--- /srv/reproducible-results/rbuild-debian/r-b-build.C6Jcmjtw/b1/pandas_2.2.3+dfsg-7_arm64.changes +++ /srv/reproducible-results/rbuild-debian/r-b-build.C6Jcmjtw/b2/pandas_2.2.3+dfsg-7_arm64.changes ├── Files │ @@ -1,5 +1,5 @@ │ │ - 3cfc92a472a1f653517ec7d1c108822e 10780568 doc optional python-pandas-doc_2.2.3+dfsg-7_all.deb │ - 74924766040397fd25c7b2da4f52aa0a 70911416 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-7_arm64.deb │ - 3d69cc3cbf99dfe4858c33412c145a23 6027940 python optional python3-pandas-lib_2.2.3+dfsg-7_arm64.deb │ + f7b17bb4f6e94850ba636e16ea553750 10780464 doc optional python-pandas-doc_2.2.3+dfsg-7_all.deb │ + f61ff722de9f1300db7c8e39a1d58c37 70911516 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-7_arm64.deb │ + 26eb09446129d67fcffc075347c41899 6028408 python optional python3-pandas-lib_2.2.3+dfsg-7_arm64.deb │ 1f8d3db1bec3721746064c32b0564bf4 3096828 python optional python3-pandas_2.2.3+dfsg-7_all.deb ├── python-pandas-doc_2.2.3+dfsg-7_all.deb │ ├── file list │ │ @@ -1,3 +1,3 @@ │ │ -rw-r--r-- 0 0 0 4 2025-01-28 22:18:06.000000 debian-binary │ │ --rw-r--r-- 0 0 0 147392 2025-01-28 22:18:06.000000 control.tar.xz │ │ --rw-r--r-- 0 0 0 10632984 2025-01-28 22:18:06.000000 data.tar.xz │ │ +-rw-r--r-- 0 0 0 147400 2025-01-28 22:18:06.000000 control.tar.xz │ │ +-rw-r--r-- 0 0 0 10632872 2025-01-28 22:18:06.000000 data.tar.xz │ ├── control.tar.xz │ │ ├── control.tar │ │ │ ├── ./md5sums │ │ │ │ ├── ./md5sums │ │ │ │ │┄ Files differ │ ├── data.tar.xz │ │ ├── data.tar │ │ │ ├── file list │ │ │ │ @@ -6256,47 +6256,47 @@ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 210184 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 48665 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 48657 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 53295 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/release.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 269 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 17010 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/search.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 2358240 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 2358188 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ -rw-r--r-- 0 root (0) root (0) 259 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/style.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 255 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/text.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 256 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 277 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html │ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 171332 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 283819 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 283820 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 435951 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 36646 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 217475 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 18313 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 66125 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 160305 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 81366 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 115340 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 115360 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 107868 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 300850 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 59715 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 395370 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 41778 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 1145214 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 208885 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 178642 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 112153 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 147512 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 162660 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 115580 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 65537 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 624883 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 79148 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 79166 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz │ │ │ │ -rw-r--r-- 0 root (0) root (0) 165302 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 100927 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 486577 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 204341 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 141947 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 270 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html │ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-01-28 22:18:06.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/ │ │ │ ├── ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ ├── js-beautify {} │ │ │ │ │ @@ -21557,15 +21557,14 @@ │ │ │ │ │ "008182": 2204, │ │ │ │ │ "008298": 2186, │ │ │ │ │ "008344": 2207, │ │ │ │ │ "008358": 2207, │ │ │ │ │ "008500": 15, │ │ │ │ │ "008543": [102, 1158], │ │ │ │ │ "008943": [102, 1158], │ │ │ │ │ - "009": 2193, │ │ │ │ │ "009059": 2191, │ │ │ │ │ "009207": 2207, │ │ │ │ │ "009420": 2195, │ │ │ │ │ "009424": 2207, │ │ │ │ │ "009572": 2207, │ │ │ │ │ "009673": 2195, │ │ │ │ │ "009783": 2207, │ │ │ │ │ @@ -21581,15 +21580,14 @@ │ │ │ │ │ "010026": 2191, │ │ │ │ │ "010081": 15, │ │ │ │ │ "010165": 2199, │ │ │ │ │ "010589": 2193, │ │ │ │ │ "010670": [102, 1158], │ │ │ │ │ "0108": 2257, │ │ │ │ │ "010903": 2207, │ │ │ │ │ - "011": 2193, │ │ │ │ │ "011111": [182, 760], │ │ │ │ │ "011342": 2207, │ │ │ │ │ "011351": 2207, │ │ │ │ │ "011374": 2195, │ │ │ │ │ "011470": 2207, │ │ │ │ │ "011736": 2186, │ │ │ │ │ "011829": 2207, │ │ │ │ │ @@ -21620,31 +21618,32 @@ │ │ │ │ │ "014138": 2191, │ │ │ │ │ "014144": [102, 1158], │ │ │ │ │ "014648": 2186, │ │ │ │ │ "014752": 2235, │ │ │ │ │ "014805": 2202, │ │ │ │ │ "014871": [2185, 2197, 2199, 2202], │ │ │ │ │ "014888": 2207, │ │ │ │ │ - "015": 2193, │ │ │ │ │ "015008": 2207, │ │ │ │ │ "015083": 2186, │ │ │ │ │ "015420": 2195, │ │ │ │ │ "015458": 2207, │ │ │ │ │ "015696": [2220, 2228, 2230], │ │ │ │ │ "015906": 2186, │ │ │ │ │ "015962": [2184, 2214], │ │ │ │ │ "015988": 2186, │ │ │ │ │ + "016": 2193, │ │ │ │ │ "016009": 15, │ │ │ │ │ "016192": 2207, │ │ │ │ │ "016287": 2210, │ │ │ │ │ "016331": 2210, │ │ │ │ │ "016424": [16, 19], │ │ │ │ │ "016692": [2184, 2195, 2214], │ │ │ │ │ "01685762652715874": [624, 1215], │ │ │ │ │ "016938": 2207, │ │ │ │ │ + "017": 2193, │ │ │ │ │ "017106": 2207, │ │ │ │ │ "017118": 2199, │ │ │ │ │ "017152": 2186, │ │ │ │ │ "017263": 2207, │ │ │ │ │ "017276": 2191, │ │ │ │ │ "017587": [2184, 2195, 2214], │ │ │ │ │ "017796": 2207, │ │ │ │ │ @@ -21652,28 +21651,27 @@ │ │ │ │ │ "018007": 2207, │ │ │ │ │ "018117": 2191, │ │ │ │ │ "018408": 2207, │ │ │ │ │ "018601": [2184, 2214], │ │ │ │ │ "018808": 2207, │ │ │ │ │ "018904": 2207, │ │ │ │ │ "018993": 2214, │ │ │ │ │ - "019": [2193, 2207], │ │ │ │ │ + "019": 2207, │ │ │ │ │ "019125": 2207, │ │ │ │ │ "019449": 2207, │ │ │ │ │ "019794": 2197, │ │ │ │ │ "01t00": [2163, 2199, 2210, 2235, 2246, 2261], │ │ │ │ │ "01t01": 2210, │ │ │ │ │ "01t03": 2210, │ │ │ │ │ "01t05": [909, 2210, 2235], │ │ │ │ │ "01t07": 1280, │ │ │ │ │ "01t10": 1005, │ │ │ │ │ "01t12": 953, │ │ │ │ │ "01t23": [893, 2186, 2246], │ │ │ │ │ "02": [13, 16, 17, 19, 26, 27, 29, 31, 79, 80, 82, 133, 182, 183, 202, 207, 208, 213, 218, 230, 261, 271, 276, 277, 278, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 301, 304, 305, 306, 307, 310, 312, 313, 314, 318, 319, 320, 321, 322, 323, 324, 326, 327, 329, 330, 331, 332, 345, 362, 363, 423, 519, 534, 536, 542, 543, 544, 545, 546, 547, 548, 549, 557, 558, 562, 563, 564, 565, 566, 575, 591, 592, 593, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 656, 657, 658, 659, 665, 666, 667, 673, 674, 675, 677, 678, 679, 680, 684, 685, 686, 688, 708, 760, 761, 781, 782, 788, 793, 804, 893, 899, 902, 903, 904, 919, 939, 940, 943, 945, 948, 949, 953, 957, 970, 997, 1014, 1051, 1075, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1344, 1393, 1452, 1498, 1500, 1506, 1542, 1620, 1699, 1815, 1947, 2054, 2127, 2145, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2220, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2265, 2271, 2283, 2294, 2298, 2301, 2307], │ │ │ │ │ - "020": 2193, │ │ │ │ │ "0200": [957, 969, 970, 997, 1498, 2210], │ │ │ │ │ "020004": 2207, │ │ │ │ │ "020161": [102, 1158], │ │ │ │ │ "020208": 2195, │ │ │ │ │ "020364": 2207, │ │ │ │ │ "020399": 2195, │ │ │ │ │ "020485": 2207, │ │ │ │ │ @@ -21687,15 +21685,15 @@ │ │ │ │ │ "021377": 2207, │ │ │ │ │ "021382": 2184, │ │ │ │ │ "021499": 2186, │ │ │ │ │ "02155": 30, │ │ │ │ │ "022070": 2184, │ │ │ │ │ "022196": 2207, │ │ │ │ │ "022777": 2207, │ │ │ │ │ - "023": [1447, 2200, 2232], │ │ │ │ │ + "023": [1447, 2193, 2200, 2232], │ │ │ │ │ "023100": 2195, │ │ │ │ │ "023167": 15, │ │ │ │ │ "023202": 2199, │ │ │ │ │ "023526": 2191, │ │ │ │ │ "023640": 2230, │ │ │ │ │ "023688": [15, 2185, 2191, 2197], │ │ │ │ │ "0237": 2204, │ │ │ │ │ @@ -21883,15 +21881,15 @@ │ │ │ │ │ "048048": 2197, │ │ │ │ │ "048074": 2207, │ │ │ │ │ "048089": 2197, │ │ │ │ │ "048553": 2207, │ │ │ │ │ "048693": 2230, │ │ │ │ │ "048777": 2204, │ │ │ │ │ "048788": 2197, │ │ │ │ │ - "049": [1447, 2200, 2232], │ │ │ │ │ + "049": [1447, 2193, 2200, 2232], │ │ │ │ │ "049245": 2195, │ │ │ │ │ "049304": 2207, │ │ │ │ │ "049355": 2217, │ │ │ │ │ "049421": 2199, │ │ │ │ │ "049647": 2191, │ │ │ │ │ "049695": 2199, │ │ │ │ │ "049748": 2204, │ │ │ │ │ @@ -21926,15 +21924,14 @@ │ │ │ │ │ "0530": [1498, 2246], │ │ │ │ │ "053136": 2191, │ │ │ │ │ "053231": 2207, │ │ │ │ │ "053365": [182, 760], │ │ │ │ │ "053667": 2207, │ │ │ │ │ "053768": 2199, │ │ │ │ │ "053785": 2219, │ │ │ │ │ - "054": 2193, │ │ │ │ │ "054325": 2191, │ │ │ │ │ "0549": 2202, │ │ │ │ │ "054932": 2207, │ │ │ │ │ "054972": 2207, │ │ │ │ │ "055224": 2184, │ │ │ │ │ "055300": 2212, │ │ │ │ │ "055457": 2199, │ │ │ │ │ @@ -21969,15 +21966,16 @@ │ │ │ │ │ "059478": 2210, │ │ │ │ │ "059481": 2207, │ │ │ │ │ "059552": 2207, │ │ │ │ │ "059869e": 2191, │ │ │ │ │ "059881": 2210, │ │ │ │ │ "059904": 2214, │ │ │ │ │ "05t00": 2261, │ │ │ │ │ - "06": [26, 27, 29, 30, 31, 207, 213, 218, 230, 273, 292, 294, 332, 363, 526, 534, 536, 637, 644, 646, 688, 781, 788, 793, 804, 900, 969, 993, 1075, 1344, 1441, 1442, 1449, 1450, 1452, 1489, 1497, 1500, 1506, 1524, 1598, 1677, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2226, 2228, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2264, 2271, 2298, 2302], │ │ │ │ │ + "06": [26, 27, 29, 30, 31, 207, 213, 218, 230, 273, 292, 294, 332, 363, 526, 534, 536, 637, 644, 646, 688, 781, 788, 793, 804, 900, 969, 993, 1075, 1344, 1441, 1442, 1449, 1450, 1452, 1489, 1497, 1500, 1506, 1524, 1598, 1677, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2226, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2264, 2271, 2298, 2302], │ │ │ │ │ + "060": 2193, │ │ │ │ │ "060015": 2207, │ │ │ │ │ "060074": 2185, │ │ │ │ │ "060603": 2207, │ │ │ │ │ "060654": 2207, │ │ │ │ │ "061019": 2199, │ │ │ │ │ "061068": 2210, │ │ │ │ │ "061233": 2207, │ │ │ │ │ @@ -22046,15 +22044,14 @@ │ │ │ │ │ "069486": 2230, │ │ │ │ │ "069546": 2199, │ │ │ │ │ "069718": 2186, │ │ │ │ │ "069887": 2207, │ │ │ │ │ "069949": 2207, │ │ │ │ │ "06t00": 2261, │ │ │ │ │ "07": [26, 27, 29, 30, 31, 187, 202, 207, 213, 230, 273, 277, 292, 294, 330, 332, 345, 644, 646, 685, 688, 763, 781, 788, 804, 900, 903, 1075, 1280, 1344, 1441, 1442, 1449, 1450, 1452, 1598, 1677, 1720, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2226, 2227, 2228, 2230, 2231, 2235, 2261, 2271, 2294, 2298], │ │ │ │ │ - "070": 2193, │ │ │ │ │ "0700": 995, │ │ │ │ │ "070087": 2218, │ │ │ │ │ "070816": 2235, │ │ │ │ │ "071068": 2222, │ │ │ │ │ "071357": 2191, │ │ │ │ │ "071665": 2219, │ │ │ │ │ "0718": [2184, 2186], │ │ │ │ │ @@ -22087,40 +22084,41 @@ │ │ │ │ │ "075718": 2207, │ │ │ │ │ "075758": 2195, │ │ │ │ │ "07577": 2241, │ │ │ │ │ "075770": [15, 2185, 2186, 2191, 2197, 2199, 2215, 2216, 2218, 2219, 2235, 2241, 2264], │ │ │ │ │ "0758": 2191, │ │ │ │ │ "075962": 2191, │ │ │ │ │ "076076": 2207, │ │ │ │ │ + "076163": 2228, │ │ │ │ │ "076380": 2207, │ │ │ │ │ "076404": 2197, │ │ │ │ │ "076467": [15, 2185, 2197, 2199, 2202, 2215, 2257], │ │ │ │ │ "076524": 2216, │ │ │ │ │ "076610": [2184, 2257], │ │ │ │ │ "076676": 2195, │ │ │ │ │ "076879": 2207, │ │ │ │ │ "077007": 2207, │ │ │ │ │ "077118": [2184, 2195, 2214], │ │ │ │ │ "077151": 2199, │ │ │ │ │ "077324": 2195, │ │ │ │ │ + "077794": 2228, │ │ │ │ │ "077988": 2207, │ │ │ │ │ "078638": [2185, 2197, 2199, 2202, 2204], │ │ │ │ │ "078716": 2207, │ │ │ │ │ "078718": 2197, │ │ │ │ │ "078832": 2207, │ │ │ │ │ "079150": 2185, │ │ │ │ │ "079307": 15, │ │ │ │ │ "079587": 2230, │ │ │ │ │ "079631": 2207, │ │ │ │ │ "0797": 2202, │ │ │ │ │ "079769": 2207, │ │ │ │ │ "079915": 2193, │ │ │ │ │ "07t00": 2261, │ │ │ │ │ "08": [29, 30, 107, 207, 213, 230, 264, 273, 277, 292, 294, 316, 326, 330, 332, 629, 644, 646, 670, 680, 685, 688, 781, 788, 804, 900, 903, 1075, 1145, 1164, 1221, 1274, 1289, 1344, 1441, 1442, 1449, 1450, 1452, 1495, 1497, 1506, 1598, 1657, 1677, 1699, 1720, 1741, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2218, 2220, 2222, 2226, 2228, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2271, 2294, 2307], │ │ │ │ │ - "080": 2193, │ │ │ │ │ "0800": [953, 2210], │ │ │ │ │ "080174": 2207, │ │ │ │ │ "080372": 2199, │ │ │ │ │ "080952": [2184, 2214], │ │ │ │ │ "081009": 2195, │ │ │ │ │ "081161": 2216, │ │ │ │ │ "081249": 2207, │ │ │ │ │ @@ -22180,28 +22178,30 @@ │ │ │ │ │ "089329": [2184, 2195, 2214], │ │ │ │ │ "089354": 2235, │ │ │ │ │ "089539": 2207, │ │ │ │ │ "089589": 2207, │ │ │ │ │ "089759": 2186, │ │ │ │ │ "08t00": 2261, │ │ │ │ │ "09": [29, 80, 84, 88, 107, 127, 157, 213, 218, 276, 277, 278, 322, 330, 331, 345, 562, 592, 595, 600, 629, 637, 677, 685, 686, 703, 732, 788, 793, 902, 903, 904, 987, 1008, 1075, 1164, 1221, 1344, 1452, 1489, 1501, 1506, 1524, 1578, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1839, 1876, 1894, 1912, 1964, 2018, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2218, 2220, 2221, 2222, 2226, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2249, 2250, 2261, 2271], │ │ │ │ │ + "090": 2193, │ │ │ │ │ "0900": [956, 1013], │ │ │ │ │ "090118": 2219, │ │ │ │ │ "090255": 2197, │ │ │ │ │ "090301": 2207, │ │ │ │ │ "090310": 2207, │ │ │ │ │ "090711": 2207, │ │ │ │ │ "091": [2186, 2227], │ │ │ │ │ "091000": 2207, │ │ │ │ │ "091391": 2207, │ │ │ │ │ "091430": 15, │ │ │ │ │ "091566": 2207, │ │ │ │ │ "091756": 2207, │ │ │ │ │ "091850": 2207, │ │ │ │ │ "091886": 15, │ │ │ │ │ + "092": 2193, │ │ │ │ │ "092130": 2199, │ │ │ │ │ "092225": 2186, │ │ │ │ │ "092362": 2207, │ │ │ │ │ "092759": 2218, │ │ │ │ │ "092888": 1019, │ │ │ │ │ "092903": 2214, │ │ │ │ │ "093110": 2195, │ │ │ │ │ @@ -22270,33 +22270,33 @@ │ │ │ │ │ "0n": [1489, 2298], │ │ │ │ │ "0px": 2207, │ │ │ │ │ "0rc0": 13, │ │ │ │ │ "0th": [26, 249, 882, 1202, 2185, 2197, 2199, 2235], │ │ │ │ │ "0x00": 2294, │ │ │ │ │ "0x40": 2294, │ │ │ │ │ "0x7efd0c0b0690": 3, │ │ │ │ │ - "0xffff4fb67060": 2210, │ │ │ │ │ - "0xffff556e93b0": 2199, │ │ │ │ │ - "0xffff5e827be0": 2197, │ │ │ │ │ - "0xffff6381f890": 2195, │ │ │ │ │ - "0xffff678ecec0": 2246, │ │ │ │ │ - "0xffff759643d0": 2230, │ │ │ │ │ + "0xffff7698ab60": 2210, │ │ │ │ │ + "0xffff804f9590": 2199, │ │ │ │ │ + "0xffff8964cca0": 2197, │ │ │ │ │ + "0xffff9da9ba70": 2195, │ │ │ │ │ + "0xffff9e9c8d70": 2246, │ │ │ │ │ + "0xffff9fdd8e50": 2230, │ │ │ │ │ "1": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310], │ │ │ │ │ "10": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308], │ │ │ │ │ "100": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307], │ │ │ │ │ "1000": [9, 10, 15, 16, 17, 18, 19, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294], │ │ │ │ │ "10000": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266], │ │ │ │ │ "100000": [1354, 1372, 2199, 2201, 2210], │ │ │ │ │ "1000000": [144, 2199, 2228], │ │ │ │ │ "1000000000000000": 1039, │ │ │ │ │ "100000d": 1497, │ │ │ │ │ "100001": 1497, │ │ │ │ │ "10001": 2232, │ │ │ │ │ "10008": [2231, 2232], │ │ │ │ │ - "1001": [16, 17, 18, 19, 2195, 2199, 2235], │ │ │ │ │ + "1001": [16, 17, 18, 19, 2193, 2195, 2199, 2235], │ │ │ │ │ "100123": 2225, │ │ │ │ │ "1001m": [917, 919, 922, 929], │ │ │ │ │ "1002": [16, 17, 18, 19, 2199, 2205, 2235], │ │ │ │ │ "10022": 2226, │ │ │ │ │ "100230": 2184, │ │ │ │ │ "10024": 2226, │ │ │ │ │ "10025": 2226, │ │ │ │ │ @@ -23235,14 +23235,15 @@ │ │ │ │ │ "124124": 2207, │ │ │ │ │ "12424": 2232, │ │ │ │ │ "12425": 2241, │ │ │ │ │ "12448": 2230, │ │ │ │ │ "124518": 2230, │ │ │ │ │ "12467": 2231, │ │ │ │ │ "12468": 2199, │ │ │ │ │ + "1247": 2193, │ │ │ │ │ "12471": 2230, │ │ │ │ │ "12473": 2231, │ │ │ │ │ "12486": 2231, │ │ │ │ │ "124862": 2191, │ │ │ │ │ "12489": 2230, │ │ │ │ │ "12492": 2230, │ │ │ │ │ "12493": 2231, │ │ │ │ │ @@ -23786,15 +23787,15 @@ │ │ │ │ │ "13787": 2232, │ │ │ │ │ "137893": 2207, │ │ │ │ │ "1379": 2185, │ │ │ │ │ "13790": 2235, │ │ │ │ │ "13792": 2232, │ │ │ │ │ "13793": 2232, │ │ │ │ │ "13797": 2232, │ │ │ │ │ - "138": [2184, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2208, 2210, 2211, 2232], │ │ │ │ │ + "138": [2184, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2208, 2210, 2211, 2232], │ │ │ │ │ "1380": [2185, 2210], │ │ │ │ │ "13804": 2232, │ │ │ │ │ "1381": [16, 17, 18, 19, 2185, 2199, 2210, 2235], │ │ │ │ │ "13813": 2232, │ │ │ │ │ "138138": 2197, │ │ │ │ │ "1382": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ "13822": 2232, │ │ │ │ │ @@ -24165,15 +24166,15 @@ │ │ │ │ │ "14982": 2235, │ │ │ │ │ "14983": 2235, │ │ │ │ │ "1499": 2212, │ │ │ │ │ "14992": 2235, │ │ │ │ │ "14998": 2235, │ │ │ │ │ "14t15": [955, 956, 957, 962, 970, 983, 990, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1013, 1014], │ │ │ │ │ "15": [4, 15, 16, 17, 18, 19, 22, 25, 26, 29, 30, 31, 72, 73, 81, 88, 91, 108, 112, 116, 121, 127, 133, 137, 157, 186, 208, 213, 230, 258, 268, 271, 277, 278, 345, 586, 600, 696, 703, 708, 732, 762, 782, 788, 804, 889, 899, 903, 904, 953, 955, 956, 957, 958, 970, 973, 992, 995, 997, 999, 1005, 1008, 1009, 1013, 1014, 1018, 1103, 1147, 1157, 1170, 1171, 1173, 1176, 1180, 1185, 1188, 1195, 1197, 1198, 1202, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1249, 1256, 1258, 1263, 1265, 1268, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1321, 1334, 1458, 1485, 1498, 1500, 1506, 1524, 1542, 1560, 1578, 1598, 1657, 1677, 1758, 1839, 1876, 1894, 1912, 1964, 2018, 2036, 2054, 2090, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2235, 2238, 2240, 2243, 2246, 2249, 2257, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302, 2307], │ │ │ │ │ - "150": [15, 111, 118, 132, 135, 159, 161, 175, 213, 233, 788, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2210, 2211], │ │ │ │ │ + "150": [15, 111, 118, 132, 135, 159, 161, 175, 213, 233, 788, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2204, 2210, 2211], │ │ │ │ │ "1500": [2212, 2241, 2246], │ │ │ │ │ "15000": [2185, 2220], │ │ │ │ │ "15001": 2238, │ │ │ │ │ "150036": [2220, 2230], │ │ │ │ │ "15005": 2235, │ │ │ │ │ "15008": 2246, │ │ │ │ │ "1500923": [182, 760], │ │ │ │ │ @@ -24563,15 +24564,15 @@ │ │ │ │ │ "162754": 2191, │ │ │ │ │ "16282": 2236, │ │ │ │ │ "16284": 2241, │ │ │ │ │ "16285": 2236, │ │ │ │ │ "16288": 2236, │ │ │ │ │ "16291": 2236, │ │ │ │ │ "162969": 2185, │ │ │ │ │ - "163": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2210, 2211], │ │ │ │ │ + "163": [2185, 2186, 2188, 2195, 2197, 2199, 2201, 2210, 2211], │ │ │ │ │ "1630": 2263, │ │ │ │ │ "163008": 2186, │ │ │ │ │ "16301": 2238, │ │ │ │ │ "16302": 2236, │ │ │ │ │ "16306": 2236, │ │ │ │ │ "16316": 2249, │ │ │ │ │ "16319": 2236, │ │ │ │ │ @@ -25759,32 +25760,31 @@ │ │ │ │ │ "2017q4": 2238, │ │ │ │ │ "2018": [13, 35, 80, 84, 88, 127, 157, 187, 213, 271, 277, 278, 288, 291, 296, 298, 302, 304, 305, 308, 309, 314, 318, 322, 327, 331, 418, 421, 445, 512, 513, 515, 517, 518, 522, 524, 529, 530, 534, 535, 536, 551, 562, 592, 595, 600, 639, 643, 652, 656, 657, 660, 661, 667, 673, 677, 681, 686, 703, 732, 763, 788, 899, 903, 904, 940, 943, 944, 948, 1109, 1145, 1272, 1275, 1286, 1296, 1344, 1452, 1498, 2185, 2199, 2210, 2212, 2213, 2238, 2246, 2298], │ │ │ │ │ "20180101": [1272, 1275, 1286, 1296], │ │ │ │ │ "20180310": [115, 681], │ │ │ │ │ "2018q1": [529, 2238], │ │ │ │ │ "2018q2": 2238, │ │ │ │ │ "2019": [13, 26, 27, 29, 30, 31, 418, 421, 1344, 1487, 1560, 2199, 2210, 2213, 2241, 2242, 2243, 2245, 2271, 2302], │ │ │ │ │ - "202": [2184, 2185, 2186, 2188, 2195, 2197, 2199, 2207, 2210, 2211], │ │ │ │ │ + "202": [2184, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2207, 2210, 2211], │ │ │ │ │ "2020": [22, 82, 121, 218, 230, 268, 286, 287, 289, 293, 295, 298, 300, 317, 323, 324, 329, 519, 521, 523, 542, 547, 548, 549, 551, 593, 641, 645, 647, 649, 650, 651, 671, 678, 679, 684, 696, 793, 804, 939, 955, 956, 957, 958, 962, 963, 964, 965, 966, 967, 968, 970, 972, 973, 975, 976, 977, 978, 979, 980, 981, 983, 990, 992, 993, 994, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1010, 1013, 1014, 1017, 1018, 1019, 1023, 1025, 1075, 1392, 1459, 1464, 1498, 1506, 1524, 1542, 1560, 2199, 2201, 2204, 2210, 2212, 2213, 2283, 2289, 2294, 2298, 2302, 2307], │ │ │ │ │ "20200101": [82, 593], │ │ │ │ │ "2020q1": 1008, │ │ │ │ │ "2021": [288, 296, 318, 639, 652, 673, 940, 943, 948, 957, 970, 997, 1542, 2201, 2207, 2213, 2277, 2289, 2294], │ │ │ │ │ "2022": [5, 22, 523, 525, 528, 537, 982, 1185, 1246, 1288, 1491, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1542, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1560, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1578, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1598, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1620, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1637, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1657, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1677, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1699, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1720, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1758, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1776, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1793, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1815, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1839, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1857, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1876, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1894, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1912, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1930, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1947, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1964, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1982, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2018, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2036, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2054, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2108, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2127, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2145, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2186, 2203, 2213, 2227, 2298, 2302, 2307], │ │ │ │ │ "202272": 2207, │ │ │ │ │ "2022a": 2294, │ │ │ │ │ "2023": [34, 270, 298, 301, 320, 363, 511, 519, 526, 533, 543, 544, 545, 546, 547, 548, 549, 551, 554, 555, 556, 557, 558, 560, 563, 564, 565, 566, 567, 651, 894, 898, 954, 959, 960, 982, 984, 1000, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1024, 1122, 1141, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1501, 1620, 1930, 2090, 2127, 2145, 2213], │ │ │ │ │ "202380": 2207, │ │ │ │ │ "20239": [2241, 2265], │ │ │ │ │ "2024": [270, 544, 546, 555, 567, 894, 898, 2127, 2213], │ │ │ │ │ - "2025": [36, 544, 546, 555, 567, 894, 898], │ │ │ │ │ + "2025": [36, 544, 546, 555, 567, 894, 898, 2228], │ │ │ │ │ "20251": 2307, │ │ │ │ │ "2026": 2228, │ │ │ │ │ "202602": 2205, │ │ │ │ │ "202646": 2230, │ │ │ │ │ - "2027": 2228, │ │ │ │ │ "20271": 2241, │ │ │ │ │ "202872": [2184, 2214], │ │ │ │ │ "202946": 2207, │ │ │ │ │ "203": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2253], │ │ │ │ │ "2030": 2265, │ │ │ │ │ "20303": 2265, │ │ │ │ │ "20306": 2302, │ │ │ │ │ @@ -25798,15 +25798,15 @@ │ │ │ │ │ "20377": 2246, │ │ │ │ │ "2038": [2199, 2210], │ │ │ │ │ "20380": 2246, │ │ │ │ │ "2039": 2199, │ │ │ │ │ "20391": 2241, │ │ │ │ │ "20393": 2241, │ │ │ │ │ "20395": 2246, │ │ │ │ │ - "204": [24, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2220, 2265], │ │ │ │ │ + "204": [24, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211, 2220, 2265], │ │ │ │ │ "2040": 2199, │ │ │ │ │ "20405": 2249, │ │ │ │ │ "20419": 2241, │ │ │ │ │ "2042": 2264, │ │ │ │ │ "204208": 28, │ │ │ │ │ "20421": 2283, │ │ │ │ │ "20432": 2283, │ │ │ │ │ @@ -25876,15 +25876,15 @@ │ │ │ │ │ "206341": 2207, │ │ │ │ │ "20636": [2241, 2246], │ │ │ │ │ "2064": [31, 2191], │ │ │ │ │ "206412": [2185, 2197, 2199, 2202, 2204, 2215, 2257], │ │ │ │ │ "206446": 2207, │ │ │ │ │ "20647": [2271, 2298], │ │ │ │ │ "20649": 2277, │ │ │ │ │ - "2065": [31, 2193], │ │ │ │ │ + "2065": 31, │ │ │ │ │ "20653": 2241, │ │ │ │ │ "20656": 2246, │ │ │ │ │ "2066": 31, │ │ │ │ │ "206601": 2186, │ │ │ │ │ "20661": 2241, │ │ │ │ │ "20664": 2241, │ │ │ │ │ "2067": [30, 31], │ │ │ │ │ @@ -26349,15 +26349,15 @@ │ │ │ │ │ "224824": 2207, │ │ │ │ │ "224826": 2210, │ │ │ │ │ "22484": [2246, 2249], │ │ │ │ │ "22487": 2246, │ │ │ │ │ "2249": [2194, 2201, 2203, 2294, 2302, 2307], │ │ │ │ │ "224904": 2230, │ │ │ │ │ "22492": 2246, │ │ │ │ │ - "225": [118, 132, 135, 159, 161, 175, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2227], │ │ │ │ │ + "225": [118, 132, 135, 159, 161, 175, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2227], │ │ │ │ │ "2250": [2194, 2201, 2203, 2294, 2302, 2307], │ │ │ │ │ "225000": [121, 696], │ │ │ │ │ "22501": 2249, │ │ │ │ │ "22508": 2246, │ │ │ │ │ "2251": [2194, 2201, 2203, 2294, 2302, 2307], │ │ │ │ │ "22519": 2246, │ │ │ │ │ "2252": [2194, 2201, 2203, 2294, 2302, 2307], │ │ │ │ │ @@ -26876,15 +26876,15 @@ │ │ │ │ │ "24990": 2265, │ │ │ │ │ "24992": 2249, │ │ │ │ │ "24994": 2249, │ │ │ │ │ "249976": 2230, │ │ │ │ │ "24h": [1598, 1677, 2277], │ │ │ │ │ "24px": 2207, │ │ │ │ │ "25": [3, 15, 17, 18, 19, 23, 25, 26, 27, 28, 29, 30, 31, 81, 107, 108, 114, 134, 142, 144, 148, 149, 177, 178, 188, 189, 190, 192, 193, 195, 213, 242, 281, 283, 343, 344, 402, 586, 597, 629, 709, 725, 726, 755, 756, 764, 765, 766, 768, 770, 776, 788, 817, 910, 1164, 1204, 1221, 1264, 1291, 1314, 1336, 1344, 1419, 1433, 1447, 1467, 1498, 1502, 1657, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2215, 2216, 2217, 2218, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2241, 2247, 2248, 2254, 2256, 2257, 2260, 2265, 2271, 2277, 2283, 2289, 2294, 2297, 2298, 2302, 2307], │ │ │ │ │ - "250": [111, 118, 132, 135, 159, 161, 175, 205, 633, 778, 2185, 2186, 2188, 2195, 2197, 2199, 2201, 2207, 2210, 2220], │ │ │ │ │ + "250": [111, 118, 132, 135, 159, 161, 175, 205, 633, 778, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2207, 2210, 2220], │ │ │ │ │ "2500": [24, 25, 28, 29, 32], │ │ │ │ │ "250000": [1205, 1267, 2185, 2186, 2201, 2220, 2222, 2235], │ │ │ │ │ "25009": 2249, │ │ │ │ │ "25014": 2247, │ │ │ │ │ "25016": 2249, │ │ │ │ │ "25017": 2249, │ │ │ │ │ "25022": 2265, │ │ │ │ │ @@ -27047,15 +27047,15 @@ │ │ │ │ │ "257623": 2186, │ │ │ │ │ "25766": 2249, │ │ │ │ │ "25772": 2249, │ │ │ │ │ "257759": 2195, │ │ │ │ │ "25777": 2271, │ │ │ │ │ "2578": [2218, 2222], │ │ │ │ │ "25784": 2249, │ │ │ │ │ - "258": [2186, 2188, 2193, 2195, 2197, 2199, 2210, 2227], │ │ │ │ │ + "258": [2186, 2188, 2195, 2197, 2199, 2210, 2227], │ │ │ │ │ "25804": 2249, │ │ │ │ │ "25807": 2249, │ │ │ │ │ "25809": 2249, │ │ │ │ │ "25814": 2249, │ │ │ │ │ "2583": 29, │ │ │ │ │ "2583560": [176, 179], │ │ │ │ │ "258410": 2207, │ │ │ │ │ @@ -27291,15 +27291,15 @@ │ │ │ │ │ "2698": 2215, │ │ │ │ │ "26987": 2249, │ │ │ │ │ "26988": 2265, │ │ │ │ │ "26989": 2271, │ │ │ │ │ "2699": 2215, │ │ │ │ │ "26996": 2265, │ │ │ │ │ "27": [15, 17, 18, 19, 25, 26, 27, 28, 29, 31, 77, 80, 108, 148, 149, 177, 178, 213, 230, 304, 305, 327, 345, 592, 656, 657, 725, 726, 755, 756, 788, 804, 1057, 1344, 1720, 2036, 2054, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2213, 2216, 2217, 2218, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2241, 2246, 2249, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302], │ │ │ │ │ - "270": [2186, 2188, 2195, 2197, 2199, 2207, 2210], │ │ │ │ │ + "270": [2186, 2188, 2193, 2195, 2197, 2199, 2207, 2210], │ │ │ │ │ "2700": 2215, │ │ │ │ │ "27001": 2249, │ │ │ │ │ "27006": 2249, │ │ │ │ │ "27008": 2249, │ │ │ │ │ "270099": 2197, │ │ │ │ │ "27011": 2250, │ │ │ │ │ "27017": 2265, │ │ │ │ │ @@ -27522,15 +27522,15 @@ │ │ │ │ │ "28115": 2265, │ │ │ │ │ "28118": 2265, │ │ │ │ │ "281247": [2185, 2191, 2197, 2199, 2202, 2204], │ │ │ │ │ "28130": 2265, │ │ │ │ │ "28139": 2265, │ │ │ │ │ "281461": 2191, │ │ │ │ │ "28147": 2251, │ │ │ │ │ - "281472412750000": 2246, │ │ │ │ │ + "281473339756528": 2246, │ │ │ │ │ "28150": 2265, │ │ │ │ │ "28156": 2271, │ │ │ │ │ "28163": 2265, │ │ │ │ │ "2817": 1344, │ │ │ │ │ "281885": 2186, │ │ │ │ │ "28189": 2271, │ │ │ │ │ "28192": 2265, │ │ │ │ │ @@ -28310,15 +28310,15 @@ │ │ │ │ │ "321604": 2186, │ │ │ │ │ "32166": 2267, │ │ │ │ │ "32167": 2271, │ │ │ │ │ "3217": 2218, │ │ │ │ │ "32173": 2271, │ │ │ │ │ "32174": 2298, │ │ │ │ │ "32194": 2269, │ │ │ │ │ - "322": [2185, 2186, 2197, 2199, 2210], │ │ │ │ │ + "322": [2186, 2197, 2199, 2210], │ │ │ │ │ "32207": 2271, │ │ │ │ │ "32213": 2267, │ │ │ │ │ "32219": 2267, │ │ │ │ │ "322262": 2186, │ │ │ │ │ "32240": 2271, │ │ │ │ │ "32255": 2271, │ │ │ │ │ "32259": 2283, │ │ │ │ │ @@ -28419,15 +28419,15 @@ │ │ │ │ │ "32766": 30, │ │ │ │ │ "327710": 2191, │ │ │ │ │ "32779": 2271, │ │ │ │ │ "32782": 2271, │ │ │ │ │ "327863": 2186, │ │ │ │ │ "3279": 2199, │ │ │ │ │ "32792": 2271, │ │ │ │ │ - "328": [2184, 2186, 2191, 2197, 2199, 2205, 2210, 2246], │ │ │ │ │ + "328": [2184, 2185, 2186, 2191, 2197, 2199, 2205, 2210, 2246], │ │ │ │ │ "3280": 2199, │ │ │ │ │ "32800": 2269, │ │ │ │ │ "32803": 2289, │ │ │ │ │ "32806": 2271, │ │ │ │ │ "32809": 2271, │ │ │ │ │ "3281": 2199, │ │ │ │ │ "32815": 2271, │ │ │ │ │ @@ -28487,15 +28487,15 @@ │ │ │ │ │ "33043": 2289, │ │ │ │ │ "33064": 2271, │ │ │ │ │ "33069": 2271, │ │ │ │ │ "330704": 2214, │ │ │ │ │ "33071": 2269, │ │ │ │ │ "33091": 2298, │ │ │ │ │ "33092": 2271, │ │ │ │ │ - "331": [2184, 2186, 2193, 2197, 2199, 2205, 2210, 2246], │ │ │ │ │ + "331": [2184, 2186, 2197, 2199, 2205, 2210, 2246], │ │ │ │ │ "33113": 2271, │ │ │ │ │ "33115": 2269, │ │ │ │ │ "331152": 2210, │ │ │ │ │ "331279": 2195, │ │ │ │ │ "33133": 2271, │ │ │ │ │ "33136": 2271, │ │ │ │ │ "33141": 2271, │ │ │ │ │ @@ -29417,20 +29417,20 @@ │ │ │ │ │ "37748": 2277, │ │ │ │ │ "37750": 2289, │ │ │ │ │ "377535": 2186, │ │ │ │ │ "37755": 2276, │ │ │ │ │ "37758": 2277, │ │ │ │ │ "377642": 2210, │ │ │ │ │ "37768": 2277, │ │ │ │ │ - "3777": [2193, 2218], │ │ │ │ │ + "3777": 2218, │ │ │ │ │ "37782": 2302, │ │ │ │ │ "377887": 2207, │ │ │ │ │ "377945": 2207, │ │ │ │ │ "37799": 2277, │ │ │ │ │ - "378": [2185, 2186, 2197, 2199, 2207, 2210, 2231], │ │ │ │ │ + "378": [2186, 2197, 2199, 2207, 2210, 2231], │ │ │ │ │ "3780": 2222, │ │ │ │ │ "37804": 2283, │ │ │ │ │ "378163": 2207, │ │ │ │ │ "37820": 2277, │ │ │ │ │ "37821": 2277, │ │ │ │ │ "378261": 2218, │ │ │ │ │ "37827": 2277, │ │ │ │ │ @@ -29816,15 +29816,15 @@ │ │ │ │ │ "39464": 2283, │ │ │ │ │ "39465": 2289, │ │ │ │ │ "394720": 2207, │ │ │ │ │ "39474": 2279, │ │ │ │ │ "39481": 2283, │ │ │ │ │ "39488": 2283, │ │ │ │ │ "394981": 2186, │ │ │ │ │ - "395": [2186, 2193, 2197, 2199, 2210, 2220, 2227], │ │ │ │ │ + "395": [2186, 2197, 2199, 2210, 2220, 2227], │ │ │ │ │ "3950": [2220, 2221], │ │ │ │ │ "395042": 2184, │ │ │ │ │ "39510": 2283, │ │ │ │ │ "395125": 2257, │ │ │ │ │ "39522": 2283, │ │ │ │ │ "39528": 2279, │ │ │ │ │ "395347": 2199, │ │ │ │ │ @@ -29936,15 +29936,15 @@ │ │ │ │ │ "3me": 1344, │ │ │ │ │ "3min": [213, 788, 1192, 1253, 2210], │ │ │ │ │ "3n": [1508, 1526, 1544, 1562, 1581, 1602, 1622, 1639, 1660, 1681, 1702, 1723, 1743, 1761, 1778, 1795, 1817, 1842, 1859, 1879, 1897, 1915, 1932, 1949, 1967, 1984, 2002, 2021, 2039, 2057, 2075, 2092, 2110, 2129, 2147], │ │ │ │ │ "3rd": [2, 11, 34, 108, 205, 249, 590, 630, 778, 882, 1118, 2186, 2191, 2232, 2246, 2307, 2308, 2310], │ │ │ │ │ "3u": 2209, │ │ │ │ │ "4": [2, 4, 9, 10, 12, 13, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 35, 50, 58, 59, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 116, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 136, 138, 141, 144, 145, 146, 147, 152, 153, 154, 155, 156, 157, 158, 160, 162, 163, 164, 167, 168, 169, 170, 171, 172, 173, 174, 179, 180, 182, 184, 185, 186, 190, 191, 193, 194, 195, 196, 197, 199, 202, 203, 204, 205, 206, 209, 210, 212, 213, 215, 216, 217, 218, 220, 221, 222, 223, 224, 226, 228, 229, 231, 232, 233, 234, 235, 238, 240, 241, 244, 245, 248, 250, 252, 254, 255, 256, 257, 258, 261, 262, 263, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 278, 279, 280, 281, 284, 285, 292, 294, 301, 306, 307, 317, 331, 332, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 358, 367, 370, 380, 383, 389, 393, 394, 398, 399, 401, 404, 414, 420, 421, 429, 434, 436, 437, 455, 459, 461, 469, 473, 475, 477, 483, 490, 494, 496, 499, 501, 532, 568, 577, 579, 580, 581, 582, 583, 591, 592, 593, 594, 595, 596, 599, 600, 601, 603, 604, 605, 611, 612, 616, 618, 619, 621, 625, 626, 627, 628, 629, 630, 632, 634, 635, 636, 640, 644, 646, 658, 659, 671, 682, 683, 686, 688, 692, 696, 697, 698, 700, 701, 702, 703, 704, 712, 713, 714, 715, 716, 717, 720, 724, 730, 731, 732, 733, 738, 741, 742, 746, 748, 750, 758, 760, 762, 766, 767, 768, 769, 770, 771, 776, 778, 783, 784, 787, 788, 789, 793, 798, 799, 806, 807, 808, 812, 815, 816, 821, 823, 824, 830, 833, 835, 845, 846, 849, 858, 859, 862, 863, 865, 866, 868, 874, 879, 881, 883, 885, 888, 889, 895, 896, 899, 900, 902, 904, 906, 907, 908, 912, 913, 920, 921, 938, 979, 1033, 1034, 1035, 1037, 1044, 1053, 1054, 1061, 1073, 1074, 1075, 1077, 1120, 1127, 1134, 1136, 1138, 1140, 1143, 1145, 1146, 1147, 1148, 1149, 1152, 1153, 1154, 1155, 1156, 1157, 1159, 1160, 1161, 1164, 1165, 1166, 1167, 1168, 1170, 1171, 1172, 1176, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1191, 1192, 1193, 1194, 1195, 1196, 1199, 1200, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1212, 1214, 1216, 1217, 1218, 1221, 1222, 1223, 1225, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1237, 1238, 1239, 1240, 1241, 1244, 1246, 1247, 1248, 1249, 1250, 1252, 1253, 1254, 1255, 1256, 1257, 1260, 1261, 1263, 1265, 1267, 1268, 1269, 1270, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1288, 1289, 1290, 1291, 1292, 1294, 1295, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1343, 1344, 1347, 1362, 1365, 1369, 1375, 1384, 1385, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1400, 1402, 1403, 1404, 1406, 1407, 1408, 1409, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1424, 1430, 1432, 1433, 1434, 1435, 1436, 1438, 1439, 1440, 1441, 1442, 1443, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1458, 1463, 1465, 1466, 1467, 1468, 1469, 1470, 1475, 1476, 1478, 1479, 1486, 1487, 1489, 1490, 1493, 1494, 1496, 1497, 1498, 1500, 1506, 1524, 1741, 1758, 1793, 1815, 1839, 1857, 1982, 2000, 2108, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2247, 2249, 2257, 2260, 2261, 2263, 2264, 2265, 2266, 2267, 2270, 2271, 2277, 2278, 2283, 2294, 2295, 2297, 2298, 2302, 2307], │ │ │ │ │ "40": [15, 17, 18, 19, 32, 68, 74, 80, 88, 188, 189, 213, 228, 234, 345, 577, 583, 592, 600, 764, 765, 788, 823, 1264, 1387, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2298], │ │ │ │ │ - "400": [15, 141, 212, 280, 303, 586, 655, 717, 787, 1280, 1433, 2186, 2193, 2197, 2199, 2200, 2201, 2207, 2210, 2226], │ │ │ │ │ + "400": [15, 141, 212, 280, 303, 586, 655, 717, 787, 1280, 1433, 2186, 2197, 2199, 2200, 2201, 2207, 2210, 2226], │ │ │ │ │ "4000": [10, 141, 717], │ │ │ │ │ "40000": [168, 1443, 2194, 2199, 2222], │ │ │ │ │ "400000": [2195, 2201, 2210, 2214], │ │ │ │ │ "40002": 2283, │ │ │ │ │ "40004": 2283, │ │ │ │ │ "40008": 2283, │ │ │ │ │ "40013": 2283, │ │ │ │ │ @@ -30044,15 +30044,15 @@ │ │ │ │ │ "40585": 2283, │ │ │ │ │ "40589": 2294, │ │ │ │ │ "405906": 2207, │ │ │ │ │ "405919": 2195, │ │ │ │ │ "406": [2186, 2199, 2210], │ │ │ │ │ "4060": 2222, │ │ │ │ │ "40606": 2283, │ │ │ │ │ - "4062": 2217, │ │ │ │ │ + "4062": [2193, 2217], │ │ │ │ │ "40628": [2283, 2298], │ │ │ │ │ "4063": 2217, │ │ │ │ │ "406345": 2207, │ │ │ │ │ "40638": 2298, │ │ │ │ │ "4065": 2218, │ │ │ │ │ "40660": 2283, │ │ │ │ │ "40662": 2281, │ │ │ │ │ @@ -30742,15 +30742,15 @@ │ │ │ │ │ "435781": 2207, │ │ │ │ │ "435803": 2207, │ │ │ │ │ "43587": 2302, │ │ │ │ │ "43588": 2287, │ │ │ │ │ "4359": 2218, │ │ │ │ │ "43591": 2289, │ │ │ │ │ "43595": 2289, │ │ │ │ │ - "436": [2186, 2199, 2210, 2218, 2298], │ │ │ │ │ + "436": [2186, 2199, 2210, 2298], │ │ │ │ │ "43609": 2289, │ │ │ │ │ "43612": 2289, │ │ │ │ │ "436173": 2230, │ │ │ │ │ "43619": 2289, │ │ │ │ │ "4362": 2218, │ │ │ │ │ "436466": 2207, │ │ │ │ │ "4365": 2218, │ │ │ │ │ @@ -31429,15 +31429,15 @@ │ │ │ │ │ "46569": 2294, │ │ │ │ │ "46575": 2294, │ │ │ │ │ "465793": 2199, │ │ │ │ │ "46580": 2292, │ │ │ │ │ "46584": 2294, │ │ │ │ │ "46588": 2294, │ │ │ │ │ "46589": 2292, │ │ │ │ │ - "466": [16, 17, 18, 19, 2193, 2199, 2210, 2235], │ │ │ │ │ + "466": [16, 17, 18, 19, 2199, 2210, 2235], │ │ │ │ │ "46601": 2294, │ │ │ │ │ "466039": 2199, │ │ │ │ │ "46613": 2294, │ │ │ │ │ "46622": 2294, │ │ │ │ │ "46634": 2292, │ │ │ │ │ "4664": [2186, 2227], │ │ │ │ │ "46653": 2294, │ │ │ │ │ @@ -31881,15 +31881,15 @@ │ │ │ │ │ "490482": 2199, │ │ │ │ │ "49054": 2295, │ │ │ │ │ "490671": 2185, │ │ │ │ │ "49068": 2298, │ │ │ │ │ "490732": 2229, │ │ │ │ │ "49075": 2298, │ │ │ │ │ "490865": 2206, │ │ │ │ │ - "491": [16, 17, 18, 19, 28, 2193, 2199, 2210, 2235, 2249, 2298], │ │ │ │ │ + "491": [16, 17, 18, 19, 28, 2199, 2210, 2235, 2249, 2298], │ │ │ │ │ "49106": 2298, │ │ │ │ │ "49108": 2298, │ │ │ │ │ "49109": 2298, │ │ │ │ │ "49111": 2298, │ │ │ │ │ "49121": 2298, │ │ │ │ │ "49128": 2298, │ │ │ │ │ "49139": 2229, │ │ │ │ │ @@ -31998,15 +31998,15 @@ │ │ │ │ │ "49649": 2297, │ │ │ │ │ "496599": 2207, │ │ │ │ │ "49660": 2298, │ │ │ │ │ "49676": 2296, │ │ │ │ │ "49684": 2298, │ │ │ │ │ "496847": 2207, │ │ │ │ │ "496902": 2207, │ │ │ │ │ - "497": [2199, 2210, 2249, 2257], │ │ │ │ │ + "497": [2193, 2199, 2210, 2249, 2257], │ │ │ │ │ "497026": 2207, │ │ │ │ │ "497074": 2201, │ │ │ │ │ "49714": 2298, │ │ │ │ │ "49715": 2298, │ │ │ │ │ "49722": 2298, │ │ │ │ │ "49732": [2296, 2297], │ │ │ │ │ "49737": 2298, │ │ │ │ │ @@ -32820,15 +32820,15 @@ │ │ │ │ │ "53746": 2302, │ │ │ │ │ "53747": 2302, │ │ │ │ │ "53767": 2302, │ │ │ │ │ "5377": 2271, │ │ │ │ │ "53786": 2302, │ │ │ │ │ "537874": 2207, │ │ │ │ │ "53792": 2302, │ │ │ │ │ - "538": [2191, 2199], │ │ │ │ │ + "538": [2185, 2191, 2199], │ │ │ │ │ "53806": 2302, │ │ │ │ │ "53811": 2302, │ │ │ │ │ "53831": 2302, │ │ │ │ │ "53832": 2302, │ │ │ │ │ "538402": 2207, │ │ │ │ │ "53846": 2304, │ │ │ │ │ "538468": 2210, │ │ │ │ │ @@ -32866,15 +32866,15 @@ │ │ │ │ │ "540338": 2235, │ │ │ │ │ "54037": 2302, │ │ │ │ │ "54063": 2302, │ │ │ │ │ "5407": 2220, │ │ │ │ │ "54074": 2302, │ │ │ │ │ "540920": 2195, │ │ │ │ │ "54097": 2302, │ │ │ │ │ - "541": [2193, 2199], │ │ │ │ │ + "541": 2199, │ │ │ │ │ "5410": 2218, │ │ │ │ │ "541257": 2210, │ │ │ │ │ "541335": 2205, │ │ │ │ │ "54134": 2307, │ │ │ │ │ "5414": 2220, │ │ │ │ │ "541630": 2186, │ │ │ │ │ "54167": 2302, │ │ │ │ │ @@ -33155,15 +33155,15 @@ │ │ │ │ │ "55677": 2307, │ │ │ │ │ "55678": 2307, │ │ │ │ │ "556787e": 2222, │ │ │ │ │ "55683": 2307, │ │ │ │ │ "556882": 2195, │ │ │ │ │ "5569": 2221, │ │ │ │ │ "55693": 2307, │ │ │ │ │ - "557": [2199, 2205], │ │ │ │ │ + "557": 2199, │ │ │ │ │ "55709": 2307, │ │ │ │ │ "55710": 2307, │ │ │ │ │ "557110": 2235, │ │ │ │ │ "55714": 2307, │ │ │ │ │ "55718": 2307, │ │ │ │ │ "55730": 2307, │ │ │ │ │ "55736": 2307, │ │ │ │ │ @@ -33705,15 +33705,15 @@ │ │ │ │ │ "6026": 2219, │ │ │ │ │ "602763": 2166, │ │ │ │ │ "6028": 2219, │ │ │ │ │ "603": [2199, 2298], │ │ │ │ │ "603194": 2207, │ │ │ │ │ "603594": 2207, │ │ │ │ │ "6039": 2186, │ │ │ │ │ - "604": [2185, 2199, 2298], │ │ │ │ │ + "604": [2199, 2298], │ │ │ │ │ "6043": 2219, │ │ │ │ │ "604334": 2235, │ │ │ │ │ "604466": 2197, │ │ │ │ │ "604675": 2197, │ │ │ │ │ "604736": 2207, │ │ │ │ │ "604745": [2214, 2235], │ │ │ │ │ "6048": 2220, │ │ │ │ │ @@ -33780,25 +33780,25 @@ │ │ │ │ │ "613": 2199, │ │ │ │ │ "613172": 2186, │ │ │ │ │ "6134": 2220, │ │ │ │ │ "6136": 2219, │ │ │ │ │ "613616": 2202, │ │ │ │ │ "613897": 2230, │ │ │ │ │ "613898": 2207, │ │ │ │ │ - "614": [2199, 2232], │ │ │ │ │ + "614": [2199, 2205, 2232], │ │ │ │ │ "6140": 2219, │ │ │ │ │ "614215": 2218, │ │ │ │ │ "614264": 2207, │ │ │ │ │ "614266": 2199, │ │ │ │ │ "614523": 2191, │ │ │ │ │ "614533": 2197, │ │ │ │ │ "614581": [2184, 2195], │ │ │ │ │ "6148": 2219, │ │ │ │ │ "6149": 2220, │ │ │ │ │ - "615": 2199, │ │ │ │ │ + "615": [2185, 2199], │ │ │ │ │ "6150": 2219, │ │ │ │ │ "6152": 2219, │ │ │ │ │ "615303": 2191, │ │ │ │ │ "615385": [121, 696, 2212], │ │ │ │ │ "615396": 2230, │ │ │ │ │ "6155": 2219, │ │ │ │ │ "615556": 27, │ │ │ │ │ @@ -33862,15 +33862,15 @@ │ │ │ │ │ "622727": 2195, │ │ │ │ │ "623": [16, 17, 18, 19, 2199, 2203, 2235, 2298], │ │ │ │ │ "623033": 2184, │ │ │ │ │ "623732": 2191, │ │ │ │ │ "6238072747940578789": [1039, 2164], │ │ │ │ │ "623893": 2195, │ │ │ │ │ "623977": 2197, │ │ │ │ │ - "624": [2199, 2205], │ │ │ │ │ + "624": 2199, │ │ │ │ │ "6240": 2220, │ │ │ │ │ "624607": 15, │ │ │ │ │ "624615": 2207, │ │ │ │ │ "624699e": 2191, │ │ │ │ │ "624747": 2199, │ │ │ │ │ "624938": 2191, │ │ │ │ │ "624988": 2230, │ │ │ │ │ @@ -33940,15 +33940,15 @@ │ │ │ │ │ "632038": 2207, │ │ │ │ │ "6322": 2235, │ │ │ │ │ "6326": 2246, │ │ │ │ │ "632633": 2217, │ │ │ │ │ "6327": 2220, │ │ │ │ │ "632779": 2186, │ │ │ │ │ "6329": 2220, │ │ │ │ │ - "633": [2199, 2205], │ │ │ │ │ + "633": 2199, │ │ │ │ │ "633165": 2230, │ │ │ │ │ "6332": 2220, │ │ │ │ │ "633372": 2215, │ │ │ │ │ "633439": 2207, │ │ │ │ │ "6335": 2220, │ │ │ │ │ "633678": 2185, │ │ │ │ │ "6337": 2220, │ │ │ │ │ @@ -34009,15 +34009,15 @@ │ │ │ │ │ "640622": 2207, │ │ │ │ │ "6407": 2220, │ │ │ │ │ "640843": 2199, │ │ │ │ │ "640875": 2207, │ │ │ │ │ "640880": 2235, │ │ │ │ │ "640898": 2219, │ │ │ │ │ "640x480": 1457, │ │ │ │ │ - "641": 2199, │ │ │ │ │ + "641": [2193, 2199], │ │ │ │ │ "641184": 2186, │ │ │ │ │ "641360": 2199, │ │ │ │ │ "6415": 2238, │ │ │ │ │ "641602": 2230, │ │ │ │ │ "6418": 2220, │ │ │ │ │ "641817": 2216, │ │ │ │ │ "642": [2197, 2199], │ │ │ │ │ @@ -34516,15 +34516,15 @@ │ │ │ │ │ "697936": 2207, │ │ │ │ │ "697986": 2191, │ │ │ │ │ "698": [2199, 2214], │ │ │ │ │ "698548": 2207, │ │ │ │ │ "698687": 2191, │ │ │ │ │ "698728": 2257, │ │ │ │ │ "6988": 2220, │ │ │ │ │ - "699": [2199, 2257], │ │ │ │ │ + "699": [2193, 2199, 2205, 2257], │ │ │ │ │ "699070": 2186, │ │ │ │ │ "69911764705882": 28, │ │ │ │ │ "699118": 28, │ │ │ │ │ "6992": 2227, │ │ │ │ │ "6997": [183, 761], │ │ │ │ │ "6998": 2220, │ │ │ │ │ "699877": 2229, │ │ │ │ │ @@ -34621,20 +34621,20 @@ │ │ │ │ │ "709459": 2199, │ │ │ │ │ "7095": 2228, │ │ │ │ │ "7096": 2232, │ │ │ │ │ "709661": [2184, 2214], │ │ │ │ │ "7097": 2222, │ │ │ │ │ "7098": 2220, │ │ │ │ │ "71": [15, 17, 24, 25, 28, 29, 32, 133, 208, 708, 718, 782, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ - "710": 2199, │ │ │ │ │ + "710": [2199, 2205], │ │ │ │ │ "7101": 2220, │ │ │ │ │ "7103": 2222, │ │ │ │ │ "7105": 2220, │ │ │ │ │ "7106": 2220, │ │ │ │ │ - "711": 2199, │ │ │ │ │ + "711": [2199, 2218], │ │ │ │ │ "711409": 2186, │ │ │ │ │ "7115": 2223, │ │ │ │ │ "7117": 2235, │ │ │ │ │ "712": [3, 2185, 2192], │ │ │ │ │ "712009": 2199, │ │ │ │ │ "712369": 2186, │ │ │ │ │ "7124": 2229, │ │ │ │ │ @@ -34689,15 +34689,15 @@ │ │ │ │ │ "719369": 2195, │ │ │ │ │ "7195": 2221, │ │ │ │ │ "719541": 2228, │ │ │ │ │ "7196": 2221, │ │ │ │ │ "7198": 2220, │ │ │ │ │ "7199": 2220, │ │ │ │ │ "719915": 2207, │ │ │ │ │ - "72": [17, 31, 190, 193, 766, 768, 1189, 1250, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271], │ │ │ │ │ + "72": [17, 31, 190, 193, 766, 768, 1189, 1250, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271], │ │ │ │ │ "720": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 1447, 2200, 2232], │ │ │ │ │ "7200": 2210, │ │ │ │ │ "720000": [2191, 2225], │ │ │ │ │ "720521": 2210, │ │ │ │ │ "720589": [2220, 2228, 2230, 2231], │ │ │ │ │ "7206": 2220, │ │ │ │ │ "7207": 2222, │ │ │ │ │ @@ -34939,15 +34939,14 @@ │ │ │ │ │ "752102": 2207, │ │ │ │ │ "7523": 2221, │ │ │ │ │ "752332": 2186, │ │ │ │ │ "752441": 2207, │ │ │ │ │ "7528": 2222, │ │ │ │ │ "752861": 2195, │ │ │ │ │ "7529": 2221, │ │ │ │ │ - "753": 2193, │ │ │ │ │ "7534": 2221, │ │ │ │ │ "753444": 2207, │ │ │ │ │ "753606": 2199, │ │ │ │ │ "753623": 2191, │ │ │ │ │ "753747": 2207, │ │ │ │ │ "7539": 2221, │ │ │ │ │ "7540": 2222, │ │ │ │ │ @@ -35223,14 +35222,15 @@ │ │ │ │ │ "7910": 2222, │ │ │ │ │ "7911": 2222, │ │ │ │ │ "791197": 2186, │ │ │ │ │ "7912": 2222, │ │ │ │ │ "7914": 2222, │ │ │ │ │ "791419": 2191, │ │ │ │ │ "791725": 2166, │ │ │ │ │ + "792": 2193, │ │ │ │ │ "792213": 2207, │ │ │ │ │ "792342": 2197, │ │ │ │ │ "7925": 2222, │ │ │ │ │ "792652": 2197, │ │ │ │ │ "7927": 2222, │ │ │ │ │ "792889": 2207, │ │ │ │ │ "7929": 2222, │ │ │ │ │ @@ -35613,15 +35613,15 @@ │ │ │ │ │ "848896": 2193, │ │ │ │ │ "848974": 2197, │ │ │ │ │ "849": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ "8494": 2223, │ │ │ │ │ "8496": 2241, │ │ │ │ │ "84960": 2210, │ │ │ │ │ "849980": 2195, │ │ │ │ │ - "85": [182, 190, 193, 718, 760, 766, 768, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246], │ │ │ │ │ + "85": [182, 190, 193, 718, 760, 766, 768, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246], │ │ │ │ │ "850": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ "8501": 2222, │ │ │ │ │ "850229": 2235, │ │ │ │ │ "850287": 2207, │ │ │ │ │ "8504": 2202, │ │ │ │ │ "850458": 2207, │ │ │ │ │ "8505": 2228, │ │ │ │ │ @@ -36443,28 +36443,26 @@ │ │ │ │ │ "966290": 2207, │ │ │ │ │ "9663": 2227, │ │ │ │ │ "966718": [2224, 2228], │ │ │ │ │ "966995": 2207, │ │ │ │ │ "967": 2197, │ │ │ │ │ "9671": 2226, │ │ │ │ │ "967255": 2207, │ │ │ │ │ - "967323": 2228, │ │ │ │ │ "9675": 2226, │ │ │ │ │ "967568": 2207, │ │ │ │ │ "9676": 2226, │ │ │ │ │ "968": [2186, 2197], │ │ │ │ │ "9680": 2226, │ │ │ │ │ "968215": 2207, │ │ │ │ │ "968304": 2207, │ │ │ │ │ "968344": 15, │ │ │ │ │ "9685": 2226, │ │ │ │ │ "9688": 2226, │ │ │ │ │ "9689": 2191, │ │ │ │ │ "968914": [2185, 2197, 2199, 2215, 2218, 2219], │ │ │ │ │ - "968916": 2228, │ │ │ │ │ "969": 2197, │ │ │ │ │ "969051": 2210, │ │ │ │ │ "969092e": 2191, │ │ │ │ │ "969124": 2186, │ │ │ │ │ "969126": 2207, │ │ │ │ │ "969232": 2191, │ │ │ │ │ "969363": 2207, │ │ │ │ │ @@ -37715,15 +37713,15 @@ │ │ │ │ │ "barboursvil": 2199, │ │ │ │ │ "bare": [2, 2199, 2222, 2241, 2277], │ │ │ │ │ "barf": 2217, │ │ │ │ │ "barh": [26, 186, 188, 762, 764, 1188, 1249, 2211, 2220, 2221, 2228, 2260, 2294], │ │ │ │ │ "bark": 1365, │ │ │ │ │ "barplot": 2222, │ │ │ │ │ "barycentr": [146, 720, 1280, 2201, 2218], │ │ │ │ │ - "base": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2193, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302], │ │ │ │ │ + "base": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302], │ │ │ │ │ "base_dtyp": 2199, │ │ │ │ │ "base_pars": 2199, │ │ │ │ │ "base_typ": [2194, 2201, 2203, 2294, 2302, 2307], │ │ │ │ │ "basebal": [15, 2186, 2191, 2197, 2227, 2231], │ │ │ │ │ "baseblockmanag": [2197, 2199, 2298], │ │ │ │ │ "basebooleanreducetest": 2307, │ │ │ │ │ "basebuff": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ @@ -40240,15 +40238,15 @@ │ │ │ │ │ "get_indexer_for": [2283, 2289], │ │ │ │ │ "get_indexer_non_uniqu": [379, 2192, 2197, 2238, 2243, 2246, 2249, 2265, 2277, 2289], │ │ │ │ │ "get_indexer_nonuniqu": 2302, │ │ │ │ │ "get_item": [2191, 2194], │ │ │ │ │ "get_jit_argu": 2212, │ │ │ │ │ "get_letter_typ": 2195, │ │ │ │ │ "get_level_valu": [1416, 2185, 2218, 2220, 2228, 2232, 2241, 2246, 2253, 2256], │ │ │ │ │ - "get_loc": [2, 362, 383, 426, 492, 2185, 2191, 2193, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299], │ │ │ │ │ + "get_loc": [2, 362, 383, 426, 492, 2185, 2191, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299], │ │ │ │ │ "get_loc_level": 2246, │ │ │ │ │ "get_local": 2265, │ │ │ │ │ "get_method": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ "get_near_stock_pric": [2216, 2223], │ │ │ │ │ "get_offset": [2265, 2298], │ │ │ │ │ "get_offset_nam": [2230, 2238], │ │ │ │ │ "get_op_result_nam": 2186, │ │ │ │ │ @@ -41597,15 +41595,15 @@ │ │ │ │ │ "maldiv": [176, 179, 754, 757, 1242, 1243], │ │ │ │ │ "male": [18, 23, 25, 28, 32, 1204, 2195, 2220], │ │ │ │ │ "malform": [1469, 1486, 2199, 2225, 2246, 2265, 2283, 2289], │ │ │ │ │ "malfunct": 2238, │ │ │ │ │ "malta": [176, 179, 754, 757, 1242, 1243, 2199], │ │ │ │ │ "mamba": [1, 13], │ │ │ │ │ "mammal": [172, 198, 210, 211, 214, 249, 271, 285, 494, 784, 882, 899, 913, 1198, 1202, 1263, 2195], │ │ │ │ │ - "manag": [2, 5, 22, 34, 341, 1345, 1391, 1451, 1488, 1490, 1793, 1815, 2186, 2193, 2197, 2199, 2202, 2218, 2222, 2224, 2232, 2238, 2246, 2277, 2298], │ │ │ │ │ + "manag": [2, 5, 22, 34, 341, 1345, 1391, 1451, 1488, 1490, 1793, 1815, 2186, 2197, 2199, 2202, 2218, 2222, 2224, 2232, 2238, 2246, 2277, 2298], │ │ │ │ │ "manchest": 2199, │ │ │ │ │ "mangl": [2195, 2241, 2246, 2289], │ │ │ │ │ "mangle_dupe_col": [2283, 2294, 2298], │ │ │ │ │ "mango": [394, 399], │ │ │ │ │ "mani": [1, 2, 3, 5, 7, 8, 10, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 31, 34, 35, 85, 102, 114, 168, 342, 596, 754, 757, 1031, 1064, 1153, 1158, 1166, 1212, 1223, 1242, 1243, 1272, 1274, 1275, 1286, 1358, 1387, 1390, 1469, 1486, 1498, 2166, 2167, 2173, 2185, 2186, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2199, 2200, 2202, 2205, 2206, 2207, 2210, 2212, 2214, 2216, 2217, 2218, 2219, 2221, 2223, 2225, 2228, 2231, 2232, 2235, 2238, 2241, 2246, 2254, 2255, 2256, 2260, 2261, 2271, 2277, 2283, 2289, 2298, 2302, 2307, 2308], │ │ │ │ │ "manifest": [2223, 2224, 2241, 2273], │ │ │ │ │ "manipul": [10, 15, 21, 23, 33, 34, 35, 1423, 2172, 2185, 2186, 2195, 2204, 2207, 2210, 2218, 2222, 2257], │ │ │ │ │ @@ -43718,15 +43716,15 @@ │ │ │ │ │ "seri": [2, 3, 7, 8, 10, 12, 13, 14, 15, 18, 21, 24, 25, 26, 29, 32, 33, 34, 35, 41, 45, 46, 51, 52, 53, 56, 57, 61, 62, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 134, 135, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 181, 182, 183, 186, 190, 191, 193, 194, 195, 196, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 240, 241, 242, 243, 244, 245, 249, 252, 256, 258, 261, 271, 273, 275, 276, 277, 278, 279, 280, 281, 283, 284, 285, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 321, 323, 324, 325, 328, 329, 331, 332, 333, 342, 343, 344, 345, 346, 351, 355, 356, 357, 359, 360, 362, 369, 373, 376, 377, 378, 385, 392, 401, 402, 403, 405, 406, 408, 411, 412, 414, 416, 417, 419, 420, 423, 424, 427, 428, 431, 432, 433, 435, 436, 439, 441, 442, 443, 444, 465, 484, 489, 503, 519, 540, 547, 548, 549, 568, 914, 931, 940, 942, 943, 945, 946, 947, 948, 949, 950, 952, 1027, 1028, 1029, 1030, 1031, 1034, 1035, 1040, 1052, 1060, 1064, 1069, 1071, 1072, 1078, 1081, 1084, 1088, 1093, 1097, 1101, 1104, 1110, 1111, 1112, 1113, 1115, 1117, 1118, 1120, 1122, 1141, 1143, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1199, 1200, 1201, 1202, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1345, 1349, 1350, 1352, 1355, 1358, 1360, 1377, 1382, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1394, 1395, 1396, 1397, 1411, 1430, 1436, 1441, 1442, 1446, 1447, 1448, 1449, 1450, 1456, 1457, 1458, 1460, 1463, 1466, 1467, 1476, 1479, 1488, 1490, 1493, 1494, 1496, 1498, 1499, 1500, 2163, 2165, 2167, 2171, 2172, 2173, 2174, 2179, 2183, 2186, 2187, 2190, 2192, 2193, 2194, 2196, 2197, 2198, 2199, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2209, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2223, 2224, 2225, 2226, 2227, 2229, 2230, 2231, 2233, 2234, 2236, 2237, 2239, 2240, 2242, 2243, 2245, 2247, 2248, 2250, 2251, 2253, 2254, 2255, 2256, 2258, 2259, 2260, 2262, 2263, 2264, 2266, 2267, 2269, 2272, 2273, 2274, 2275, 2276, 2277, 2278, 2279, 2280, 2282, 2284, 2285, 2286, 2287, 2288, 2290, 2291, 2293, 2295, 2296, 2297, 2299, 2300, 2301, 2303, 2304, 2306, 2308, 2309], │ │ │ │ │ "serial": [9, 10, 16, 253, 265, 341, 352, 886, 895, 1431, 1474, 1478, 1479, 2172, 2199, 2202, 2215, 2218, 2226, 2228, 2230, 2231, 2235, 2238, 2239, 2261, 2271, 2285, 2289, 2298, 2302], │ │ │ │ │ "serialis": [258, 889, 2225, 2231], │ │ │ │ │ "serializ": 2199, │ │ │ │ │ "series1": 2185, │ │ │ │ │ "series2": [2185, 2211], │ │ │ │ │ "series_gen": 2194, │ │ │ │ │ - "series_gener": 2194, │ │ │ │ │ + "series_gener": [2193, 2194], │ │ │ │ │ "series_minut": 2210, │ │ │ │ │ "series_monthli": 2210, │ │ │ │ │ "series_second": 2210, │ │ │ │ │ "seriesformatt": [1345, 1391, 1488, 1490, 2202], │ │ │ │ │ "seriesgroupbi": [186, 205, 223, 709, 762, 778, 798, 1147, 1150, 1151, 1157, 1160, 1161, 1162, 1163, 1165, 1166, 1170, 1171, 1176, 1178, 1180, 1181, 1185, 1186, 1188, 1189, 1195, 1196, 1197, 1199, 1200, 1204, 1205, 1268, 1273, 1277, 1278, 1279, 1284, 1287, 1288, 1292, 1293, 2172, 2195, 2220, 2221, 2228, 2232, 2238, 2241, 2246, 2249, 2265, 2266, 2267, 2269, 2271, 2275, 2276, 2277, 2278, 2284, 2286, 2287, 2288, 2289, 2297, 2299, 2302, 2304, 2307, 2308], │ │ │ │ │ "serif": 2207, │ │ │ │ │ "seriou": 2, │ │ │ │ │ @@ -43760,15 +43758,15 @@ │ │ │ │ │ "set_table_attribut": [1421, 1422, 1435, 2207], │ │ │ │ │ "set_table_class": 1394, │ │ │ │ │ "set_table_styl": [1400, 1420, 1422, 1433, 1435, 2207, 2277, 2283], │ │ │ │ │ "set_td_class": [1402, 1420, 1421, 2207, 2283], │ │ │ │ │ "set_titl": 2211, │ │ │ │ │ "set_tooltip": [2207, 2283], │ │ │ │ │ "set_uuid": 2207, │ │ │ │ │ - "set_valu": [2193, 2218, 2238, 2256, 2265, 2298], │ │ │ │ │ + "set_valu": [2218, 2238, 2256, 2265, 2298], │ │ │ │ │ "set_xlim": [2220, 2298], │ │ │ │ │ "set_ylabel": [26, 2211], │ │ │ │ │ "set_ylim": 2220, │ │ │ │ │ "setattr": 2192, │ │ │ │ │ "seterr": 2239, │ │ │ │ │ "sethmmorton": 234, │ │ │ │ │ "setitem": [2188, 2190, 2218, 2219, 2220, 2221, 2222, 2223, 2227, 2230, 2275, 2298], │ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ @@ -1847,25 +1847,25 @@ │ │ │ │ In [141]: indexer = np.arange(10000) │ │ │ │ │ │ │ │ In [142]: random.shuffle(indexer) │ │ │ │ │ │ │ │ In [143]: %timeit arr[indexer] │ │ │ │ .....: %timeit arr.take(indexer, axis=0) │ │ │ │ .....: │ │ │ │ -604 us +- 111 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each) │ │ │ │ -230 us +- 7.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each) │ │ │ │ +615 us +- 133 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each) │ │ │ │ +208 us +- 52.7 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ │ │ │ │ │ │ │ │
In [144]: ser = pd.Series(arr[:, 0])
│ │ │ │
│ │ │ │ In [145]: %timeit ser.iloc[indexer]
│ │ │ │ .....: %timeit ser.take(indexer)
│ │ │ │ .....:
│ │ │ │ -378 us +- 44.3 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ -322 us +- 45.6 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ +538 us +- 137 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ +328 us +- 60.4 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │
We have discussed MultiIndex
in the previous sections pretty extensively.
│ │ │ │ Documentation about DatetimeIndex
and PeriodIndex
are shown here,
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -1245,23 +1245,23 @@
│ │ │ │ │ In [141]: indexer = np.arange(10000)
│ │ │ │ │
│ │ │ │ │ In [142]: random.shuffle(indexer)
│ │ │ │ │
│ │ │ │ │ In [143]: %timeit arr[indexer]
│ │ │ │ │ .....: %timeit arr.take(indexer, axis=0)
│ │ │ │ │ .....:
│ │ │ │ │ -604 us +- 111 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ -230 us +- 7.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +615 us +- 133 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +208 us +- 52.7 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ In [144]: ser = pd.Series(arr[:, 0])
│ │ │ │ │
│ │ │ │ │ In [145]: %timeit ser.iloc[indexer]
│ │ │ │ │ .....: %timeit ser.take(indexer)
│ │ │ │ │ .....:
│ │ │ │ │ -378 us +- 44.3 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ -322 us +- 45.6 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +538 us +- 137 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +328 us +- 60.4 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ ********** IInnddeexx ttyyppeess_## **********
│ │ │ │ │ We have discussed MultiIndex in the previous sections pretty extensively.
│ │ │ │ │ Documentation about DatetimeIndex and PeriodIndex are shown _h_e_r_e, and
│ │ │ │ │ documentation about TimedeltaIndex is found _h_e_r_e.
│ │ │ │ │ In the following sub-sections we will highlight some other index types.
│ │ │ │ │ ******** CCaatteeggoorriiccaallIInnddeexx_## ********
│ │ │ │ │ _C_a_t_e_g_o_r_i_c_a_l_I_n_d_e_x is a type of index that is useful for supporting indexing with
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html
│ │ │ │ @@ -592,31 +592,31 @@
│ │ │ │ ...: s += f(a + i * dx)
│ │ │ │ ...: return s * dx
│ │ │ │ ...:
│ │ │ │
│ │ │ │
│ │ │ │
We achieve our result by using DataFrame.apply()
(row-wise):
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -150 ms +- 24.1 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +250 ms +- 12.7 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
Let’s take a look and see where the time is spent during this operation │ │ │ │ using the prun ipython magic function:
│ │ │ │# most time consuming 4 calls
│ │ │ │ In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1) # noqa E999
│ │ │ │ - 605946 function calls (605928 primitive calls) in 0.466 seconds
│ │ │ │ + 605946 function calls (605928 primitive calls) in 0.792 seconds
│ │ │ │
│ │ │ │ Ordered by: internal time
│ │ │ │ List reduced from 159 to 4 due to restriction <4>
│ │ │ │
│ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ - 1000 0.258 0.000 0.395 0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)
│ │ │ │ - 552423 0.138 0.000 0.138 0.000 <ipython-input-3-c138bdd570e3>:1(f)
│ │ │ │ - 3000 0.019 0.000 0.033 0.000 series.py:1220(_get_value)
│ │ │ │ - 1000 0.013 0.000 0.014 0.000 managers.py:2065(set_values)
│ │ │ │ + 1000 0.497 0.000 0.699 0.001 <ipython-input-4-c2a74e076cf0>:1(integrate_f)
│ │ │ │ + 552423 0.202 0.000 0.202 0.000 <ipython-input-3-c138bdd570e3>:1(f)
│ │ │ │ + 3000 0.028 0.000 0.033 0.000 series.py:1220(_get_value)
│ │ │ │ + 3000 0.013 0.000 0.060 0.000 series.py:1095(__getitem__)
│ │ │ │
By far the majority of time is spend inside either integrate_f
or f
,
│ │ │ │ hence we’ll concentrate our efforts cythonizing these two functions.
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -163 ms +- 38.2 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +270 ms +- 37.4 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │
This has improved the performance compared to the pure Python approach by one-third.
│ │ │ │We can annotate the function variables and return types as well as use cdef
│ │ │ │ @@ -658,36 +658,36 @@
│ │ │ │ ....: for i in range(N):
│ │ │ │ ....: s += f_typed(a + i * dx)
│ │ │ │ ....: return s * dx
│ │ │ │ ....:
│ │ │ │
│ │ │ │
│ │ │ │
In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -23.8 ms +- 5.1 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +25.8 ms +- 4.19 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
Annotating the functions with C types yields an over ten times performance improvement compared to │ │ │ │ the original Python implementation.
│ │ │ │When re-profiling, time is spent creating a Series
from each row, and calling __getitem__
from both
│ │ │ │ the index and the series (three times for each row). These Python function calls are expensive and
│ │ │ │ can be improved by passing an np.ndarray
.
In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ - 52523 function calls (52505 primitive calls) in 0.080 seconds
│ │ │ │ + 52523 function calls (52505 primitive calls) in 0.092 seconds
│ │ │ │
│ │ │ │ Ordered by: internal time
│ │ │ │ List reduced from 157 to 4 due to restriction <4>
│ │ │ │
│ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ - 3000 0.020 0.000 0.054 0.000 series.py:1095(__getitem__)
│ │ │ │ - 3000 0.015 0.000 0.015 0.000 base.py:3777(get_loc)
│ │ │ │ - 3000 0.011 0.000 0.028 0.000 series.py:1220(_get_value)
│ │ │ │ - 1 0.009 0.009 0.070 0.070 apply.py:1070(apply_series_generator)
│ │ │ │ + 3000 0.023 0.000 0.028 0.000 series.py:1220(_get_value)
│ │ │ │ + 3000 0.016 0.000 0.049 0.000 series.py:1095(__getitem__)
│ │ │ │ + 1001 0.014 0.000 0.017 0.000 apply.py:1247(series_generator)
│ │ │ │ + 1 0.013 0.013 0.090 0.090 apply.py:1070(apply_series_generator)
│ │ │ │
In [13]: %%cython
│ │ │ │ ....: cimport numpy as np
│ │ │ │ ....: import numpy as np
│ │ │ │ ....: cdef double f_typed(double x) except? -2:
│ │ │ │ ....: return x * (x - 1)
│ │ │ │ @@ -722,15 +722,15 @@
│ │ │ │
This implementation creates an array of zeros and inserts the result
│ │ │ │ of integrate_f_typed
applied over each row. Looping over an ndarray
is faster
│ │ │ │ in Cython than looping over a Series
object.
Since apply_integrate_f
is typed to accept an np.ndarray
, Series.to_numpy()
│ │ │ │ calls are needed to utilize this function.
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())
│ │ │ │ -2.72 ms +- 400 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +3.78 ms +- 204 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
Performance has improved from the prior implementation by almost ten times.
│ │ │ │ │ │ │ │The majority of the time is now spent in apply_integrate_f
. Disabling Cython’s boundscheck
│ │ │ │ @@ -741,15 +741,15 @@
│ │ │ │ Ordered by: internal time
│ │ │ │ List reduced from 21 to 4 due to restriction <4>
│ │ │ │
│ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ 1 0.001 0.001 0.001 0.001 <string>:1(<module>)
│ │ │ │ 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
│ │ │ │ 1 0.000 0.000 0.001 0.001 {built-in method builtins.exec}
│ │ │ │ - 3 0.000 0.000 0.000 0.000 base.py:541(to_numpy)
│ │ │ │ + 3 0.000 0.000 0.000 0.000 frame.py:4062(__getitem__)
│ │ │ │
In [16]: %%cython
│ │ │ │ ....: cimport cython
│ │ │ │ ....: cimport numpy as np
│ │ │ │ ....: import numpy as np
│ │ │ │ ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:
│ │ │ │ @@ -782,15 +782,15 @@
│ │ │ │ from /build/reproducible-path/pandas-2.2.3+dfsg/buildtmp/.cache/ipython/cython/_cython_magic_ddda133cd5e4047d061724be7eaa710e80a84a5f.c:1251:
│ │ │ │ /usr/lib/python3/dist-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]
│ │ │ │ 17 | #warning "Using deprecated NumPy API, disable it with " \
│ │ │ │ | ^~~~~~~
│ │ │ │
In [17]: %timeit apply_integrate_f_wrap(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())
│ │ │ │ -1.8 ms +- 331 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +2.64 ms +- 225 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
However, a loop indexer i
accessing an invalid location in an array would cause a segfault because memory access isn’t checked.
│ │ │ │ For more about boundscheck
and wraparound
, see the Cython docs on
│ │ │ │ compiler directives.
DataFrame
. This engine requires the
│ │ │ │ optional dependency numexpr
to be installed.
│ │ │ │ The 'python'
engine is generally not useful except for testing
│ │ │ │ other evaluation engines against it. You will achieve no performance
│ │ │ │ benefits using eval()
with engine='python'
and may
│ │ │ │ incur a performance hit.
In [40]: %timeit df1 + df2 + df3 + df4
│ │ │ │ -28.9 ms +- 1.82 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +34.7 ms +- 2.54 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")
│ │ │ │ -29.3 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +33.6 ms +- 2.33 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
DataFrame.eval()
method#In addition to the top level pandas.eval()
function you can also
│ │ │ │ evaluate an expression in the “context” of a DataFrame
.
In [58]: nrows, ncols = 20000, 100
│ │ │ │
│ │ │ │ In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]
│ │ │ │
DataFrame
arithmetic:
In [60]: %timeit df1 + df2 + df3 + df4
│ │ │ │ -30.2 ms +- 3 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +33.9 ms +- 4.38 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")
│ │ │ │ -13.3 ms +- 753 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +14.4 ms +- 641 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
DataFrame
comparison:
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
│ │ │ │ -46.1 ms +- 3.7 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +65.4 ms +- 4.36 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")
│ │ │ │ -17.4 ms +- 1.25 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +21.1 ms +- 1.53 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
DataFrame
arithmetic with unaligned axes.
In [64]: s = pd.Series(np.random.randn(50))
│ │ │ │
│ │ │ │ In [65]: %timeit df1 + df2 + df3 + df4 + s
│ │ │ │ -47.6 ms +- 2.5 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +39.6 ms +- 2.82 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")
│ │ │ │ -13.9 ms +- 491 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +16.1 ms +- 1.38 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
Note
│ │ │ │Operations such as
│ │ │ │1 and 2 # would parse to 1 & 2, but should evaluate to 2
│ │ │ │ 3 or 4 # would parse to 3 | 4, but should evaluate to 3
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -110,32 +110,32 @@
│ │ │ │ │ ...: dx = (b - a) / N
│ │ │ │ │ ...: for i in range(N):
│ │ │ │ │ ...: s += f(a + i * dx)
│ │ │ │ │ ...: return s * dx
│ │ │ │ │ ...:
│ │ │ │ │ We achieve our result by using _D_a_t_a_F_r_a_m_e_._a_p_p_l_y_(_) (row-wise):
│ │ │ │ │ In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ │ -150 ms +- 24.1 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +250 ms +- 12.7 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ Let’s take a look and see where the time is spent during this operation using
│ │ │ │ │ the _p_r_u_n_ _i_p_y_t_h_o_n_ _m_a_g_i_c_ _f_u_n_c_t_i_o_n:
│ │ │ │ │ # most time consuming 4 calls
│ │ │ │ │ In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]),
│ │ │ │ │ axis=1) # noqa E999
│ │ │ │ │ - 605946 function calls (605928 primitive calls) in 0.466 seconds
│ │ │ │ │ + 605946 function calls (605928 primitive calls) in 0.792 seconds
│ │ │ │ │
│ │ │ │ │ Ordered by: internal time
│ │ │ │ │ List reduced from 159 to 4 due to restriction <4>
│ │ │ │ │
│ │ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ │ - 1000 0.258 0.000 0.395 0.000 :1
│ │ │ │ │ + 1000 0.497 0.000 0.699 0.001 :1
│ │ │ │ │ (integrate_f)
│ │ │ │ │ - 552423 0.138 0.000 0.138 0.000 :1
│ │ │ │ │ + 552423 0.202 0.000 0.202 0.000 :1
│ │ │ │ │ (f)
│ │ │ │ │ - 3000 0.019 0.000 0.033 0.000 series.py:1220(_get_value)
│ │ │ │ │ - 1000 0.013 0.000 0.014 0.000 managers.py:2065(set_values)
│ │ │ │ │ + 3000 0.028 0.000 0.033 0.000 series.py:1220(_get_value)
│ │ │ │ │ + 3000 0.013 0.000 0.060 0.000 series.py:1095(__getitem__)
│ │ │ │ │ By far the majority of time is spend inside either integrate_f or f, hence
│ │ │ │ │ we’ll concentrate our efforts cythonizing these two functions.
│ │ │ │ │ ******** PPllaaiinn CCyytthhoonn_## ********
│ │ │ │ │ First we’re going to need to import the Cython magic function to IPython:
│ │ │ │ │ In [7]: %load_ext Cython
│ │ │ │ │ Now, let’s simply copy our functions over to Cython:
│ │ │ │ │ In [8]: %%cython
│ │ │ │ │ @@ -146,15 +146,15 @@
│ │ │ │ │ ...: dx = (b - a) / N
│ │ │ │ │ ...: for i in range(N):
│ │ │ │ │ ...: s += f_plain(a + i * dx)
│ │ │ │ │ ...: return s * dx
│ │ │ │ │ ...:
│ │ │ │ │ In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]),
│ │ │ │ │ axis=1)
│ │ │ │ │ -163 ms +- 38.2 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +270 ms +- 37.4 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ This has improved the performance compared to the pure Python approach by one-
│ │ │ │ │ third.
│ │ │ │ │ ******** DDeeccllaarriinngg CC ttyyppeess_## ********
│ │ │ │ │ We can annotate the function variables and return types as well as use cdef and
│ │ │ │ │ cpdef to improve performance:
│ │ │ │ │ In [10]: %%cython
│ │ │ │ │ ....: cdef double f_typed(double x) except? -2:
│ │ │ │ │ @@ -166,34 +166,34 @@
│ │ │ │ │ ....: dx = (b - a) / N
│ │ │ │ │ ....: for i in range(N):
│ │ │ │ │ ....: s += f_typed(a + i * dx)
│ │ │ │ │ ....: return s * dx
│ │ │ │ │ ....:
│ │ │ │ │ In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]),
│ │ │ │ │ axis=1)
│ │ │ │ │ -23.8 ms +- 5.1 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +25.8 ms +- 4.19 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ Annotating the functions with C types yields an over ten times performance
│ │ │ │ │ improvement compared to the original Python implementation.
│ │ │ │ │ ******** UUssiinngg nnddaarrrraayy_## ********
│ │ │ │ │ When re-profiling, time is spent creating a _S_e_r_i_e_s from each row, and calling
│ │ │ │ │ __getitem__ from both the index and the series (three times for each row).
│ │ │ │ │ These Python function calls are expensive and can be improved by passing an
│ │ │ │ │ np.ndarray.
│ │ │ │ │ In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x
│ │ │ │ │ ["N"]), axis=1)
│ │ │ │ │ - 52523 function calls (52505 primitive calls) in 0.080 seconds
│ │ │ │ │ + 52523 function calls (52505 primitive calls) in 0.092 seconds
│ │ │ │ │
│ │ │ │ │ Ordered by: internal time
│ │ │ │ │ List reduced from 157 to 4 due to restriction <4>
│ │ │ │ │
│ │ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ │ - 3000 0.020 0.000 0.054 0.000 series.py:1095(__getitem__)
│ │ │ │ │ - 3000 0.015 0.000 0.015 0.000 base.py:3777(get_loc)
│ │ │ │ │ - 3000 0.011 0.000 0.028 0.000 series.py:1220(_get_value)
│ │ │ │ │ - 1 0.009 0.009 0.070 0.070 apply.py:1070
│ │ │ │ │ + 3000 0.023 0.000 0.028 0.000 series.py:1220(_get_value)
│ │ │ │ │ + 3000 0.016 0.000 0.049 0.000 series.py:1095(__getitem__)
│ │ │ │ │ + 1001 0.014 0.000 0.017 0.000 apply.py:1247(series_generator)
│ │ │ │ │ + 1 0.013 0.013 0.090 0.090 apply.py:1070
│ │ │ │ │ (apply_series_generator)
│ │ │ │ │ In [13]: %%cython
│ │ │ │ │ ....: cimport numpy as np
│ │ │ │ │ ....: import numpy as np
│ │ │ │ │ ....: cdef double f_typed(double x) except? -2:
│ │ │ │ │ ....: return x * (x - 1)
│ │ │ │ │ ....: cpdef double integrate_f_typed(double a, double b, int N):
│ │ │ │ │ @@ -235,15 +235,15 @@
│ │ │ │ │ This implementation creates an array of zeros and inserts the result of
│ │ │ │ │ integrate_f_typed applied over each row. Looping over an ndarray is faster in
│ │ │ │ │ Cython than looping over a _S_e_r_i_e_s object.
│ │ │ │ │ Since apply_integrate_f is typed to accept an np.ndarray, _S_e_r_i_e_s_._t_o___n_u_m_p_y_(_)
│ │ │ │ │ calls are needed to utilize this function.
│ │ │ │ │ In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df
│ │ │ │ │ ["N"].to_numpy())
│ │ │ │ │ -2.72 ms +- 400 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +3.78 ms +- 204 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ Performance has improved from the prior implementation by almost ten times.
│ │ │ │ │ ******** DDiissaabblliinngg ccoommppiilleerr ddiirreeccttiivveess_## ********
│ │ │ │ │ The majority of the time is now spent in apply_integrate_f. Disabling Cython’s
│ │ │ │ │ boundscheck and wraparound checks can yield more performance.
│ │ │ │ │ In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(),
│ │ │ │ │ df["N"].to_numpy())
│ │ │ │ │ 78 function calls in 0.001 seconds
│ │ │ │ │ @@ -252,15 +252,15 @@
│ │ │ │ │ List reduced from 21 to 4 due to restriction <4>
│ │ │ │ │
│ │ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ │ 1 0.001 0.001 0.001 0.001 :1()
│ │ │ │ │ 1 0.000 0.000 0.000 0.000 {method 'disable' of
│ │ │ │ │ '_lsprof.Profiler' objects}
│ │ │ │ │ 1 0.000 0.000 0.001 0.001 {built-in method builtins.exec}
│ │ │ │ │ - 3 0.000 0.000 0.000 0.000 base.py:541(to_numpy)
│ │ │ │ │ + 3 0.000 0.000 0.000 0.000 frame.py:4062(__getitem__)
│ │ │ │ │ In [16]: %%cython
│ │ │ │ │ ....: cimport cython
│ │ │ │ │ ....: cimport numpy as np
│ │ │ │ │ ....: import numpy as np
│ │ │ │ │ ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:
│ │ │ │ │ ....: return x * (x - 1)
│ │ │ │ │ ....: cpdef np.float64_t integrate_f_typed(np.float64_t a, np.float64_t b,
│ │ │ │ │ @@ -298,15 +298,15 @@
│ │ │ │ │ /usr/lib/python3/dist-packages/numpy/core/include/numpy/
│ │ │ │ │ npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API,
│ │ │ │ │ disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]
│ │ │ │ │ 17 | #warning "Using deprecated NumPy API, disable it with " \
│ │ │ │ │ | ^~~~~~~
│ │ │ │ │ In [17]: %timeit apply_integrate_f_wrap(df["a"].to_numpy(), df["b"].to_numpy(),
│ │ │ │ │ df["N"].to_numpy())
│ │ │ │ │ -1.8 ms +- 331 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +2.64 ms +- 225 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ However, a loop indexer i accessing an invalid location in an array would cause
│ │ │ │ │ a segfault because memory access isn’t checked. For more about boundscheck and
│ │ │ │ │ wraparound, see the Cython docs on _c_o_m_p_i_l_e_r_ _d_i_r_e_c_t_i_v_e_s.
│ │ │ │ │ ********** NNuummbbaa ((JJIITT ccoommppiillaattiioonn))_## **********
│ │ │ │ │ An alternative to statically compiling Cython code is to use a dynamic just-in-
│ │ │ │ │ time (JIT) compiler with _N_u_m_b_a.
│ │ │ │ │ Numba allows you to write a pure Python function which can be JIT compiled to
│ │ │ │ │ @@ -609,17 +609,17 @@
│ │ │ │ │ The 'numexpr' engine is the more performant engine that can yield performance
│ │ │ │ │ improvements compared to standard Python syntax for large _D_a_t_a_F_r_a_m_e. This
│ │ │ │ │ engine requires the optional dependency numexpr to be installed.
│ │ │ │ │ The 'python' engine is generally nnoott useful except for testing other evaluation
│ │ │ │ │ engines against it. You will achieve nnoo performance benefits using _e_v_a_l_(_) with
│ │ │ │ │ engine='python' and may incur a performance hit.
│ │ │ │ │ In [40]: %timeit df1 + df2 + df3 + df4
│ │ │ │ │ -28.9 ms +- 1.82 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +34.7 ms +- 2.54 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")
│ │ │ │ │ -29.3 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +33.6 ms +- 2.33 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ ******** TThhee _DD_aa_tt_aa_FF_rr_aa_mm_ee_.._ee_vv_aa_ll_((_)) mmeetthhoodd_## ********
│ │ │ │ │ In addition to the top level _p_a_n_d_a_s_._e_v_a_l_(_) function you can also evaluate an
│ │ │ │ │ expression in the “context” of a _D_a_t_a_F_r_a_m_e.
│ │ │ │ │ In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=["a", "b"])
│ │ │ │ │
│ │ │ │ │ In [43]: df.eval("a + b")
│ │ │ │ │ Out[43]:
│ │ │ │ │ @@ -716,29 +716,29 @@
│ │ │ │ │ _p_a_n_d_a_s_._e_v_a_l_(_) works well with expressions containing large arrays.
│ │ │ │ │ In [58]: nrows, ncols = 20000, 100
│ │ │ │ │
│ │ │ │ │ In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for
│ │ │ │ │ _ in range(4)]
│ │ │ │ │ _D_a_t_a_F_r_a_m_e arithmetic:
│ │ │ │ │ In [60]: %timeit df1 + df2 + df3 + df4
│ │ │ │ │ -30.2 ms +- 3 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +33.9 ms +- 4.38 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")
│ │ │ │ │ -13.3 ms +- 753 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +14.4 ms +- 641 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ _D_a_t_a_F_r_a_m_e comparison:
│ │ │ │ │ In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
│ │ │ │ │ -46.1 ms +- 3.7 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +65.4 ms +- 4.36 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")
│ │ │ │ │ -17.4 ms +- 1.25 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +21.1 ms +- 1.53 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ _D_a_t_a_F_r_a_m_e arithmetic with unaligned axes.
│ │ │ │ │ In [64]: s = pd.Series(np.random.randn(50))
│ │ │ │ │
│ │ │ │ │ In [65]: %timeit df1 + df2 + df3 + df4 + s
│ │ │ │ │ -47.6 ms +- 2.5 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +39.6 ms +- 2.82 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")
│ │ │ │ │ -13.9 ms +- 491 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +16.1 ms +- 1.38 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ Note
│ │ │ │ │ Operations such as
│ │ │ │ │ 1 and 2 # would parse to 1 & 2, but should evaluate to 2
│ │ │ │ │ 3 or 4 # would parse to 3 | 4, but should evaluate to 3
│ │ │ │ │ ~1 # this is okay, but slower when using eval
│ │ │ │ │ should be performed in Python. An exception will be raised if you try to
│ │ │ │ │ perform any boolean/bitwise operations with scalar operands that are not of
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html
│ │ │ │ @@ -1086,16 +1086,16 @@
│ │ │ │ ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")
│ │ │ │ ....: counts = pd.Series(dtype=int)
│ │ │ │ ....: for path in files:
│ │ │ │ ....: df = pd.read_parquet(path)
│ │ │ │ ....: counts = counts.add(df["name"].value_counts(), fill_value=0)
│ │ │ │ ....: counts.astype(int)
│ │ │ │ ....:
│ │ │ │ -CPU times: user 557 us, sys: 67 us, total: 624 us
│ │ │ │ -Wall time: 633 us
│ │ │ │ +CPU times: user 614 us, sys: 85 us, total: 699 us
│ │ │ │ +Wall time: 710 us
│ │ │ │ Out[32]: Series([], dtype: int64)
│ │ │ │
Some readers, like pandas.read_csv()
, offer parameters to control the
│ │ │ │ chunksize
when reading a single file.
Manually chunking is an OK option for workflows that don’t
│ │ │ │ require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby()
, are
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -644,16 +644,16 @@
│ │ │ │ │ ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")
│ │ │ │ │ ....: counts = pd.Series(dtype=int)
│ │ │ │ │ ....: for path in files:
│ │ │ │ │ ....: df = pd.read_parquet(path)
│ │ │ │ │ ....: counts = counts.add(df["name"].value_counts(), fill_value=0)
│ │ │ │ │ ....: counts.astype(int)
│ │ │ │ │ ....:
│ │ │ │ │ -CPU times: user 557 us, sys: 67 us, total: 624 us
│ │ │ │ │ -Wall time: 633 us
│ │ │ │ │ +CPU times: user 614 us, sys: 85 us, total: 699 us
│ │ │ │ │ +Wall time: 710 us
│ │ │ │ │ Out[32]: Series([], dtype: int64)
│ │ │ │ │ Some readers, like _p_a_n_d_a_s_._r_e_a_d___c_s_v_(_), offer parameters to control the chunksize
│ │ │ │ │ when reading a single file.
│ │ │ │ │ Manually chunking is an OK option for workflows that don’t require too
│ │ │ │ │ sophisticated of operations. Some operations, like _p_a_n_d_a_s_._D_a_t_a_F_r_a_m_e_._g_r_o_u_p_b_y_(_),
│ │ │ │ │ are much harder to do chunkwise. In these cases, you may be better switching to
│ │ │ │ │ a different library that implements these out-of-core algorithms for you.
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz
│ │ │ │ ├── style.ipynb
│ │ │ │ │ ├── Pretty-printed
│ │ │ │ │ │┄ Similarity: 0.9985610875706213%
│ │ │ │ │ │┄ Differences: {"'cells'": "{1: {'metadata': {'execution': {'iopub.execute_input': '2025-02-04T15:40:40.454921Z', "
│ │ │ │ │ │┄ "'iopub.status.busy': '2025-02-04T15:40:40.454659Z', 'iopub.status.idle': "
│ │ │ │ │ │┄ "'2025-02-04T15:40:41.674819Z', 'shell.execute_reply': "
│ │ │ │ │ │┄ "'2025-02-04T15:40:41.674098Z'}}}, 3: {'metadata': {'execution': "
│ │ │ │ │ │┄ "{'iopub.execute_input': '2025-02-04T15:40:41.683064Z', 'iopub.status.busy': "
│ │ │ │ │ │┄ "'2025-02-04T15:40:41.682662Z', 'iopub.status.idle': '2025-02-04T15:40:4 […]
│ │ │ │ │ │ @@ -39,18 +39,18 @@
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 1,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2026-03-09T18:47:16.854002Z",
│ │ │ │ │ │ - "iopub.status.busy": "2026-03-09T18:47:16.853722Z",
│ │ │ │ │ │ - "iopub.status.idle": "2026-03-09T18:47:17.667409Z",
│ │ │ │ │ │ - "shell.execute_reply": "2026-03-09T18:47:17.666559Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-02-04T15:40:40.454921Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-02-04T15:40:40.454659Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-02-04T15:40:41.674819Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-02-04T15:40:41.674098Z"
│ │ │ │ │ │ },
│ │ │ │ │ │ "nbsphinx": "hidden"
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [],
│ │ │ │ │ │ "source": [
│ │ │ │ │ │ "import matplotlib.pyplot\n",
│ │ │ │ │ │ "# We have this here to trigger matplotlib's font cache stuff.\n",
│ │ │ │ │ │ @@ -77,36 +77,36 @@
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 2,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2026-03-09T18:47:17.674133Z",
│ │ │ │ │ │ - "iopub.status.busy": "2026-03-09T18:47:17.673731Z",
│ │ │ │ │ │ - "iopub.status.idle": "2026-03-09T18:47:18.213859Z",
│ │ │ │ │ │ - "shell.execute_reply": "2026-03-09T18:47:18.213125Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-02-04T15:40:41.683064Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-02-04T15:40:41.682662Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-02-04T15:40:42.282820Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-02-04T15:40:42.282109Z"
│ │ │ │ │ │ }
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [],
│ │ │ │ │ │ "source": [
│ │ │ │ │ │ "import pandas as pd\n",
│ │ │ │ │ │ "import numpy as np\n",
│ │ │ │ │ │ "import matplotlib as mpl\n"
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 3,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2026-03-09T18:47:18.222093Z",
│ │ │ │ │ │ - "iopub.status.busy": "2026-03-09T18:47:18.221724Z",
│ │ │ │ │ │ - "iopub.status.idle": "2026-03-09T18:47:18.497874Z",
│ │ │ │ │ │ - "shell.execute_reply": "2026-03-09T18:47:18.497127Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-02-04T15:40:42.291047Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-02-04T15:40:42.290681Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-02-04T15:40:42.686821Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-02-04T15:40:42.686102Z"
│ │ │ │ │ │ },
│ │ │ │ │ │ "nbsphinx": "hidden"
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [],
│ │ │ │ │ │ "source": [
│ │ │ │ │ │ "# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\n",
│ │ │ │ │ │ "from pandas.io.formats.style import Styler\n",
│ │ │ │ │ │ @@ -123,18 +123,18 @@
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 4,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2026-03-09T18:47:18.506075Z",
│ │ │ │ │ │ - "iopub.status.busy": "2026-03-09T18:47:18.505714Z",
│ │ │ │ │ │ - "iopub.status.idle": "2026-03-09T18:47:18.525812Z",
│ │ │ │ │ │ - "shell.execute_reply": "2026-03-09T18:47:18.525113Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-02-04T15:40:42.695025Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-02-04T15:40:42.694666Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-02-04T15:40:42.726777Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-02-04T15:40:42.726083Z"
│ │ │ │ │ │ }
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [
│ │ │ │ │ │ {
│ │ │ │ │ │ "data": {
│ │ │ │ │ │ "text/html": [
│ │ │ │ │ │ "