--- /srv/reproducible-results/rbuild-debian/r-b-build.8zfIdCKc/b1/pandas_2.2.3+dfsg-8_arm64.changes +++ /srv/reproducible-results/rbuild-debian/r-b-build.8zfIdCKc/b2/pandas_2.2.3+dfsg-8_arm64.changes ├── Files │ @@ -1,5 +1,5 @@ │ │ - 1b1d785b7b3921c742e1f5fd3014c996 10793780 doc optional python-pandas-doc_2.2.3+dfsg-8_all.deb │ - b82025b39799b33c0c035eac8a4943c9 70934760 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-8_arm64.deb │ - ab1541411f7241c7230e430ae2e37ec7 6025904 python optional python3-pandas-lib_2.2.3+dfsg-8_arm64.deb │ + 481b7f1a085ddfc958458a42cab259e2 10793776 doc optional python-pandas-doc_2.2.3+dfsg-8_all.deb │ + 8f04d3428e523868db590d729ceeefe4 70943328 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-8_arm64.deb │ + d5206db7c636db49d3efce5f5cf8f753 6025516 python optional python3-pandas-lib_2.2.3+dfsg-8_arm64.deb │ ad1d0d3815c32f9db583cfe0dd79d880 3096896 python optional python3-pandas_2.2.3+dfsg-8_all.deb ├── python-pandas-doc_2.2.3+dfsg-8_all.deb │ ├── file list │ │ @@ -1,3 +1,3 @@ │ │ -rw-r--r-- 0 0 0 4 2025-02-01 18:39:17.000000 debian-binary │ │ --rw-r--r-- 0 0 0 147392 2025-02-01 18:39:17.000000 control.tar.xz │ │ +-rw-r--r-- 0 0 0 147388 2025-02-01 18:39:17.000000 control.tar.xz │ │ -rw-r--r-- 0 0 0 10646196 2025-02-01 18:39:17.000000 data.tar.xz │ ├── control.tar.xz │ │ ├── control.tar │ │ │ ├── ./md5sums │ │ │ │ ├── ./md5sums │ │ │ │ │┄ Files differ │ ├── data.tar.xz │ │ ├── data.tar │ │ │ ├── file list │ │ │ │ @@ -6256,61 +6256,61 @@ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 210184 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 48665 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 48657 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 53295 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/release.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 269 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 17010 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/search.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 2358386 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 2358436 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ -rw-r--r-- 0 root (0) root (0) 259 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/style.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 255 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/text.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 256 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 277 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html │ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 171332 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 283824 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 283823 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 435951 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 36646 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 217475 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 18313 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 66125 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 160305 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 81366 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 115355 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 115386 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 107868 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 300850 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 59715 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 395370 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 41778 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 1145214 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 208885 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 178642 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 112153 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 147512 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 162660 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 115580 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 65537 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 698240 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 87875 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 87847 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz │ │ │ │ -rw-r--r-- 0 root (0) root (0) 165302 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 100927 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 486577 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 204341 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 141947 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 270 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html │ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 107681 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 10566 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz │ │ │ │ -rw-r--r-- 0 root (0) root (0) 83987 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 66492 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 82312 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 104316 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 222477 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 222478 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 89385 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 243730 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 83262 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 252293 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 68280 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 75115 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 145199 2025-02-01 18:39:17.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html │ │ │ ├── ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ ├── js-beautify {} │ │ │ │ │ @@ -21494,31 +21494,31 @@ │ │ │ │ │ "001294": 2210, │ │ │ │ │ "001372": 2207, │ │ │ │ │ "001376": 2207, │ │ │ │ │ "001427": 2214, │ │ │ │ │ "001438": 2195, │ │ │ │ │ "001486": [102, 1158], │ │ │ │ │ "00180": 2294, │ │ │ │ │ - "002": [2193, 2264], │ │ │ │ │ + "002": 2264, │ │ │ │ │ "002000": 2232, │ │ │ │ │ "002040": 2235, │ │ │ │ │ "002118": [2230, 2231], │ │ │ │ │ "002653": 2207, │ │ │ │ │ "002846": 2229, │ │ │ │ │ - "003": [2185, 2193, 2235], │ │ │ │ │ + "003": [2185, 2235], │ │ │ │ │ "003144": 2210, │ │ │ │ │ "003337": 2207, │ │ │ │ │ "003494": 15, │ │ │ │ │ "003507": [2209, 2218], │ │ │ │ │ "003556": 2207, │ │ │ │ │ "00360": 2294, │ │ │ │ │ "003733": 2207, │ │ │ │ │ "003932": 2216, │ │ │ │ │ "003945": 2210, │ │ │ │ │ - "004": [2186, 2193, 2227], │ │ │ │ │ + "004": [2186, 2227], │ │ │ │ │ "004000": 2232, │ │ │ │ │ "004005006": [287, 939], │ │ │ │ │ "004054": 2229, │ │ │ │ │ "004091": [2204, 2257], │ │ │ │ │ "004127": 2207, │ │ │ │ │ "004194": 2186, │ │ │ │ │ "004201": 2186, │ │ │ │ │ @@ -21542,22 +21542,22 @@ │ │ │ │ │ "006438": 2215, │ │ │ │ │ "006549": [182, 760], │ │ │ │ │ "006695": 2186, │ │ │ │ │ "006747": [2185, 2197, 2199, 2202, 2204, 2215], │ │ │ │ │ "006871": 2212, │ │ │ │ │ "006888": 2220, │ │ │ │ │ "006938": 2207, │ │ │ │ │ - "007": 2193, │ │ │ │ │ "007200": 2184, │ │ │ │ │ "007207": [2184, 2214], │ │ │ │ │ "007717": 2199, │ │ │ │ │ "007824": 15, │ │ │ │ │ "007952": 2207, │ │ │ │ │ "007996": 2186, │ │ │ │ │ "007f": 203, │ │ │ │ │ + "008": 2193, │ │ │ │ │ "008182": 2204, │ │ │ │ │ "008298": 2186, │ │ │ │ │ "008344": 2207, │ │ │ │ │ "008358": 2207, │ │ │ │ │ "008500": 15, │ │ │ │ │ "008543": [102, 1158], │ │ │ │ │ "008943": [102, 1158], │ │ │ │ │ @@ -21569,15 +21569,16 @@ │ │ │ │ │ "009673": 2195, │ │ │ │ │ "009783": 2207, │ │ │ │ │ "009797": 2186, │ │ │ │ │ "009826": [102, 1158, 2205], │ │ │ │ │ "009920": [2184, 2195, 2214], │ │ │ │ │ "00am": 2230, │ │ │ │ │ "00index": 2218, │ │ │ │ │ - "01": [3, 15, 16, 17, 19, 29, 30, 31, 36, 79, 80, 82, 88, 107, 121, 182, 187, 207, 213, 218, 219, 230, 242, 261, 270, 271, 276, 277, 278, 283, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 326, 329, 330, 331, 332, 333, 345, 362, 363, 423, 445, 510, 511, 513, 514, 515, 516, 517, 519, 521, 523, 525, 529, 531, 532, 533, 534, 535, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 566, 575, 591, 592, 593, 600, 629, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 684, 685, 686, 688, 689, 696, 760, 763, 781, 788, 793, 804, 817, 874, 893, 898, 899, 902, 903, 904, 905, 909, 910, 917, 919, 922, 929, 934, 939, 940, 943, 944, 945, 948, 949, 953, 954, 957, 959, 960, 969, 972, 982, 984, 997, 1000, 1001, 1003, 1004, 1005, 1011, 1014, 1016, 1017, 1020, 1021, 1024, 1051, 1075, 1078, 1106, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1164, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1221, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1344, 1345, 1367, 1391, 1392, 1393, 1436, 1447, 1452, 1475, 1488, 1490, 1498, 1500, 1501, 1506, 1524, 1542, 1560, 1620, 1699, 1720, 1741, 1793, 1815, 1857, 1930, 1947, 1982, 2036, 2054, 2090, 2108, 2127, 2163, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2261, 2264, 2265, 2271, 2283, 2289, 2294, 2298, 2302, 2307], │ │ │ │ │ + "01": [3, 15, 16, 17, 19, 29, 30, 31, 36, 79, 80, 82, 88, 107, 121, 182, 187, 207, 213, 218, 219, 230, 242, 261, 270, 271, 276, 277, 278, 283, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 326, 329, 330, 331, 332, 333, 345, 362, 363, 423, 445, 510, 511, 513, 514, 515, 516, 517, 519, 521, 523, 525, 529, 531, 532, 533, 534, 535, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 566, 575, 591, 592, 593, 600, 629, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 684, 685, 686, 688, 689, 696, 760, 763, 781, 788, 793, 804, 817, 874, 893, 898, 899, 902, 903, 904, 905, 909, 910, 917, 919, 922, 929, 934, 939, 940, 943, 944, 945, 948, 949, 953, 954, 957, 959, 960, 969, 972, 982, 984, 997, 1000, 1001, 1003, 1004, 1005, 1011, 1014, 1016, 1017, 1020, 1021, 1024, 1051, 1075, 1078, 1106, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1164, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1221, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1344, 1345, 1367, 1391, 1392, 1393, 1436, 1447, 1452, 1475, 1488, 1490, 1498, 1500, 1501, 1506, 1524, 1542, 1560, 1620, 1699, 1720, 1741, 1793, 1815, 1857, 1930, 1947, 1982, 2036, 2054, 2090, 2108, 2127, 2163, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2261, 2264, 2265, 2271, 2283, 2289, 2294, 2298, 2302, 2307], │ │ │ │ │ + "010": 2193, │ │ │ │ │ "0100": [575, 893, 957, 970, 997, 1004, 1014, 1016, 1020, 1021, 1498, 2186, 2199, 2210, 2246, 2271], │ │ │ │ │ "010000": [954, 1894], │ │ │ │ │ "010010012": [923, 2209], │ │ │ │ │ "010026": 2191, │ │ │ │ │ "010081": 15, │ │ │ │ │ "010165": 2199, │ │ │ │ │ "010589": 2193, │ │ │ │ │ @@ -21597,15 +21598,14 @@ │ │ │ │ │ "011975": 2207, │ │ │ │ │ "012108": 2207, │ │ │ │ │ "012299": 2207, │ │ │ │ │ "0123456789123456": [2164, 2165], │ │ │ │ │ "012549": 2207, │ │ │ │ │ "012694": 2199, │ │ │ │ │ "012922": 2219, │ │ │ │ │ - "013": 2193, │ │ │ │ │ "013086": 15, │ │ │ │ │ "0133": 2202, │ │ │ │ │ "013448": 2207, │ │ │ │ │ "013605": 2207, │ │ │ │ │ "013684": [182, 760], │ │ │ │ │ "013692": [102, 1158], │ │ │ │ │ "013747": 2199, │ │ │ │ │ @@ -21627,15 +21627,14 @@ │ │ │ │ │ "015083": 2186, │ │ │ │ │ "015420": 2195, │ │ │ │ │ "015458": 2207, │ │ │ │ │ "015696": [2220, 2228, 2230], │ │ │ │ │ "015906": 2186, │ │ │ │ │ "015962": [2184, 2214], │ │ │ │ │ "015988": 2186, │ │ │ │ │ - "016": 2193, │ │ │ │ │ "016009": 15, │ │ │ │ │ "016287": 2210, │ │ │ │ │ "016331": 2210, │ │ │ │ │ "016424": [16, 19], │ │ │ │ │ "016692": [2184, 2195, 2214], │ │ │ │ │ "01685762652715874": [624, 1215], │ │ │ │ │ "017106": 2207, │ │ │ │ │ @@ -21704,15 +21703,15 @@ │ │ │ │ │ "024580": [2184, 2195, 2214], │ │ │ │ │ "024738": [102, 1158], │ │ │ │ │ "024786": 2207, │ │ │ │ │ "024810": 2207, │ │ │ │ │ "0249": [267, 896], │ │ │ │ │ "024925": 2195, │ │ │ │ │ "024967": 2207, │ │ │ │ │ - "025": [2186, 2193, 2222, 2227], │ │ │ │ │ + "025": [2186, 2222, 2227], │ │ │ │ │ "025054": 2184, │ │ │ │ │ "025270": 2186, │ │ │ │ │ "025363": 2186, │ │ │ │ │ "025367": 2207, │ │ │ │ │ "025747": [2191, 2197, 2207], │ │ │ │ │ "026036": 2207, │ │ │ │ │ "026158": 2210, │ │ │ │ │ @@ -21728,15 +21727,15 @@ │ │ │ │ │ "028152": 2207, │ │ │ │ │ "028166": 15, │ │ │ │ │ "028182": 2207, │ │ │ │ │ "028578": 2207, │ │ │ │ │ "028603": 2195, │ │ │ │ │ "028662": 28, │ │ │ │ │ "028665": 15, │ │ │ │ │ - "029": [2186, 2193, 2227], │ │ │ │ │ + "029": [2186, 2227], │ │ │ │ │ "029302": 2191, │ │ │ │ │ "029399": 2184, │ │ │ │ │ "029582": 2207, │ │ │ │ │ "029587": 2193, │ │ │ │ │ "029630": 2195, │ │ │ │ │ "029766": 2197, │ │ │ │ │ "02d": 2205, │ │ │ │ │ @@ -21798,14 +21797,15 @@ │ │ │ │ │ "036104": 2207, │ │ │ │ │ "036142": [2220, 2231], │ │ │ │ │ "0362": 2202, │ │ │ │ │ "0362196": 2202, │ │ │ │ │ "036235": 2205, │ │ │ │ │ "036660": 2199, │ │ │ │ │ "036854": 2199, │ │ │ │ │ + "037": 2193, │ │ │ │ │ "037181": 2191, │ │ │ │ │ "037528": 2235, │ │ │ │ │ "037651": 2207, │ │ │ │ │ "037772": 2214, │ │ │ │ │ "037882": [2184, 2214], │ │ │ │ │ "038": [1447, 2200, 2232], │ │ │ │ │ "038031": 2207, │ │ │ │ │ @@ -21819,28 +21819,29 @@ │ │ │ │ │ "039575": [15, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2210, 2214, 2215, 2218, 2225, 2226, 2241, 2260], │ │ │ │ │ "0396": [2184, 2186], │ │ │ │ │ "039624": 2207, │ │ │ │ │ "039926": 2210, │ │ │ │ │ "03c": 2208, │ │ │ │ │ "03t00": [2199, 2210, 2235, 2261], │ │ │ │ │ "03t05": [909, 2210], │ │ │ │ │ - "04": [26, 27, 29, 31, 80, 84, 88, 114, 127, 148, 149, 157, 177, 178, 207, 213, 230, 292, 294, 306, 307, 317, 330, 332, 345, 402, 423, 528, 529, 592, 595, 600, 640, 644, 646, 658, 659, 671, 685, 688, 703, 725, 726, 732, 755, 756, 781, 788, 804, 985, 1075, 1145, 1269, 1270, 1280, 1289, 1344, 1393, 1452, 1498, 1500, 1741, 1776, 1815, 2184, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2250, 2261, 2264, 2271, 2283, 2298], │ │ │ │ │ + "04": [26, 27, 29, 31, 80, 84, 88, 114, 127, 148, 149, 157, 177, 178, 207, 213, 230, 292, 294, 306, 307, 317, 330, 332, 345, 402, 423, 528, 529, 592, 595, 600, 640, 644, 646, 658, 659, 671, 685, 688, 703, 725, 726, 732, 755, 756, 781, 788, 804, 985, 1075, 1145, 1269, 1270, 1280, 1289, 1344, 1393, 1452, 1498, 1500, 1741, 1776, 1815, 2184, 2185, 2186, 2188, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2250, 2261, 2264, 2271, 2283, 2298], │ │ │ │ │ "0400": [2222, 2271], │ │ │ │ │ "040039": 2216, │ │ │ │ │ "040247": 2207, │ │ │ │ │ "0405": [182, 760], │ │ │ │ │ "040775": 2207, │ │ │ │ │ "040863": 2186, │ │ │ │ │ "041": [1447, 2200, 2232], │ │ │ │ │ "041290": 2197, │ │ │ │ │ "041575": 2219, │ │ │ │ │ "041665": 2205, │ │ │ │ │ "041898": 2207, │ │ │ │ │ "041927": 2199, │ │ │ │ │ "041933": 2184, │ │ │ │ │ + "042": 2193, │ │ │ │ │ "042041": 2207, │ │ │ │ │ "042275": [283, 910], │ │ │ │ │ "042322": 2207, │ │ │ │ │ "042379": [2184, 2195, 2214], │ │ │ │ │ "0424": 2257, │ │ │ │ │ "042856": 2218, │ │ │ │ │ "042935": 2207, │ │ │ │ │ @@ -21858,15 +21859,15 @@ │ │ │ │ │ "044236": [16, 17, 18, 19, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2220, 2225, 2235, 2241, 2260], │ │ │ │ │ "044522": 586, │ │ │ │ │ "044546": 2207, │ │ │ │ │ "044933": 2207, │ │ │ │ │ "045691": 2191, │ │ │ │ │ "045759": 2207, │ │ │ │ │ "045976": 2214, │ │ │ │ │ - "046": 2207, │ │ │ │ │ + "046": [2193, 2207], │ │ │ │ │ "046044": 2199, │ │ │ │ │ "046582": 2207, │ │ │ │ │ "046611": 2210, │ │ │ │ │ "046731": 2207, │ │ │ │ │ "046805": 2207, │ │ │ │ │ "046882": 2199, │ │ │ │ │ "047046": 2210, │ │ │ │ │ @@ -21925,15 +21926,14 @@ │ │ │ │ │ "053667": 2207, │ │ │ │ │ "053768": 2199, │ │ │ │ │ "053785": 2219, │ │ │ │ │ "054325": 2191, │ │ │ │ │ "0549": 2202, │ │ │ │ │ "054932": 2207, │ │ │ │ │ "054972": 2207, │ │ │ │ │ - "055": 2193, │ │ │ │ │ "055224": 2184, │ │ │ │ │ "055300": 2212, │ │ │ │ │ "055457": 2199, │ │ │ │ │ "055473": 2235, │ │ │ │ │ "055501": 2207, │ │ │ │ │ "055556": [69, 109, 129, 171, 173, 182, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 760], │ │ │ │ │ "055758": 2197, │ │ │ │ │ @@ -21951,29 +21951,30 @@ │ │ │ │ │ "0582": 2202, │ │ │ │ │ "0582158": 2202, │ │ │ │ │ "058373": 2207, │ │ │ │ │ "058534": 2210, │ │ │ │ │ "058615": 2207, │ │ │ │ │ "058664": 2195, │ │ │ │ │ "058837": 2210, │ │ │ │ │ + "059": 2193, │ │ │ │ │ "059018": 2199, │ │ │ │ │ "059277": [102, 1158], │ │ │ │ │ "0593": 2202, │ │ │ │ │ "059318": [182, 760], │ │ │ │ │ "059352": [102, 1158], │ │ │ │ │ "059382": 2207, │ │ │ │ │ "059478": 2210, │ │ │ │ │ "059481": 2207, │ │ │ │ │ "059552": 2207, │ │ │ │ │ "059761": 2207, │ │ │ │ │ "059869e": 2191, │ │ │ │ │ "059881": 2210, │ │ │ │ │ "059904": 2214, │ │ │ │ │ "05t00": 2261, │ │ │ │ │ - "06": [26, 27, 29, 30, 31, 207, 213, 218, 230, 273, 292, 294, 332, 363, 526, 534, 536, 637, 644, 646, 688, 781, 788, 793, 804, 900, 969, 993, 1075, 1344, 1441, 1442, 1449, 1450, 1452, 1489, 1497, 1500, 1506, 1524, 1598, 1677, 2184, 2186, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2226, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2264, 2271, 2298, 2302], │ │ │ │ │ + "06": [26, 27, 29, 30, 31, 207, 213, 218, 230, 273, 292, 294, 332, 363, 526, 534, 536, 637, 644, 646, 688, 781, 788, 793, 804, 900, 969, 993, 1075, 1344, 1441, 1442, 1449, 1450, 1452, 1489, 1497, 1500, 1506, 1524, 1598, 1677, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2222, 2226, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2264, 2271, 2298, 2302], │ │ │ │ │ "060015": 2207, │ │ │ │ │ "060074": 2185, │ │ │ │ │ "060603": 2207, │ │ │ │ │ "060654": 2207, │ │ │ │ │ "060777": 2207, │ │ │ │ │ "061019": 2199, │ │ │ │ │ "061068": 2210, │ │ │ │ │ @@ -21995,15 +21996,15 @@ │ │ │ │ │ "063328": 2235, │ │ │ │ │ "063367": 2216, │ │ │ │ │ "063474": 2207, │ │ │ │ │ "063477": 2186, │ │ │ │ │ "063850": 2207, │ │ │ │ │ "063922": 2184, │ │ │ │ │ "063933": 2207, │ │ │ │ │ - "064": 2207, │ │ │ │ │ + "064": [2193, 2207], │ │ │ │ │ "064034": [15, 2191], │ │ │ │ │ "064423": 2207, │ │ │ │ │ "064434": 2207, │ │ │ │ │ "065587": 2218, │ │ │ │ │ "065761": 2207, │ │ │ │ │ "065818": [2204, 2207], │ │ │ │ │ "065934": [182, 760], │ │ │ │ │ @@ -22031,15 +22032,15 @@ │ │ │ │ │ "069486": 2230, │ │ │ │ │ "069546": 2199, │ │ │ │ │ "069718": 2186, │ │ │ │ │ "069887": 2207, │ │ │ │ │ "069908": 2207, │ │ │ │ │ "069949": 2207, │ │ │ │ │ "06t00": 2261, │ │ │ │ │ - "07": [26, 27, 29, 30, 31, 187, 202, 207, 213, 230, 273, 277, 292, 294, 330, 332, 345, 644, 646, 685, 688, 763, 781, 788, 804, 900, 903, 1075, 1280, 1344, 1441, 1442, 1449, 1450, 1452, 1598, 1677, 1720, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2226, 2227, 2228, 2230, 2231, 2235, 2261, 2271, 2294, 2298], │ │ │ │ │ + "07": [26, 27, 29, 30, 31, 187, 202, 207, 213, 230, 273, 277, 292, 294, 330, 332, 345, 644, 646, 685, 688, 763, 781, 788, 804, 900, 903, 1075, 1280, 1344, 1441, 1442, 1449, 1450, 1452, 1598, 1677, 1720, 2184, 2186, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2226, 2227, 2228, 2230, 2231, 2235, 2261, 2271, 2294, 2298], │ │ │ │ │ "0700": 995, │ │ │ │ │ "070087": 2218, │ │ │ │ │ "070816": 2235, │ │ │ │ │ "071068": 2222, │ │ │ │ │ "071357": 2191, │ │ │ │ │ "071665": 2219, │ │ │ │ │ "0718": [2184, 2186], │ │ │ │ │ @@ -22098,15 +22099,15 @@ │ │ │ │ │ "079307": 15, │ │ │ │ │ "079587": 2230, │ │ │ │ │ "079631": 2207, │ │ │ │ │ "0797": 2202, │ │ │ │ │ "079769": 2207, │ │ │ │ │ "079915": 2193, │ │ │ │ │ "07t00": 2261, │ │ │ │ │ - "08": [29, 30, 107, 207, 213, 230, 264, 273, 277, 292, 294, 316, 326, 330, 332, 629, 644, 646, 670, 680, 685, 688, 781, 788, 804, 900, 903, 1075, 1145, 1164, 1221, 1274, 1289, 1344, 1441, 1442, 1449, 1450, 1452, 1495, 1497, 1506, 1598, 1657, 1677, 1699, 1720, 1741, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2218, 2220, 2222, 2226, 2228, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2271, 2294, 2307], │ │ │ │ │ + "08": [29, 30, 107, 207, 213, 230, 264, 273, 277, 292, 294, 316, 326, 330, 332, 629, 644, 646, 670, 680, 685, 688, 781, 788, 804, 900, 903, 1075, 1145, 1164, 1221, 1274, 1289, 1344, 1441, 1442, 1449, 1450, 1452, 1495, 1497, 1506, 1598, 1657, 1677, 1699, 1720, 1741, 2184, 2185, 2186, 2191, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2218, 2220, 2222, 2226, 2228, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2271, 2294, 2307], │ │ │ │ │ "0800": [953, 2210], │ │ │ │ │ "080174": 2207, │ │ │ │ │ "080372": 2199, │ │ │ │ │ "080952": [2184, 2214], │ │ │ │ │ "081009": 2195, │ │ │ │ │ "081161": 2216, │ │ │ │ │ "081249": 2207, │ │ │ │ │ @@ -22252,20 +22253,20 @@ │ │ │ │ │ "0n": [1489, 2298], │ │ │ │ │ "0px": 2207, │ │ │ │ │ "0rc0": 13, │ │ │ │ │ "0th": [26, 249, 882, 1202, 2185, 2197, 2199, 2235], │ │ │ │ │ "0x00": 2294, │ │ │ │ │ "0x40": 2294, │ │ │ │ │ "0x7efd0c0b0690": 3, │ │ │ │ │ - "0xffff31a25630": 2230, │ │ │ │ │ - "0xffff327cd620": 2210, │ │ │ │ │ - "0xffff665105f0": 2199, │ │ │ │ │ - "0xffff72090940": 2197, │ │ │ │ │ - "0xffff7358ab70": 2195, │ │ │ │ │ - "0xffff8927b8c0": 2246, │ │ │ │ │ + "0xffff18277ec0": 2210, │ │ │ │ │ + "0xffff4a40edf0": 2199, │ │ │ │ │ + "0xffff560303d0": 2197, │ │ │ │ │ + "0xffff574d0f50": 2195, │ │ │ │ │ + "0xffff5bfcfa10": 2246, │ │ │ │ │ + "0xffff6acfaa50": 2230, │ │ │ │ │ "1": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310], │ │ │ │ │ "10": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308], │ │ │ │ │ "100": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307], │ │ │ │ │ "1000": [9, 10, 15, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294], │ │ │ │ │ "10000": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266], │ │ │ │ │ "100000": [1354, 1372, 2199, 2201, 2210], │ │ │ │ │ "1000000": [144, 2199, 2228], │ │ │ │ │ @@ -22453,15 +22454,15 @@ │ │ │ │ │ "10442": 2229, │ │ │ │ │ "10443": 2228, │ │ │ │ │ "10447": 2228, │ │ │ │ │ "10448": 2228, │ │ │ │ │ "10451": 2228, │ │ │ │ │ "10452": 2231, │ │ │ │ │ "104569": [15, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2206, 2210, 2214, 2215, 2220, 2225, 2241, 2257, 2260], │ │ │ │ │ - "1046": [2184, 2186], │ │ │ │ │ + "1046": [2184, 2186, 2193], │ │ │ │ │ "10460": 2228, │ │ │ │ │ "10467": 2228, │ │ │ │ │ "104677": 15, │ │ │ │ │ "104699": 2230, │ │ │ │ │ "104759": 2207, │ │ │ │ │ "10476": 2232, │ │ │ │ │ "10477": 2228, │ │ │ │ │ @@ -22522,15 +22523,15 @@ │ │ │ │ │ "1061": [2194, 2212], │ │ │ │ │ "10610": 2228, │ │ │ │ │ "10611": 2246, │ │ │ │ │ "10618": 2228, │ │ │ │ │ "1062": [2194, 2197, 2212, 2231], │ │ │ │ │ "10620": 2228, │ │ │ │ │ "106252": 2207, │ │ │ │ │ - "1063": [2186, 2194, 2212], │ │ │ │ │ + "1063": [2186, 2193, 2194, 2212], │ │ │ │ │ "10630": 2228, │ │ │ │ │ "10632": 2235, │ │ │ │ │ "10633": [2228, 2249], │ │ │ │ │ "10636": 2228, │ │ │ │ │ "10637": 2228, │ │ │ │ │ "10638": 2228, │ │ │ │ │ "10639": 2228, │ │ │ │ │ @@ -22984,15 +22985,15 @@ │ │ │ │ │ "11788": 2199, │ │ │ │ │ "117887": 2195, │ │ │ │ │ "11790": 2230, │ │ │ │ │ "11792": 2246, │ │ │ │ │ "11794": 2230, │ │ │ │ │ "117949": 2214, │ │ │ │ │ "117967": 2216, │ │ │ │ │ - "118": [268, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2228, 2230, 2232, 2242, 2249, 2265], │ │ │ │ │ + "118": [268, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2228, 2230, 2232, 2242, 2249, 2265], │ │ │ │ │ "11804": 2230, │ │ │ │ │ "11805": 2230, │ │ │ │ │ "11806": 2199, │ │ │ │ │ "118076": 2186, │ │ │ │ │ "11808": 2230, │ │ │ │ │ "118091": 2207, │ │ │ │ │ "11818": 2230, │ │ │ │ │ @@ -23057,15 +23058,15 @@ │ │ │ │ │ "11974": 2230, │ │ │ │ │ "11981": 2232, │ │ │ │ │ "11986": 2230, │ │ │ │ │ "11990": 2230, │ │ │ │ │ "11995": 2230, │ │ │ │ │ "11h": 2210, │ │ │ │ │ "12": [15, 17, 18, 19, 22, 24, 25, 26, 28, 29, 30, 31, 32, 69, 72, 73, 77, 78, 84, 88, 102, 107, 109, 111, 113, 129, 133, 134, 160, 162, 171, 173, 183, 187, 188, 189, 190, 193, 199, 202, 204, 206, 207, 208, 213, 215, 216, 217, 220, 221, 222, 244, 253, 259, 265, 275, 288, 292, 294, 296, 303, 308, 309, 313, 316, 318, 332, 333, 345, 362, 363, 420, 423, 509, 513, 514, 515, 516, 522, 524, 526, 530, 532, 535, 541, 557, 575, 586, 595, 600, 629, 635, 639, 644, 646, 652, 655, 660, 661, 666, 670, 673, 688, 689, 708, 738, 761, 763, 764, 765, 766, 768, 781, 782, 788, 799, 873, 886, 890, 893, 895, 923, 926, 940, 943, 948, 953, 976, 980, 987, 1017, 1075, 1154, 1158, 1162, 1164, 1169, 1189, 1192, 1195, 1205, 1219, 1221, 1226, 1250, 1253, 1256, 1267, 1274, 1276, 1290, 1292, 1336, 1344, 1392, 1431, 1433, 1452, 1482, 1487, 1497, 1498, 1560, 1578, 1598, 1620, 1637, 1657, 1677, 1699, 1720, 1758, 1793, 1815, 1839, 1876, 1894, 1912, 1930, 1964, 2018, 2127, 2145, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2257, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302, 2307], │ │ │ │ │ - "120": [15, 78, 162, 273, 359, 360, 587, 588, 900, 930, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2230, 2232], │ │ │ │ │ + "120": [15, 78, 162, 273, 359, 360, 587, 588, 900, 930, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2230, 2232], │ │ │ │ │ "12000": [2185, 2220], │ │ │ │ │ "12004": 2265, │ │ │ │ │ "120055": 2228, │ │ │ │ │ "12011": [176, 179], │ │ │ │ │ "12014": 2230, │ │ │ │ │ "12017": 2230, │ │ │ │ │ "12019": 2230, │ │ │ │ │ @@ -23136,15 +23137,15 @@ │ │ │ │ │ "12182": 2230, │ │ │ │ │ "12185": 2232, │ │ │ │ │ "12190": 2238, │ │ │ │ │ "121950": 2207, │ │ │ │ │ "12198": 2230, │ │ │ │ │ "121991": 2207, │ │ │ │ │ "122": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2220, 2232], │ │ │ │ │ - "1220": [2193, 2298], │ │ │ │ │ + "1220": 2298, │ │ │ │ │ "12202": 2230, │ │ │ │ │ "12203": 2231, │ │ │ │ │ "1221": 2298, │ │ │ │ │ "12211": 2231, │ │ │ │ │ "12213": 2265, │ │ │ │ │ "12216": 2232, │ │ │ │ │ "12217": 2230, │ │ │ │ │ @@ -23377,15 +23378,15 @@ │ │ │ │ │ "12887": 2231, │ │ │ │ │ "12888": 2230, │ │ │ │ │ "1289": 2197, │ │ │ │ │ "128907": 2186, │ │ │ │ │ "12893": 2231, │ │ │ │ │ "12896": 2232, │ │ │ │ │ "128hr": 234, │ │ │ │ │ - "129": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2214, 2225, 2232, 2283], │ │ │ │ │ + "129": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2214, 2225, 2232, 2283], │ │ │ │ │ "1290": 2197, │ │ │ │ │ "12902": 2231, │ │ │ │ │ "12903": 2231, │ │ │ │ │ "12907": 2232, │ │ │ │ │ "12908": 2231, │ │ │ │ │ "1291": 2197, │ │ │ │ │ "12910": 2231, │ │ │ │ │ @@ -24314,15 +24315,15 @@ │ │ │ │ │ "15495": 2238, │ │ │ │ │ "1549507744": 2199, │ │ │ │ │ "1549507744249032": 2197, │ │ │ │ │ "154951": [15, 2185, 2197, 2199, 2202], │ │ │ │ │ "154971": 22, │ │ │ │ │ "154975": 22, │ │ │ │ │ "15498": 2235, │ │ │ │ │ - "155": [1447, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2207, 2210, 2211, 2232], │ │ │ │ │ + "155": [1447, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2207, 2210, 2211, 2232], │ │ │ │ │ "15501": 2246, │ │ │ │ │ "15503": 2235, │ │ │ │ │ "15504": 2235, │ │ │ │ │ "15506": 2246, │ │ │ │ │ "15507": 2238, │ │ │ │ │ "15516": 2235, │ │ │ │ │ "15520": 2235, │ │ │ │ │ @@ -25677,15 +25678,15 @@ │ │ │ │ │ "20020101": 2199, │ │ │ │ │ "200252": 2207, │ │ │ │ │ "20027": 2241, │ │ │ │ │ "2002q3": 540, │ │ │ │ │ "2003": [195, 264, 770, 2199], │ │ │ │ │ "20030": 2241, │ │ │ │ │ "200308": 2207, │ │ │ │ │ - "2004": [107, 629, 1164, 1221, 2219], │ │ │ │ │ + "2004": [107, 629, 1164, 1221, 2193, 2219], │ │ │ │ │ "20040": 2241, │ │ │ │ │ "20040601": 2219, │ │ │ │ │ "20049": 2246, │ │ │ │ │ "2005": [532, 1345, 1391, 1488, 1490, 1501, 2199, 2202, 2210], │ │ │ │ │ "200519": 2207, │ │ │ │ │ "20056": 2241, │ │ │ │ │ "2006": [107, 532, 629, 1164, 1221, 2191], │ │ │ │ │ @@ -25747,20 +25748,19 @@ │ │ │ │ │ "2021": [288, 296, 318, 639, 652, 673, 940, 943, 948, 957, 970, 997, 1542, 2201, 2207, 2213, 2277, 2289, 2294], │ │ │ │ │ "2022": [5, 22, 523, 525, 528, 537, 982, 1185, 1246, 1288, 1491, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1542, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1560, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1578, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1598, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1620, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1637, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1657, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1677, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1699, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1720, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1758, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1776, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1793, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1815, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1839, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1857, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1876, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1894, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1912, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1930, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1947, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1964, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1982, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2018, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2036, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2054, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2108, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2127, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2145, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2186, 2203, 2213, 2227, 2298, 2302, 2307], │ │ │ │ │ "2022a": 2294, │ │ │ │ │ "2023": [34, 270, 298, 301, 320, 363, 511, 519, 526, 533, 543, 544, 545, 546, 547, 548, 549, 551, 554, 555, 556, 557, 558, 560, 563, 564, 565, 566, 567, 651, 894, 898, 954, 959, 960, 982, 984, 1000, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1024, 1122, 1141, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1501, 1620, 1930, 2090, 2127, 2145, 2213], │ │ │ │ │ "202380": 2207, │ │ │ │ │ "20239": [2241, 2265], │ │ │ │ │ "2024": [270, 544, 546, 555, 567, 894, 898, 2127, 2213], │ │ │ │ │ - "2025": [36, 544, 546, 555, 567, 894, 898], │ │ │ │ │ + "2025": [36, 544, 546, 555, 567, 894, 898, 2228], │ │ │ │ │ "20251": 2307, │ │ │ │ │ "2026": 2228, │ │ │ │ │ "202602": 2205, │ │ │ │ │ "202646": 2230, │ │ │ │ │ - "2027": 2228, │ │ │ │ │ "20271": 2241, │ │ │ │ │ "202872": [2184, 2214], │ │ │ │ │ "202946": 2207, │ │ │ │ │ "203": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2253], │ │ │ │ │ "2030": 2265, │ │ │ │ │ "20303": 2265, │ │ │ │ │ "20306": 2302, │ │ │ │ │ @@ -25851,15 +25851,15 @@ │ │ │ │ │ "206341": 2207, │ │ │ │ │ "20636": [2241, 2246], │ │ │ │ │ "2064": [31, 2191], │ │ │ │ │ "206412": [2185, 2197, 2199, 2202, 2204, 2215, 2257], │ │ │ │ │ "206446": 2207, │ │ │ │ │ "20647": [2271, 2298], │ │ │ │ │ "20649": 2277, │ │ │ │ │ - "2065": 31, │ │ │ │ │ + "2065": [31, 2193], │ │ │ │ │ "20653": 2241, │ │ │ │ │ "20656": 2246, │ │ │ │ │ "2066": 31, │ │ │ │ │ "206601": 2186, │ │ │ │ │ "20661": 2241, │ │ │ │ │ "20664": 2241, │ │ │ │ │ "2067": [30, 31], │ │ │ │ │ @@ -26247,15 +26247,15 @@ │ │ │ │ │ "2205": 2264, │ │ │ │ │ "220674": 2195, │ │ │ │ │ "22074": 2246, │ │ │ │ │ "22083": 2246, │ │ │ │ │ "22084": 2246, │ │ │ │ │ "22085": 2246, │ │ │ │ │ "22092": 2246, │ │ │ │ │ - "221": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220], │ │ │ │ │ + "221": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2220], │ │ │ │ │ "221118": 2191, │ │ │ │ │ "221163": 2207, │ │ │ │ │ "22119": 2246, │ │ │ │ │ "22124": 2246, │ │ │ │ │ "221265": 2214, │ │ │ │ │ "22144": 2289, │ │ │ │ │ "2215": 2218, │ │ │ │ │ @@ -26385,14 +26385,15 @@ │ │ │ │ │ "22727": 2283, │ │ │ │ │ "227371": 2202, │ │ │ │ │ "227435": 2186, │ │ │ │ │ "22747": 2246, │ │ │ │ │ "22748": 2246, │ │ │ │ │ "22752": 2246, │ │ │ │ │ "22762": 2246, │ │ │ │ │ + "227688": 2228, │ │ │ │ │ "2277": [2186, 2227], │ │ │ │ │ "227761": 2207, │ │ │ │ │ "22783": 2246, │ │ │ │ │ "22784": 2246, │ │ │ │ │ "227870": 2197, │ │ │ │ │ "227877": [1148, 1149], │ │ │ │ │ "22790": 2246, │ │ │ │ │ @@ -26413,14 +26414,15 @@ │ │ │ │ │ "22862": 2246, │ │ │ │ │ "22880": 2246, │ │ │ │ │ "22887": 2246, │ │ │ │ │ "229": [2185, 2186, 2188, 2195, 2197, 2199, 2210], │ │ │ │ │ "22903": 2246, │ │ │ │ │ "22905": 2246, │ │ │ │ │ "22912": 2246, │ │ │ │ │ + "229158": 2228, │ │ │ │ │ "22922": 2246, │ │ │ │ │ "229349": 2207, │ │ │ │ │ "22938": 2246, │ │ │ │ │ "229453": 2197, │ │ │ │ │ "229616": 2207, │ │ │ │ │ "22962": 2298, │ │ │ │ │ "229675": 2207, │ │ │ │ │ @@ -27331,15 +27333,15 @@ │ │ │ │ │ "2718281": 2223, │ │ │ │ │ "27186": [2241, 2249], │ │ │ │ │ "271860": [15, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2210, 2214, 2215, 2218, 2225, 2231, 2241, 2260], │ │ │ │ │ "2719": [2184, 2186, 2191], │ │ │ │ │ "271973": 2216, │ │ │ │ │ "27198": 2265, │ │ │ │ │ "27199": [2249, 2265], │ │ │ │ │ - "272": [2186, 2188, 2193, 2195, 2197, 2199, 2210], │ │ │ │ │ + "272": [2186, 2188, 2195, 2197, 2199, 2210], │ │ │ │ │ "27219": 2249, │ │ │ │ │ "27222": 2271, │ │ │ │ │ "27237": 2271, │ │ │ │ │ "272395": 2235, │ │ │ │ │ "27242": 2265, │ │ │ │ │ "27250": 2249, │ │ │ │ │ "272593": 2230, │ │ │ │ │ @@ -27423,14 +27425,15 @@ │ │ │ │ │ "276183": 2257, │ │ │ │ │ "2762": [2184, 2186, 2191], │ │ │ │ │ "276232": [15, 2184, 2185, 2186, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2225, 2231, 2241, 2264], │ │ │ │ │ "27636": 2250, │ │ │ │ │ "276386": 2207, │ │ │ │ │ "27642": 2250, │ │ │ │ │ "276464": 2230, │ │ │ │ │ + "2765": 2193, │ │ │ │ │ "27656": [2294, 2298], │ │ │ │ │ "27660": 2265, │ │ │ │ │ "2766617129497566": 2257, │ │ │ │ │ "276662": [2185, 2197, 2199, 2202, 2215, 2257], │ │ │ │ │ "27668": 2265, │ │ │ │ │ "2767": 2191, │ │ │ │ │ "27676": 2265, │ │ │ │ │ @@ -27513,15 +27516,15 @@ │ │ │ │ │ "28115": 2265, │ │ │ │ │ "28118": 2265, │ │ │ │ │ "281247": [2185, 2191, 2197, 2199, 2202, 2204], │ │ │ │ │ "28130": 2265, │ │ │ │ │ "28139": 2265, │ │ │ │ │ "281461": 2191, │ │ │ │ │ "28147": 2251, │ │ │ │ │ - "281472986114992": 2246, │ │ │ │ │ + "281472225191632": 2246, │ │ │ │ │ "28150": 2265, │ │ │ │ │ "28156": 2271, │ │ │ │ │ "28163": 2265, │ │ │ │ │ "2817": 1344, │ │ │ │ │ "281885": 2186, │ │ │ │ │ "28189": 2271, │ │ │ │ │ "28192": 2265, │ │ │ │ │ @@ -29102,15 +29105,15 @@ │ │ │ │ │ "3605": 2217, │ │ │ │ │ "360526": 2207, │ │ │ │ │ "360575": 2191, │ │ │ │ │ "360588": 2186, │ │ │ │ │ "3606": 2217, │ │ │ │ │ "36063": 2274, │ │ │ │ │ "36076": 2277, │ │ │ │ │ - "361": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 268, 271, 275, 899, 1485, 2186, 2197, 2199, 2210, 2249, 2255, 2298], │ │ │ │ │ + "361": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 268, 271, 275, 899, 1485, 2186, 2193, 2197, 2199, 2210, 2249, 2255, 2298], │ │ │ │ │ "361078": 2214, │ │ │ │ │ "36113": 2277, │ │ │ │ │ "36122": 2274, │ │ │ │ │ "361288": 2207, │ │ │ │ │ "36131": [2283, 2298], │ │ │ │ │ "361428": 2199, │ │ │ │ │ "36148": [2277, 2294, 2298], │ │ │ │ │ @@ -29197,15 +29200,15 @@ │ │ │ │ │ "36566": 2283, │ │ │ │ │ "36567": 2277, │ │ │ │ │ "365819": 2210, │ │ │ │ │ "36583": 2277, │ │ │ │ │ "36589": 2289, │ │ │ │ │ "3659": 2217, │ │ │ │ │ "36596": 2283, │ │ │ │ │ - "366": [303, 514, 516, 532, 544, 546, 655, 2186, 2193, 2197, 2199, 2209, 2210, 2298], │ │ │ │ │ + "366": [303, 514, 516, 532, 544, 546, 655, 2186, 2197, 2199, 2209, 2210, 2298], │ │ │ │ │ "36603": 2274, │ │ │ │ │ "36611": 2277, │ │ │ │ │ "366110": 2197, │ │ │ │ │ "3662": 2220, │ │ │ │ │ "36621": 2277, │ │ │ │ │ "3663": 2238, │ │ │ │ │ "366330": 2195, │ │ │ │ │ @@ -29213,15 +29216,15 @@ │ │ │ │ │ "3667": 2217, │ │ │ │ │ "36672": 2225, │ │ │ │ │ "36685": [2277, 2298], │ │ │ │ │ "36688": 2283, │ │ │ │ │ "366920": 2214, │ │ │ │ │ "36695": 2298, │ │ │ │ │ "36697": 2298, │ │ │ │ │ - "367": [2186, 2197, 2199, 2209, 2210, 2249], │ │ │ │ │ + "367": [2186, 2193, 2197, 2199, 2209, 2210, 2249], │ │ │ │ │ "36702": 2277, │ │ │ │ │ "36703": 2302, │ │ │ │ │ "36712": 2298, │ │ │ │ │ "367219": 2207, │ │ │ │ │ "36727": 2275, │ │ │ │ │ "367331": 2191, │ │ │ │ │ "36738": 2277, │ │ │ │ │ @@ -29417,15 +29420,15 @@ │ │ │ │ │ "37748": 2277, │ │ │ │ │ "37750": 2289, │ │ │ │ │ "377535": 2186, │ │ │ │ │ "37755": 2276, │ │ │ │ │ "37758": 2277, │ │ │ │ │ "377642": 2210, │ │ │ │ │ "37768": 2277, │ │ │ │ │ - "3777": [2193, 2218], │ │ │ │ │ + "3777": 2218, │ │ │ │ │ "37782": 2302, │ │ │ │ │ "377887": 2207, │ │ │ │ │ "37799": 2277, │ │ │ │ │ "378": [2186, 2197, 2199, 2207, 2210, 2231], │ │ │ │ │ "3780": 2222, │ │ │ │ │ "37804": 2283, │ │ │ │ │ "378163": 2207, │ │ │ │ │ @@ -29505,15 +29508,15 @@ │ │ │ │ │ "3817": [2185, 2191, 2194], │ │ │ │ │ "38172": 2289, │ │ │ │ │ "38178": 2277, │ │ │ │ │ "38187": 2277, │ │ │ │ │ "38195": 2277, │ │ │ │ │ "38197": 2277, │ │ │ │ │ "381994": 2197, │ │ │ │ │ - "382": [16, 17, 18, 19, 2186, 2197, 2199, 2210, 2235], │ │ │ │ │ + "382": [16, 17, 18, 19, 2186, 2193, 2197, 2199, 2210, 2235], │ │ │ │ │ "382141": 2206, │ │ │ │ │ "382242": 2199, │ │ │ │ │ "38225": 2277, │ │ │ │ │ "382263": 2207, │ │ │ │ │ "38227": 2277, │ │ │ │ │ "38234": 2277, │ │ │ │ │ "382459": 2184, │ │ │ │ │ @@ -30479,15 +30482,15 @@ │ │ │ │ │ "42650": 2285, │ │ │ │ │ "42651": 2289, │ │ │ │ │ "42659": 2288, │ │ │ │ │ "426676": 2207, │ │ │ │ │ "426679": 2229, │ │ │ │ │ "42688": 2289, │ │ │ │ │ "426953": 2207, │ │ │ │ │ - "427": [2186, 2193, 2199, 2210, 2298], │ │ │ │ │ + "427": [2186, 2199, 2210, 2298], │ │ │ │ │ "42704": 2289, │ │ │ │ │ "427117": 2207, │ │ │ │ │ "42714": 2285, │ │ │ │ │ "42717": 2298, │ │ │ │ │ "42719": 2285, │ │ │ │ │ "42727": 2285, │ │ │ │ │ "4273": 2218, │ │ │ │ │ @@ -30850,15 +30853,15 @@ │ │ │ │ │ "43986": 2289, │ │ │ │ │ "439872": 2199, │ │ │ │ │ "43988": 2289, │ │ │ │ │ "439895": 2193, │ │ │ │ │ "4399": 2197, │ │ │ │ │ "43997": 2289, │ │ │ │ │ "43999": 2302, │ │ │ │ │ - "44": [15, 17, 19, 28, 31, 32, 213, 345, 788, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2294], │ │ │ │ │ + "44": [15, 17, 19, 28, 31, 32, 213, 345, 788, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283, 2294], │ │ │ │ │ "440": [1363, 2186, 2199, 2210], │ │ │ │ │ "4400": 2197, │ │ │ │ │ "44008": 2302, │ │ │ │ │ "44011": 2289, │ │ │ │ │ "44014": 2294, │ │ │ │ │ "44019": 2289, │ │ │ │ │ "4402": 2218, │ │ │ │ │ @@ -31943,15 +31946,15 @@ │ │ │ │ │ "4936": 2218, │ │ │ │ │ "493662": [15, 2185, 2197, 2204], │ │ │ │ │ "4937": 2218, │ │ │ │ │ "49374": 2296, │ │ │ │ │ "4939": 2218, │ │ │ │ │ "49397": 2298, │ │ │ │ │ "493995": 2201, │ │ │ │ │ - "494": [2193, 2199, 2207, 2210, 2249, 2298], │ │ │ │ │ + "494": [2199, 2207, 2210, 2249, 2298], │ │ │ │ │ "4940": 2218, │ │ │ │ │ "494034": 2207, │ │ │ │ │ "49404": 2298, │ │ │ │ │ "494079": 2207, │ │ │ │ │ "49417": 2298, │ │ │ │ │ "49420": 2298, │ │ │ │ │ "494400": 162, │ │ │ │ │ @@ -32309,15 +32312,15 @@ │ │ │ │ │ "51076": 2298, │ │ │ │ │ "510805": 2207, │ │ │ │ │ "51084": 2298, │ │ │ │ │ "51090": 2298, │ │ │ │ │ "51092": 2298, │ │ │ │ │ "51098": 2298, │ │ │ │ │ "51099": 2302, │ │ │ │ │ - "511": [2184, 2199, 2205], │ │ │ │ │ + "511": [2184, 2193, 2199, 2205], │ │ │ │ │ "51101": 2298, │ │ │ │ │ "511055": 2207, │ │ │ │ │ "51111198": [624, 1215], │ │ │ │ │ "51152": 2298, │ │ │ │ │ "51158": 2302, │ │ │ │ │ "51162": 2298, │ │ │ │ │ "51167": 2298, │ │ │ │ │ @@ -32454,15 +32457,15 @@ │ │ │ │ │ "51856": 2302, │ │ │ │ │ "51858": 2302, │ │ │ │ │ "51861": 2302, │ │ │ │ │ "51873": 2302, │ │ │ │ │ "518736": 2197, │ │ │ │ │ "51895": 2300, │ │ │ │ │ "51896": 2302, │ │ │ │ │ - "519": [2194, 2199, 2201, 2203, 2205, 2238, 2283, 2294, 2307], │ │ │ │ │ + "519": [2194, 2199, 2201, 2203, 2238, 2283, 2294, 2307], │ │ │ │ │ "51903": 2302, │ │ │ │ │ "5191": 2218, │ │ │ │ │ "519133": 2207, │ │ │ │ │ "51921": 2302, │ │ │ │ │ "51922": 2302, │ │ │ │ │ "51929": 2307, │ │ │ │ │ "51936": 2302, │ │ │ │ │ @@ -32999,15 +33002,15 @@ │ │ │ │ │ "54868": 2303, │ │ │ │ │ "54870": 2303, │ │ │ │ │ "548702": [2184, 2214], │ │ │ │ │ "54875": 2303, │ │ │ │ │ "54877": 2303, │ │ │ │ │ "548814": 2166, │ │ │ │ │ "54894": 2303, │ │ │ │ │ - "549": 2199, │ │ │ │ │ + "549": [2199, 2205], │ │ │ │ │ "5490": 2219, │ │ │ │ │ "54904": 2303, │ │ │ │ │ "549047": 2207, │ │ │ │ │ "54918": 2303, │ │ │ │ │ "54920": 2303, │ │ │ │ │ "54922": 2304, │ │ │ │ │ "54931": 2303, │ │ │ │ │ @@ -33047,15 +33050,15 @@ │ │ │ │ │ "55069": 2308, │ │ │ │ │ "550787": 2207, │ │ │ │ │ "5508": 2218, │ │ │ │ │ "55080": 2305, │ │ │ │ │ "55084": 2307, │ │ │ │ │ "550854": 2207, │ │ │ │ │ "55088": 2306, │ │ │ │ │ - "551": [2193, 2199], │ │ │ │ │ + "551": 2199, │ │ │ │ │ "55106": 2304, │ │ │ │ │ "55108": 2307, │ │ │ │ │ "551115123125783e": 2199, │ │ │ │ │ "55113": 2307, │ │ │ │ │ "551225": 2193, │ │ │ │ │ "55137": 2306, │ │ │ │ │ "55138": 2304, │ │ │ │ │ @@ -33296,15 +33299,15 @@ │ │ │ │ │ "562777": 2191, │ │ │ │ │ "562782": 2186, │ │ │ │ │ "562808": 2207, │ │ │ │ │ "562860": [1148, 1149], │ │ │ │ │ "562861": 2235, │ │ │ │ │ "562868": 2207, │ │ │ │ │ "562973": 2186, │ │ │ │ │ - "563": [2199, 2205, 2257], │ │ │ │ │ + "563": [2199, 2257], │ │ │ │ │ "5630": [2192, 2197], │ │ │ │ │ "5632": [2192, 2197], │ │ │ │ │ "56323": 2307, │ │ │ │ │ "5633": [2192, 2197], │ │ │ │ │ "5634": [2192, 2197], │ │ │ │ │ "56345": 2307, │ │ │ │ │ "5635": [2192, 2197], │ │ │ │ │ @@ -33399,15 +33402,15 @@ │ │ │ │ │ "5695": 2219, │ │ │ │ │ "569522": 2207, │ │ │ │ │ "569605": [2185, 2197, 2199, 2202, 2204, 2215], │ │ │ │ │ "569718": 2207, │ │ │ │ │ "5698": 2218, │ │ │ │ │ "56991": 2308, │ │ │ │ │ "57": [15, 17, 18, 19, 276, 902, 1192, 1253, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2225, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2271], │ │ │ │ │ - "570": [2199, 2205], │ │ │ │ │ + "570": 2199, │ │ │ │ │ "57006": 2308, │ │ │ │ │ "57010": 2308, │ │ │ │ │ "57019": 2308, │ │ │ │ │ "5702": 2218, │ │ │ │ │ "57027": 2308, │ │ │ │ │ "5703": 2218, │ │ │ │ │ "57039": 2308, │ │ │ │ │ @@ -33810,15 +33813,15 @@ │ │ │ │ │ "615556": 27, │ │ │ │ │ "615597": 2207, │ │ │ │ │ "615674": 2207, │ │ │ │ │ "615801": 2207, │ │ │ │ │ "615855": 2185, │ │ │ │ │ "615972": 2205, │ │ │ │ │ "615975": 2207, │ │ │ │ │ - "616": [2199, 2232], │ │ │ │ │ + "616": [2193, 2199, 2232], │ │ │ │ │ "616184": 2197, │ │ │ │ │ "6166": 2220, │ │ │ │ │ "6167": 2219, │ │ │ │ │ "616767": 2184, │ │ │ │ │ "6169": 2219, │ │ │ │ │ "617": [16, 17, 18, 19, 2199, 2203, 2232, 2235, 2298], │ │ │ │ │ "6171": 2219, │ │ │ │ │ @@ -33879,15 +33882,15 @@ │ │ │ │ │ "6240": 2220, │ │ │ │ │ "624607": 15, │ │ │ │ │ "624615": 2207, │ │ │ │ │ "624699e": 2191, │ │ │ │ │ "624747": 2199, │ │ │ │ │ "624938": 2191, │ │ │ │ │ "624988": 2230, │ │ │ │ │ - "625": [205, 778, 2199, 2203, 2218, 2298], │ │ │ │ │ + "625": [205, 778, 2199, 2203, 2298], │ │ │ │ │ "6252": 2220, │ │ │ │ │ "625210": 2207, │ │ │ │ │ "6254": 2220, │ │ │ │ │ "625415": 2207, │ │ │ │ │ "6255": 2192, │ │ │ │ │ "6256": [2192, 2202], │ │ │ │ │ "6257": 2192, │ │ │ │ │ @@ -33903,15 +33906,15 @@ │ │ │ │ │ "626300": 1323, │ │ │ │ │ "6263001": 1323, │ │ │ │ │ "6264": 2192, │ │ │ │ │ "626404": 2235, │ │ │ │ │ "626444": 15, │ │ │ │ │ "6265": 2220, │ │ │ │ │ "626968": 2217, │ │ │ │ │ - "627": 2199, │ │ │ │ │ + "627": [2199, 2205], │ │ │ │ │ "627068": 2207, │ │ │ │ │ "627081": [2184, 2195, 2214], │ │ │ │ │ "6273": 2220, │ │ │ │ │ "6274": 2220, │ │ │ │ │ "627712": 2197, │ │ │ │ │ "627796": 2235, │ │ │ │ │ "6279": 2271, │ │ │ │ │ @@ -33967,15 +33970,15 @@ │ │ │ │ │ "6342": 2220, │ │ │ │ │ "634248": 2199, │ │ │ │ │ "6344": 2220, │ │ │ │ │ "6345": 2220, │ │ │ │ │ "634509": 2191, │ │ │ │ │ "634686": 2207, │ │ │ │ │ "6348": 2220, │ │ │ │ │ - "635": 2199, │ │ │ │ │ + "635": [2199, 2205], │ │ │ │ │ "6351": 2220, │ │ │ │ │ "6355": 2220, │ │ │ │ │ "636": 2199, │ │ │ │ │ "6360": 2246, │ │ │ │ │ "636123": 2207, │ │ │ │ │ "636524": [2220, 2228, 2230, 2231], │ │ │ │ │ "6366": 2220, │ │ │ │ │ @@ -34631,15 +34634,15 @@ │ │ │ │ │ "709248": 2260, │ │ │ │ │ "709459": 2199, │ │ │ │ │ "7095": 2228, │ │ │ │ │ "7096": 2232, │ │ │ │ │ "709661": [2184, 2214], │ │ │ │ │ "7097": 2222, │ │ │ │ │ "7098": 2220, │ │ │ │ │ - "71": [15, 17, 24, 25, 28, 29, 32, 133, 208, 708, 718, 782, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ + "71": [15, 17, 24, 25, 28, 29, 32, 133, 208, 708, 718, 782, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ "710": 2199, │ │ │ │ │ "7101": 2220, │ │ │ │ │ "7103": 2222, │ │ │ │ │ "7105": 2220, │ │ │ │ │ "7106": 2220, │ │ │ │ │ "711": 2199, │ │ │ │ │ "711409": 2186, │ │ │ │ │ @@ -34766,15 +34769,15 @@ │ │ │ │ │ "729": [16, 17, 18, 19, 2197, 2199, 2231, 2235], │ │ │ │ │ "729161": 2199, │ │ │ │ │ "7292": 2241, │ │ │ │ │ "7297": 2221, │ │ │ │ │ "7299": 2221, │ │ │ │ │ "729907": 2186, │ │ │ │ │ "72hr": 234, │ │ │ │ │ - "73": [15, 17, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271], │ │ │ │ │ + "73": [15, 17, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2271], │ │ │ │ │ "730": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ "7300": 2221, │ │ │ │ │ "730057": 2195, │ │ │ │ │ "7302": 2221, │ │ │ │ │ "7306": 2221, │ │ │ │ │ "7308": 2294, │ │ │ │ │ "730951": 2257, │ │ │ │ │ @@ -35091,15 +35094,14 @@ │ │ │ │ │ "773866": 2207, │ │ │ │ │ "773882": 2197, │ │ │ │ │ "7739": 2249, │ │ │ │ │ "773900": 15, │ │ │ │ │ "774": 2258, │ │ │ │ │ "7740": 2222, │ │ │ │ │ "7741": 2222, │ │ │ │ │ - "774211": 2228, │ │ │ │ │ "7746": 2222, │ │ │ │ │ "774627": 15, │ │ │ │ │ "774753": 2195, │ │ │ │ │ "7748": 2222, │ │ │ │ │ "774848": 2207, │ │ │ │ │ "774928": 2206, │ │ │ │ │ "7750": 29, │ │ │ │ │ @@ -35107,15 +35109,14 @@ │ │ │ │ │ "7751": 2235, │ │ │ │ │ "7754": 2227, │ │ │ │ │ "775482": 2199, │ │ │ │ │ "775558e": 2222, │ │ │ │ │ "775602": 2207, │ │ │ │ │ "7757": 2238, │ │ │ │ │ "7758": 2222, │ │ │ │ │ - "775872": 2228, │ │ │ │ │ "775880": 2186, │ │ │ │ │ "7760": 2222, │ │ │ │ │ "7761": 2222, │ │ │ │ │ "7762": 2222, │ │ │ │ │ "7763": 2222, │ │ │ │ │ "7766": 2222, │ │ │ │ │ "776734": 2207, │ │ │ │ │ @@ -35575,15 +35576,15 @@ │ │ │ │ │ "838": 2199, │ │ │ │ │ "838161": 2207, │ │ │ │ │ "838166": 2207, │ │ │ │ │ "838258": 2207, │ │ │ │ │ "838665": 2207, │ │ │ │ │ "8387": 2222, │ │ │ │ │ "839002": 2207, │ │ │ │ │ - "84": [31, 228, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246], │ │ │ │ │ + "84": [31, 228, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246], │ │ │ │ │ "8400": 2222, │ │ │ │ │ "840123": 2215, │ │ │ │ │ "840255": 2228, │ │ │ │ │ "840449": 15, │ │ │ │ │ "840607": 2186, │ │ │ │ │ "840870": 2197, │ │ │ │ │ "840938": 2207, │ │ │ │ │ @@ -35890,15 +35891,15 @@ │ │ │ │ │ "880331": 2207, │ │ │ │ │ "880609": 15, │ │ │ │ │ "880680": 2207, │ │ │ │ │ "880838": 2218, │ │ │ │ │ "8813": 2224, │ │ │ │ │ "881334": 2191, │ │ │ │ │ "881376": 2204, │ │ │ │ │ - "882": [27, 2193, 2259], │ │ │ │ │ + "882": [27, 2259], │ │ │ │ │ "8822": 2226, │ │ │ │ │ "8823": 2226, │ │ │ │ │ "8825": 2235, │ │ │ │ │ "8826": 2246, │ │ │ │ │ "882641": 2230, │ │ │ │ │ "8831": 2224, │ │ │ │ │ "8833": 2224, │ │ │ │ │ @@ -36056,15 +36057,15 @@ │ │ │ │ │ "902": 2199, │ │ │ │ │ "903": 2199, │ │ │ │ │ "9031": 2246, │ │ │ │ │ "903246": 2207, │ │ │ │ │ "903450": 1340, │ │ │ │ │ "9037": 2225, │ │ │ │ │ "903794": 2186, │ │ │ │ │ - "904": 2199, │ │ │ │ │ + "904": [2193, 2199], │ │ │ │ │ "9046": 2277, │ │ │ │ │ "904807": 2191, │ │ │ │ │ "9049": 2225, │ │ │ │ │ "905": 2199, │ │ │ │ │ "905029": 2207, │ │ │ │ │ "905122": 2199, │ │ │ │ │ "9052": 2230, │ │ │ │ │ @@ -36464,15 +36465,15 @@ │ │ │ │ │ "9663": 2227, │ │ │ │ │ "966718": [2224, 2228], │ │ │ │ │ "966995": 2207, │ │ │ │ │ "967": 2197, │ │ │ │ │ "9671": 2226, │ │ │ │ │ "9675": 2226, │ │ │ │ │ "9676": 2226, │ │ │ │ │ - "968": [2186, 2197], │ │ │ │ │ + "968": [2186, 2197, 2218], │ │ │ │ │ "9680": 2226, │ │ │ │ │ "968304": 2207, │ │ │ │ │ "968344": 15, │ │ │ │ │ "9685": 2226, │ │ │ │ │ "9688": 2226, │ │ │ │ │ "9689": 2191, │ │ │ │ │ "968914": [2185, 2197, 2199, 2215, 2218, 2219], │ │ │ │ │ @@ -36578,15 +36579,15 @@ │ │ │ │ │ "980950": 2195, │ │ │ │ │ "981": [2199, 2207], │ │ │ │ │ "981293": 2207, │ │ │ │ │ "9816": 2228, │ │ │ │ │ "981683": 2207, │ │ │ │ │ "981845": 2199, │ │ │ │ │ "981981": 1306, │ │ │ │ │ - "982": 2199, │ │ │ │ │ + "982": [2193, 2199], │ │ │ │ │ "982353": 29, │ │ │ │ │ "982405": 2184, │ │ │ │ │ "9827": 2226, │ │ │ │ │ "982821": 1298, │ │ │ │ │ "9832": 2226, │ │ │ │ │ "983776": 2195, │ │ │ │ │ "984": 2199, │ │ │ │ │ @@ -36934,15 +36935,15 @@ │ │ │ │ │ "_get_numeric_data": 2218, │ │ │ │ │ "_get_object_pars": 2199, │ │ │ │ │ "_get_opt": [2202, 2298], │ │ │ │ │ "_get_pyarrow_opt": [2203, 2298], │ │ │ │ │ "_get_root": 2202, │ │ │ │ │ "_get_single_kei": 2202, │ │ │ │ │ "_get_slice_axi": [2185, 2197], │ │ │ │ │ - "_get_valu": [2185, 2191, 2193, 2194, 2197], │ │ │ │ │ + "_get_valu": [2185, 2191, 2194, 2197], │ │ │ │ │ "_getbool_axi": [2185, 2197], │ │ │ │ │ "_getitem_axi": [2185, 2197], │ │ │ │ │ "_getitem_lowerdim": [2185, 2197], │ │ │ │ │ "_getitem_tupl": [2185, 2197], │ │ │ │ │ "_getitem_tuple_same_dim": 2185, │ │ │ │ │ "_handled_typ": 1031, │ │ │ │ │ "_has_inf": 2221, │ │ │ │ │ @@ -37724,15 +37725,15 @@ │ │ │ │ │ "barboursvil": 2199, │ │ │ │ │ "bare": [2, 2199, 2222, 2241, 2277], │ │ │ │ │ "barf": 2217, │ │ │ │ │ "barh": [26, 186, 188, 762, 764, 1188, 1249, 2211, 2220, 2221, 2228, 2260, 2294], │ │ │ │ │ "bark": 1365, │ │ │ │ │ "barplot": 2222, │ │ │ │ │ "barycentr": [146, 720, 1280, 2201, 2218], │ │ │ │ │ - "base": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2193, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302], │ │ │ │ │ + "base": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302], │ │ │ │ │ "base_dtyp": 2199, │ │ │ │ │ "base_pars": 2199, │ │ │ │ │ "base_typ": [2194, 2201, 2203, 2294, 2302, 2307], │ │ │ │ │ "basebal": [15, 2186, 2191, 2197, 2227, 2231], │ │ │ │ │ "baseblockmanag": [2197, 2199, 2298], │ │ │ │ │ "basebooleanreducetest": 2307, │ │ │ │ │ "basebuff": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ @@ -38256,15 +38257,15 @@ │ │ │ │ │ "cheat": [21, 2234], │ │ │ │ │ "check": [1, 2, 4, 5, 6, 8, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 30, 32, 36, 62, 75, 80, 81, 147, 153, 163, 169, 228, 256, 284, 346, 384, 386, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 420, 445, 447, 448, 453, 454, 455, 461, 469, 473, 478, 500, 501, 584, 592, 603, 615, 741, 799, 836, 837, 838, 839, 840, 841, 842, 843, 844, 888, 912, 976, 977, 978, 979, 1076, 1079, 1081, 1082, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1093, 1095, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1110, 1111, 1112, 1113, 1114, 1115, 1127, 1136, 1141, 1146, 1184, 1345, 1354, 1370, 1391, 1441, 1442, 1446, 1449, 1450, 1475, 1482, 1483, 1488, 1490, 1493, 1494, 1495, 1496, 1499, 1512, 1530, 1548, 1566, 1586, 1607, 1626, 1643, 1665, 1686, 1707, 1728, 1747, 1765, 1782, 1801, 1823, 1846, 1863, 1883, 1901, 1919, 1936, 1953, 1971, 1988, 2006, 2025, 2043, 2061, 2079, 2096, 2114, 2133, 2151, 2168, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2211, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2253, 2255, 2261, 2265, 2271, 2277, 2279, 2283, 2289, 2294, 2298, 2302, 2307, 2308], │ │ │ │ │ "check_array_index": 2172, │ │ │ │ │ "check_categor": [1494, 1495, 1496, 2242], │ │ │ │ │ "check_category_ord": 1496, │ │ │ │ │ "check_column_typ": 1494, │ │ │ │ │ "check_datetimelike_compat": [1494, 1496], │ │ │ │ │ - "check_dict_or_set_index": 2197, │ │ │ │ │ + "check_dict_or_set_index": [2193, 2197], │ │ │ │ │ "check_dtyp": [1493, 1494, 1496, 2271, 2272, 2299], │ │ │ │ │ "check_dtype_backend": 2199, │ │ │ │ │ "check_exact": [1493, 1494, 1495, 1496, 2272, 2277, 2307, 2308], │ │ │ │ │ "check_extens": 2294, │ │ │ │ │ "check_flag": [1494, 1496, 2290], │ │ │ │ │ "check_frame_typ": 1494, │ │ │ │ │ "check_freq": [1494, 1496, 2278], │ │ │ │ │ @@ -40249,15 +40250,15 @@ │ │ │ │ │ "get_indexer_for": [2283, 2289], │ │ │ │ │ "get_indexer_non_uniqu": [379, 2192, 2197, 2238, 2243, 2246, 2249, 2265, 2277, 2289], │ │ │ │ │ "get_indexer_nonuniqu": 2302, │ │ │ │ │ "get_item": [2191, 2194], │ │ │ │ │ "get_jit_argu": 2212, │ │ │ │ │ "get_letter_typ": 2195, │ │ │ │ │ "get_level_valu": [1416, 2185, 2218, 2220, 2228, 2232, 2241, 2246, 2253, 2256], │ │ │ │ │ - "get_loc": [2, 362, 383, 426, 492, 2185, 2191, 2193, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299], │ │ │ │ │ + "get_loc": [2, 362, 383, 426, 492, 2185, 2191, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299], │ │ │ │ │ "get_loc_level": 2246, │ │ │ │ │ "get_local": 2265, │ │ │ │ │ "get_method": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ "get_near_stock_pric": [2216, 2223], │ │ │ │ │ "get_offset": [2265, 2298], │ │ │ │ │ "get_offset_nam": [2230, 2238], │ │ │ │ │ "get_op_result_nam": 2186, │ │ │ │ │ @@ -40890,14 +40891,15 @@ │ │ │ │ │ "interf": 2265, │ │ │ │ │ "interfac": [2, 10, 12, 13, 16, 17, 18, 19, 40, 77, 119, 695, 914, 1031, 1068, 1090, 2167, 2186, 2199, 2203, 2207, 2210, 2211, 2218, 2220, 2225, 2227, 2228, 2230, 2235, 2246, 2261, 2271, 2298, 2307], │ │ │ │ │ "interleav": 2199, │ │ │ │ │ "intermedi": [7, 2172, 2195, 2205, 2210, 2212, 2253, 2307], │ │ │ │ │ "intermix": 2186, │ │ │ │ │ "intern": [0, 7, 11, 22, 191, 194, 203, 268, 286, 364, 376, 430, 622, 624, 699, 767, 769, 873, 932, 938, 1031, 1044, 1123, 1124, 1140, 1148, 1149, 1203, 1207, 1208, 1213, 1215, 1264, 1280, 1345, 1361, 1364, 1388, 1391, 1422, 1423, 1433, 1469, 1486, 1488, 1490, 1493, 1494, 1495, 1496, 1499, 2186, 2188, 2193, 2194, 2195, 2197, 2202, 2207, 2210, 2213, 2216, 2217, 2219, 2220, 2230, 2232, 2235, 2238, 2246, 2249, 2253, 2261, 2263, 2265, 2267, 2271, 2274, 2277, 2280, 2289, 2293, 2298, 2307], │ │ │ │ │ "internal_cach": 10, │ │ │ │ │ + "internal_valu": 2193, │ │ │ │ │ "internet": 2, │ │ │ │ │ "interoper": [2167, 2186, 2201, 2203, 2302], │ │ │ │ │ "interp1d": [146, 720, 1280], │ │ │ │ │ "interp_": 2201, │ │ │ │ │ "interpol": [89, 124, 125, 169, 202, 601, 700, 701, 776, 1031, 1190, 1251, 1275, 1314, 1331, 1411, 1446, 1447, 1448, 2186, 2199, 2210, 2214, 2217, 2218, 2219, 2220, 2222, 2228, 2230, 2231, 2235, 2236, 2249, 2250, 2261, 2265, 2271, 2272, 2277, 2283, 2289, 2294, 2298, 2302, 2303, 2304, 2307], │ │ │ │ │ "interpret": [2, 3, 6, 13, 16, 17, 18, 19, 24, 31, 134, 160, 212, 256, 568, 709, 738, 750, 787, 862, 866, 888, 1463, 1469, 1470, 1486, 1487, 2185, 2188, 2197, 2199, 2201, 2202, 2206, 2212, 2214, 2216, 2217, 2218, 2220, 2221, 2222, 2226, 2228, 2232, 2235, 2236, 2238, 2241, 2246, 2249, 2265, 2283, 2294, 2298, 2302], │ │ │ │ │ "interrog": [168, 407, 745], │ │ │ │ │ @@ -41606,15 +41608,15 @@ │ │ │ │ │ "maldiv": [176, 179, 754, 757, 1242, 1243], │ │ │ │ │ "male": [18, 23, 25, 28, 32, 1204, 2195, 2220], │ │ │ │ │ "malform": [1469, 1486, 2199, 2225, 2246, 2265, 2283, 2289], │ │ │ │ │ "malfunct": 2238, │ │ │ │ │ "malta": [176, 179, 754, 757, 1242, 1243, 2199], │ │ │ │ │ "mamba": [1, 13], │ │ │ │ │ "mammal": [172, 198, 210, 211, 214, 249, 271, 285, 494, 784, 882, 899, 913, 1198, 1202, 1263, 2195], │ │ │ │ │ - "manag": [2, 5, 22, 34, 341, 1345, 1391, 1451, 1488, 1490, 1793, 1815, 2186, 2197, 2199, 2202, 2218, 2222, 2224, 2232, 2238, 2246, 2277, 2298], │ │ │ │ │ + "manag": [2, 5, 22, 34, 341, 1345, 1391, 1451, 1488, 1490, 1793, 1815, 2186, 2193, 2197, 2199, 2202, 2218, 2222, 2224, 2232, 2238, 2246, 2277, 2298], │ │ │ │ │ "manchest": 2199, │ │ │ │ │ "mangl": [2195, 2241, 2246, 2289], │ │ │ │ │ "mangle_dupe_col": [2283, 2294, 2298], │ │ │ │ │ "mango": [394, 399], │ │ │ │ │ "mani": [1, 2, 3, 5, 7, 8, 10, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 31, 34, 35, 85, 102, 114, 168, 342, 596, 754, 757, 1031, 1064, 1153, 1158, 1166, 1212, 1223, 1242, 1243, 1272, 1274, 1275, 1286, 1358, 1387, 1390, 1469, 1486, 1498, 2166, 2167, 2173, 2185, 2186, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2199, 2200, 2202, 2205, 2206, 2207, 2210, 2212, 2214, 2216, 2217, 2218, 2219, 2221, 2223, 2225, 2228, 2231, 2232, 2235, 2238, 2241, 2246, 2254, 2255, 2256, 2260, 2261, 2271, 2277, 2283, 2289, 2298, 2302, 2307, 2308], │ │ │ │ │ "manifest": [2223, 2224, 2241, 2273], │ │ │ │ │ "manipul": [10, 15, 21, 23, 33, 34, 35, 1423, 2172, 2185, 2186, 2195, 2204, 2207, 2210, 2218, 2222, 2257], │ │ │ │ │ @@ -43769,15 +43771,15 @@ │ │ │ │ │ "set_table_attribut": [1421, 1422, 1435, 2207], │ │ │ │ │ "set_table_class": 1394, │ │ │ │ │ "set_table_styl": [1400, 1420, 1422, 1433, 1435, 2207, 2277, 2283], │ │ │ │ │ "set_td_class": [1402, 1420, 1421, 2207, 2283], │ │ │ │ │ "set_titl": 2211, │ │ │ │ │ "set_tooltip": [2207, 2283], │ │ │ │ │ "set_uuid": 2207, │ │ │ │ │ - "set_valu": [2218, 2238, 2256, 2265, 2298], │ │ │ │ │ + "set_valu": [2193, 2218, 2238, 2256, 2265, 2298], │ │ │ │ │ "set_xlim": [2220, 2298], │ │ │ │ │ "set_ylabel": [26, 2211], │ │ │ │ │ "set_ylim": 2220, │ │ │ │ │ "setattr": 2192, │ │ │ │ │ "seterr": 2239, │ │ │ │ │ "sethmmorton": 234, │ │ │ │ │ "setitem": [2188, 2190, 2218, 2219, 2220, 2221, 2222, 2223, 2227, 2230, 2275, 2298], │ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ @@ -1847,25 +1847,25 @@ │ │ │ │ In [141]: indexer = np.arange(10000) │ │ │ │ │ │ │ │ In [142]: random.shuffle(indexer) │ │ │ │ │ │ │ │ In [143]: %timeit arr[indexer] │ │ │ │ .....: %timeit arr.take(indexer, axis=0) │ │ │ │ .....: │ │ │ │ -243 us +- 34.2 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ -76 us +- 7.76 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ +222 us +- 12.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each) │ │ │ │ +123 us +- 8.66 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ │ │ │ │ │ │ │ │
In [144]: ser = pd.Series(arr[:, 0])
│ │ │ │
│ │ │ │ In [145]: %timeit ser.iloc[indexer]
│ │ │ │ .....: %timeit ser.take(indexer)
│ │ │ │ .....:
│ │ │ │ -165 us +- 7.22 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ -161 us +- 17.7 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ +167 us +- 25.8 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ +146 us +- 6.44 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │
We have discussed MultiIndex
in the previous sections pretty extensively.
│ │ │ │ Documentation about DatetimeIndex
and PeriodIndex
are shown here,
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -1245,23 +1245,23 @@
│ │ │ │ │ In [141]: indexer = np.arange(10000)
│ │ │ │ │
│ │ │ │ │ In [142]: random.shuffle(indexer)
│ │ │ │ │
│ │ │ │ │ In [143]: %timeit arr[indexer]
│ │ │ │ │ .....: %timeit arr.take(indexer, axis=0)
│ │ │ │ │ .....:
│ │ │ │ │ -243 us +- 34.2 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ -76 us +- 7.76 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ +222 us +- 12.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +123 us +- 8.66 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ In [144]: ser = pd.Series(arr[:, 0])
│ │ │ │ │
│ │ │ │ │ In [145]: %timeit ser.iloc[indexer]
│ │ │ │ │ .....: %timeit ser.take(indexer)
│ │ │ │ │ .....:
│ │ │ │ │ -165 us +- 7.22 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ -161 us +- 17.7 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ +167 us +- 25.8 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +146 us +- 6.44 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ ********** IInnddeexx ttyyppeess_## **********
│ │ │ │ │ We have discussed MultiIndex in the previous sections pretty extensively.
│ │ │ │ │ Documentation about DatetimeIndex and PeriodIndex are shown _h_e_r_e, and
│ │ │ │ │ documentation about TimedeltaIndex is found _h_e_r_e.
│ │ │ │ │ In the following sub-sections we will highlight some other index types.
│ │ │ │ │ ******** CCaatteeggoorriiccaallIInnddeexx_## ********
│ │ │ │ │ _C_a_t_e_g_o_r_i_c_a_l_I_n_d_e_x is a type of index that is useful for supporting indexing with
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html
│ │ │ │ @@ -592,31 +592,31 @@
│ │ │ │ ...: s += f(a + i * dx)
│ │ │ │ ...: return s * dx
│ │ │ │ ...:
│ │ │ │
│ │ │ │
│ │ │ │
We achieve our result by using DataFrame.apply()
(row-wise):
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -129 ms +- 26.5 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +382 ms +- 120 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │
Let’s take a look and see where the time is spent during this operation │ │ │ │ using the prun ipython magic function:
│ │ │ │# most time consuming 4 calls
│ │ │ │ In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1) # noqa E999
│ │ │ │ - 605946 function calls (605928 primitive calls) in 0.494 seconds
│ │ │ │ + 605946 function calls (605928 primitive calls) in 1.221 seconds
│ │ │ │
│ │ │ │ Ordered by: internal time
│ │ │ │ List reduced from 159 to 4 due to restriction <4>
│ │ │ │
│ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ - 1000 0.272 0.000 0.427 0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)
│ │ │ │ - 552423 0.155 0.000 0.155 0.000 <ipython-input-3-c138bdd570e3>:1(f)
│ │ │ │ - 3000 0.013 0.000 0.055 0.000 series.py:1095(__getitem__)
│ │ │ │ - 3000 0.011 0.000 0.029 0.000 series.py:1220(_get_value)
│ │ │ │ + 1000 0.616 0.001 0.982 0.001 <ipython-input-4-c2a74e076cf0>:1(integrate_f)
│ │ │ │ + 552423 0.367 0.000 0.367 0.000 <ipython-input-3-c138bdd570e3>:1(f)
│ │ │ │ + 3000 0.046 0.000 0.064 0.000 indexing.py:2765(check_dict_or_set_indexers)
│ │ │ │ + 1000 0.042 0.000 0.042 0.000 managers.py:2065(set_values)
│ │ │ │
By far the majority of time is spend inside either integrate_f
or f
,
│ │ │ │ hence we’ll concentrate our efforts cythonizing these two functions.
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -118 ms +- 27.3 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +361 ms +- 55.7 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │
This has improved the performance compared to the pure Python approach by one-third.
│ │ │ │We can annotate the function variables and return types as well as use cdef
│ │ │ │ @@ -658,36 +658,36 @@
│ │ │ │ ....: for i in range(N):
│ │ │ │ ....: s += f_typed(a + i * dx)
│ │ │ │ ....: return s * dx
│ │ │ │ ....:
│ │ │ │
│ │ │ │
│ │ │ │
In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -12.4 ms +- 2.04 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +40.9 ms +- 8.01 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
Annotating the functions with C types yields an over ten times performance improvement compared to │ │ │ │ the original Python implementation.
│ │ │ │When re-profiling, time is spent creating a Series
from each row, and calling __getitem__
from both
│ │ │ │ the index and the series (three times for each row). These Python function calls are expensive and
│ │ │ │ can be improved by passing an np.ndarray
.
In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ - 52523 function calls (52505 primitive calls) in 0.025 seconds
│ │ │ │ + 52523 function calls (52505 primitive calls) in 0.059 seconds
│ │ │ │
│ │ │ │ Ordered by: internal time
│ │ │ │ List reduced from 157 to 4 due to restriction <4>
│ │ │ │
│ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ - 3000 0.004 0.000 0.016 0.000 series.py:1095(__getitem__)
│ │ │ │ - 3000 0.003 0.000 0.007 0.000 series.py:1220(_get_value)
│ │ │ │ - 16098 0.002 0.000 0.003 0.000 {built-in method builtins.isinstance}
│ │ │ │ - 3000 0.002 0.000 0.003 0.000 base.py:3777(get_loc)
│ │ │ │ + 16098 0.010 0.000 0.011 0.000 {built-in method builtins.isinstance}
│ │ │ │ + 3000 0.010 0.000 0.010 0.000 managers.py:2004(internal_values)
│ │ │ │ +1063/1046 0.008 0.000 0.008 0.000 {built-in method builtins.len}
│ │ │ │ + 3000 0.008 0.000 0.037 0.000 series.py:1095(__getitem__)
│ │ │ │
In [13]: %%cython
│ │ │ │ ....: cimport numpy as np
│ │ │ │ ....: import numpy as np
│ │ │ │ ....: cdef double f_typed(double x) except? -2:
│ │ │ │ ....: return x * (x - 1)
│ │ │ │ @@ -722,15 +722,15 @@
│ │ │ │
This implementation creates an array of zeros and inserts the result
│ │ │ │ of integrate_f_typed
applied over each row. Looping over an ndarray
is faster
│ │ │ │ in Cython than looping over a Series
object.
Since apply_integrate_f
is typed to accept an np.ndarray
, Series.to_numpy()
│ │ │ │ calls are needed to utilize this function.
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())
│ │ │ │ -1.78 ms +- 366 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ +4.84 ms +- 511 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
Performance has improved from the prior implementation by almost ten times.
│ │ │ │ │ │ │ │The majority of the time is now spent in apply_integrate_f
. Disabling Cython’s boundscheck
│ │ │ │ @@ -782,15 +782,15 @@
│ │ │ │ from /build/reproducible-path/pandas-2.2.3+dfsg/buildtmp/.cache/ipython/cython/_cython_magic_883da8958ecc60be73b28b7124368f9c7cc2d174.c:1251:
│ │ │ │ /usr/lib/python3/dist-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]
│ │ │ │ 17 | #warning "Using deprecated NumPy API, disable it with " \
│ │ │ │ | ^~~~~~~
│ │ │ │
In [17]: %timeit apply_integrate_f_wrap(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())
│ │ │ │ -882 us +- 35.8 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ +2.08 ms +- 904 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │
However, a loop indexer i
accessing an invalid location in an array would cause a segfault because memory access isn’t checked.
│ │ │ │ For more about boundscheck
and wraparound
, see the Cython docs on
│ │ │ │ compiler directives.
DataFrame
. This engine requires the
│ │ │ │ optional dependency numexpr
to be installed.
│ │ │ │ The 'python'
engine is generally not useful except for testing
│ │ │ │ other evaluation engines against it. You will achieve no performance
│ │ │ │ benefits using eval()
with engine='python'
and may
│ │ │ │ incur a performance hit.
In [40]: %timeit df1 + df2 + df3 + df4
│ │ │ │ -18.9 ms +- 4.73 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +20.8 ms +- 3.25 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")
│ │ │ │ -31 ms +- 1.73 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +20.6 ms +- 3.16 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
DataFrame.eval()
method#In addition to the top level pandas.eval()
function you can also
│ │ │ │ evaluate an expression in the “context” of a DataFrame
.
In [58]: nrows, ncols = 20000, 100
│ │ │ │
│ │ │ │ In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]
│ │ │ │
DataFrame
arithmetic:
In [60]: %timeit df1 + df2 + df3 + df4
│ │ │ │ -29.6 ms +- 3.47 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +27.1 ms +- 6.38 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")
│ │ │ │ -13.3 ms +- 551 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +13.9 ms +- 1.22 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
DataFrame
comparison:
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
│ │ │ │ -51.5 ms +- 9.12 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +30.3 ms +- 3.71 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")
│ │ │ │ -16.3 ms +- 494 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +21.3 ms +- 4.58 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
DataFrame
arithmetic with unaligned axes.
In [64]: s = pd.Series(np.random.randn(50))
│ │ │ │
│ │ │ │ In [65]: %timeit df1 + df2 + df3 + df4 + s
│ │ │ │ -40.9 ms +- 2.47 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +34.8 ms +- 4.07 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")
│ │ │ │ -14.2 ms +- 3.06 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +17.8 ms +- 1.23 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
Note
│ │ │ │Operations such as
│ │ │ │1 and 2 # would parse to 1 & 2, but should evaluate to 2
│ │ │ │ 3 or 4 # would parse to 3 | 4, but should evaluate to 3
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -110,32 +110,33 @@
│ │ │ │ │ ...: dx = (b - a) / N
│ │ │ │ │ ...: for i in range(N):
│ │ │ │ │ ...: s += f(a + i * dx)
│ │ │ │ │ ...: return s * dx
│ │ │ │ │ ...:
│ │ │ │ │ We achieve our result by using _D_a_t_a_F_r_a_m_e_._a_p_p_l_y_(_) (row-wise):
│ │ │ │ │ In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ │ -129 ms +- 26.5 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +382 ms +- 120 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ Let’s take a look and see where the time is spent during this operation using
│ │ │ │ │ the _p_r_u_n_ _i_p_y_t_h_o_n_ _m_a_g_i_c_ _f_u_n_c_t_i_o_n:
│ │ │ │ │ # most time consuming 4 calls
│ │ │ │ │ In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]),
│ │ │ │ │ axis=1) # noqa E999
│ │ │ │ │ - 605946 function calls (605928 primitive calls) in 0.494 seconds
│ │ │ │ │ + 605946 function calls (605928 primitive calls) in 1.221 seconds
│ │ │ │ │
│ │ │ │ │ Ordered by: internal time
│ │ │ │ │ List reduced from 159 to 4 due to restriction <4>
│ │ │ │ │
│ │ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ │ - 1000 0.272 0.000 0.427 0.000 :1
│ │ │ │ │ + 1000 0.616 0.001 0.982 0.001 :1
│ │ │ │ │ (integrate_f)
│ │ │ │ │ - 552423 0.155 0.000 0.155 0.000 :1
│ │ │ │ │ + 552423 0.367 0.000 0.367 0.000 :1
│ │ │ │ │ (f)
│ │ │ │ │ - 3000 0.013 0.000 0.055 0.000 series.py:1095(__getitem__)
│ │ │ │ │ - 3000 0.011 0.000 0.029 0.000 series.py:1220(_get_value)
│ │ │ │ │ + 3000 0.046 0.000 0.064 0.000 indexing.py:2765
│ │ │ │ │ +(check_dict_or_set_indexers)
│ │ │ │ │ + 1000 0.042 0.000 0.042 0.000 managers.py:2065(set_values)
│ │ │ │ │ By far the majority of time is spend inside either integrate_f or f, hence
│ │ │ │ │ we’ll concentrate our efforts cythonizing these two functions.
│ │ │ │ │ ******** PPllaaiinn CCyytthhoonn_## ********
│ │ │ │ │ First we’re going to need to import the Cython magic function to IPython:
│ │ │ │ │ In [7]: %load_ext Cython
│ │ │ │ │ Now, let’s simply copy our functions over to Cython:
│ │ │ │ │ In [8]: %%cython
│ │ │ │ │ @@ -146,15 +147,15 @@
│ │ │ │ │ ...: dx = (b - a) / N
│ │ │ │ │ ...: for i in range(N):
│ │ │ │ │ ...: s += f_plain(a + i * dx)
│ │ │ │ │ ...: return s * dx
│ │ │ │ │ ...:
│ │ │ │ │ In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]),
│ │ │ │ │ axis=1)
│ │ │ │ │ -118 ms +- 27.3 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +361 ms +- 55.7 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ This has improved the performance compared to the pure Python approach by one-
│ │ │ │ │ third.
│ │ │ │ │ ******** DDeeccllaarriinngg CC ttyyppeess_## ********
│ │ │ │ │ We can annotate the function variables and return types as well as use cdef and
│ │ │ │ │ cpdef to improve performance:
│ │ │ │ │ In [10]: %%cython
│ │ │ │ │ ....: cdef double f_typed(double x) except? -2:
│ │ │ │ │ @@ -166,35 +167,35 @@
│ │ │ │ │ ....: dx = (b - a) / N
│ │ │ │ │ ....: for i in range(N):
│ │ │ │ │ ....: s += f_typed(a + i * dx)
│ │ │ │ │ ....: return s * dx
│ │ │ │ │ ....:
│ │ │ │ │ In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]),
│ │ │ │ │ axis=1)
│ │ │ │ │ -12.4 ms +- 2.04 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +40.9 ms +- 8.01 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ Annotating the functions with C types yields an over ten times performance
│ │ │ │ │ improvement compared to the original Python implementation.
│ │ │ │ │ ******** UUssiinngg nnddaarrrraayy_## ********
│ │ │ │ │ When re-profiling, time is spent creating a _S_e_r_i_e_s from each row, and calling
│ │ │ │ │ __getitem__ from both the index and the series (three times for each row).
│ │ │ │ │ These Python function calls are expensive and can be improved by passing an
│ │ │ │ │ np.ndarray.
│ │ │ │ │ In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x
│ │ │ │ │ ["N"]), axis=1)
│ │ │ │ │ - 52523 function calls (52505 primitive calls) in 0.025 seconds
│ │ │ │ │ + 52523 function calls (52505 primitive calls) in 0.059 seconds
│ │ │ │ │
│ │ │ │ │ Ordered by: internal time
│ │ │ │ │ List reduced from 157 to 4 due to restriction <4>
│ │ │ │ │
│ │ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ │ - 3000 0.004 0.000 0.016 0.000 series.py:1095(__getitem__)
│ │ │ │ │ - 3000 0.003 0.000 0.007 0.000 series.py:1220(_get_value)
│ │ │ │ │ - 16098 0.002 0.000 0.003 0.000 {built-in method
│ │ │ │ │ + 16098 0.010 0.000 0.011 0.000 {built-in method
│ │ │ │ │ builtins.isinstance}
│ │ │ │ │ - 3000 0.002 0.000 0.003 0.000 base.py:3777(get_loc)
│ │ │ │ │ + 3000 0.010 0.000 0.010 0.000 managers.py:2004(internal_values)
│ │ │ │ │ +1063/1046 0.008 0.000 0.008 0.000 {built-in method builtins.len}
│ │ │ │ │ + 3000 0.008 0.000 0.037 0.000 series.py:1095(__getitem__)
│ │ │ │ │ In [13]: %%cython
│ │ │ │ │ ....: cimport numpy as np
│ │ │ │ │ ....: import numpy as np
│ │ │ │ │ ....: cdef double f_typed(double x) except? -2:
│ │ │ │ │ ....: return x * (x - 1)
│ │ │ │ │ ....: cpdef double integrate_f_typed(double a, double b, int N):
│ │ │ │ │ ....: cdef int i
│ │ │ │ │ @@ -235,15 +236,15 @@
│ │ │ │ │ This implementation creates an array of zeros and inserts the result of
│ │ │ │ │ integrate_f_typed applied over each row. Looping over an ndarray is faster in
│ │ │ │ │ Cython than looping over a _S_e_r_i_e_s object.
│ │ │ │ │ Since apply_integrate_f is typed to accept an np.ndarray, _S_e_r_i_e_s_._t_o___n_u_m_p_y_(_)
│ │ │ │ │ calls are needed to utilize this function.
│ │ │ │ │ In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df
│ │ │ │ │ ["N"].to_numpy())
│ │ │ │ │ -1.78 ms +- 366 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +4.84 ms +- 511 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ Performance has improved from the prior implementation by almost ten times.
│ │ │ │ │ ******** DDiissaabblliinngg ccoommppiilleerr ddiirreeccttiivveess_## ********
│ │ │ │ │ The majority of the time is now spent in apply_integrate_f. Disabling Cython’s
│ │ │ │ │ boundscheck and wraparound checks can yield more performance.
│ │ │ │ │ In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(),
│ │ │ │ │ df["N"].to_numpy())
│ │ │ │ │ 78 function calls in 0.001 seconds
│ │ │ │ │ @@ -298,15 +299,15 @@
│ │ │ │ │ /usr/lib/python3/dist-packages/numpy/core/include/numpy/
│ │ │ │ │ npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API,
│ │ │ │ │ disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]
│ │ │ │ │ 17 | #warning "Using deprecated NumPy API, disable it with " \
│ │ │ │ │ | ^~~~~~~
│ │ │ │ │ In [17]: %timeit apply_integrate_f_wrap(df["a"].to_numpy(), df["b"].to_numpy(),
│ │ │ │ │ df["N"].to_numpy())
│ │ │ │ │ -882 us +- 35.8 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +2.08 ms +- 904 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ However, a loop indexer i accessing an invalid location in an array would cause
│ │ │ │ │ a segfault because memory access isn’t checked. For more about boundscheck and
│ │ │ │ │ wraparound, see the Cython docs on _c_o_m_p_i_l_e_r_ _d_i_r_e_c_t_i_v_e_s.
│ │ │ │ │ ********** NNuummbbaa ((JJIITT ccoommppiillaattiioonn))_## **********
│ │ │ │ │ An alternative to statically compiling Cython code is to use a dynamic just-in-
│ │ │ │ │ time (JIT) compiler with _N_u_m_b_a.
│ │ │ │ │ Numba allows you to write a pure Python function which can be JIT compiled to
│ │ │ │ │ @@ -609,17 +610,17 @@
│ │ │ │ │ The 'numexpr' engine is the more performant engine that can yield performance
│ │ │ │ │ improvements compared to standard Python syntax for large _D_a_t_a_F_r_a_m_e. This
│ │ │ │ │ engine requires the optional dependency numexpr to be installed.
│ │ │ │ │ The 'python' engine is generally nnoott useful except for testing other evaluation
│ │ │ │ │ engines against it. You will achieve nnoo performance benefits using _e_v_a_l_(_) with
│ │ │ │ │ engine='python' and may incur a performance hit.
│ │ │ │ │ In [40]: %timeit df1 + df2 + df3 + df4
│ │ │ │ │ -18.9 ms +- 4.73 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +20.8 ms +- 3.25 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")
│ │ │ │ │ -31 ms +- 1.73 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +20.6 ms +- 3.16 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ ******** TThhee _DD_aa_tt_aa_FF_rr_aa_mm_ee_.._ee_vv_aa_ll_((_)) mmeetthhoodd_## ********
│ │ │ │ │ In addition to the top level _p_a_n_d_a_s_._e_v_a_l_(_) function you can also evaluate an
│ │ │ │ │ expression in the “context” of a _D_a_t_a_F_r_a_m_e.
│ │ │ │ │ In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=["a", "b"])
│ │ │ │ │
│ │ │ │ │ In [43]: df.eval("a + b")
│ │ │ │ │ Out[43]:
│ │ │ │ │ @@ -716,29 +717,29 @@
│ │ │ │ │ _p_a_n_d_a_s_._e_v_a_l_(_) works well with expressions containing large arrays.
│ │ │ │ │ In [58]: nrows, ncols = 20000, 100
│ │ │ │ │
│ │ │ │ │ In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for
│ │ │ │ │ _ in range(4)]
│ │ │ │ │ _D_a_t_a_F_r_a_m_e arithmetic:
│ │ │ │ │ In [60]: %timeit df1 + df2 + df3 + df4
│ │ │ │ │ -29.6 ms +- 3.47 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +27.1 ms +- 6.38 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")
│ │ │ │ │ -13.3 ms +- 551 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +13.9 ms +- 1.22 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ _D_a_t_a_F_r_a_m_e comparison:
│ │ │ │ │ In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
│ │ │ │ │ -51.5 ms +- 9.12 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +30.3 ms +- 3.71 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")
│ │ │ │ │ -16.3 ms +- 494 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +21.3 ms +- 4.58 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ _D_a_t_a_F_r_a_m_e arithmetic with unaligned axes.
│ │ │ │ │ In [64]: s = pd.Series(np.random.randn(50))
│ │ │ │ │
│ │ │ │ │ In [65]: %timeit df1 + df2 + df3 + df4 + s
│ │ │ │ │ -40.9 ms +- 2.47 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +34.8 ms +- 4.07 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")
│ │ │ │ │ -14.2 ms +- 3.06 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +17.8 ms +- 1.23 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ Note
│ │ │ │ │ Operations such as
│ │ │ │ │ 1 and 2 # would parse to 1 & 2, but should evaluate to 2
│ │ │ │ │ 3 or 4 # would parse to 3 | 4, but should evaluate to 3
│ │ │ │ │ ~1 # this is okay, but slower when using eval
│ │ │ │ │ should be performed in Python. An exception will be raised if you try to
│ │ │ │ │ perform any boolean/bitwise operations with scalar operands that are not of
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html
│ │ │ │ @@ -1086,16 +1086,16 @@
│ │ │ │ ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")
│ │ │ │ ....: counts = pd.Series(dtype=int)
│ │ │ │ ....: for path in files:
│ │ │ │ ....: df = pd.read_parquet(path)
│ │ │ │ ....: counts = counts.add(df["name"].value_counts(), fill_value=0)
│ │ │ │ ....: counts.astype(int)
│ │ │ │ ....:
│ │ │ │ -CPU times: user 519 us, sys: 44 us, total: 563 us
│ │ │ │ -Wall time: 570 us
│ │ │ │ +CPU times: user 549 us, sys: 78 us, total: 627 us
│ │ │ │ +Wall time: 635 us
│ │ │ │ Out[32]: Series([], dtype: int64)
│ │ │ │
Some readers, like pandas.read_csv()
, offer parameters to control the
│ │ │ │ chunksize
when reading a single file.
Manually chunking is an OK option for workflows that don’t
│ │ │ │ require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby()
, are
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -644,16 +644,16 @@
│ │ │ │ │ ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")
│ │ │ │ │ ....: counts = pd.Series(dtype=int)
│ │ │ │ │ ....: for path in files:
│ │ │ │ │ ....: df = pd.read_parquet(path)
│ │ │ │ │ ....: counts = counts.add(df["name"].value_counts(), fill_value=0)
│ │ │ │ │ ....: counts.astype(int)
│ │ │ │ │ ....:
│ │ │ │ │ -CPU times: user 519 us, sys: 44 us, total: 563 us
│ │ │ │ │ -Wall time: 570 us
│ │ │ │ │ +CPU times: user 549 us, sys: 78 us, total: 627 us
│ │ │ │ │ +Wall time: 635 us
│ │ │ │ │ Out[32]: Series([], dtype: int64)
│ │ │ │ │ Some readers, like _p_a_n_d_a_s_._r_e_a_d___c_s_v_(_), offer parameters to control the chunksize
│ │ │ │ │ when reading a single file.
│ │ │ │ │ Manually chunking is an OK option for workflows that don’t require too
│ │ │ │ │ sophisticated of operations. Some operations, like _p_a_n_d_a_s_._D_a_t_a_F_r_a_m_e_._g_r_o_u_p_b_y_(_),
│ │ │ │ │ are much harder to do chunkwise. In these cases, you may be better switching to
│ │ │ │ │ a different library that implements these out-of-core algorithms for you.
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz
│ │ │ │ ├── style.ipynb
│ │ │ │ │ ├── Pretty-printed
│ │ │ │ │ │┄ Similarity: 0.9985610875706213%
│ │ │ │ │ │┄ Differences: {"'cells'": "{1: {'metadata': {'execution': {'iopub.execute_input': '2025-02-13T00:04:29.331127Z', "
│ │ │ │ │ │┄ "'iopub.status.busy': '2025-02-13T00:04:29.330662Z', 'iopub.status.idle': "
│ │ │ │ │ │┄ "'2025-02-13T00:04:29.750346Z', 'shell.execute_reply': "
│ │ │ │ │ │┄ "'2025-02-13T00:04:29.742989Z'}}}, 3: {'metadata': {'execution': "
│ │ │ │ │ │┄ "{'iopub.execute_input': '2025-02-13T00:04:29.766964Z', 'iopub.status.busy': "
│ │ │ │ │ │┄ "'2025-02-13T00:04:29.766597Z', 'iopub.status.idle': '2025-02-13T00:04:3 […]
│ │ │ │ │ │ @@ -39,18 +39,18 @@
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 1,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2026-03-18T04:24:36.942759Z",
│ │ │ │ │ │ - "iopub.status.busy": "2026-03-18T04:24:36.942509Z",
│ │ │ │ │ │ - "iopub.status.idle": "2026-03-18T04:24:37.706708Z",
│ │ │ │ │ │ - "shell.execute_reply": "2026-03-18T04:24:37.706001Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-02-13T00:04:29.331127Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-02-13T00:04:29.330662Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-02-13T00:04:29.750346Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-02-13T00:04:29.742989Z"
│ │ │ │ │ │ },
│ │ │ │ │ │ "nbsphinx": "hidden"
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [],
│ │ │ │ │ │ "source": [
│ │ │ │ │ │ "import matplotlib.pyplot\n",
│ │ │ │ │ │ "# We have this here to trigger matplotlib's font cache stuff.\n",
│ │ │ │ │ │ @@ -77,36 +77,36 @@
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 2,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2026-03-18T04:24:37.709536Z",
│ │ │ │ │ │ - "iopub.status.busy": "2026-03-18T04:24:37.709226Z",
│ │ │ │ │ │ - "iopub.status.idle": "2026-03-18T04:24:38.170675Z",
│ │ │ │ │ │ - "shell.execute_reply": "2026-03-18T04:24:38.170003Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-02-13T00:04:29.766964Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-02-13T00:04:29.766597Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-02-13T00:04:30.058055Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-02-13T00:04:30.046032Z"
│ │ │ │ │ │ }
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [],
│ │ │ │ │ │ "source": [
│ │ │ │ │ │ "import pandas as pd\n",
│ │ │ │ │ │ "import numpy as np\n",
│ │ │ │ │ │ "import matplotlib as mpl\n"
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 3,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2026-03-18T04:24:38.173419Z",
│ │ │ │ │ │ - "iopub.status.busy": "2026-03-18T04:24:38.173095Z",
│ │ │ │ │ │ - "iopub.status.idle": "2026-03-18T04:24:38.442647Z",
│ │ │ │ │ │ - "shell.execute_reply": "2026-03-18T04:24:38.441985Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-02-13T00:04:30.078999Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-02-13T00:04:30.078609Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-02-13T00:04:30.282771Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-02-13T00:04:30.282034Z"
│ │ │ │ │ │ },
│ │ │ │ │ │ "nbsphinx": "hidden"
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [],
│ │ │ │ │ │ "source": [
│ │ │ │ │ │ "# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\n",
│ │ │ │ │ │ "from pandas.io.formats.style import Styler\n",
│ │ │ │ │ │ @@ -123,18 +123,18 @@
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 4,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2026-03-18T04:24:38.445361Z",
│ │ │ │ │ │ - "iopub.status.busy": "2026-03-18T04:24:38.445054Z",
│ │ │ │ │ │ - "iopub.status.idle": "2026-03-18T04:24:38.466626Z",
│ │ │ │ │ │ - "shell.execute_reply": "2026-03-18T04:24:38.465984Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-02-13T00:04:30.288449Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-02-13T00:04:30.288077Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-02-13T00:04:30.302725Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-02-13T00:04:30.302018Z"
│ │ │ │ │ │ }
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [
│ │ │ │ │ │ {
│ │ │ │ │ │ "data": {
│ │ │ │ │ │ "text/html": [
│ │ │ │ │ │ "