135110": 2186, │ │ │ │ │ "13514": 2232, │ │ │ │ │ @@ -24187,15 +24186,15 @@ │ │ │ │ │ "150812": [102, 1158], │ │ │ │ │ "15086": [2246, 2249], │ │ │ │ │ "150862": 2186, │ │ │ │ │ "15095": 2283, │ │ │ │ │ "15096": 2235, │ │ │ │ │ "15098": 2235, │ │ │ │ │ "15099": [2235, 2246], │ │ │ │ │ - "151": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2207, 2210, 2211, 2253], │ │ │ │ │ + "151": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2207, 2210, 2211, 2253], │ │ │ │ │ "15105": 2302, │ │ │ │ │ "15108": 2235, │ │ │ │ │ "15109": 2235, │ │ │ │ │ "15110": 2235, │ │ │ │ │ "15118": 2235, │ │ │ │ │ "1512": 2217, │ │ │ │ │ "15120": 2235, │ │ │ │ │ @@ -24956,15 +24955,15 @@ │ │ │ │ │ "17656": 2265, │ │ │ │ │ "1766": 2199, │ │ │ │ │ "176896": 2207, │ │ │ │ │ "17690": 2241, │ │ │ │ │ "17691": 2249, │ │ │ │ │ "17697": 2246, │ │ │ │ │ "1769950": [182, 760], │ │ │ │ │ - "177": [259, 890, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2283, 2298], │ │ │ │ │ + "177": [259, 890, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2218, 2283, 2298], │ │ │ │ │ "17704": 2238, │ │ │ │ │ "177045": 2186, │ │ │ │ │ "17710": 2238, │ │ │ │ │ "17717": 2241, │ │ │ │ │ "17722": 2241, │ │ │ │ │ "177310": 2207, │ │ │ │ │ "17738": 2238, │ │ │ │ │ @@ -25268,15 +25267,15 @@ │ │ │ │ │ "18789": 2241, │ │ │ │ │ "1879": [16, 17, 18, 19, 2235], │ │ │ │ │ "18790": 2241, │ │ │ │ │ "18792": 2246, │ │ │ │ │ "187958": 2186, │ │ │ │ │ "18798": 2241, │ │ │ │ │ "187982": 2207, │ │ │ │ │ - "188": [16, 17, 18, 19, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211, 2231, 2235, 2253], │ │ │ │ │ + "188": [16, 17, 18, 19, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2205, 2210, 2211, 2231, 2235, 2253], │ │ │ │ │ "1880": [16, 17, 18, 19, 2235], │ │ │ │ │ "18800": [2241, 2265], │ │ │ │ │ "18801": 2241, │ │ │ │ │ "188055": 2207, │ │ │ │ │ "18808": 2241, │ │ │ │ │ "1881": [16, 17, 18, 19, 2235], │ │ │ │ │ "18812": 2265, │ │ │ │ │ @@ -25580,15 +25579,15 @@ │ │ │ │ │ "198677": 2214, │ │ │ │ │ "19872": 2241, │ │ │ │ │ "19873": 2241, │ │ │ │ │ "198768": 2193, │ │ │ │ │ "19884": 2241, │ │ │ │ │ "19891": 2246, │ │ │ │ │ "19895": 2241, │ │ │ │ │ - "199": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211], │ │ │ │ │ + "199": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211], │ │ │ │ │ "1990": [195, 770, 2210], │ │ │ │ │ "19900": 2241, │ │ │ │ │ "19900315": 2230, │ │ │ │ │ "19909": 2241, │ │ │ │ │ "1990q1": 2210, │ │ │ │ │ "1991": [2210, 2249], │ │ │ │ │ "19910905": 2249, │ │ │ │ │ @@ -25747,19 +25746,20 @@ │ │ │ │ │ "2021": [288, 296, 318, 639, 652, 673, 940, 943, 948, 957, 970, 997, 1542, 2201, 2207, 2213, 2277, 2289, 2294], │ │ │ │ │ "2022": [5, 22, 523, 525, 528, 537, 982, 1185, 1246, 1288, 1491, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1542, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1560, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1578, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1598, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1620, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1637, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1657, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1677, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1699, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1720, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1758, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1776, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1793, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1815, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1839, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1857, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1876, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1894, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1912, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1930, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1947, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1964, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1982, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2018, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2036, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2054, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2108, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2127, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2145, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2186, 2203, 2213, 2227, 2298, 2302, 2307], │ │ │ │ │ "2022a": 2294, │ │ │ │ │ "2023": [34, 270, 298, 301, 320, 363, 511, 519, 526, 533, 543, 544, 545, 546, 547, 548, 549, 551, 554, 555, 556, 557, 558, 560, 563, 564, 565, 566, 567, 651, 894, 898, 954, 959, 960, 982, 984, 1000, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1024, 1122, 1141, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1501, 1620, 1930, 2090, 2127, 2145, 2213], │ │ │ │ │ "202380": 2207, │ │ │ │ │ "20239": [2241, 2265], │ │ │ │ │ "2024": [270, 544, 546, 555, 567, 894, 898, 2127, 2213], │ │ │ │ │ - "2025": [36, 544, 546, 555, 567, 894, 898, 2228], │ │ │ │ │ + "2025": [36, 544, 546, 555, 567, 894, 898], │ │ │ │ │ "20251": 2307, │ │ │ │ │ "2026": 2228, │ │ │ │ │ "202602": 2205, │ │ │ │ │ "202646": 2230, │ │ │ │ │ + "2027": 2228, │ │ │ │ │ "20271": 2241, │ │ │ │ │ "202872": [2184, 2214], │ │ │ │ │ "202946": 2207, │ │ │ │ │ "203": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2253], │ │ │ │ │ "2030": 2265, │ │ │ │ │ "20303": 2265, │ │ │ │ │ "20306": 2302, │ │ │ │ │ @@ -26260,15 +26260,15 @@ │ │ │ │ │ "2215": 2218, │ │ │ │ │ "22150": 2246, │ │ │ │ │ "22158": 2246, │ │ │ │ │ "22159": 2249, │ │ │ │ │ "22163": 2246, │ │ │ │ │ "2217": 1344, │ │ │ │ │ "22199": 2246, │ │ │ │ │ - "222": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2220], │ │ │ │ │ + "222": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220], │ │ │ │ │ "22205": 2274, │ │ │ │ │ "222082": 2197, │ │ │ │ │ "222103": 2207, │ │ │ │ │ "22221": 2246, │ │ │ │ │ "22227": 2246, │ │ │ │ │ "2224": [2214, 2220], │ │ │ │ │ "22242": 2246, │ │ │ │ │ @@ -26324,15 +26324,15 @@ │ │ │ │ │ "224824": 2207, │ │ │ │ │ "224826": 2210, │ │ │ │ │ "22484": [2246, 2249], │ │ │ │ │ "22487": 2246, │ │ │ │ │ "2249": [2194, 2201, 2203, 2294, 2302, 2307], │ │ │ │ │ "224904": 2230, │ │ │ │ │ "22492": 2246, │ │ │ │ │ - "225": [118, 132, 135, 159, 161, 175, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2227], │ │ │ │ │ + "225": [118, 132, 135, 159, 161, 175, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2227], │ │ │ │ │ "2250": [2194, 2201, 2203, 2294, 2302, 2307], │ │ │ │ │ "225000": [121, 696], │ │ │ │ │ "22501": 2249, │ │ │ │ │ "22508": 2246, │ │ │ │ │ "2251": [2194, 2201, 2203, 2294, 2302, 2307], │ │ │ │ │ "22519": 2246, │ │ │ │ │ "2252": [2194, 2201, 2203, 2294, 2302, 2307], │ │ │ │ │ @@ -26628,15 +26628,15 @@ │ │ │ │ │ "238636": 15, │ │ │ │ │ "23868": 2249, │ │ │ │ │ "23874": 2246, │ │ │ │ │ "23878": 2246, │ │ │ │ │ "2388": 2185, │ │ │ │ │ "23882": 2246, │ │ │ │ │ "238919": 2207, │ │ │ │ │ - "239": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220, 2298], │ │ │ │ │ + "239": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2220, 2298], │ │ │ │ │ "239000": [2185, 2220], │ │ │ │ │ "239072": 2235, │ │ │ │ │ "23917": [2246, 2265], │ │ │ │ │ "23919": [2246, 2265], │ │ │ │ │ "23925": 2265, │ │ │ │ │ "23931": 2248, │ │ │ │ │ "23932": 2246, │ │ │ │ │ @@ -26799,15 +26799,15 @@ │ │ │ │ │ "24763": 2246, │ │ │ │ │ "247642": [2184, 2195, 2214], │ │ │ │ │ "24767": 2246, │ │ │ │ │ "24775": 2249, │ │ │ │ │ "247792": 2220, │ │ │ │ │ "24782": 2249, │ │ │ │ │ "24784": 2265, │ │ │ │ │ - "248": [144, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2220, 2254], │ │ │ │ │ + "248": [144, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220, 2254], │ │ │ │ │ "248000": [2185, 2220], │ │ │ │ │ "248003": [102, 1158], │ │ │ │ │ "24804": [2277, 2298], │ │ │ │ │ "24806": 2265, │ │ │ │ │ "24813": 2249, │ │ │ │ │ "24817": 2289, │ │ │ │ │ "24839": 2277, │ │ │ │ │ @@ -27330,15 +27330,15 @@ │ │ │ │ │ "2718281": 2223, │ │ │ │ │ "27186": [2241, 2249], │ │ │ │ │ "271860": [15, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2210, 2214, 2215, 2218, 2225, 2231, 2241, 2260], │ │ │ │ │ "2719": [2184, 2186, 2191], │ │ │ │ │ "271973": 2216, │ │ │ │ │ "27198": 2265, │ │ │ │ │ "27199": [2249, 2265], │ │ │ │ │ - "272": [2186, 2188, 2195, 2197, 2199, 2210], │ │ │ │ │ + "272": [2185, 2186, 2188, 2195, 2197, 2199, 2210], │ │ │ │ │ "27219": 2249, │ │ │ │ │ "27222": 2271, │ │ │ │ │ "27237": 2271, │ │ │ │ │ "272395": 2235, │ │ │ │ │ "27242": 2265, │ │ │ │ │ "27250": 2249, │ │ │ │ │ "272593": 2230, │ │ │ │ │ @@ -27512,15 +27512,15 @@ │ │ │ │ │ "28115": 2265, │ │ │ │ │ "28118": 2265, │ │ │ │ │ "281247": [2185, 2191, 2197, 2199, 2202, 2204], │ │ │ │ │ "28130": 2265, │ │ │ │ │ "28139": 2265, │ │ │ │ │ "281461": 2191, │ │ │ │ │ "28147": 2251, │ │ │ │ │ - "281473386377744": 2246, │ │ │ │ │ + "281472422405936": 2246, │ │ │ │ │ "28150": 2265, │ │ │ │ │ "28156": 2271, │ │ │ │ │ "28163": 2265, │ │ │ │ │ "2817": 1344, │ │ │ │ │ "281885": 2186, │ │ │ │ │ "28189": 2271, │ │ │ │ │ "28192": 2265, │ │ │ │ │ @@ -28260,15 +28260,15 @@ │ │ │ │ │ "319829": 2207, │ │ │ │ │ "31988": 2267, │ │ │ │ │ "31991": 2271, │ │ │ │ │ "31st": 541, │ │ │ │ │ "31t010101": 2210, │ │ │ │ │ "31t23": [575, 893, 2186, 2246], │ │ │ │ │ "32": [15, 17, 18, 19, 28, 81, 183, 213, 219, 268, 293, 295, 544, 546, 645, 647, 761, 788, 956, 957, 962, 970, 973, 983, 990, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1013, 1014, 1018, 1095, 1323, 1394, 1433, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2287, 2293, 2294, 2298, 2301, 2302], │ │ │ │ │ - "320": [111, 633, 2186, 2197, 2199, 2206, 2210], │ │ │ │ │ + "320": [111, 633, 2186, 2193, 2197, 2199, 2206, 2210], │ │ │ │ │ "320020": 2207, │ │ │ │ │ "320034": 2201, │ │ │ │ │ "32013": 2271, │ │ │ │ │ "32023": 2271, │ │ │ │ │ "3204": 2199, │ │ │ │ │ "320422": 2191, │ │ │ │ │ "320444": 2207, │ │ │ │ │ @@ -28388,15 +28388,15 @@ │ │ │ │ │ "32668": 2271, │ │ │ │ │ "326687": 15, │ │ │ │ │ "32669": 2271, │ │ │ │ │ "32670": 2271, │ │ │ │ │ "32682": 2271, │ │ │ │ │ "32684": 2271, │ │ │ │ │ "32685": 2268, │ │ │ │ │ - "327": [29, 2184, 2185, 2186, 2197, 2199, 2205, 2210, 2218, 2246, 2255], │ │ │ │ │ + "327": [29, 2184, 2186, 2197, 2199, 2205, 2210, 2246, 2255], │ │ │ │ │ "32727": 2294, │ │ │ │ │ "327364": 2230, │ │ │ │ │ "32747": 2271, │ │ │ │ │ "32749": 2283, │ │ │ │ │ "3275": 2216, │ │ │ │ │ "32755": 2271, │ │ │ │ │ "32761": 2277, │ │ │ │ │ @@ -28474,15 +28474,15 @@ │ │ │ │ │ "33064": 2271, │ │ │ │ │ "33069": 2271, │ │ │ │ │ "330698": 2207, │ │ │ │ │ "330704": 2214, │ │ │ │ │ "33071": 2269, │ │ │ │ │ "33091": 2298, │ │ │ │ │ "33092": 2271, │ │ │ │ │ - "331": [2184, 2186, 2197, 2199, 2205, 2210, 2246], │ │ │ │ │ + "331": [2184, 2185, 2186, 2197, 2199, 2205, 2210, 2246], │ │ │ │ │ "331053": 2207, │ │ │ │ │ "33113": 2271, │ │ │ │ │ "33115": 2269, │ │ │ │ │ "331152": 2210, │ │ │ │ │ "331279": 2195, │ │ │ │ │ "33133": 2271, │ │ │ │ │ "33136": 2271, │ │ │ │ │ @@ -28612,15 +28612,15 @@ │ │ │ │ │ "33671": 2277, │ │ │ │ │ "33675": 2273, │ │ │ │ │ "33676": 2271, │ │ │ │ │ "336913": 2207, │ │ │ │ │ "336914": 2197, │ │ │ │ │ "336936": 2235, │ │ │ │ │ "33699": 2283, │ │ │ │ │ - "337": [2186, 2193, 2197, 2199, 2210, 2231], │ │ │ │ │ + "337": [2186, 2197, 2199, 2210, 2231], │ │ │ │ │ "337000": [176, 179, 754, 757, 1242, 1243], │ │ │ │ │ "337092": 2191, │ │ │ │ │ "3371": 2202, │ │ │ │ │ "3371217": 2202, │ │ │ │ │ "337165": 2207, │ │ │ │ │ "33717": 2271, │ │ │ │ │ "33718": 2271, │ │ │ │ │ @@ -30301,15 +30301,14 @@ │ │ │ │ │ "41777": 2283, │ │ │ │ │ "41778": 2282, │ │ │ │ │ "41779": 2289, │ │ │ │ │ "41789": 2298, │ │ │ │ │ "41797": 2282, │ │ │ │ │ "418": [2186, 2199, 2210], │ │ │ │ │ "41812": 2283, │ │ │ │ │ - "418157": 2228, │ │ │ │ │ "418176": 2207, │ │ │ │ │ "41821": 2283, │ │ │ │ │ "41828": 2289, │ │ │ │ │ "41831": 2283, │ │ │ │ │ "41836": 2283, │ │ │ │ │ "4184": 2257, │ │ │ │ │ "41846": 2283, │ │ │ │ │ @@ -30332,15 +30331,14 @@ │ │ │ │ │ "41933": 2283, │ │ │ │ │ "41934": 2283, │ │ │ │ │ "41935": 2292, │ │ │ │ │ "41946": 2289, │ │ │ │ │ "41951": 2283, │ │ │ │ │ "419540": 2197, │ │ │ │ │ "4196": 2220, │ │ │ │ │ - "419612": 2228, │ │ │ │ │ "41965": 2289, │ │ │ │ │ "41967": 2289, │ │ │ │ │ "41974": 2283, │ │ │ │ │ "419814": 2207, │ │ │ │ │ "41993": 2289, │ │ │ │ │ "41995": 2289, │ │ │ │ │ "419977": 2207, │ │ │ │ │ @@ -30500,15 +30498,15 @@ │ │ │ │ │ "42761": 2290, │ │ │ │ │ "42768": 2289, │ │ │ │ │ "427681": 2207, │ │ │ │ │ "42771": 2285, │ │ │ │ │ "4279": 2302, │ │ │ │ │ "42794": 2285, │ │ │ │ │ "42795": 2294, │ │ │ │ │ - "428": [2186, 2199, 2210, 2256, 2298], │ │ │ │ │ + "428": [2186, 2193, 2199, 2210, 2256, 2298], │ │ │ │ │ "4280": 2217, │ │ │ │ │ "42800": 2289, │ │ │ │ │ "428066": 2207, │ │ │ │ │ "42808": 2289, │ │ │ │ │ "4281": 2217, │ │ │ │ │ "42810": 2286, │ │ │ │ │ "428117": 2218, │ │ │ │ │ @@ -30942,15 +30940,15 @@ │ │ │ │ │ "44354": 2294, │ │ │ │ │ "443568": 29, │ │ │ │ │ "44366": 2289, │ │ │ │ │ "4437": 2218, │ │ │ │ │ "44382": 2289, │ │ │ │ │ "443863": 2207, │ │ │ │ │ "443982": 2229, │ │ │ │ │ - "444": [2199, 2207, 2210, 2256], │ │ │ │ │ + "444": [2199, 2205, 2207, 2210, 2256], │ │ │ │ │ "4440": 2218, │ │ │ │ │ "44410": 2294, │ │ │ │ │ "44411": 2289, │ │ │ │ │ "44414": 2289, │ │ │ │ │ "44417": 2289, │ │ │ │ │ "44421": 2302, │ │ │ │ │ "44424": 2302, │ │ │ │ │ @@ -31315,14 +31313,15 @@ │ │ │ │ │ "4606": 2220, │ │ │ │ │ "46061": 2291, │ │ │ │ │ "46063": 2294, │ │ │ │ │ "460708": 2199, │ │ │ │ │ "460710": 2215, │ │ │ │ │ "46072": 2298, │ │ │ │ │ "46084": 2298, │ │ │ │ │ + "460840": 2228, │ │ │ │ │ "460858": 2197, │ │ │ │ │ "46086": 2294, │ │ │ │ │ "46087": 2291, │ │ │ │ │ "4609": 2218, │ │ │ │ │ "460928": 2207, │ │ │ │ │ "460959": 2207, │ │ │ │ │ "46096": 2298, │ │ │ │ │ @@ -31352,14 +31351,15 @@ │ │ │ │ │ "4620": 2218, │ │ │ │ │ "46202": 2298, │ │ │ │ │ "4621": 2218, │ │ │ │ │ "46210": 2294, │ │ │ │ │ "46216": 2294, │ │ │ │ │ "46218": 2293, │ │ │ │ │ "46220": 2294, │ │ │ │ │ + "462296": 2228, │ │ │ │ │ "46235": 2294, │ │ │ │ │ "46240": 2302, │ │ │ │ │ "4625": 2218, │ │ │ │ │ "46252": 2294, │ │ │ │ │ "4626": 2218, │ │ │ │ │ "46267": 2298, │ │ │ │ │ "46268": 2293, │ │ │ │ │ @@ -33064,15 +33064,15 @@ │ │ │ │ │ "55139": 2307, │ │ │ │ │ "55147": 2307, │ │ │ │ │ "551686": 2207, │ │ │ │ │ "5517": 2222, │ │ │ │ │ "55181": 2307, │ │ │ │ │ "5519": 2220, │ │ │ │ │ "551981": 2199, │ │ │ │ │ - "552": [2193, 2199, 2257], │ │ │ │ │ + "552": [2199, 2257], │ │ │ │ │ "55200": 2307, │ │ │ │ │ "5521": 2221, │ │ │ │ │ "55219": 2307, │ │ │ │ │ "55228": 2306, │ │ │ │ │ "552351": 2207, │ │ │ │ │ "55238": 2307, │ │ │ │ │ "55241": 2307, │ │ │ │ │ @@ -33473,15 +33473,15 @@ │ │ │ │ │ "57529": 2308, │ │ │ │ │ "57539": 2309, │ │ │ │ │ "5754": 2218, │ │ │ │ │ "57551": 2186, │ │ │ │ │ "575510": 2186, │ │ │ │ │ "57553": 2309, │ │ │ │ │ "575535": 2210, │ │ │ │ │ - "576": [2194, 2199, 2201, 2203, 2205, 2232, 2283, 2294, 2298, 2302, 2307], │ │ │ │ │ + "576": [2194, 2199, 2201, 2203, 2232, 2283, 2294, 2298, 2302, 2307], │ │ │ │ │ "576300": 2207, │ │ │ │ │ "576332": 15, │ │ │ │ │ "576449": 2186, │ │ │ │ │ "5765": [2192, 2219], │ │ │ │ │ "5766": 2192, │ │ │ │ │ "57664": 2309, │ │ │ │ │ "5767": 2192, │ │ │ │ │ @@ -33537,15 +33537,15 @@ │ │ │ │ │ "583333": 2222, │ │ │ │ │ "583343": 2199, │ │ │ │ │ "5835": 2219, │ │ │ │ │ "58374": 2257, │ │ │ │ │ "583749": 2186, │ │ │ │ │ "583787": 2191, │ │ │ │ │ "583888": 2186, │ │ │ │ │ - "584": [2199, 2205, 2210, 2298], │ │ │ │ │ + "584": [2199, 2210, 2298], │ │ │ │ │ "584563": 2207, │ │ │ │ │ "5846": 2219, │ │ │ │ │ "584639": 2207, │ │ │ │ │ "585": [2193, 2199], │ │ │ │ │ "5850": 2202, │ │ │ │ │ "585583": 1334, │ │ │ │ │ "585746": 15, │ │ │ │ │ @@ -33945,15 +33945,15 @@ │ │ │ │ │ "631": 2199, │ │ │ │ │ "631095": 2195, │ │ │ │ │ "6313": 2220, │ │ │ │ │ "631502": 2207, │ │ │ │ │ "631523": 2235, │ │ │ │ │ "631545": 2207, │ │ │ │ │ "631547": 1303, │ │ │ │ │ - "632": 2199, │ │ │ │ │ + "632": [2199, 2205], │ │ │ │ │ "632038": 2207, │ │ │ │ │ "6322": 2235, │ │ │ │ │ "6326": 2246, │ │ │ │ │ "632633": 2217, │ │ │ │ │ "6327": 2220, │ │ │ │ │ "632779": 2186, │ │ │ │ │ "6329": 2220, │ │ │ │ │ @@ -34019,15 +34019,15 @@ │ │ │ │ │ "640556": 2215, │ │ │ │ │ "6407": 2220, │ │ │ │ │ "640843": 2199, │ │ │ │ │ "640875": 2207, │ │ │ │ │ "640880": 2235, │ │ │ │ │ "640898": 2219, │ │ │ │ │ "640x480": 1457, │ │ │ │ │ - "641": 2199, │ │ │ │ │ + "641": [2199, 2205], │ │ │ │ │ "641184": 2186, │ │ │ │ │ "641360": 2199, │ │ │ │ │ "6415": 2238, │ │ │ │ │ "641602": 2230, │ │ │ │ │ "6418": 2220, │ │ │ │ │ "641817": 2216, │ │ │ │ │ "642": [2197, 2199], │ │ │ │ │ @@ -34063,15 +34063,15 @@ │ │ │ │ │ "646086": 2207, │ │ │ │ │ "6462": 2220, │ │ │ │ │ "6463": 2220, │ │ │ │ │ "6466": 2220, │ │ │ │ │ "646654": 2207, │ │ │ │ │ "646721": 2207, │ │ │ │ │ "646737": 2207, │ │ │ │ │ - "647": [2199, 2257], │ │ │ │ │ + "647": [2193, 2199, 2257], │ │ │ │ │ "6471": 2220, │ │ │ │ │ "6472": 2220, │ │ │ │ │ "647353": 2207, │ │ │ │ │ "647444": 2207, │ │ │ │ │ "647623": 2186, │ │ │ │ │ "647626": 2207, │ │ │ │ │ "647699": 2199, │ │ │ │ │ @@ -34349,15 +34349,15 @@ │ │ │ │ │ "678253": 2207, │ │ │ │ │ "678365": 2191, │ │ │ │ │ "6785": 2220, │ │ │ │ │ "6787": 2222, │ │ │ │ │ "678711": 2186, │ │ │ │ │ "678805": 2235, │ │ │ │ │ "678886": 2229, │ │ │ │ │ - "679": [2185, 2193, 2197], │ │ │ │ │ + "679": [2185, 2197], │ │ │ │ │ "6790": 2197, │ │ │ │ │ "6792": 2197, │ │ │ │ │ "6793": 2197, │ │ │ │ │ "6794": 2197, │ │ │ │ │ "679430": 2207, │ │ │ │ │ "6796": [2185, 2197], │ │ │ │ │ "6797": [2185, 2197], │ │ │ │ │ @@ -34633,15 +34633,15 @@ │ │ │ │ │ "709248": 2260, │ │ │ │ │ "709459": 2199, │ │ │ │ │ "7095": 2228, │ │ │ │ │ "7096": 2232, │ │ │ │ │ "709661": [2184, 2214], │ │ │ │ │ "7097": 2222, │ │ │ │ │ "7098": 2220, │ │ │ │ │ - "71": [15, 17, 24, 25, 28, 29, 32, 133, 208, 708, 718, 782, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ + "71": [15, 17, 24, 25, 28, 29, 32, 133, 208, 708, 718, 782, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ "710": 2199, │ │ │ │ │ "7101": 2220, │ │ │ │ │ "7103": 2222, │ │ │ │ │ "7105": 2220, │ │ │ │ │ "7106": 2220, │ │ │ │ │ "711": 2199, │ │ │ │ │ "711409": 2186, │ │ │ │ │ @@ -35387,15 +35387,15 @@ │ │ │ │ │ "809152": 2216, │ │ │ │ │ "809185": 2219, │ │ │ │ │ "8092": 2222, │ │ │ │ │ "809797": 2207, │ │ │ │ │ "809829": 2207, │ │ │ │ │ "809926": 2207, │ │ │ │ │ "80px": 2207, │ │ │ │ │ - "81": [15, 187, 763, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2249, 2271], │ │ │ │ │ + "81": [15, 187, 763, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2249, 2271], │ │ │ │ │ "810": [182, 760, 2200, 2298], │ │ │ │ │ "8100": 2199, │ │ │ │ │ "8103": 2222, │ │ │ │ │ "810332": 2207, │ │ │ │ │ "810340": 2186, │ │ │ │ │ "810847": 2195, │ │ │ │ │ "811": [2200, 2298], │ │ │ │ │ @@ -35410,15 +35410,15 @@ │ │ │ │ │ "8121": 2222, │ │ │ │ │ "812101": 2207, │ │ │ │ │ "8122": 2222, │ │ │ │ │ "812436": 2195, │ │ │ │ │ "812500": 18, │ │ │ │ │ "8128": 2222, │ │ │ │ │ "8129": 2222, │ │ │ │ │ - "813": [2199, 2200, 2298], │ │ │ │ │ + "813": [2193, 2199, 2200, 2298], │ │ │ │ │ "8131": 2222, │ │ │ │ │ "8132": 2222, │ │ │ │ │ "813266": 2257, │ │ │ │ │ "813360": 2199, │ │ │ │ │ "8138": 2241, │ │ │ │ │ "813850": [15, 2185, 2197, 2199, 2202, 2215, 2257], │ │ │ │ │ "813893": 2207, │ │ │ │ │ @@ -35426,15 +35426,15 @@ │ │ │ │ │ "8140": 2222, │ │ │ │ │ "8143": 2222, │ │ │ │ │ "814347": 2186, │ │ │ │ │ "814397": 2207, │ │ │ │ │ "814470": [2184, 2214], │ │ │ │ │ "814788": 2207, │ │ │ │ │ "814869": 2207, │ │ │ │ │ - "815": [2193, 2199, 2298], │ │ │ │ │ + "815": [2199, 2298], │ │ │ │ │ "8152": 2222, │ │ │ │ │ "815703": 2185, │ │ │ │ │ "8158": 2231, │ │ │ │ │ "815826": 2195, │ │ │ │ │ "816": [2218, 2298], │ │ │ │ │ "816397": 2210, │ │ │ │ │ "8164": 2222, │ │ │ │ │ @@ -35457,15 +35457,15 @@ │ │ │ │ │ "819": [2186, 2227], │ │ │ │ │ "8190": 2222, │ │ │ │ │ "819059": 2207, │ │ │ │ │ "8193": 2271, │ │ │ │ │ "819476": 2207, │ │ │ │ │ "819492": 2207, │ │ │ │ │ "8199": 2222, │ │ │ │ │ - "82": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ + "82": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ "820": 2199, │ │ │ │ │ "820223": 2191, │ │ │ │ │ "820408": 2215, │ │ │ │ │ "820750": 2199, │ │ │ │ │ "8208": 2222, │ │ │ │ │ "820801": 2230, │ │ │ │ │ "8209": 2222, │ │ │ │ │ @@ -35575,15 +35575,15 @@ │ │ │ │ │ "838": 2199, │ │ │ │ │ "838161": 2207, │ │ │ │ │ "838166": 2207, │ │ │ │ │ "838258": 2207, │ │ │ │ │ "838665": 2207, │ │ │ │ │ "8387": 2222, │ │ │ │ │ "839002": 2207, │ │ │ │ │ - "84": [31, 228, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246], │ │ │ │ │ + "84": [31, 228, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246], │ │ │ │ │ "8400": 2222, │ │ │ │ │ "840123": 2215, │ │ │ │ │ "840255": 2228, │ │ │ │ │ "840449": 15, │ │ │ │ │ "840607": 2186, │ │ │ │ │ "840870": 2197, │ │ │ │ │ "840938": 2207, │ │ │ │ │ @@ -35810,15 +35810,15 @@ │ │ │ │ │ "868951": 2207, │ │ │ │ │ "869081": 2199, │ │ │ │ │ "869127": 2230, │ │ │ │ │ "869226": 2186, │ │ │ │ │ "869339": 2207, │ │ │ │ │ "869551": 2191, │ │ │ │ │ "8697": 2224, │ │ │ │ │ - "87": [15, 18, 133, 196, 208, 242, 283, 586, 708, 771, 782, 817, 910, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298], │ │ │ │ │ + "87": [15, 18, 133, 196, 208, 242, 283, 586, 708, 771, 782, 817, 910, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298], │ │ │ │ │ "8701": 2223, │ │ │ │ │ "8702": 2223, │ │ │ │ │ "8703": 2223, │ │ │ │ │ "870756e": 2195, │ │ │ │ │ "8710": 2223, │ │ │ │ │ "871016": 2204, │ │ │ │ │ "871018": 2207, │ │ │ │ │ @@ -35879,15 +35879,15 @@ │ │ │ │ │ "8790": 2228, │ │ │ │ │ "8791": 2224, │ │ │ │ │ "879103": 2207, │ │ │ │ │ "8794": 2225, │ │ │ │ │ "8795": 2224, │ │ │ │ │ "879536": 2229, │ │ │ │ │ "879758": 2216, │ │ │ │ │ - "88": [15, 188, 189, 207, 764, 765, 781, 1447, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298], │ │ │ │ │ + "88": [15, 188, 189, 207, 764, 765, 781, 1447, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298], │ │ │ │ │ "880": 5, │ │ │ │ │ "880077": 2207, │ │ │ │ │ "8801": 2226, │ │ │ │ │ "880331": 2207, │ │ │ │ │ "880609": 15, │ │ │ │ │ "880680": 2207, │ │ │ │ │ "880838": 2218, │ │ │ │ │ @@ -35951,15 +35951,15 @@ │ │ │ │ │ "889": [24, 25, 32, 2199], │ │ │ │ │ "8890": [2224, 2225], │ │ │ │ │ "889157": 2235, │ │ │ │ │ "889273": 2235, │ │ │ │ │ "889493": 2186, │ │ │ │ │ "889659": 2186, │ │ │ │ │ "889987": 2205, │ │ │ │ │ - "89": [207, 781, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298], │ │ │ │ │ + "89": [207, 781, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2298], │ │ │ │ │ "890": [24, 25, 32, 2197, 2199], │ │ │ │ │ "8904": 2224, │ │ │ │ │ "890546": 2186, │ │ │ │ │ "890819": 2206, │ │ │ │ │ "8909": 2224, │ │ │ │ │ "891": [24, 25, 28, 32, 2197, 2199], │ │ │ │ │ "8910": [2243, 2246], │ │ │ │ │ @@ -36565,15 +36565,15 @@ │ │ │ │ │ "9792": 2227, │ │ │ │ │ "9794": 2226, │ │ │ │ │ "9795": 2226, │ │ │ │ │ "979542": 2185, │ │ │ │ │ "979573": 2207, │ │ │ │ │ "979600": 2186, │ │ │ │ │ "9798": 2226, │ │ │ │ │ - "98": [15, 1447, 2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2230, 2232, 2235, 2238, 2246, 2294], │ │ │ │ │ + "98": [15, 1447, 2184, 2185, 2186, 2188, 2191, 2192, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2230, 2232, 2235, 2238, 2246, 2294], │ │ │ │ │ "980": 2199, │ │ │ │ │ "9804": 2226, │ │ │ │ │ "9805": 2226, │ │ │ │ │ "9807": 2226, │ │ │ │ │ "980796": 2207, │ │ │ │ │ "980950": 2195, │ │ │ │ │ "981": [2199, 2207], │ │ │ │ │ @@ -37796,15 +37796,15 @@ │ │ │ │ │ "begin": [3, 5, 13, 16, 19, 121, 233, 234, 259, 267, 270, 425, 426, 427, 502, 513, 515, 533, 535, 541, 696, 807, 808, 866, 873, 890, 896, 898, 1044, 1345, 1391, 1403, 1404, 1433, 1469, 1476, 1483, 1486, 1488, 1490, 1498, 1499, 1699, 1930, 2127, 2186, 2199, 2202, 2208, 2210, 2212, 2220, 2221, 2225, 2228, 2229, 2271, 2277, 2289], │ │ │ │ │ "behav": [7, 63, 134, 205, 267, 341, 709, 778, 896, 1350, 1387, 2168, 2185, 2187, 2190, 2195, 2198, 2203, 2207, 2209, 2210, 2211, 2220, 2222, 2224, 2225, 2232, 2235, 2238, 2240, 2249, 2261, 2265, 2277, 2283, 2289, 2290, 2294, 2302, 2307], │ │ │ │ │ "behavior": [0, 2, 3, 10, 12, 13, 14, 34, 72, 73, 74, 77, 81, 82, 94, 98, 99, 143, 146, 160, 169, 200, 201, 207, 208, 209, 210, 212, 213, 225, 226, 227, 242, 245, 255, 258, 263, 264, 270, 273, 274, 276, 277, 278, 283, 288, 296, 318, 427, 575, 581, 582, 583, 586, 593, 621, 622, 639, 652, 673, 681, 719, 720, 738, 774, 775, 781, 782, 783, 784, 787, 788, 800, 801, 802, 817, 873, 879, 880, 889, 894, 898, 900, 902, 903, 904, 910, 940, 943, 948, 957, 970, 997, 999, 1014, 1018, 1031, 1068, 1118, 1148, 1149, 1152, 1155, 1168, 1202, 1203, 1207, 1208, 1211, 1213, 1225, 1263, 1264, 1269, 1270, 1304, 1321, 1345, 1391, 1446, 1469, 1470, 1475, 1477, 1478, 1486, 1487, 1488, 1490, 1497, 1498, 2177, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2201, 2202, 2206, 2207, 2210, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2224, 2225, 2226, 2231, 2232, 2235, 2238, 2240, 2241, 2242, 2246, 2247, 2249, 2257, 2260, 2265, 2266, 2271, 2277, 2283, 2289, 2294, 2297, 2298, 2302, 2308], │ │ │ │ │ "behaviour": [18, 75, 77, 97, 98, 169, 205, 242, 247, 584, 620, 621, 634, 778, 808, 817, 864, 880, 1123, 1345, 1391, 1419, 1446, 1468, 1469, 1470, 1471, 1472, 1475, 1476, 1477, 1478, 1481, 1482, 1483, 1484, 1486, 1487, 1488, 1490, 1498, 1499, 2186, 2188, 2199, 2201, 2202, 2206, 2221, 2222, 2223, 2224, 2225, 2226, 2231, 2235, 2241, 2243, 2246, 2249, 2265, 2271, 2277, 2278, 2289, 2294, 2298, 2302, 2307], │ │ │ │ │ "behind": [2197, 2207, 2218, 2302, 2307], │ │ │ │ │ "behr": 32, │ │ │ │ │ "beij": [1145, 2207], │ │ │ │ │ - "being": [1, 2, 3, 4, 10, 13, 17, 141, 150, 152, 160, 188, 189, 209, 212, 214, 223, 241, 253, 257, 259, 262, 263, 269, 276, 346, 352, 375, 376, 563, 617, 699, 717, 738, 764, 765, 783, 787, 798, 830, 835, 858, 859, 864, 886, 890, 902, 1035, 1076, 1117, 1192, 1253, 1387, 1388, 1431, 1433, 1469, 1472, 1475, 1486, 1487, 1493, 1494, 1495, 1496, 1498, 2186, 2188, 2191, 2193, 2194, 2195, 2197, 2199, 2201, 2204, 2206, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2233, 2234, 2235, 2237, 2238, 2239, 2241, 2242, 2246, 2249, 2250, 2261, 2265, 2266, 2267, 2271, 2275, 2277, 2278, 2283, 2286, 2287, 2289, 2294, 2296, 2298, 2302, 2304, 2307, 2308], │ │ │ │ │ + "being": [1, 2, 3, 4, 10, 13, 17, 141, 150, 152, 160, 188, 189, 209, 212, 214, 223, 241, 253, 257, 259, 262, 263, 269, 276, 346, 352, 375, 376, 563, 617, 699, 717, 738, 764, 765, 783, 787, 798, 830, 835, 858, 859, 864, 886, 890, 902, 1035, 1076, 1117, 1192, 1253, 1387, 1388, 1431, 1433, 1469, 1472, 1475, 1486, 1487, 1493, 1494, 1495, 1496, 1498, 2186, 2188, 2191, 2194, 2195, 2197, 2199, 2201, 2204, 2206, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2233, 2234, 2235, 2237, 2238, 2239, 2241, 2242, 2246, 2249, 2250, 2261, 2265, 2266, 2267, 2271, 2275, 2277, 2278, 2283, 2286, 2287, 2289, 2294, 2296, 2298, 2302, 2304, 2307, 2308], │ │ │ │ │ "belal01": 30, │ │ │ │ │ "belhb23": 30, │ │ │ │ │ "belld01": 30, │ │ │ │ │ "belld02": 30, │ │ │ │ │ "belong": [2, 150, 303, 445, 555, 655, 2195, 2210, 2211, 2217, 2222, 2228, 2232], │ │ │ │ │ "below": [1, 3, 5, 6, 9, 10, 13, 15, 16, 17, 19, 22, 79, 92, 98, 102, 107, 117, 160, 196, 213, 252, 276, 378, 380, 465, 489, 591, 616, 621, 629, 693, 738, 771, 788, 902, 1121, 1146, 1148, 1149, 1152, 1158, 1164, 1203, 1207, 1208, 1211, 1221, 1264, 1309, 1323, 1326, 1328, 1343, 1344, 1345, 1354, 1391, 1397, 1403, 1421, 1430, 1433, 1488, 1490, 1498, 1657, 1677, 1699, 1720, 1793, 1815, 2167, 2175, 2184, 2185, 2186, 2188, 2194, 2195, 2197, 2199, 2202, 2206, 2207, 2208, 2210, 2211, 2212, 2218, 2221, 2228, 2231, 2232, 2235, 2241, 2249, 2265, 2271, 2275, 2277, 2283, 2289, 2294, 2298, 2302, 2307], │ │ │ │ │ "belr833": 30, │ │ │ │ │ @@ -38702,15 +38702,15 @@ │ │ │ │ │ "correctli": [6, 7, 1042, 1345, 1391, 1400, 1433, 1469, 1475, 1486, 1488, 1490, 2168, 2186, 2199, 2202, 2215, 2217, 2218, 2220, 2221, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2233, 2235, 2238, 2239, 2242, 2243, 2246, 2249, 2250, 2265, 2267, 2277, 2283, 2284, 2285, 2286, 2289, 2290, 2293, 2298, 2301, 2302, 2303, 2304, 2307], │ │ │ │ │ "correl": [99, 100, 102, 197, 597, 622, 1155, 1156, 1158, 1213, 1298, 1306, 1323, 1433, 1463, 2220, 2229, 2235, 2246, 2256, 2286, 2294, 2295], │ │ │ │ │ "correspond": [2, 13, 21, 27, 30, 32, 35, 56, 65, 69, 79, 109, 111, 119, 121, 129, 131, 144, 163, 171, 173, 183, 186, 192, 199, 204, 206, 207, 210, 215, 216, 217, 220, 221, 222, 244, 249, 269, 272, 275, 280, 284, 285, 286, 330, 350, 363, 378, 380, 383, 405, 420, 455, 462, 465, 489, 510, 532, 540, 578, 591, 599, 631, 685, 694, 695, 696, 706, 707, 710, 734, 739, 740, 741, 747, 749, 750, 753, 761, 762, 773, 777, 780, 781, 783, 784, 790, 791, 792, 795, 796, 797, 799, 821, 830, 834, 835, 856, 858, 859, 876, 877, 878, 882, 901, 907, 912, 913, 938, 953, 972, 1042, 1061, 1128, 1188, 1202, 1249, 1338, 1339, 1340, 1341, 1387, 1397, 1403, 1404, 1421, 1430, 1439, 1441, 1442, 1449, 1450, 1455, 1456, 1469, 1470, 1476, 1480, 1482, 1483, 1484, 1486, 1498, 1506, 1524, 1815, 1982, 2000, 2167, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2208, 2209, 2210, 2211, 2212, 2217, 2220, 2222, 2228, 2230, 2232, 2241, 2246, 2249, 2253, 2271, 2277, 2283, 2289, 2294, 2298, 2302], │ │ │ │ │ "corrupt": [2199, 2220, 2232, 2241, 2265, 2278, 2279, 2282, 2298, 2307], │ │ │ │ │ "corrwith": [99, 597, 622, 1155, 1213, 2241, 2246, 2271, 2294, 2295, 2302], │ │ │ │ │ "cosh": [2193, 2228], │ │ │ │ │ "cost": [3, 13, 118, 132, 135, 144, 159, 161, 175, 1473, 2186, 2197, 2241, 2295], │ │ │ │ │ - "could": [1, 2, 3, 5, 12, 13, 15, 16, 17, 18, 19, 22, 102, 162, 184, 197, 212, 251, 258, 265, 268, 272, 481, 787, 884, 889, 895, 1117, 1158, 1343, 1373, 1453, 1469, 1470, 1471, 1472, 1476, 1477, 1478, 1479, 1480, 1484, 1485, 1486, 1487, 2166, 2185, 2186, 2188, 2192, 2193, 2194, 2195, 2197, 2199, 2210, 2211, 2212, 2218, 2220, 2225, 2226, 2227, 2228, 2229, 2230, 2232, 2233, 2234, 2235, 2238, 2239, 2241, 2246, 2247, 2248, 2249, 2250, 2252, 2260, 2265, 2271, 2277, 2278, 2283, 2284, 2289, 2293, 2294, 2295, 2298, 2302, 2307, 2308], │ │ │ │ │ + "could": [1, 2, 3, 5, 12, 13, 15, 16, 17, 18, 19, 22, 102, 162, 184, 197, 212, 251, 258, 265, 268, 272, 481, 787, 884, 889, 895, 1117, 1158, 1343, 1373, 1453, 1469, 1470, 1471, 1472, 1476, 1477, 1478, 1479, 1480, 1484, 1485, 1486, 1487, 2166, 2185, 2186, 2188, 2192, 2194, 2195, 2197, 2199, 2210, 2211, 2212, 2218, 2220, 2225, 2226, 2227, 2228, 2229, 2230, 2232, 2233, 2234, 2235, 2238, 2239, 2241, 2246, 2247, 2248, 2249, 2250, 2252, 2260, 2265, 2271, 2277, 2278, 2283, 2284, 2289, 2293, 2294, 2295, 2298, 2302, 2307, 2308], │ │ │ │ │ "couldn": [22, 2277, 2286, 2298], │ │ │ │ │ "count": [16, 18, 21, 23, 24, 107, 112, 123, 144, 172, 180, 281, 414, 436, 629, 748, 758, 831, 908, 1164, 1182, 1183, 1184, 1194, 1204, 1221, 1241, 1244, 1255, 1345, 1382, 1391, 1400, 1470, 1488, 1490, 2188, 2191, 2194, 2195, 2199, 2202, 2204, 2205, 2208, 2211, 2215, 2216, 2218, 2219, 2220, 2222, 2223, 2225, 2228, 2229, 2230, 2231, 2232, 2235, 2239, 2241, 2246, 2249, 2254, 2255, 2256, 2257, 2260, 2265, 2271, 2277, 2279, 2283, 2289, 2294, 2302], │ │ │ │ │ "counter": [3, 1416, 2235], │ │ │ │ │ "counterexampl": 2, │ │ │ │ │ "counterpart": [98, 621, 2206, 2225, 2231, 2238, 2265, 2277, 2289, 2294], │ │ │ │ │ "countess": 32, │ │ │ │ │ "counti": [1443, 2199], │ │ │ │ │ @@ -39810,15 +39810,15 @@ │ │ │ │ │ "farmer": 2199, │ │ │ │ │ "farthest": [91, 1458], │ │ │ │ │ "fashion": [34, 39, 46, 2221, 2246, 2283], │ │ │ │ │ "fast": [5, 15, 34, 83, 141, 256, 351, 594, 717, 888, 1203, 1264, 1469, 1470, 1476, 1486, 2184, 2186, 2192, 2193, 2195, 2196, 2199, 2210, 2222, 2226, 2235, 2246, 2249, 2253, 2254, 2255, 2256], │ │ │ │ │ "fast_path": 2199, │ │ │ │ │ "fastavro": [1473, 2249], │ │ │ │ │ "faster": [4, 5, 15, 16, 34, 62, 151, 162, 251, 258, 262, 263, 265, 268, 272, 390, 615, 754, 757, 815, 884, 889, 895, 1152, 1211, 1242, 1243, 1469, 1486, 1498, 2163, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2208, 2211, 2214, 2215, 2216, 2219, 2220, 2222, 2232, 2238, 2246, 2249, 2253, 2255, 2256, 2277, 2289, 2302, 2307], │ │ │ │ │ - "fastest": [2186, 2193, 2197, 2199], │ │ │ │ │ + "fastest": [2186, 2197, 2199], │ │ │ │ │ "fastparquet": [22, 263, 1345, 1391, 1478, 1488, 1490, 2184, 2199, 2202, 2205, 2238, 2246, 2249, 2265, 2271, 2277, 2278, 2283, 2286, 2289, 2294, 2298, 2302, 2307], │ │ │ │ │ "fastparquetimpl": 2199, │ │ │ │ │ "fastpath": [39, 573, 2194, 2201, 2203, 2246, 2265, 2271, 2283, 2294, 2298, 2302, 2307], │ │ │ │ │ "fatal": 2229, │ │ │ │ │ "fault": [2228, 2235, 2239, 2246, 2249, 2271, 2275, 2289], │ │ │ │ │ "faulti": 2220, │ │ │ │ │ "favor": [34, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2239, 2241, 2246, 2249, 2265, 2266, 2283, 2289, 2294, 2298], │ │ │ │ │ @@ -40890,15 +40890,15 @@ │ │ │ │ │ "interchang": [66, 246, 916, 953, 2172, 2299, 2300, 2302, 2307, 2308], │ │ │ │ │ "interchange_object": [66, 1077], │ │ │ │ │ "interest": [1, 2, 3, 13, 23, 24, 25, 28, 29, 32, 34, 35, 789, 2186, 2193, 2197, 2199, 2207, 2210, 2212, 2217, 2219, 2307, 2308], │ │ │ │ │ "interest_r": 3, │ │ │ │ │ "interf": 2265, │ │ │ │ │ "interfac": [2, 10, 12, 13, 16, 17, 18, 19, 40, 77, 119, 695, 914, 1031, 1068, 1090, 2167, 2186, 2199, 2203, 2207, 2210, 2211, 2218, 2220, 2225, 2227, 2228, 2230, 2235, 2246, 2261, 2271, 2298, 2307], │ │ │ │ │ "interleav": 2199, │ │ │ │ │ - "intermedi": [7, 2172, 2193, 2195, 2205, 2210, 2212, 2253, 2307], │ │ │ │ │ + "intermedi": [7, 2172, 2195, 2205, 2210, 2212, 2253, 2307], │ │ │ │ │ "intermix": 2186, │ │ │ │ │ "intern": [0, 7, 11, 22, 191, 194, 203, 268, 286, 364, 376, 430, 622, 624, 699, 767, 769, 873, 932, 938, 1031, 1044, 1123, 1124, 1140, 1148, 1149, 1203, 1207, 1208, 1213, 1215, 1264, 1280, 1345, 1361, 1364, 1388, 1391, 1422, 1423, 1433, 1469, 1486, 1488, 1490, 1493, 1494, 1495, 1496, 1499, 2186, 2188, 2193, 2194, 2195, 2197, 2202, 2207, 2210, 2213, 2216, 2217, 2219, 2220, 2230, 2232, 2235, 2238, 2246, 2249, 2253, 2261, 2263, 2265, 2267, 2271, 2274, 2277, 2280, 2289, 2293, 2298, 2307], │ │ │ │ │ "internal_cach": 10, │ │ │ │ │ "internet": 2, │ │ │ │ │ "interoper": [2167, 2186, 2201, 2203, 2302], │ │ │ │ │ "interp1d": [146, 720, 1280], │ │ │ │ │ "interp_": 2201, │ │ │ │ │ @@ -41507,15 +41507,15 @@ │ │ │ │ │ "logx": [186, 762, 1188, 1249, 2211, 2215, 2249], │ │ │ │ │ "lon": [10, 1069, 1071, 1072], │ │ │ │ │ "london": [26, 27, 29, 30, 31, 586, 2210, 2221, 2271], │ │ │ │ │ "london_mg_per_cub": 27, │ │ │ │ │ "long": [0, 1, 2, 3, 21, 31, 119, 123, 167, 184, 185, 230, 241, 263, 695, 698, 804, 808, 873, 1345, 1391, 1444, 1445, 1453, 1454, 1469, 1486, 1487, 1488, 1490, 2163, 2166, 2185, 2188, 2190, 2199, 2202, 2204, 2205, 2208, 2210, 2214, 2216, 2218, 2220, 2222, 2225, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2239, 2240, 2241, 2243, 2246, 2249, 2277, 2278, 2289, 2302, 2307, 2308], │ │ │ │ │ "long_seri": 2186, │ │ │ │ │ "longdoubl": 2186, │ │ │ │ │ - "longer": [1, 2, 5, 98, 134, 522, 533, 563, 621, 709, 873, 874, 1118, 1178, 1179, 1180, 1181, 1189, 1200, 1237, 1238, 1239, 1240, 1250, 1261, 1284, 1290, 1295, 1469, 1486, 2191, 2193, 2197, 2199, 2202, 2210, 2214, 2215, 2217, 2218, 2219, 2220, 2221, 2222, 2224, 2225, 2226, 2228, 2230, 2231, 2233, 2235, 2238, 2242, 2243, 2246, 2247, 2257, 2261, 2263, 2264, 2265, 2266, 2271, 2275, 2277, 2278, 2292, 2294, 2295, 2298, 2302], │ │ │ │ │ + "longer": [1, 2, 5, 98, 134, 522, 533, 563, 621, 709, 873, 874, 1118, 1178, 1179, 1180, 1181, 1189, 1200, 1237, 1238, 1239, 1240, 1250, 1261, 1284, 1290, 1295, 1469, 1486, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2217, 2218, 2219, 2220, 2221, 2222, 2224, 2225, 2226, 2228, 2230, 2231, 2233, 2235, 2238, 2242, 2243, 2246, 2247, 2257, 2261, 2263, 2264, 2265, 2266, 2271, 2275, 2277, 2278, 2292, 2294, 2295, 2298, 2302], │ │ │ │ │ "longest": [32, 923, 2217, 2272], │ │ │ │ │ "longitud": [10, 30, 197, 1069, 1071, 1072], │ │ │ │ │ "longlong": 2186, │ │ │ │ │ "longpanel": [2228, 2246, 2257], │ │ │ │ │ "longtabl": [259, 890, 1345, 1391, 1433, 1488, 1490, 2202, 2220, 2230, 2239, 2277, 2289, 2291, 2298], │ │ │ │ │ "longtablebuild": 2277, │ │ │ │ │ "longtim": 2228, │ │ │ │ │ @@ -43956,15 +43956,14 @@ │ │ │ │ │ "slight": [3, 2195], │ │ │ │ │ "slightli": [3, 13, 203, 862, 866, 1387, 2185, 2197, 2199, 2217, 2228, 2277, 2294], │ │ │ │ │ "slinear": [146, 720, 1280, 2218], │ │ │ │ │ "sln": 2191, │ │ │ │ │ "sloper": 25, │ │ │ │ │ "slow": [2, 22, 1345, 1391, 1488, 1490, 1492, 1498, 2186, 2193, 2199, 2202, 2217, 2222, 2232, 2238, 2241, 2253, 2307], │ │ │ │ │ "slower": [1152, 1211, 2193, 2197, 2199, 2202, 2210, 2218, 2228], │ │ │ │ │ - "slowest": 2193, │ │ │ │ │ "slshape": 1433, │ │ │ │ │ "sm": [1275, 2186, 2210, 2227, 2232, 2307], │ │ │ │ │ "small": [3, 13, 16, 17, 18, 19, 29, 111, 185, 190, 191, 194, 754, 757, 766, 767, 769, 1242, 1243, 1454, 2185, 2186, 2193, 2195, 2199, 2205, 2207, 2210, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2228, 2230, 2232, 2233, 2234, 2236, 2237, 2239, 2241, 2242, 2243, 2245, 2249, 2271, 2277, 2283, 2289, 2294, 2298, 2302], │ │ │ │ │ "smaller": [0, 94, 144, 268, 745, 1345, 1391, 1488, 1490, 1499, 2186, 2188, 2193, 2202, 2207, 2208, 2210, 2211, 2243, 2249], │ │ │ │ │ "smallest": [176, 179, 360, 588, 754, 757, 1191, 1194, 1242, 1243, 1252, 1255, 1499, 2199, 2205, 2235, 2246, 2264, 2294], │ │ │ │ │ "smallint": [2199, 2307], │ │ │ │ │ "smart": [22, 2186, 2277], │ │ │ │ │ @@ -44794,15 +44793,15 @@ │ │ │ │ │ "tolist": [15, 432, 891, 2199, 2222, 2238, 2246, 2289, 2298, 2302], │ │ │ │ │ "tolong": 2241, │ │ │ │ │ "tom": [13, 35, 2199, 2247, 2248, 2294], │ │ │ │ │ "tomaugsburg": 2231, │ │ │ │ │ "tomaugspurg": [13, 35], │ │ │ │ │ "toml": [2, 22, 2238, 2265], │ │ │ │ │ "too": [2, 3, 233, 807, 831, 1196, 1257, 1358, 1469, 1470, 1486, 2197, 2199, 2205, 2207, 2211, 2215, 2217, 2220, 2231, 2241, 2249, 2257, 2274, 2277, 2283, 2289, 2293, 2294, 2298, 2308], │ │ │ │ │ - "took": [2193, 2199, 2223, 2241], │ │ │ │ │ + "took": [2199, 2223, 2241], │ │ │ │ │ "tool": [2, 5, 6, 8, 10, 15, 21, 22, 34, 36, 1146, 1469, 1472, 1486, 2184, 2185, 2186, 2191, 2193, 2195, 2196, 2210, 2220, 2225, 2226, 2232, 2235, 2241, 2246, 2260, 2283, 2298, 2307], │ │ │ │ │ "tooltip": [1402, 1423, 2196, 2283], │ │ │ │ │ "toordin": 2302, │ │ │ │ │ "top": [22, 34, 91, 107, 148, 149, 177, 178, 185, 186, 203, 205, 212, 214, 241, 259, 341, 348, 376, 402, 413, 629, 699, 725, 726, 755, 756, 762, 778, 787, 890, 905, 1036, 1051, 1164, 1188, 1191, 1221, 1249, 1252, 1345, 1387, 1388, 1391, 1400, 1433, 1454, 1458, 1488, 1490, 2167, 2172, 2184, 2186, 2188, 2193, 2195, 2199, 2202, 2204, 2207, 2209, 2211, 2217, 2218, 2220, 2222, 2227, 2230, 2232, 2235, 2238, 2241, 2260, 2264, 2265, 2283, 2289, 2302], │ │ │ │ │ "topic": [0, 4, 13, 35, 2185, 2196], │ │ │ │ │ "topmost": 2204, │ │ │ │ │ "toprul": [259, 890, 1433, 2277], │ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ @@ -1847,25 +1847,25 @@ │ │ │ │ In [141]: indexer = np.arange(10000) │ │ │ │ │ │ │ │ In [142]: random.shuffle(indexer) │ │ │ │ │ │ │ │ In [143]: %timeit arr[indexer] │ │ │ │ .....: %timeit arr.take(indexer, axis=0) │ │ │ │ .....: │ │ │ │ -204 us +- 12.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ -77.3 us +- 4.74 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ +194 us +- 331 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ +73.7 us +- 272 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ │ │ │ │ │ │ │ │
In [144]: ser = pd.Series(arr[:, 0])
│ │ │ │  
│ │ │ │  In [145]: %timeit ser.iloc[indexer]
│ │ │ │     .....: %timeit ser.take(indexer)
│ │ │ │     .....: 
│ │ │ │ -327 us +- 103 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ -218 us +- 54.7 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ +161 us +- 5.49 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ +187 us +- 48.2 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │

Index types#

│ │ │ │

We have discussed MultiIndex in the previous sections pretty extensively. │ │ │ │ Documentation about DatetimeIndex and PeriodIndex are shown here, │ │ │ │ ├── html2text {} │ │ │ │ │ @@ -1245,23 +1245,23 @@ │ │ │ │ │ In [141]: indexer = np.arange(10000) │ │ │ │ │ │ │ │ │ │ In [142]: random.shuffle(indexer) │ │ │ │ │ │ │ │ │ │ In [143]: %timeit arr[indexer] │ │ │ │ │ .....: %timeit arr.take(indexer, axis=0) │ │ │ │ │ .....: │ │ │ │ │ -204 us +- 12.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ │ -77.3 us +- 4.74 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ │ +194 us +- 331 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ │ +73.7 us +- 272 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ │ In [144]: ser = pd.Series(arr[:, 0]) │ │ │ │ │ │ │ │ │ │ In [145]: %timeit ser.iloc[indexer] │ │ │ │ │ .....: %timeit ser.take(indexer) │ │ │ │ │ .....: │ │ │ │ │ -327 us +- 103 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each) │ │ │ │ │ -218 us +- 54.7 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each) │ │ │ │ │ +161 us +- 5.49 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ │ +187 us +- 48.2 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ │ ********** IInnddeexx ttyyppeess_## ********** │ │ │ │ │ We have discussed MultiIndex in the previous sections pretty extensively. │ │ │ │ │ Documentation about DatetimeIndex and PeriodIndex are shown _h_e_r_e, and │ │ │ │ │ documentation about TimedeltaIndex is found _h_e_r_e. │ │ │ │ │ In the following sub-sections we will highlight some other index types. │ │ │ │ │ ******** CCaatteeggoorriiccaallIInnddeexx_## ******** │ │ │ │ │ _C_a_t_e_g_o_r_i_c_a_l_I_n_d_e_x is a type of index that is useful for supporting indexing with │ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html │ │ │ │ @@ -592,29 +592,29 @@ │ │ │ │ ...: s += f(a + i * dx) │ │ │ │ ...: return s * dx │ │ │ │ ...: │ │ │ │ │ │ │ │ │ │ │ │

We achieve our result by using DataFrame.apply() (row-wise):

│ │ │ │
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -110 ms +- 21.2 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +82.7 ms +- 10.4 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │

Let’s take a look and see where the time is spent during this operation │ │ │ │ using the prun ipython magic function:

│ │ │ │
# most time consuming 4 calls
│ │ │ │  In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)  # noqa E999
│ │ │ │ -         605946 function calls (605928 primitive calls) in 0.248 seconds
│ │ │ │ +         605946 function calls (605928 primitive calls) in 0.225 seconds
│ │ │ │  
│ │ │ │     Ordered by: internal time
│ │ │ │     List reduced from 159 to 4 due to restriction <4>
│ │ │ │  
│ │ │ │     ncalls  tottime  percall  cumtime  percall filename:lineno(function)
│ │ │ │ -     1000    0.151    0.000    0.222    0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)
│ │ │ │ -   552423    0.070    0.000    0.070    0.000 <ipython-input-3-c138bdd570e3>:1(f)
│ │ │ │ +     1000    0.135    0.000    0.199    0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)
│ │ │ │ +   552423    0.063    0.000    0.063    0.000 <ipython-input-3-c138bdd570e3>:1(f)
│ │ │ │       3000    0.004    0.000    0.017    0.000 series.py:1095(__getitem__)
│ │ │ │       3000    0.003    0.000    0.008    0.000 series.py:1220(_get_value)
│ │ │ │  
│ │ │ │
│ │ │ │

By far the majority of time is spend inside either integrate_f or f, │ │ │ │ hence we’ll concentrate our efforts cythonizing these two functions.

│ │ │ │
│ │ │ │ @@ -634,15 +634,15 @@ │ │ │ │ ...: for i in range(N): │ │ │ │ ...: s += f_plain(a + i * dx) │ │ │ │ ...: return s * dx │ │ │ │ ...: │ │ │ │ │ │ │ │ │ │ │ │
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -87.1 ms +- 6.66 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +81 ms +- 11.7 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │

This has improved the performance compared to the pure Python approach by one-third.

│ │ │ │ │ │ │ │
│ │ │ │

Declaring C types#

│ │ │ │

We can annotate the function variables and return types as well as use cdef │ │ │ │ @@ -658,27 +658,27 @@ │ │ │ │ ....: for i in range(N): │ │ │ │ ....: s += f_typed(a + i * dx) │ │ │ │ ....: return s * dx │ │ │ │ ....: │ │ │ │ │ │ │ │ │ │ │ │

In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -9.35 ms +- 679 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +11.8 ms +- 4.68 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │

Annotating the functions with C types yields an over ten times performance improvement compared to │ │ │ │ the original Python implementation.

│ │ │ │
│ │ │ │
│ │ │ │

Using ndarray#

│ │ │ │

When re-profiling, time is spent creating a Series from each row, and calling __getitem__ from both │ │ │ │ the index and the series (three times for each row). These Python function calls are expensive and │ │ │ │ can be improved by passing an np.ndarray.

│ │ │ │
In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -         52523 function calls (52505 primitive calls) in 0.026 seconds
│ │ │ │ +         52523 function calls (52505 primitive calls) in 0.025 seconds
│ │ │ │  
│ │ │ │     Ordered by: internal time
│ │ │ │     List reduced from 157 to 4 due to restriction <4>
│ │ │ │  
│ │ │ │     ncalls  tottime  percall  cumtime  percall filename:lineno(function)
│ │ │ │       3000    0.004    0.000    0.016    0.000 series.py:1095(__getitem__)
│ │ │ │       3000    0.003    0.000    0.007    0.000 series.py:1220(_get_value)
│ │ │ │ @@ -722,15 +722,15 @@
│ │ │ │  
│ │ │ │

This implementation creates an array of zeros and inserts the result │ │ │ │ of integrate_f_typed applied over each row. Looping over an ndarray is faster │ │ │ │ in Cython than looping over a Series object.

│ │ │ │

Since apply_integrate_f is typed to accept an np.ndarray, Series.to_numpy() │ │ │ │ calls are needed to utilize this function.

│ │ │ │
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())
│ │ │ │ -1.18 ms +- 41.3 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ +1.15 ms +- 3.57 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │

Performance has improved from the prior implementation by almost ten times.

│ │ │ │
│ │ │ │
│ │ │ │

Disabling compiler directives#

│ │ │ │

The majority of the time is now spent in apply_integrate_f. Disabling Cython’s boundscheck │ │ │ │ @@ -782,15 +782,15 @@ │ │ │ │ from /build/reproducible-path/pandas-2.2.3+dfsg/buildtmp/.cache/ipython/cython/_cython_magic_b00abb3164401a98fefff54d942b7c1d6995eb64.c:1251: │ │ │ │ /usr/lib/aarch64-linux-gnu/python3-numpy/numpy/_core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp] │ │ │ │ 17 | #warning "Using deprecated NumPy API, disable it with " \ │ │ │ │ | ^~~~~~~ │ │ │ │ │ │ │ │ │ │ │ │

In [17]: %timeit apply_integrate_f_wrap(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())
│ │ │ │ -815 us +- 552 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ +813 us +- 102 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │

However, a loop indexer i accessing an invalid location in an array would cause a segfault because memory access isn’t checked. │ │ │ │ For more about boundscheck and wraparound, see the Cython docs on │ │ │ │ compiler directives.

│ │ │ │
│ │ │ │ │ │ │ │ @@ -1148,20 +1148,19 @@ │ │ │ │ compared to standard Python syntax for large DataFrame. This engine requires the │ │ │ │ optional dependency numexpr to be installed.

│ │ │ │

The 'python' engine is generally not useful except for testing │ │ │ │ other evaluation engines against it. You will achieve no performance │ │ │ │ benefits using eval() with engine='python' and may │ │ │ │ incur a performance hit.

│ │ │ │
In [40]: %timeit df1 + df2 + df3 + df4
│ │ │ │ -The slowest run took 4.35 times longer than the fastest. This could mean that an intermediate result is being cached.
│ │ │ │ -12.4 ms +- 7.61 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +8.23 ms +- 647 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")
│ │ │ │ -28.5 ms +- 1.84 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +10.4 ms +- 320 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │ │ │ │ │
│ │ │ │

The DataFrame.eval() method#

│ │ │ │

In addition to the top level pandas.eval() function you can also │ │ │ │ evaluate an expression in the “context” of a DataFrame.

│ │ │ │ @@ -1276,39 +1275,39 @@ │ │ │ │
In [58]: nrows, ncols = 20000, 100
│ │ │ │  
│ │ │ │  In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]
│ │ │ │  
│ │ │ │
│ │ │ │

DataFrame arithmetic:

│ │ │ │
In [60]: %timeit df1 + df2 + df3 + df4
│ │ │ │ -27.8 ms +- 1.78 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +7.42 ms +- 428 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")
│ │ │ │ -11.8 ms +- 337 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +7.69 ms +- 2.34 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │

DataFrame comparison:

│ │ │ │
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
│ │ │ │ -27 ms +- 5.88 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +29.3 ms +- 5.24 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")
│ │ │ │ -20.8 ms +- 4.89 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +22.1 ms +- 3.02 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │

DataFrame arithmetic with unaligned axes.

│ │ │ │
In [64]: s = pd.Series(np.random.randn(50))
│ │ │ │  
│ │ │ │  In [65]: %timeit df1 + df2 + df3 + df4 + s
│ │ │ │ -28.9 ms +- 5.71 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +35 ms +- 1.09 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")
│ │ │ │ -10.7 ms +- 2.03 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +12.9 ms +- 239 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │  
│ │ │ │
│ │ │ │
│ │ │ │

Note

│ │ │ │

Operations such as

│ │ │ │
1 and 2  # would parse to 1 & 2, but should evaluate to 2
│ │ │ │  3 or 4  # would parse to 3 | 4, but should evaluate to 3
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -110,29 +110,29 @@
│ │ │ │ │     ...:     dx = (b - a) / N
│ │ │ │ │     ...:     for i in range(N):
│ │ │ │ │     ...:         s += f(a + i * dx)
│ │ │ │ │     ...:     return s * dx
│ │ │ │ │     ...:
│ │ │ │ │  We achieve our result by using _D_a_t_a_F_r_a_m_e_._a_p_p_l_y_(_) (row-wise):
│ │ │ │ │  In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ │ -110 ms +- 21.2 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +82.7 ms +- 10.4 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │  Let’s take a look and see where the time is spent during this operation using
│ │ │ │ │  the _p_r_u_n_ _i_p_y_t_h_o_n_ _m_a_g_i_c_ _f_u_n_c_t_i_o_n:
│ │ │ │ │  # most time consuming 4 calls
│ │ │ │ │  In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]),
│ │ │ │ │  axis=1)  # noqa E999
│ │ │ │ │ -         605946 function calls (605928 primitive calls) in 0.248 seconds
│ │ │ │ │ +         605946 function calls (605928 primitive calls) in 0.225 seconds
│ │ │ │ │  
│ │ │ │ │     Ordered by: internal time
│ │ │ │ │     List reduced from 159 to 4 due to restriction <4>
│ │ │ │ │  
│ │ │ │ │     ncalls  tottime  percall  cumtime  percall filename:lineno(function)
│ │ │ │ │ -     1000    0.151    0.000    0.222    0.000 :1
│ │ │ │ │ +     1000    0.135    0.000    0.199    0.000 :1
│ │ │ │ │  (integrate_f)
│ │ │ │ │ -   552423    0.070    0.000    0.070    0.000 :1
│ │ │ │ │ +   552423    0.063    0.000    0.063    0.000 :1
│ │ │ │ │  (f)
│ │ │ │ │       3000    0.004    0.000    0.017    0.000 series.py:1095(__getitem__)
│ │ │ │ │       3000    0.003    0.000    0.008    0.000 series.py:1220(_get_value)
│ │ │ │ │  By far the majority of time is spend inside either integrate_f or f, hence
│ │ │ │ │  we’ll concentrate our efforts cythonizing these two functions.
│ │ │ │ │  ******** PPllaaiinn CCyytthhoonn_## ********
│ │ │ │ │  First we’re going to need to import the Cython magic function to IPython:
│ │ │ │ │ @@ -146,15 +146,15 @@
│ │ │ │ │     ...:     dx = (b - a) / N
│ │ │ │ │     ...:     for i in range(N):
│ │ │ │ │     ...:         s += f_plain(a + i * dx)
│ │ │ │ │     ...:     return s * dx
│ │ │ │ │     ...:
│ │ │ │ │  In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]),
│ │ │ │ │  axis=1)
│ │ │ │ │ -87.1 ms +- 6.66 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +81 ms +- 11.7 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │  This has improved the performance compared to the pure Python approach by one-
│ │ │ │ │  third.
│ │ │ │ │  ******** DDeeccllaarriinngg CC ttyyppeess_## ********
│ │ │ │ │  We can annotate the function variables and return types as well as use cdef and
│ │ │ │ │  cpdef to improve performance:
│ │ │ │ │  In [10]: %%cython
│ │ │ │ │     ....: cdef double f_typed(double x) except? -2:
│ │ │ │ │ @@ -166,25 +166,25 @@
│ │ │ │ │     ....:     dx = (b - a) / N
│ │ │ │ │     ....:     for i in range(N):
│ │ │ │ │     ....:         s += f_typed(a + i * dx)
│ │ │ │ │     ....:     return s * dx
│ │ │ │ │     ....:
│ │ │ │ │  In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]),
│ │ │ │ │  axis=1)
│ │ │ │ │ -9.35 ms +- 679 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +11.8 ms +- 4.68 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │  Annotating the functions with C types yields an over ten times performance
│ │ │ │ │  improvement compared to the original Python implementation.
│ │ │ │ │  ******** UUssiinngg nnddaarrrraayy_## ********
│ │ │ │ │  When re-profiling, time is spent creating a _S_e_r_i_e_s from each row, and calling
│ │ │ │ │  __getitem__ from both the index and the series (three times for each row).
│ │ │ │ │  These Python function calls are expensive and can be improved by passing an
│ │ │ │ │  np.ndarray.
│ │ │ │ │  In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x
│ │ │ │ │  ["N"]), axis=1)
│ │ │ │ │ -         52523 function calls (52505 primitive calls) in 0.026 seconds
│ │ │ │ │ +         52523 function calls (52505 primitive calls) in 0.025 seconds
│ │ │ │ │  
│ │ │ │ │     Ordered by: internal time
│ │ │ │ │     List reduced from 157 to 4 due to restriction <4>
│ │ │ │ │  
│ │ │ │ │     ncalls  tottime  percall  cumtime  percall filename:lineno(function)
│ │ │ │ │       3000    0.004    0.000    0.016    0.000 series.py:1095(__getitem__)
│ │ │ │ │       3000    0.003    0.000    0.007    0.000 series.py:1220(_get_value)
│ │ │ │ │ @@ -235,15 +235,15 @@
│ │ │ │ │  This implementation creates an array of zeros and inserts the result of
│ │ │ │ │  integrate_f_typed applied over each row. Looping over an ndarray is faster in
│ │ │ │ │  Cython than looping over a _S_e_r_i_e_s object.
│ │ │ │ │  Since apply_integrate_f is typed to accept an np.ndarray, _S_e_r_i_e_s_._t_o___n_u_m_p_y_(_)
│ │ │ │ │  calls are needed to utilize this function.
│ │ │ │ │  In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df
│ │ │ │ │  ["N"].to_numpy())
│ │ │ │ │ -1.18 ms +- 41.3 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +1.15 ms +- 3.57 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │  Performance has improved from the prior implementation by almost ten times.
│ │ │ │ │  ******** DDiissaabblliinngg ccoommppiilleerr ddiirreeccttiivveess_## ********
│ │ │ │ │  The majority of the time is now spent in apply_integrate_f. Disabling Cython’s
│ │ │ │ │  boundscheck and wraparound checks can yield more performance.
│ │ │ │ │  In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(),
│ │ │ │ │  df["N"].to_numpy())
│ │ │ │ │           78 function calls in 0.001 seconds
│ │ │ │ │ @@ -298,15 +298,15 @@
│ │ │ │ │  /usr/lib/aarch64-linux-gnu/python3-numpy/numpy/_core/include/numpy/
│ │ │ │ │  npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API,
│ │ │ │ │  disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]
│ │ │ │ │     17 | #warning "Using deprecated NumPy API, disable it with " \
│ │ │ │ │        |  ^~~~~~~
│ │ │ │ │  In [17]: %timeit apply_integrate_f_wrap(df["a"].to_numpy(), df["b"].to_numpy(),
│ │ │ │ │  df["N"].to_numpy())
│ │ │ │ │ -815 us +- 552 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +813 us +- 102 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │  However, a loop indexer i accessing an invalid location in an array would cause
│ │ │ │ │  a segfault because memory access isn’t checked. For more about boundscheck and
│ │ │ │ │  wraparound, see the Cython docs on _c_o_m_p_i_l_e_r_ _d_i_r_e_c_t_i_v_e_s.
│ │ │ │ │  ********** NNuummbbaa ((JJIITT ccoommppiillaattiioonn))_## **********
│ │ │ │ │  An alternative to statically compiling Cython code is to use a dynamic just-in-
│ │ │ │ │  time (JIT) compiler with _N_u_m_b_a.
│ │ │ │ │  Numba allows you to write a pure Python function which can be JIT compiled to
│ │ │ │ │ @@ -609,19 +609,17 @@
│ │ │ │ │  The 'numexpr' engine is the more performant engine that can yield performance
│ │ │ │ │  improvements compared to standard Python syntax for large _D_a_t_a_F_r_a_m_e. This
│ │ │ │ │  engine requires the optional dependency numexpr to be installed.
│ │ │ │ │  The 'python' engine is generally nnoott useful except for testing other evaluation
│ │ │ │ │  engines against it. You will achieve nnoo performance benefits using _e_v_a_l_(_) with
│ │ │ │ │  engine='python' and may incur a performance hit.
│ │ │ │ │  In [40]: %timeit df1 + df2 + df3 + df4
│ │ │ │ │ -The slowest run took 4.35 times longer than the fastest. This could mean that
│ │ │ │ │ -an intermediate result is being cached.
│ │ │ │ │ -12.4 ms +- 7.61 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +8.23 ms +- 647 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │  In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")
│ │ │ │ │ -28.5 ms +- 1.84 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +10.4 ms +- 320 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │  ******** TThhee _DD_aa_tt_aa_FF_rr_aa_mm_ee_.._ee_vv_aa_ll_((_)) mmeetthhoodd_## ********
│ │ │ │ │  In addition to the top level _p_a_n_d_a_s_._e_v_a_l_(_) function you can also evaluate an
│ │ │ │ │  expression in the “context” of a _D_a_t_a_F_r_a_m_e.
│ │ │ │ │  In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=["a", "b"])
│ │ │ │ │  
│ │ │ │ │  In [43]: df.eval("a + b")
│ │ │ │ │  Out[43]:
│ │ │ │ │ @@ -718,29 +716,29 @@
│ │ │ │ │  _p_a_n_d_a_s_._e_v_a_l_(_) works well with expressions containing large arrays.
│ │ │ │ │  In [58]: nrows, ncols = 20000, 100
│ │ │ │ │  
│ │ │ │ │  In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for
│ │ │ │ │  _ in range(4)]
│ │ │ │ │  _D_a_t_a_F_r_a_m_e arithmetic:
│ │ │ │ │  In [60]: %timeit df1 + df2 + df3 + df4
│ │ │ │ │ -27.8 ms +- 1.78 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +7.42 ms +- 428 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │  In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")
│ │ │ │ │ -11.8 ms +- 337 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +7.69 ms +- 2.34 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │  _D_a_t_a_F_r_a_m_e comparison:
│ │ │ │ │  In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
│ │ │ │ │ -27 ms +- 5.88 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +29.3 ms +- 5.24 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │  In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")
│ │ │ │ │ -20.8 ms +- 4.89 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +22.1 ms +- 3.02 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │  _D_a_t_a_F_r_a_m_e arithmetic with unaligned axes.
│ │ │ │ │  In [64]: s = pd.Series(np.random.randn(50))
│ │ │ │ │  
│ │ │ │ │  In [65]: %timeit df1 + df2 + df3 + df4 + s
│ │ │ │ │ -28.9 ms +- 5.71 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +35 ms +- 1.09 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │  In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")
│ │ │ │ │ -10.7 ms +- 2.03 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +12.9 ms +- 239 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │  Note
│ │ │ │ │  Operations such as
│ │ │ │ │  1 and 2  # would parse to 1 & 2, but should evaluate to 2
│ │ │ │ │  3 or 4  # would parse to 3 | 4, but should evaluate to 3
│ │ │ │ │  ~1  # this is okay, but slower when using eval
│ │ │ │ │  should be performed in Python. An exception will be raised if you try to
│ │ │ │ │  perform any boolean/bitwise operations with scalar operands that are not of
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html
│ │ │ │ @@ -1086,16 +1086,16 @@
│ │ │ │     ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")
│ │ │ │     ....: counts = pd.Series(dtype=int)
│ │ │ │     ....: for path in files:
│ │ │ │     ....:     df = pd.read_parquet(path)
│ │ │ │     ....:     counts = counts.add(df["name"].value_counts(), fill_value=0)
│ │ │ │     ....: counts.astype(int)
│ │ │ │     ....: 
│ │ │ │ -CPU times: user 478 us, sys: 98 us, total: 576 us
│ │ │ │ -Wall time: 584 us
│ │ │ │ +CPU times: user 444 us, sys: 188 us, total: 632 us
│ │ │ │ +Wall time: 641 us
│ │ │ │  Out[32]: Series([], dtype: int64)
│ │ │ │  
│ │ │ │
│ │ │ │

Some readers, like pandas.read_csv(), offer parameters to control the │ │ │ │ chunksize when reading a single file.

│ │ │ │

Manually chunking is an OK option for workflows that don’t │ │ │ │ require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby(), are │ │ │ │ ├── html2text {} │ │ │ │ │ @@ -644,16 +644,16 @@ │ │ │ │ │ ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet") │ │ │ │ │ ....: counts = pd.Series(dtype=int) │ │ │ │ │ ....: for path in files: │ │ │ │ │ ....: df = pd.read_parquet(path) │ │ │ │ │ ....: counts = counts.add(df["name"].value_counts(), fill_value=0) │ │ │ │ │ ....: counts.astype(int) │ │ │ │ │ ....: │ │ │ │ │ -CPU times: user 478 us, sys: 98 us, total: 576 us │ │ │ │ │ -Wall time: 584 us │ │ │ │ │ +CPU times: user 444 us, sys: 188 us, total: 632 us │ │ │ │ │ +Wall time: 641 us │ │ │ │ │ Out[32]: Series([], dtype: int64) │ │ │ │ │ Some readers, like _p_a_n_d_a_s_._r_e_a_d___c_s_v_(_), offer parameters to control the chunksize │ │ │ │ │ when reading a single file. │ │ │ │ │ Manually chunking is an OK option for workflows that don’t require too │ │ │ │ │ sophisticated of operations. Some operations, like _p_a_n_d_a_s_._D_a_t_a_F_r_a_m_e_._g_r_o_u_p_b_y_(_), │ │ │ │ │ are much harder to do chunkwise. In these cases, you may be better switching to │ │ │ │ │ a different library that implements these out-of-core algorithms for you. │ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz │ │ │ │ ├── style.ipynb │ │ │ │ │ ├── Pretty-printed │ │ │ │ │ │┄ Similarity: 0.9985610875706213% │ │ │ │ │ │┄ Differences: {"'cells'": "{1: {'metadata': {'execution': {'iopub.execute_input': '2026-09-06T08:02:34.903957Z', " │ │ │ │ │ │┄ "'iopub.status.busy': '2026-09-06T08:02:34.903718Z', 'iopub.status.idle': " │ │ │ │ │ │┄ "'2026-09-06T08:02:35.255881Z', 'shell.execute_reply': " │ │ │ │ │ │┄ "'2026-09-06T08:02:35.254818Z'}}}, 3: {'metadata': {'execution': " │ │ │ │ │ │┄ "{'iopub.execute_input': '2026-09-06T08:02:35.259406Z', 'iopub.status.busy': " │ │ │ │ │ │┄ "'2026-09-06T08:02:35.258694Z', 'iopub.status.idle': '2026-09-06T08:02:3 […] │ │ │ │ │ │ @@ -39,18 +39,18 @@ │ │ │ │ │ │ ] │ │ │ │ │ │ }, │ │ │ │ │ │ { │ │ │ │ │ │ "cell_type": "code", │ │ │ │ │ │ "execution_count": 1, │ │ │ │ │ │ "metadata": { │ │ │ │ │ │ "execution": { │ │ │ │ │ │ - "iopub.execute_input": "2025-08-04T00:48:23.391532Z", │ │ │ │ │ │ - "iopub.status.busy": "2025-08-04T00:48:23.390396Z", │ │ │ │ │ │ - "iopub.status.idle": "2025-08-04T00:48:23.801089Z", │ │ │ │ │ │ - "shell.execute_reply": "2025-08-04T00:48:23.800177Z" │ │ │ │ │ │ + "iopub.execute_input": "2026-09-06T08:02:34.903957Z", │ │ │ │ │ │ + "iopub.status.busy": "2026-09-06T08:02:34.903718Z", │ │ │ │ │ │ + "iopub.status.idle": "2026-09-06T08:02:35.255881Z", │ │ │ │ │ │ + "shell.execute_reply": "2026-09-06T08:02:35.254818Z" │ │ │ │ │ │ }, │ │ │ │ │ │ "nbsphinx": "hidden" │ │ │ │ │ │ }, │ │ │ │ │ │ "outputs": [], │ │ │ │ │ │ "source": [ │ │ │ │ │ │ "import matplotlib.pyplot\n", │ │ │ │ │ │ "# We have this here to trigger matplotlib's font cache stuff.\n", │ │ │ │ │ │ @@ -77,36 +77,36 @@ │ │ │ │ │ │ ] │ │ │ │ │ │ }, │ │ │ │ │ │ { │ │ │ │ │ │ "cell_type": "code", │ │ │ │ │ │ "execution_count": 2, │ │ │ │ │ │ "metadata": { │ │ │ │ │ │ "execution": { │ │ │ │ │ │ - "iopub.execute_input": "2025-08-04T00:48:23.809169Z", │ │ │ │ │ │ - "iopub.status.busy": "2025-08-04T00:48:23.808815Z", │ │ │ │ │ │ - "iopub.status.idle": "2025-08-04T00:48:24.110778Z", │ │ │ │ │ │ - "shell.execute_reply": "2025-08-04T00:48:24.110244Z" │ │ │ │ │ │ + "iopub.execute_input": "2026-09-06T08:02:35.259406Z", │ │ │ │ │ │ + "iopub.status.busy": "2026-09-06T08:02:35.258694Z", │ │ │ │ │ │ + "iopub.status.idle": "2026-09-06T08:02:35.593726Z", │ │ │ │ │ │ + "shell.execute_reply": "2026-09-06T08:02:35.592878Z" │ │ │ │ │ │ } │ │ │ │ │ │ }, │ │ │ │ │ │ "outputs": [], │ │ │ │ │ │ "source": [ │ │ │ │ │ │ "import pandas as pd\n", │ │ │ │ │ │ "import numpy as np\n", │ │ │ │ │ │ "import matplotlib as mpl\n" │ │ │ │ │ │ ] │ │ │ │ │ │ }, │ │ │ │ │ │ { │ │ │ │ │ │ "cell_type": "code", │ │ │ │ │ │ "execution_count": 3, │ │ │ │ │ │ "metadata": { │ │ │ │ │ │ "execution": { │ │ │ │ │ │ - "iopub.execute_input": "2025-08-04T00:48:24.114083Z", │ │ │ │ │ │ - "iopub.status.busy": "2025-08-04T00:48:24.113709Z", │ │ │ │ │ │ - "iopub.status.idle": "2025-08-04T00:48:24.174651Z", │ │ │ │ │ │ - "shell.execute_reply": "2025-08-04T00:48:24.164736Z" │ │ │ │ │ │ + "iopub.execute_input": "2026-09-06T08:02:35.596703Z", │ │ │ │ │ │ + "iopub.status.busy": "2026-09-06T08:02:35.596080Z", │ │ │ │ │ │ + "iopub.status.idle": "2026-09-06T08:02:35.646682Z", │ │ │ │ │ │ + "shell.execute_reply": "2026-09-06T08:02:35.645633Z" │ │ │ │ │ │ }, │ │ │ │ │ │ "nbsphinx": "hidden" │ │ │ │ │ │ }, │ │ │ │ │ │ "outputs": [], │ │ │ │ │ │ "source": [ │ │ │ │ │ │ "# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\n", │ │ │ │ │ │ "from pandas.io.formats.style import Styler\n", │ │ │ │ │ │ @@ -123,18 +123,18 @@ │ │ │ │ │ │ ] │ │ │ │ │ │ }, │ │ │ │ │ │ { │ │ │ │ │ │ "cell_type": "code", │ │ │ │ │ │ "execution_count": 4, │ │ │ │ │ │ "metadata": { │ │ │ │ │ │ "execution": { │ │ │ │ │ │ - "iopub.execute_input": "2025-08-04T00:48:24.186451Z", │ │ │ │ │ │ - "iopub.status.busy": "2025-08-04T00:48:24.185608Z", │ │ │ │ │ │ - "iopub.status.idle": "2025-08-04T00:48:24.202953Z", │ │ │ │ │ │ - "shell.execute_reply": "2025-08-04T00:48:24.201878Z" │ │ │ │ │ │ + "iopub.execute_input": "2026-09-06T08:02:35.649522Z", │ │ │ │ │ │ + "iopub.status.busy": "2026-09-06T08:02:35.649173Z", │ │ │ │ │ │ + "iopub.status.idle": "2026-09-06T08:02:35.659858Z", │ │ │ │ │ │ + "shell.execute_reply": "2026-09-06T08:02:35.658881Z" │ │ │ │ │ │ } │ │ │ │ │ │ }, │ │ │ │ │ │ "outputs": [ │ │ │ │ │ │ { │ │ │ │ │ │ "data": { │ │ │ │ │ │ "text/html": [ │ │ │ │ │ │ "