I: pbuilder: network access will be disabled during build I: Current time: Wed Jul 10 19:46:32 -12 2019 I: pbuilder-time-stamp: 1562831192 I: Building the build Environment I: extracting base tarball [/var/cache/pbuilder/buster-reproducible-base.tgz] I: copying local configuration I: mounting /proc filesystem I: mounting /sys filesystem I: creating /{dev,run}/shm I: mounting /dev/pts filesystem I: redirecting /dev/ptmx to /dev/pts/ptmx I: policy-rc.d already exists I: using eatmydata during job I: Copying source file I: copying [libmath-prime-util-perl_0.73-1.dsc] I: copying [./libmath-prime-util-perl_0.73.orig.tar.gz] I: copying [./libmath-prime-util-perl_0.73-1.debian.tar.xz] I: Extracting source gpgv: unknown type of key resource 'trustedkeys.kbx' gpgv: keyblock resource '/root/.gnupg/trustedkeys.kbx': General error gpgv: Signature made Sat Nov 17 06:39:30 2018 -12 gpgv: using RSA key D1E1316E93A760A8104D85FABB3A68018649AA06 gpgv: Can't check signature: No public key dpkg-source: warning: failed to verify signature on ./libmath-prime-util-perl_0.73-1.dsc dpkg-source: info: extracting libmath-prime-util-perl in libmath-prime-util-perl-0.73 dpkg-source: info: unpacking libmath-prime-util-perl_0.73.orig.tar.gz dpkg-source: info: unpacking libmath-prime-util-perl_0.73-1.debian.tar.xz I: using fakeroot in build. I: Installing the build-deps -> Attempting to satisfy build-dependencies -> Creating pbuilder-satisfydepends-dummy package Package: pbuilder-satisfydepends-dummy Version: 0.invalid.0 Architecture: i386 Maintainer: Debian Pbuilder Team Description: Dummy package to satisfy dependencies with aptitude - created by pbuilder This package was created automatically by pbuilder to satisfy the build-dependencies of the package being currently built. Depends: debhelper (>= 10), help2man, libmath-prime-util-gmp-perl (>= 0.50), libtest-warn-perl, perl dpkg-deb: building package 'pbuilder-satisfydepends-dummy' in '/tmp/satisfydepends-aptitude/pbuilder-satisfydepends-dummy.deb'. Selecting previously unselected package pbuilder-satisfydepends-dummy. (Reading database ... 19231 files and directories currently installed.) Preparing to unpack .../pbuilder-satisfydepends-dummy.deb ... Unpacking pbuilder-satisfydepends-dummy (0.invalid.0) ... dpkg: pbuilder-satisfydepends-dummy: dependency problems, but configuring anyway as you requested: pbuilder-satisfydepends-dummy depends on debhelper (>= 10); however: Package debhelper is not installed. pbuilder-satisfydepends-dummy depends on help2man; however: Package help2man is not installed. pbuilder-satisfydepends-dummy depends on libmath-prime-util-gmp-perl (>= 0.50); however: Package libmath-prime-util-gmp-perl is not installed. pbuilder-satisfydepends-dummy depends on libtest-warn-perl; however: Package libtest-warn-perl is not installed. Setting up pbuilder-satisfydepends-dummy (0.invalid.0) ... Reading package lists... Building dependency tree... Reading state information... Initializing package states... Writing extended state information... Building tag database... pbuilder-satisfydepends-dummy is already installed at the requested version (0.invalid.0) pbuilder-satisfydepends-dummy is already installed at the requested version (0.invalid.0) The following NEW packages will be installed: autoconf{a} automake{a} autopoint{a} autotools-dev{a} bsdmainutils{a} debhelper{a} dh-autoreconf{a} dh-strip-nondeterminism{a} dwz{a} file{a} gettext{a} gettext-base{a} groff-base{a} help2man{a} intltool-debian{a} libarchive-zip-perl{a} libbsd0{a} libcroco3{a} libelf1{a} libfile-stripnondeterminism-perl{a} libglib2.0-0{a} libicu63{a} liblocale-gettext-perl{a} libmagic-mgc{a} libmagic1{a} libmath-prime-util-gmp-perl{a} libncurses6{a} libpipeline1{a} libsigsegv2{a} libsub-uplevel-perl{a} libtest-warn-perl{a} libtool{a} libuchardet0{a} libxml2{a} m4{a} man-db{a} po-debconf{a} sensible-utils{a} The following packages are RECOMMENDED but will NOT be installed: curl libarchive-cpio-perl libglib2.0-data libgpm2 libltdl-dev libmail-sendmail-perl libmath-prime-util-perl lynx shared-mime-info wget xdg-user-dirs 0 packages upgraded, 38 newly installed, 0 to remove and 0 not upgraded. Need to get 19.9 MB of archives. After unpacking 71.6 MB will be used. Writing extended state information... Get: 1 http://cdn-fastly.deb.debian.org/debian buster/main i386 libbsd0 i386 0.9.1-2 [104 kB] Get: 2 http://cdn-fastly.deb.debian.org/debian buster/main i386 bsdmainutils i386 11.1.2+b1 [193 kB] Get: 3 http://cdn-fastly.deb.debian.org/debian buster/main i386 libuchardet0 i386 0.0.6-3 [65.2 kB] Get: 4 http://cdn-fastly.deb.debian.org/debian buster/main i386 groff-base i386 1.22.4-3 [935 kB] Get: 5 http://cdn-fastly.deb.debian.org/debian buster/main i386 libpipeline1 i386 1.5.1-2 [33.3 kB] Get: 6 http://cdn-fastly.deb.debian.org/debian buster/main i386 man-db i386 2.8.5-2 [1284 kB] Get: 7 http://cdn-fastly.deb.debian.org/debian buster/main i386 liblocale-gettext-perl i386 1.07-3+b4 [19.3 kB] Get: 8 http://cdn-fastly.deb.debian.org/debian buster/main i386 sensible-utils all 0.0.12 [15.8 kB] Get: 9 http://cdn-fastly.deb.debian.org/debian buster/main i386 libmagic-mgc i386 1:5.35-4 [242 kB] Get: 10 http://cdn-fastly.deb.debian.org/debian buster/main i386 libmagic1 i386 1:5.35-4 [124 kB] Get: 11 http://cdn-fastly.deb.debian.org/debian buster/main i386 file i386 1:5.35-4 [66.3 kB] Get: 12 http://cdn-fastly.deb.debian.org/debian buster/main i386 gettext-base i386 0.19.8.1-9 [124 kB] Get: 13 http://cdn-fastly.deb.debian.org/debian buster/main i386 libsigsegv2 i386 2.12-2 [33.2 kB] Get: 14 http://cdn-fastly.deb.debian.org/debian buster/main i386 m4 i386 1.4.18-2 [205 kB] Get: 15 http://cdn-fastly.deb.debian.org/debian buster/main i386 autoconf all 2.69-11 [341 kB] Get: 16 http://cdn-fastly.deb.debian.org/debian buster/main i386 autotools-dev all 20180224.1 [77.0 kB] Get: 17 http://cdn-fastly.deb.debian.org/debian buster/main i386 automake all 1:1.16.1-4 [771 kB] Get: 18 http://cdn-fastly.deb.debian.org/debian buster/main i386 autopoint all 0.19.8.1-9 [434 kB] Get: 19 http://cdn-fastly.deb.debian.org/debian buster/main i386 libtool all 2.4.6-9 [547 kB] Get: 20 http://cdn-fastly.deb.debian.org/debian buster/main i386 dh-autoreconf all 19 [16.9 kB] Get: 21 http://cdn-fastly.deb.debian.org/debian buster/main i386 libarchive-zip-perl all 1.64-1 [96.8 kB] Get: 22 http://cdn-fastly.deb.debian.org/debian buster/main i386 libfile-stripnondeterminism-perl all 1.1.2-1 [19.8 kB] Get: 23 http://cdn-fastly.deb.debian.org/debian buster/main i386 dh-strip-nondeterminism all 1.1.2-1 [13.0 kB] Get: 24 http://cdn-fastly.deb.debian.org/debian buster/main i386 libelf1 i386 0.176-1.1 [166 kB] Get: 25 http://cdn-fastly.deb.debian.org/debian buster/main i386 dwz i386 0.12-3 [81.4 kB] Get: 26 http://cdn-fastly.deb.debian.org/debian buster/main i386 libglib2.0-0 i386 2.58.3-2 [1333 kB] Get: 27 http://cdn-fastly.deb.debian.org/debian buster/main i386 libicu63 i386 63.1-6 [8443 kB] Get: 28 http://cdn-fastly.deb.debian.org/debian buster/main i386 libxml2 i386 2.9.4+dfsg1-7+b3 [721 kB] Get: 29 http://cdn-fastly.deb.debian.org/debian buster/main i386 libcroco3 i386 0.6.12-3 [151 kB] Get: 30 http://cdn-fastly.deb.debian.org/debian buster/main i386 libncurses6 i386 6.1+20181013-2 [109 kB] Get: 31 http://cdn-fastly.deb.debian.org/debian buster/main i386 gettext i386 0.19.8.1-9 [1314 kB] Get: 32 http://cdn-fastly.deb.debian.org/debian buster/main i386 intltool-debian all 0.35.0+20060710.5 [26.8 kB] Get: 33 http://cdn-fastly.deb.debian.org/debian buster/main i386 po-debconf all 1.0.21 [248 kB] Get: 34 http://cdn-fastly.deb.debian.org/debian buster/main i386 debhelper all 12.1.1 [1016 kB] Get: 35 http://cdn-fastly.deb.debian.org/debian buster/main i386 help2man i386 1.47.8 [177 kB] Get: 36 http://cdn-fastly.deb.debian.org/debian buster/main i386 libmath-prime-util-gmp-perl i386 0.51-1+b1 [293 kB] Get: 37 http://cdn-fastly.deb.debian.org/debian buster/main i386 libsub-uplevel-perl all 0.2800-1 [16.3 kB] Get: 38 http://cdn-fastly.deb.debian.org/debian buster/main i386 libtest-warn-perl all 0.36-1 [16.2 kB] Fetched 19.9 MB in 25s (785 kB/s) debconf: delaying package configuration, since apt-utils is not installed Selecting previously unselected package libbsd0:i386. (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 19231 files and directories currently installed.) Preparing to unpack .../00-libbsd0_0.9.1-2_i386.deb ... Unpacking libbsd0:i386 (0.9.1-2) ... Selecting previously unselected package bsdmainutils. Preparing to unpack .../01-bsdmainutils_11.1.2+b1_i386.deb ... Unpacking bsdmainutils (11.1.2+b1) ... Selecting previously unselected package libuchardet0:i386. Preparing to unpack .../02-libuchardet0_0.0.6-3_i386.deb ... Unpacking libuchardet0:i386 (0.0.6-3) ... Selecting previously unselected package groff-base. Preparing to unpack .../03-groff-base_1.22.4-3_i386.deb ... Unpacking groff-base (1.22.4-3) ... Selecting previously unselected package libpipeline1:i386. Preparing to unpack .../04-libpipeline1_1.5.1-2_i386.deb ... Unpacking libpipeline1:i386 (1.5.1-2) ... Selecting previously unselected package man-db. Preparing to unpack .../05-man-db_2.8.5-2_i386.deb ... Unpacking man-db (2.8.5-2) ... Selecting previously unselected package liblocale-gettext-perl. Preparing to unpack .../06-liblocale-gettext-perl_1.07-3+b4_i386.deb ... Unpacking liblocale-gettext-perl (1.07-3+b4) ... Selecting previously unselected package sensible-utils. Preparing to unpack .../07-sensible-utils_0.0.12_all.deb ... Unpacking sensible-utils (0.0.12) ... Selecting previously unselected package libmagic-mgc. Preparing to unpack .../08-libmagic-mgc_1%3a5.35-4_i386.deb ... Unpacking libmagic-mgc (1:5.35-4) ... Selecting previously unselected package libmagic1:i386. Preparing to unpack .../09-libmagic1_1%3a5.35-4_i386.deb ... Unpacking libmagic1:i386 (1:5.35-4) ... Selecting previously unselected package file. Preparing to unpack .../10-file_1%3a5.35-4_i386.deb ... Unpacking file (1:5.35-4) ... Selecting previously unselected package gettext-base. Preparing to unpack .../11-gettext-base_0.19.8.1-9_i386.deb ... Unpacking gettext-base (0.19.8.1-9) ... Selecting previously unselected package libsigsegv2:i386. Preparing to unpack .../12-libsigsegv2_2.12-2_i386.deb ... Unpacking libsigsegv2:i386 (2.12-2) ... Selecting previously unselected package m4. Preparing to unpack .../13-m4_1.4.18-2_i386.deb ... Unpacking m4 (1.4.18-2) ... Selecting previously unselected package autoconf. Preparing to unpack .../14-autoconf_2.69-11_all.deb ... Unpacking autoconf (2.69-11) ... Selecting previously unselected package autotools-dev. Preparing to unpack .../15-autotools-dev_20180224.1_all.deb ... Unpacking autotools-dev (20180224.1) ... Selecting previously unselected package automake. Preparing to unpack .../16-automake_1%3a1.16.1-4_all.deb ... Unpacking automake (1:1.16.1-4) ... Selecting previously unselected package autopoint. Preparing to unpack .../17-autopoint_0.19.8.1-9_all.deb ... Unpacking autopoint (0.19.8.1-9) ... Selecting previously unselected package libtool. Preparing to unpack .../18-libtool_2.4.6-9_all.deb ... Unpacking libtool (2.4.6-9) ... Selecting previously unselected package dh-autoreconf. Preparing to unpack .../19-dh-autoreconf_19_all.deb ... Unpacking dh-autoreconf (19) ... Selecting previously unselected package libarchive-zip-perl. Preparing to unpack .../20-libarchive-zip-perl_1.64-1_all.deb ... Unpacking libarchive-zip-perl (1.64-1) ... Selecting previously unselected package libfile-stripnondeterminism-perl. Preparing to unpack .../21-libfile-stripnondeterminism-perl_1.1.2-1_all.deb ... Unpacking libfile-stripnondeterminism-perl (1.1.2-1) ... Selecting previously unselected package dh-strip-nondeterminism. Preparing to unpack .../22-dh-strip-nondeterminism_1.1.2-1_all.deb ... Unpacking dh-strip-nondeterminism (1.1.2-1) ... Selecting previously unselected package libelf1:i386. Preparing to unpack .../23-libelf1_0.176-1.1_i386.deb ... Unpacking libelf1:i386 (0.176-1.1) ... Selecting previously unselected package dwz. Preparing to unpack .../24-dwz_0.12-3_i386.deb ... Unpacking dwz (0.12-3) ... Selecting previously unselected package libglib2.0-0:i386. Preparing to unpack .../25-libglib2.0-0_2.58.3-2_i386.deb ... Unpacking libglib2.0-0:i386 (2.58.3-2) ... Selecting previously unselected package libicu63:i386. Preparing to unpack .../26-libicu63_63.1-6_i386.deb ... Unpacking libicu63:i386 (63.1-6) ... Selecting previously unselected package libxml2:i386. Preparing to unpack .../27-libxml2_2.9.4+dfsg1-7+b3_i386.deb ... Unpacking libxml2:i386 (2.9.4+dfsg1-7+b3) ... Selecting previously unselected package libcroco3:i386. Preparing to unpack .../28-libcroco3_0.6.12-3_i386.deb ... Unpacking libcroco3:i386 (0.6.12-3) ... Selecting previously unselected package libncurses6:i386. Preparing to unpack .../29-libncurses6_6.1+20181013-2_i386.deb ... Unpacking libncurses6:i386 (6.1+20181013-2) ... Selecting previously unselected package gettext. Preparing to unpack .../30-gettext_0.19.8.1-9_i386.deb ... Unpacking gettext (0.19.8.1-9) ... Selecting previously unselected package intltool-debian. Preparing to unpack .../31-intltool-debian_0.35.0+20060710.5_all.deb ... Unpacking intltool-debian (0.35.0+20060710.5) ... Selecting previously unselected package po-debconf. Preparing to unpack .../32-po-debconf_1.0.21_all.deb ... Unpacking po-debconf (1.0.21) ... Selecting previously unselected package debhelper. Preparing to unpack .../33-debhelper_12.1.1_all.deb ... Unpacking debhelper (12.1.1) ... Selecting previously unselected package help2man. Preparing to unpack .../34-help2man_1.47.8_i386.deb ... Unpacking help2man (1.47.8) ... Selecting previously unselected package libmath-prime-util-gmp-perl. Preparing to unpack .../35-libmath-prime-util-gmp-perl_0.51-1+b1_i386.deb ... Unpacking libmath-prime-util-gmp-perl (0.51-1+b1) ... Selecting previously unselected package libsub-uplevel-perl. Preparing to unpack .../36-libsub-uplevel-perl_0.2800-1_all.deb ... Unpacking libsub-uplevel-perl (0.2800-1) ... Selecting previously unselected package libtest-warn-perl. Preparing to unpack .../37-libtest-warn-perl_0.36-1_all.deb ... Unpacking libtest-warn-perl (0.36-1) ... Setting up libpipeline1:i386 (1.5.1-2) ... Setting up libmath-prime-util-gmp-perl (0.51-1+b1) ... Setting up libmagic-mgc (1:5.35-4) ... Setting up libarchive-zip-perl (1.64-1) ... Setting up libglib2.0-0:i386 (2.58.3-2) ... No schema files found: doing nothing. Setting up libmagic1:i386 (1:5.35-4) ... Setting up gettext-base (0.19.8.1-9) ... Setting up file (1:5.35-4) ... Setting up libicu63:i386 (63.1-6) ... Setting up autotools-dev (20180224.1) ... Setting up libncurses6:i386 (6.1+20181013-2) ... Setting up libsigsegv2:i386 (2.12-2) ... Setting up autopoint (0.19.8.1-9) ... Setting up sensible-utils (0.0.12) ... Setting up libuchardet0:i386 (0.0.6-3) ... Setting up libsub-uplevel-perl (0.2800-1) ... Setting up libbsd0:i386 (0.9.1-2) ... Setting up libelf1:i386 (0.176-1.1) ... Setting up libxml2:i386 (2.9.4+dfsg1-7+b3) ... Setting up liblocale-gettext-perl (1.07-3+b4) ... Setting up libfile-stripnondeterminism-perl (1.1.2-1) ... Setting up libtool (2.4.6-9) ... Setting up libtest-warn-perl (0.36-1) ... Setting up m4 (1.4.18-2) ... Setting up help2man (1.47.8) ... Setting up bsdmainutils (11.1.2+b1) ... update-alternatives: using /usr/bin/bsd-write to provide /usr/bin/write (write) in auto mode update-alternatives: using /usr/bin/bsd-from to provide /usr/bin/from (from) in auto mode Setting up libcroco3:i386 (0.6.12-3) ... Setting up autoconf (2.69-11) ... Setting up dwz (0.12-3) ... Setting up groff-base (1.22.4-3) ... Setting up automake (1:1.16.1-4) ... update-alternatives: using /usr/bin/automake-1.16 to provide /usr/bin/automake (automake) in auto mode Setting up gettext (0.19.8.1-9) ... Setting up man-db (2.8.5-2) ... Not building database; man-db/auto-update is not 'true'. Setting up intltool-debian (0.35.0+20060710.5) ... Setting up po-debconf (1.0.21) ... Setting up debhelper (12.1.1) ... Setting up dh-autoreconf (19) ... Setting up dh-strip-nondeterminism (1.1.2-1) ... Processing triggers for libc-bin (2.28-10) ... Reading package lists... Building dependency tree... Reading state information... Reading extended state information... Initializing package states... Writing extended state information... Building tag database... -> Finished parsing the build-deps Reading package lists... Building dependency tree... Reading state information... fakeroot is already the newest version (1.23-1). 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. I: Building the package I: Running cd /build/libmath-prime-util-perl-0.73/ && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games" HOME="/nonexistent/first-build" dpkg-buildpackage -us -uc -b dpkg-buildpackage: info: source package libmath-prime-util-perl dpkg-buildpackage: info: source version 0.73-1 dpkg-buildpackage: info: source distribution unstable dpkg-buildpackage: info: source changed by gregor herrmann dpkg-source --before-build . dpkg-buildpackage: info: host architecture i386 fakeroot debian/rules clean dh clean dh_clean debian/rules build dh build dh_update_autotools_config dh_autoreconf dh_auto_configure perl -I. Makefile.PL INSTALLDIRS=vendor "OPTIMIZE=-g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2" "LD=i686-linux-gnu-gcc -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wl,-z,relro -Wl,-z,now" It looks like you don't have the GMP library. Sad face. Checking if your kit is complete... Looks good Generating a Unix-style Makefile Writing Makefile for Math::Prime::Util Writing MYMETA.yml and MYMETA.json dh_auto_build make -j10 make[1]: Entering directory '/build/libmath-prime-util-perl-0.73' Running Mkbootstrap for Util () i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" cache.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" factor.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" primality.c chmod 644 "Util.bs" i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" aks.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" lehmer.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" lmo.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" random_prime.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" sieve.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" sieve_cluster.c cp lib/Math/Prime/Util.pm blib/lib/Math/Prime/Util.pm cp lib/Math/Prime/Util/ZetaBigFloat.pm blib/lib/Math/Prime/Util/ZetaBigFloat.pm cp lib/Math/Prime/Util/PP.pm blib/lib/Math/Prime/Util/PP.pm cp lib/Math/Prime/Util/MemFree.pm blib/lib/Math/Prime/Util/MemFree.pm cp lib/Math/Prime/Util/PrimeArray.pm blib/lib/Math/Prime/Util/PrimeArray.pm cp lib/Math/Prime/Util/ECAffinePoint.pm blib/lib/Math/Prime/Util/ECAffinePoint.pm cp lib/Math/Prime/Util/PrimalityProving.pm blib/lib/Math/Prime/Util/PrimalityProving.pm cp lib/Math/Prime/Util/ECProjectivePoint.pm blib/lib/Math/Prime/Util/ECProjectivePoint.pm cp lib/Math/Prime/Util/ChaCha.pm blib/lib/Math/Prime/Util/ChaCha.pm cp lib/Math/Prime/Util/PPFE.pm blib/lib/Math/Prime/Util/PPFE.pm cp lib/Math/Prime/Util/RandomPrimes.pm blib/lib/Math/Prime/Util/RandomPrimes.pm cp lib/ntheory.pm blib/lib/ntheory.pm cp lib/Math/Prime/Util/PrimeIterator.pm blib/lib/Math/Prime/Util/PrimeIterator.pm cp lib/Math/Prime/Util/Entropy.pm blib/lib/Math/Prime/Util/Entropy.pm i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" ramanujan_primes.c factor.c: In function 'factor_one': factor.c:210:35: warning: format '%lu' expects argument of type 'long unsigned int', but argument 2 has type 'UV' {aka 'long long unsigned int'} [-Wformat=] croak("factor_one failed on %lu\n", n); ~~^ ~ %llu i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" semi_primes.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" prime_nth_count.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" util.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" entropy.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" csprng.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" chacha.c "/usr/bin/perl" "/usr/share/perl/5.28/ExtUtils/xsubpp" -typemap '/usr/share/perl/5.28/ExtUtils/typemap' XS.xs > XS.xsc "/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- Util.bs blib/arch/auto/Math/Prime/Util/Util.bs 644 mv XS.xsc XS.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" XS.c rm -f blib/arch/auto/Math/Prime/Util/Util.so i686-linux-gnu-gcc -g -O2 -ffile-prefix-map=/build/libmath-prime-util-perl-0.73=. -fstack-protector-strong -Wformat -Werror=format-security -Wl,-z,relro -Wl,-z,now -shared -L/usr/local/lib -fstack-protector-strong cache.o factor.o primality.o aks.o lehmer.o lmo.o random_prime.o sieve.o sieve_cluster.o ramanujan_primes.o semi_primes.o prime_nth_count.o util.o entropy.o csprng.o chacha.o XS.o -o blib/arch/auto/Math/Prime/Util/Util.so \ -lm \ chmod 755 blib/arch/auto/Math/Prime/Util/Util.so cp bin/factor.pl blib/script/factor.pl cp bin/primes.pl blib/script/primes.pl "/usr/bin/perl" -MExtUtils::MY -e 'MY->fixin(shift)' -- blib/script/factor.pl "/usr/bin/perl" -MExtUtils::MY -e 'MY->fixin(shift)' -- blib/script/primes.pl Manifying 14 pod documents make[1]: Leaving directory '/build/libmath-prime-util-perl-0.73' dh_auto_test make -j10 test TEST_VERBOSE=1 make[1]: Entering directory '/build/libmath-prime-util-perl-0.73' "/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- Util.bs blib/arch/auto/Math/Prime/Util/Util.bs 644 PERL_DL_NONLAZY=1 "/usr/bin/perl" "-MExtUtils::Command::MM" "-MTest::Harness" "-e" "undef *Test::Harness::Switches; test_harness(1, 'blib/lib', 'blib/arch')" t/*.t t/01-load.t .................. 1..1 ok 1 - require Math::Prime::Util; ok t/011-load-ntheory.t ......... 1..1 ok 1 - require ntheory; ok t/02-can.t ................... 1..1 ok 1 - Math::Prime::Util->can(...) ok t/022-can-ntheory.t .......... 1..1 ok 1 - ntheory can do is_prime ok # Using XS with MPU::GMP version 0.51. t/03-init.t .................. 1..15 ok 1 - Math::Prime::Util->can('prime_get_config') ok 2 - Internal space grew after large precalc ok 3 - Internal space went back to original size after memfree ok 4 - An object of class 'Math::Prime::Util::MemFree' isa 'Math::Prime::Util::MemFree' ok 5 - Internal space grew after large precalc ok 6 - Memory released after MemFree object goes out of scope ok 7 - Internal space grew after large precalc ok 8 - Memory not freed yet because a MemFree object still live. ok 9 - Memory released after last MemFree object goes out of scope ok 10 - Internal space grew after large precalc ok 11 - Memory freed after successful eval ok 12 - Internal space grew after large precalc ok 13 - Memory normally not freed after eval die ok 14 - Internal space grew after large precalc ok 15 - Memory is freed after eval die using object scoper ok t/04-inputvalidation.t ....... 1..28 ok 1 - next_prime(undef) ok 2 - next_prime('') ok 3 - next_prime(-4) ok 4 - next_prime(-) ok 5 - next_prime(+) ok 6 - next_prime(++4) ok 7 - next_prime(+-4) ok 8 - next_prime(-0004) ok 9 - next_prime(a) ok 10 - next_prime(5.6) ok 11 - next_prime(4e) ok 12 - next_prime(1.1e12) ok 13 - next_prime(1e8) ok 14 - next_prime(NaN) ok 15 - next_prime(-4) ok 16 - next_prime(15.6) ok 17 - next_prime(NaN) ok 18 - Correct: next_prime(9) ok 19 - Correct: next_prime(+4) ok 20 - Correct: next_prime(+0004) ok 21 - Correct: next_prime(5) ok 22 - Correct: next_prime(4) ok 23 - Correct: next_prime(10000000000000000000000012) ok 24 - Correct: next_prime(100000000) ok 25 - Correct: next_prime(0004) ok 26 - next_prime( infinity ) ok 27 - next_prime( nan ) [nan = 'NaN'] ok 28 - next_prime('111...111x') ok t/10-isprime.t ............... 1..127 ok 1 - is_prime(undef) ok 2 - 2 is prime ok 3 - 1 is not prime ok 4 - 0 is not prime ok 5 - -1 is not prime ok 6 - -2 is not prime ok 7 - is_prime powers of 2 ok 8 - is_prime 0..3572 ok 9 - 4033 is composite ok 10 - 4369 is composite ok 11 - 4371 is composite ok 12 - 4681 is composite ok 13 - 5461 is composite ok 14 - 5611 is composite ok 15 - 6601 is composite ok 16 - 7813 is composite ok 17 - 7957 is composite ok 18 - 8321 is composite ok 19 - 8401 is composite ok 20 - 8911 is composite ok 21 - 10585 is composite ok 22 - 12403 is composite ok 23 - 13021 is composite ok 24 - 14981 is composite ok 25 - 15751 is composite ok 26 - 15841 is composite ok 27 - 16531 is composite ok 28 - 18721 is composite ok 29 - 19345 is composite ok 30 - 23521 is composite ok 31 - 24211 is composite ok 32 - 25351 is composite ok 33 - 29341 is composite ok 34 - 29539 is composite ok 35 - 31621 is composite ok 36 - 38081 is composite ok 37 - 40501 is composite ok 38 - 41041 is composite ok 39 - 44287 is composite ok 40 - 44801 is composite ok 41 - 46657 is composite ok 42 - 47197 is composite ok 43 - 52633 is composite ok 44 - 53971 is composite ok 45 - 55969 is composite ok 46 - 62745 is composite ok 47 - 63139 is composite ok 48 - 63973 is composite ok 49 - 74593 is composite ok 50 - 75361 is composite ok 51 - 79003 is composite ok 52 - 79381 is composite ok 53 - 82513 is composite ok 54 - 87913 is composite ok 55 - 88357 is composite ok 56 - 88573 is composite ok 57 - 97567 is composite ok 58 - 101101 is composite ok 59 - 340561 is composite ok 60 - 488881 is composite ok 61 - 852841 is composite ok 62 - 1373653 is composite ok 63 - 1857241 is composite ok 64 - 6733693 is composite ok 65 - 9439201 is composite ok 66 - 17236801 is composite ok 67 - 23382529 is composite ok 68 - 25326001 is composite ok 69 - 34657141 is composite ok 70 - 56052361 is composite ok 71 - 146843929 is composite ok 72 - 216821881 is composite ok 73 - 3215031751 is composite ok 74 - 2152302898747 is composite ok 75 - 3474749660383 is composite ok 76 - 341550071728321 is composite ok 77 - 341550071728321 is composite ok 78 - 3825123056546413051 is composite ok 79 - 9551 is definitely prime ok 80 - 15683 is definitely prime ok 81 - 19609 is definitely prime ok 82 - 31397 is definitely prime ok 83 - 155921 is definitely prime ok 84 - 9587 is definitely prime ok 85 - 15727 is definitely prime ok 86 - 19661 is definitely prime ok 87 - 31469 is definitely prime ok 88 - 156007 is definitely prime ok 89 - 360749 is definitely prime ok 90 - 370373 is definitely prime ok 91 - 492227 is definitely prime ok 92 - 1349651 is definitely prime ok 93 - 1357333 is definitely prime ok 94 - 2010881 is definitely prime ok 95 - 4652507 is definitely prime ok 96 - 17051887 is definitely prime ok 97 - 20831533 is definitely prime ok 98 - 47326913 is definitely prime ok 99 - 122164969 is definitely prime ok 100 - 189695893 is definitely prime ok 101 - 191913031 is definitely prime ok 102 - 387096383 is definitely prime ok 103 - 436273291 is definitely prime ok 104 - 1294268779 is definitely prime ok 105 - 1453168433 is definitely prime ok 106 - 2300942869 is definitely prime ok 107 - 3842611109 is definitely prime ok 108 - 4302407713 is definitely prime ok 109 - 10726905041 is definitely prime ok 110 - 20678048681 is definitely prime ok 111 - 22367085353 is definitely prime ok 112 - 25056082543 is definitely prime ok 113 - 42652618807 is definitely prime ok 114 - 127976334671 is definitely prime ok 115 - 182226896239 is definitely prime ok 116 - 241160624143 is definitely prime ok 117 - 297501075799 is definitely prime ok 118 - 303371455241 is definitely prime ok 119 - 304599508537 is definitely prime ok 120 - 416608695821 is definitely prime ok 121 - 461690510011 is definitely prime ok 122 - 614487453523 is definitely prime ok 123 - 738832927927 is definitely prime ok 124 - 1346294310749 is definitely prime ok 125 - 1408695493609 is definitely prime ok 126 - 1968188556461 is definitely prime ok 127 - 2614941710599 is definitely prime ok t/11-clusters.t .............. 1..41 ok 1 - A001359 0 200 ok 2 - A022004 317321 319727 ok 3 - A022005 557857 560293 ok 4 - Inadmissible pattern (0,2,4) finds (3,5,7) ok 5 - Inadmissible pattern (0,2,8,14,26) finds (3,5,11,17,29) and (5,7,13,19,31) ok 6 - Pattern [2] 1224 in range 0 .. 100000 ok 7 - Pattern [2 6] 259 in range 0 .. 100000 ok 8 - Pattern [4 6] 248 in range 0 .. 100000 ok 9 - Pattern [2 6 8] 38 in range 0 .. 100000 ok 10 - Pattern [2 6 8 12] 10 in range 0 .. 100000 ok 11 - Pattern [4 6 10 12] 11 in range 0 .. 100000 ok 12 - Pattern [4 6 10 12 16] 5 in range 0 .. 100000 ok 13 - Pattern [2 8 12 14 18 20] 2 in range 0 .. 100000 ok 14 - Pattern [2 6 8 12 18 20] 1 in range 0 .. 100000 ok 15 - Pattern [2] 52 in range 1000000000000000000000 .. 1000000000000000093565 ok 16 - Pattern [2 6] 5 in range 1000000000000000000000 .. 1000000000000000093565 ok 17 - Pattern [4 6] 3 in range 1000000000000000000000 .. 1000000000000000093565 ok 18 - Pattern [2 6 8] 1 in range 1000000000000000000000 .. 1000000000000000093565 ok 19 - Pattern [2 6 8 12] 0 in range 1000000000000000000000 .. 1000000000000000093565 ok 20 - Pattern [4 6 10 12] 0 in range 1000000000000000000000 .. 1000000000000000093565 ok 21 - Pattern [4 6 10 12 16] 0 in range 1000000000000000000000 .. 1000000000000000093565 ok 22 - Pattern [2 8 12 14 18 20] 0 in range 1000000000000000000000 .. 1000000000000000093565 ok 23 - Pattern [2 6 8 12 18 20] 0 in range 1000000000000000000000 .. 1000000000000000093565 ok 24 - Window around A022006 high cluster finds the cluster ok 25 - Window around A022007 high cluster finds the cluster ok 26 - Window around A022008 high cluster finds the cluster ok 27 - Window around A022009 high cluster finds the cluster ok 28 - Window around A022010 high cluster finds the cluster ok 29 - Window around A022010 high cluster finds the cluster ok 30 - Window around A022012 high cluster finds the cluster ok 31 - Window around A022013 high cluster finds the cluster ok 32 - Window around A022545 high cluster finds the cluster ok 33 - Window around A022546 high cluster finds the cluster ok 34 - Window around A022547 high cluster finds the cluster ok 35 - Window around A022548 high cluster finds the cluster ok 36 - Window around A027569 high cluster finds the cluster ok 37 - Window around A027570 high cluster finds the cluster ok 38 - Window around A213601 high cluster finds the cluster ok 39 - Window around A213645 high cluster finds the cluster ok 40 - Window around A213646 high cluster finds the cluster ok 41 - Window around A213647 high cluster finds the cluster ok t/11-primes.t ................ 1..124 ok 1 - primes(undef) ok 2 - primes(a) ok 3 - primes(-4) ok 4 - primes(2,undef) ok 5 - primes(2,x) ok 6 - primes(2,-4) ok 7 - primes(undef,7) ok 8 - primes(x,7) ok 9 - primes(-10,7) ok 10 - primes(undef,undef) ok 11 - primes(x,x) ok 12 - primes(-10,-4) ok 13 - primes(inf) ok 14 - primes(2,inf) ok 15 - primes(inf,inf) ok 16 - primes(19) should return [2 3 5 7 11 13 17 19] ok 17 - primes(2) should return [2] ok 18 - primes(4) should return [2 3] ok 19 - primes(11) should return [2 3 5 7 11] ok 20 - primes(18) should return [2 3 5 7 11 13 17] ok 21 - primes(20) should return [2 3 5 7 11 13 17 19] ok 22 - primes(7) should return [2 3 5 7] ok 23 - primes(0) should return [] ok 24 - primes(3) should return [2 3] ok 25 - primes(5) should return [2 3 5] ok 26 - primes(6) should return [2 3 5] ok 27 - primes(1) should return [] ok 28 - Primes between 0 and 3572 ok 29 - primes(3,9) should return [3 5 7] ok 30 - primes(2010733,2010881) should return [2010733 2010881] ok 31 - primes(2,20) should return [2 3 5 7 11 13 17 19] ok 32 - primes(3088,3164) should return [3089 3109 3119 3121 3137 3163] ok 33 - primes(2010734,2010880) should return [] ok 34 - primes(3842610774,3842611108) should return [] ok 35 - primes(70,30) should return [] ok 36 - primes(3089,3163) should return [3089 3109 3119 3121 3137 3163] ok 37 - primes(2,3) should return [2 3] ok 38 - primes(3,7) should return [3 5 7] ok 39 - primes(2,2) should return [2] ok 40 - primes(3842610773,3842611109) should return [3842610773 3842611109] ok 41 - primes(3,3) should return [3] ok 42 - primes(3,6) should return [3 5] ok 43 - primes(4,8) should return [5 7] ok 44 - primes(30,70) should return [31 37 41 43 47 53 59 61 67] ok 45 - primes(3090,3162) should return [3109 3119 3121 3137] ok 46 - primes(20,2) should return [] ok 47 - primes(2,5) should return [2 3 5] ok 48 - Primes between 1_693_182_318_746_371 and 1_693_182_318_747_671 ok 49 - count primes within a range ok 50 - primes(0, 3572) ok 51 - primes(2, 20) ok 52 - primes(30, 70) ok 53 - primes(30, 70) ok 54 - primes(20, 2) ok 55 - primes(1, 1) ok 56 - primes(2, 2) ok 57 - primes(3, 3) ok 58 - primes Primegap 21 inclusive ok 59 - primes Primegap 21 exclusive ok 60 - primes(3088, 3164) ok 61 - primes(3089, 3163) ok 62 - primes(3090, 3162) ok 63 - sieve(0, 3572) ok 64 - sieve(2, 20) ok 65 - sieve(30, 70) ok 66 - sieve(30, 70) ok 67 - sieve(20, 2) ok 68 - sieve(1, 1) ok 69 - sieve(2, 2) ok 70 - sieve(3, 3) ok 71 - sieve Primegap 21 inclusive ok 72 - sieve Primegap 21 exclusive ok 73 - sieve(3088, 3164) ok 74 - sieve(3089, 3163) ok 75 - sieve(3090, 3162) ok 76 - erat(0, 3572) ok 77 - erat(2, 20) ok 78 - erat(30, 70) ok 79 - erat(30, 70) ok 80 - erat(20, 2) ok 81 - erat(1, 1) ok 82 - erat(2, 2) ok 83 - erat(3, 3) ok 84 - erat Primegap 21 inclusive ok 85 - erat Primegap 21 exclusive ok 86 - erat(3088, 3164) ok 87 - erat(3089, 3163) ok 88 - erat(3090, 3162) ok 89 - trial(0, 3572) ok 90 - trial(2, 20) ok 91 - trial(30, 70) ok 92 - trial(30, 70) ok 93 - trial(20, 2) ok 94 - trial(1, 1) ok 95 - trial(2, 2) ok 96 - trial(3, 3) ok 97 - trial Primegap 21 inclusive ok 98 - trial Primegap 21 exclusive ok 99 - trial(3088, 3164) ok 100 - trial(3089, 3163) ok 101 - trial(3090, 3162) ok 102 - segment(0, 3572) ok 103 - segment(2, 20) ok 104 - segment(30, 70) ok 105 - segment(30, 70) ok 106 - segment(20, 2) ok 107 - segment(1, 1) ok 108 - segment(2, 2) ok 109 - segment(3, 3) ok 110 - segment Primegap 21 inclusive ok 111 - segment Primegap 21 exclusive ok 112 - segment(3088, 3164) ok 113 - segment(3089, 3163) ok 114 - segment(3090, 3162) ok 115 - sieve_range 0 width 1000 depth 40 returns primes ok 116 - sieve_range 1 width 4 depth 2 returns 1,2 ok 117 - sieve_range 1 width 5 depth 2 returns 1,2,4 ok 118 - sieve_range 1 width 6 depth 3 returns 1,2,4 ok 119 - sieve_range(109485,100,3) ok 120 - sieve_range(109485,100,5) ok 121 - sieve_range(109485,100,7) ok 122 - sieve_range(109485,100,11) ok 123 - sieve_range(109485,100,13) ok 124 - sieve_range(109485,100,17) ok t/11-ramanujanprimes.t ....... 1..25 ok 1 - ramanujan_primes(983) ok 2 - ramanujan_primes(11,17) should return [11 17] ok 3 - ramanujan_primes(1,11) should return [2 11] ok 4 - ramanujan_primes(11,18) should return [11 17] ok 5 - ramanujan_primes(182,226) should return [] ok 6 - ramanujan_primes(11,29) should return [11 17 29] ok 7 - ramanujan_primes(11,16) should return [11] ok 8 - ramanujan_primes(10,11) should return [11] ok 9 - ramanujan_primes(599,599) should return [599] ok 10 - ramanujan_primes(3,11) should return [11] ok 11 - ramanujan_primes(11,20) should return [11 17] ok 12 - ramanujan_primes(0,11) should return [2 11] ok 13 - ramanujan_primes(10000,10100) should return [10061 10067 10079 10091 10093] ok 14 - ramanujan_primes(11,19) should return [11 17] ok 15 - ramanujan_primes(2,11) should return [2 11] ok 16 - nth_ramanujan_prime(1 .. 72) ok 17 - The 123,456th Ramanujan prime is 3657037 ok 18 - is_ramanujan_prime( 0 .. 72) ok 19 - 997th Ramanujan prime is 19379 ok 20 - Rn[23744] is 617759 ok 21 - small ramanujan prime limits ok 22 - ramanujan prime limits for 59643 ok 23 - ramanujan prime limits for 5964377 ok 24 - ramanujan prime approx for 59643 ok 25 - ramanujan prime approx for 5964377 ok t/11-semiprimes.t ............ 1..33 ok 1 - semi_primes(95) ok 2 - nth_semiprime for small values ok 3 - semi_primes(10,13) should return [10] ok 4 - semi_primes(184279944,184280037) should return [184279969] ok 5 - semi_primes(184279943,184280038) should return [184279943 184279969 184280038] ok 6 - semi_primes(4,11) should return [4 6 9 10] ok 7 - semi_primes(10,10) should return [10] ok 8 - semi_primes(8589990147,8589990167) should return [8589990149 8589990157 8589990166] ok 9 - semi_primes(10,12) should return [10] ok 10 - semi_primes(2,11) should return [4 6 9 10] ok 11 - semi_primes(5,16) should return [6 9 10 14 15] ok 12 - semi_primes(10,11) should return [10] ok 13 - semi_primes(11,13) should return [] ok 14 - semi_primes(1,11) should return [4 6 9 10] ok 15 - semi_primes(3,11) should return [4 6 9 10] ok 16 - semi_primes(0,11) should return [4 6 9 10] ok 17 - semi_primes(26,33) should return [26 33] ok 18 - semi_primes(10,14) should return [10 14] ok 19 - semi_primes(25,34) should return [25 26 33 34] ok 20 - semiprime_count(1234) = 363 ok 21 - semiprime_count(12345) = 3217 ok 22 - semiprime_count(123456) = 28589 ok 23 - nth_semiprime(1234) = 4497 ok 24 - nth_semiprime(12345) = 51019 ok 25 - nth_semiprime(123456) = 573355 ok 26 - semiprime_count_approx(100000000000000) ~ 11715902308080 ok 27 - semiprime_count_approx(100000000000) ~ 13959990342 ok 28 - semiprime_count_approx(100000000) ~ 17427258 ok 29 - semiprime_count_approx(10000000000000000000) ~ 932300026230174178 ok 30 - nth_semiprime_approx(100000000000000000) ~ 1030179406403917981 ok 31 - nth_semiprime_approx(4398046511104) ~ 36676111297003 ok 32 - nth_semiprime_approx(2147483648) ~ 14540737711 ok 33 - nth_semiprime_approx(288230376151711744) ~ 3027432768282284351 ok t/11-sumprimes.t ............. 1..5 ok 1 - sum_primes for 0 to 1000 ok 2 - sum primes from 0 to 300000 ok 3 - sum primes from 12345 to 54321 ok 4 - sum primes from 189695660 to 189695892 ok 5 - sum primes from 10000000 to 10001000 ok t/11-twinprimes.t ............ 1..17 ok 1 - twin_primes(1607) ok 2 - nth_twin_prime for small values ok 3 - twin_primes(4,11) should return [5 11] ok 4 - twin_primes(29,31) should return [29] ok 5 - twin_primes(134217228,134217728) should return [134217401 134217437] ok 6 - twin_primes(2,11) should return [3 5 11] ok 7 - twin_primes(3,11) should return [3 5 11] ok 8 - twin_primes(5,16) should return [5 11] ok 9 - twin_primes(5,13) should return [5 11] ok 10 - twin_primes(6,10) should return [] ok 11 - twin_primes(213897,213997) should return [213947] ok 12 - twin_primes(5,11) should return [5 11] ok 13 - twin_primes(5,12) should return [5 11] ok 14 - twin_primes(4294957296,4294957796) should return [4294957307 4294957397 4294957697] ok 15 - twin_primes(5,10) should return [5] ok 16 - twin_primes(0,11) should return [3 5 11] ok 17 - twin_primes(1,11) should return [3 5 11] ok t/12-nextprime.t ............. 1..314 ok 1 - next_prime 0 .. 3572 ok 2 - prev_prime 0 .. 3572 ok 3 - next prime of 19609 is 19609+52 ok 4 - prev prime of 19609+52 is 19609 ok 5 - next prime of 2010733 is 2010733+148 ok 6 - prev prime of 2010733+148 is 2010733 ok 7 - next prime of 360653 is 360653+96 ok 8 - prev prime of 360653+96 is 360653 ok 9 - next prime of 19608 is 19609 ok 10 - next prime of 19610 is 19661 ok 11 - next prime of 19660 is 19661 ok 12 - prev prime of 19662 is 19661 ok 13 - prev prime of 19660 is 19609 ok 14 - prev prime of 19610 is 19609 ok 15 - next prime of 10019 is 10037 ok 16 - Previous prime of 2 returns undef ok 17 - Next prime of ~0-4 returns bigint next prime ok 18 - next_prime(2010733) == 2010881 ok 19 - next_prime(2010734) == 2010881 ok 20 - next_prime(2010735) == 2010881 ok 21 - next_prime(2010736) == 2010881 ok 22 - next_prime(2010737) == 2010881 ok 23 - next_prime(2010738) == 2010881 ok 24 - next_prime(2010739) == 2010881 ok 25 - next_prime(2010740) == 2010881 ok 26 - next_prime(2010741) == 2010881 ok 27 - next_prime(2010742) == 2010881 ok 28 - next_prime(2010743) == 2010881 ok 29 - next_prime(2010744) == 2010881 ok 30 - next_prime(2010745) == 2010881 ok 31 - next_prime(2010746) == 2010881 ok 32 - next_prime(2010747) == 2010881 ok 33 - next_prime(2010748) == 2010881 ok 34 - next_prime(2010749) == 2010881 ok 35 - next_prime(2010750) == 2010881 ok 36 - next_prime(2010751) == 2010881 ok 37 - next_prime(2010752) == 2010881 ok 38 - next_prime(2010753) == 2010881 ok 39 - next_prime(2010754) == 2010881 ok 40 - next_prime(2010755) == 2010881 ok 41 - next_prime(2010756) == 2010881 ok 42 - next_prime(2010757) == 2010881 ok 43 - next_prime(2010758) == 2010881 ok 44 - next_prime(2010759) == 2010881 ok 45 - next_prime(2010760) == 2010881 ok 46 - next_prime(2010761) == 2010881 ok 47 - next_prime(2010762) == 2010881 ok 48 - next_prime(2010763) == 2010881 ok 49 - next_prime(2010764) == 2010881 ok 50 - next_prime(2010765) == 2010881 ok 51 - next_prime(2010766) == 2010881 ok 52 - next_prime(2010767) == 2010881 ok 53 - next_prime(2010768) == 2010881 ok 54 - next_prime(2010769) == 2010881 ok 55 - next_prime(2010770) == 2010881 ok 56 - next_prime(2010771) == 2010881 ok 57 - next_prime(2010772) == 2010881 ok 58 - next_prime(2010773) == 2010881 ok 59 - next_prime(2010774) == 2010881 ok 60 - next_prime(2010775) == 2010881 ok 61 - next_prime(2010776) == 2010881 ok 62 - next_prime(2010777) == 2010881 ok 63 - next_prime(2010778) == 2010881 ok 64 - next_prime(2010779) == 2010881 ok 65 - next_prime(2010780) == 2010881 ok 66 - next_prime(2010781) == 2010881 ok 67 - next_prime(2010782) == 2010881 ok 68 - next_prime(2010783) == 2010881 ok 69 - next_prime(2010784) == 2010881 ok 70 - next_prime(2010785) == 2010881 ok 71 - next_prime(2010786) == 2010881 ok 72 - next_prime(2010787) == 2010881 ok 73 - next_prime(2010788) == 2010881 ok 74 - next_prime(2010789) == 2010881 ok 75 - next_prime(2010790) == 2010881 ok 76 - next_prime(2010791) == 2010881 ok 77 - next_prime(2010792) == 2010881 ok 78 - next_prime(2010793) == 2010881 ok 79 - next_prime(2010794) == 2010881 ok 80 - next_prime(2010795) == 2010881 ok 81 - next_prime(2010796) == 2010881 ok 82 - next_prime(2010797) == 2010881 ok 83 - next_prime(2010798) == 2010881 ok 84 - next_prime(2010799) == 2010881 ok 85 - next_prime(2010800) == 2010881 ok 86 - next_prime(2010801) == 2010881 ok 87 - next_prime(2010802) == 2010881 ok 88 - next_prime(2010803) == 2010881 ok 89 - next_prime(2010804) == 2010881 ok 90 - next_prime(2010805) == 2010881 ok 91 - next_prime(2010806) == 2010881 ok 92 - next_prime(2010807) == 2010881 ok 93 - next_prime(2010808) == 2010881 ok 94 - next_prime(2010809) == 2010881 ok 95 - next_prime(2010810) == 2010881 ok 96 - next_prime(2010811) == 2010881 ok 97 - next_prime(2010812) == 2010881 ok 98 - next_prime(2010813) == 2010881 ok 99 - next_prime(2010814) == 2010881 ok 100 - next_prime(2010815) == 2010881 ok 101 - next_prime(2010816) == 2010881 ok 102 - next_prime(2010817) == 2010881 ok 103 - next_prime(2010818) == 2010881 ok 104 - next_prime(2010819) == 2010881 ok 105 - next_prime(2010820) == 2010881 ok 106 - next_prime(2010821) == 2010881 ok 107 - next_prime(2010822) == 2010881 ok 108 - next_prime(2010823) == 2010881 ok 109 - next_prime(2010824) == 2010881 ok 110 - next_prime(2010825) == 2010881 ok 111 - next_prime(2010826) == 2010881 ok 112 - next_prime(2010827) == 2010881 ok 113 - next_prime(2010828) == 2010881 ok 114 - next_prime(2010829) == 2010881 ok 115 - next_prime(2010830) == 2010881 ok 116 - next_prime(2010831) == 2010881 ok 117 - next_prime(2010832) == 2010881 ok 118 - next_prime(2010833) == 2010881 ok 119 - next_prime(2010834) == 2010881 ok 120 - next_prime(2010835) == 2010881 ok 121 - next_prime(2010836) == 2010881 ok 122 - next_prime(2010837) == 2010881 ok 123 - next_prime(2010838) == 2010881 ok 124 - next_prime(2010839) == 2010881 ok 125 - next_prime(2010840) == 2010881 ok 126 - next_prime(2010841) == 2010881 ok 127 - next_prime(2010842) == 2010881 ok 128 - next_prime(2010843) == 2010881 ok 129 - next_prime(2010844) == 2010881 ok 130 - next_prime(2010845) == 2010881 ok 131 - next_prime(2010846) == 2010881 ok 132 - next_prime(2010847) == 2010881 ok 133 - next_prime(2010848) == 2010881 ok 134 - next_prime(2010849) == 2010881 ok 135 - next_prime(2010850) == 2010881 ok 136 - next_prime(2010851) == 2010881 ok 137 - next_prime(2010852) == 2010881 ok 138 - next_prime(2010853) == 2010881 ok 139 - next_prime(2010854) == 2010881 ok 140 - next_prime(2010855) == 2010881 ok 141 - next_prime(2010856) == 2010881 ok 142 - next_prime(2010857) == 2010881 ok 143 - next_prime(2010858) == 2010881 ok 144 - next_prime(2010859) == 2010881 ok 145 - next_prime(2010860) == 2010881 ok 146 - next_prime(2010861) == 2010881 ok 147 - next_prime(2010862) == 2010881 ok 148 - next_prime(2010863) == 2010881 ok 149 - next_prime(2010864) == 2010881 ok 150 - next_prime(2010865) == 2010881 ok 151 - next_prime(2010866) == 2010881 ok 152 - next_prime(2010867) == 2010881 ok 153 - next_prime(2010868) == 2010881 ok 154 - next_prime(2010869) == 2010881 ok 155 - next_prime(2010870) == 2010881 ok 156 - next_prime(2010871) == 2010881 ok 157 - next_prime(2010872) == 2010881 ok 158 - next_prime(2010873) == 2010881 ok 159 - next_prime(2010874) == 2010881 ok 160 - next_prime(2010875) == 2010881 ok 161 - next_prime(2010876) == 2010881 ok 162 - next_prime(2010877) == 2010881 ok 163 - next_prime(2010878) == 2010881 ok 164 - next_prime(2010879) == 2010881 ok 165 - next_prime(2010880) == 2010881 ok 166 - prev_prime(2010734) == 2010733 ok 167 - prev_prime(2010735) == 2010733 ok 168 - prev_prime(2010736) == 2010733 ok 169 - prev_prime(2010737) == 2010733 ok 170 - prev_prime(2010738) == 2010733 ok 171 - prev_prime(2010739) == 2010733 ok 172 - prev_prime(2010740) == 2010733 ok 173 - prev_prime(2010741) == 2010733 ok 174 - prev_prime(2010742) == 2010733 ok 175 - prev_prime(2010743) == 2010733 ok 176 - prev_prime(2010744) == 2010733 ok 177 - prev_prime(2010745) == 2010733 ok 178 - prev_prime(2010746) == 2010733 ok 179 - prev_prime(2010747) == 2010733 ok 180 - prev_prime(2010748) == 2010733 ok 181 - prev_prime(2010749) == 2010733 ok 182 - prev_prime(2010750) == 2010733 ok 183 - prev_prime(2010751) == 2010733 ok 184 - prev_prime(2010752) == 2010733 ok 185 - prev_prime(2010753) == 2010733 ok 186 - prev_prime(2010754) == 2010733 ok 187 - prev_prime(2010755) == 2010733 ok 188 - prev_prime(2010756) == 2010733 ok 189 - prev_prime(2010757) == 2010733 ok 190 - prev_prime(2010758) == 2010733 ok 191 - prev_prime(2010759) == 2010733 ok 192 - prev_prime(2010760) == 2010733 ok 193 - prev_prime(2010761) == 2010733 ok 194 - prev_prime(2010762) == 2010733 ok 195 - prev_prime(2010763) == 2010733 ok 196 - prev_prime(2010764) == 2010733 ok 197 - prev_prime(2010765) == 2010733 ok 198 - prev_prime(2010766) == 2010733 ok 199 - prev_prime(2010767) == 2010733 ok 200 - prev_prime(2010768) == 2010733 ok 201 - prev_prime(2010769) == 2010733 ok 202 - prev_prime(2010770) == 2010733 ok 203 - prev_prime(2010771) == 2010733 ok 204 - prev_prime(2010772) == 2010733 ok 205 - prev_prime(2010773) == 2010733 ok 206 - prev_prime(2010774) == 2010733 ok 207 - prev_prime(2010775) == 2010733 ok 208 - prev_prime(2010776) == 2010733 ok 209 - prev_prime(2010777) == 2010733 ok 210 - prev_prime(2010778) == 2010733 ok 211 - prev_prime(2010779) == 2010733 ok 212 - prev_prime(2010780) == 2010733 ok 213 - prev_prime(2010781) == 2010733 ok 214 - prev_prime(2010782) == 2010733 ok 215 - prev_prime(2010783) == 2010733 ok 216 - prev_prime(2010784) == 2010733 ok 217 - prev_prime(2010785) == 2010733 ok 218 - prev_prime(2010786) == 2010733 ok 219 - prev_prime(2010787) == 2010733 ok 220 - prev_prime(2010788) == 2010733 ok 221 - prev_prime(2010789) == 2010733 ok 222 - prev_prime(2010790) == 2010733 ok 223 - prev_prime(2010791) == 2010733 ok 224 - prev_prime(2010792) == 2010733 ok 225 - prev_prime(2010793) == 2010733 ok 226 - prev_prime(2010794) == 2010733 ok 227 - prev_prime(2010795) == 2010733 ok 228 - prev_prime(2010796) == 2010733 ok 229 - prev_prime(2010797) == 2010733 ok 230 - prev_prime(2010798) == 2010733 ok 231 - prev_prime(2010799) == 2010733 ok 232 - prev_prime(2010800) == 2010733 ok 233 - prev_prime(2010801) == 2010733 ok 234 - prev_prime(2010802) == 2010733 ok 235 - prev_prime(2010803) == 2010733 ok 236 - prev_prime(2010804) == 2010733 ok 237 - prev_prime(2010805) == 2010733 ok 238 - prev_prime(2010806) == 2010733 ok 239 - prev_prime(2010807) == 2010733 ok 240 - prev_prime(2010808) == 2010733 ok 241 - prev_prime(2010809) == 2010733 ok 242 - prev_prime(2010810) == 2010733 ok 243 - prev_prime(2010811) == 2010733 ok 244 - prev_prime(2010812) == 2010733 ok 245 - prev_prime(2010813) == 2010733 ok 246 - prev_prime(2010814) == 2010733 ok 247 - prev_prime(2010815) == 2010733 ok 248 - prev_prime(2010816) == 2010733 ok 249 - prev_prime(2010817) == 2010733 ok 250 - prev_prime(2010818) == 2010733 ok 251 - prev_prime(2010819) == 2010733 ok 252 - prev_prime(2010820) == 2010733 ok 253 - prev_prime(2010821) == 2010733 ok 254 - prev_prime(2010822) == 2010733 ok 255 - prev_prime(2010823) == 2010733 ok 256 - prev_prime(2010824) == 2010733 ok 257 - prev_prime(2010825) == 2010733 ok 258 - prev_prime(2010826) == 2010733 ok 259 - prev_prime(2010827) == 2010733 ok 260 - prev_prime(2010828) == 2010733 ok 261 - prev_prime(2010829) == 2010733 ok 262 - prev_prime(2010830) == 2010733 ok 263 - prev_prime(2010831) == 2010733 ok 264 - prev_prime(2010832) == 2010733 ok 265 - prev_prime(2010833) == 2010733 ok 266 - prev_prime(2010834) == 2010733 ok 267 - prev_prime(2010835) == 2010733 ok 268 - prev_prime(2010836) == 2010733 ok 269 - prev_prime(2010837) == 2010733 ok 270 - prev_prime(2010838) == 2010733 ok 271 - prev_prime(2010839) == 2010733 ok 272 - prev_prime(2010840) == 2010733 ok 273 - prev_prime(2010841) == 2010733 ok 274 - prev_prime(2010842) == 2010733 ok 275 - prev_prime(2010843) == 2010733 ok 276 - prev_prime(2010844) == 2010733 ok 277 - prev_prime(2010845) == 2010733 ok 278 - prev_prime(2010846) == 2010733 ok 279 - prev_prime(2010847) == 2010733 ok 280 - prev_prime(2010848) == 2010733 ok 281 - prev_prime(2010849) == 2010733 ok 282 - prev_prime(2010850) == 2010733 ok 283 - prev_prime(2010851) == 2010733 ok 284 - prev_prime(2010852) == 2010733 ok 285 - prev_prime(2010853) == 2010733 ok 286 - prev_prime(2010854) == 2010733 ok 287 - prev_prime(2010855) == 2010733 ok 288 - prev_prime(2010856) == 2010733 ok 289 - prev_prime(2010857) == 2010733 ok 290 - prev_prime(2010858) == 2010733 ok 291 - prev_prime(2010859) == 2010733 ok 292 - prev_prime(2010860) == 2010733 ok 293 - prev_prime(2010861) == 2010733 ok 294 - prev_prime(2010862) == 2010733 ok 295 - prev_prime(2010863) == 2010733 ok 296 - prev_prime(2010864) == 2010733 ok 297 - prev_prime(2010865) == 2010733 ok 298 - prev_prime(2010866) == 2010733 ok 299 - prev_prime(2010867) == 2010733 ok 300 - prev_prime(2010868) == 2010733 ok 301 - prev_prime(2010869) == 2010733 ok 302 - prev_prime(2010870) == 2010733 ok 303 - prev_prime(2010871) == 2010733 ok 304 - prev_prime(2010872) == 2010733 ok 305 - prev_prime(2010873) == 2010733 ok 306 - prev_prime(2010874) == 2010733 ok 307 - prev_prime(2010875) == 2010733 ok 308 - prev_prime(2010876) == 2010733 ok 309 - prev_prime(2010877) == 2010733 ok 310 - prev_prime(2010878) == 2010733 ok 311 - prev_prime(2010879) == 2010733 ok 312 - prev_prime(2010880) == 2010733 ok 313 - prev_prime(2010881) == 2010733 ok 314 - next_prime(1234567890) == 1234567891) ok t/13-primecount.t ............ 1..186 ok 1 - prime_count in void context ok 2 - Pi(10) <= upper estimate ok 3 - Pi(10) >= lower estimate ok 4 - prime_count_approx(10) within 100 ok 5 - Pi(1000000) <= upper estimate ok 6 - Pi(1000000) >= lower estimate ok 7 - prime_count_approx(1000000) within 100 ok 8 - Pi(100) <= upper estimate ok 9 - Pi(100) >= lower estimate ok 10 - prime_count_approx(100) within 100 ok 11 - Pi(1000000000) <= upper estimate ok 12 - Pi(1000000000) >= lower estimate ok 13 - prime_count_approx(1000000000) within 500 ok 14 - Pi(100000) <= upper estimate ok 15 - Pi(100000) >= lower estimate ok 16 - prime_count_approx(100000) within 100 ok 17 - Pi(10000) <= upper estimate ok 18 - Pi(10000) >= lower estimate ok 19 - prime_count_approx(10000) within 100 ok 20 - Pi(16777215) <= upper estimate ok 21 - Pi(16777215) >= lower estimate ok 22 - prime_count_approx(16777215) within 100 ok 23 - Pi(65535) <= upper estimate ok 24 - Pi(65535) >= lower estimate ok 25 - prime_count_approx(65535) within 100 ok 26 - Pi(100000000) <= upper estimate ok 27 - Pi(100000000) >= lower estimate ok 28 - prime_count_approx(100000000) within 100 ok 29 - Pi(1000) <= upper estimate ok 30 - Pi(1000) >= lower estimate ok 31 - prime_count_approx(1000) within 100 ok 32 - Pi(30249) <= upper estimate ok 33 - Pi(30249) >= lower estimate ok 34 - prime_count_approx(30249) within 100 ok 35 - Pi(10000000) <= upper estimate ok 36 - Pi(10000000) >= lower estimate ok 37 - prime_count_approx(10000000) within 100 ok 38 - Pi(2147483647) <= upper estimate ok 39 - Pi(2147483647) >= lower estimate ok 40 - prime_count_approx(2147483647) within 500 ok 41 - Pi(60067) <= upper estimate ok 42 - Pi(60067) >= lower estimate ok 43 - prime_count_approx(60067) within 100 ok 44 - Pi(4294967295) <= upper estimate ok 45 - Pi(4294967295) >= lower estimate ok 46 - prime_count_approx(4294967295) within 500 ok 47 - Pi(1) <= upper estimate ok 48 - Pi(1) >= lower estimate ok 49 - prime_count_approx(1) within 100 ok 50 - Pi(30239) <= upper estimate ok 51 - Pi(30239) >= lower estimate ok 52 - prime_count_approx(30239) within 100 ok 53 - Pi(100) = 25 ok 54 - Pi(100000) = 9592 ok 55 - Pi(10000) = 1229 ok 56 - Pi(10) = 4 ok 57 - Pi(1000000) = 78498 ok 58 - Pi(65535) = 6542 ok 59 - Pi(1) = 0 ok 60 - Pi(30249) = 3270 ok 61 - Pi(30239) = 3269 ok 62 - Pi(1000) = 168 ok 63 - Pi(60067) = 6062 ok 64 - Pi(72057594037927935) <= upper estimate ok 65 - Pi(72057594037927935) >= lower estimate ok 66 - prime_count_approx(72057594037927935) within 0.0005% of Pi(72057594037927935) ok 67 - Pi(68719476735) <= upper estimate ok 68 - Pi(68719476735) >= lower estimate ok 69 - prime_count_approx(68719476735) within 0.0005% of Pi(68719476735) ok 70 - Pi(1000000000000000000) <= upper estimate ok 71 - Pi(1000000000000000000) >= lower estimate ok 72 - prime_count_approx(1000000000000000000) within 0.0005% of Pi(1000000000000000000) ok 73 - Pi(17592186044415) <= upper estimate ok 74 - Pi(17592186044415) >= lower estimate ok 75 - prime_count_approx(17592186044415) within 0.0005% of Pi(17592186044415) ok 76 - Pi(100000000000000) <= upper estimate ok 77 - Pi(100000000000000) >= lower estimate ok 78 - prime_count_approx(100000000000000) within 0.0005% of Pi(100000000000000) ok 79 - Pi(10000000000000000) <= upper estimate ok 80 - Pi(10000000000000000) >= lower estimate ok 81 - prime_count_approx(10000000000000000) within 0.0005% of Pi(10000000000000000) ok 82 - Pi(1000000000000000) <= upper estimate ok 83 - Pi(1000000000000000) >= lower estimate ok 84 - prime_count_approx(1000000000000000) within 0.0005% of Pi(1000000000000000) ok 85 - Pi(4503599627370495) <= upper estimate ok 86 - Pi(4503599627370495) >= lower estimate ok 87 - prime_count_approx(4503599627370495) within 0.0005% of Pi(4503599627370495) ok 88 - Pi(1099511627775) <= upper estimate ok 89 - Pi(1099511627775) >= lower estimate ok 90 - prime_count_approx(1099511627775) within 0.0005% of Pi(1099511627775) ok 91 - Pi(10000000000000000000) <= upper estimate ok 92 - Pi(10000000000000000000) >= lower estimate ok 93 - prime_count_approx(10000000000000000000) within 0.0005% of Pi(10000000000000000000) ok 94 - Pi(1000000000000) <= upper estimate ok 95 - Pi(1000000000000) >= lower estimate ok 96 - prime_count_approx(1000000000000) within 0.0005% of Pi(1000000000000) ok 97 - Pi(10000000000000) <= upper estimate ok 98 - Pi(10000000000000) >= lower estimate ok 99 - prime_count_approx(10000000000000) within 0.0005% of Pi(10000000000000) ok 100 - Pi(1152921504606846975) <= upper estimate ok 101 - Pi(1152921504606846975) >= lower estimate ok 102 - prime_count_approx(1152921504606846975) within 0.0005% of Pi(1152921504606846975) ok 103 - Pi(100000000000) <= upper estimate ok 104 - Pi(100000000000) >= lower estimate ok 105 - prime_count_approx(100000000000) within 0.0005% of Pi(100000000000) ok 106 - Pi(100000000000000000) <= upper estimate ok 107 - Pi(100000000000000000) >= lower estimate ok 108 - prime_count_approx(100000000000000000) within 0.0005% of Pi(100000000000000000) ok 109 - Pi(281474976710655) <= upper estimate ok 110 - Pi(281474976710655) >= lower estimate ok 111 - prime_count_approx(281474976710655) within 0.0005% of Pi(281474976710655) ok 112 - Pi(18446744073709551615) <= upper estimate ok 113 - Pi(18446744073709551615) >= lower estimate ok 114 - prime_count_approx(18446744073709551615) within 0.0005% of Pi(18446744073709551615) ok 115 - Pi(10000000000) <= upper estimate ok 116 - Pi(10000000000) >= lower estimate ok 117 - prime_count_approx(10000000000) within 0.0005% of Pi(10000000000) ok 118 - prime_count(127976334672 +466) = 0 ok 119 - prime_count(3 to 15000) = 1753 ok 120 - prime_count(127976334672 +467) = 1 ok 121 - prime_count(24689 to 7973249) = 535368 ok 122 - prime_count(191912784 +247) = 1 ok 123 - prime_count(17 to 13) = 0 ok 124 - prime_count(3 to 17) = 6 ok 125 - prime_count(191912783 +248) = 2 ok 126 - prime_count(1118105 to 9961674) = 575195 ok 127 - prime_count(4 to 16) = 4 ok 128 - prime_count(4 to 17) = 5 ok 129 - prime_count(0 to 1) = 0 ok 130 - prime_count(127976334671 +467) = 1 ok 131 - prime_count(191912783 +247) = 1 ok 132 - prime_count(868396 to 9478505) = 563275 ok 133 - prime_count(1e10 +2**16) = 2821 ok 134 - prime_count(0 to 2) = 1 ok 135 - prime_count(1 to 3) = 2 ok 136 - prime_count(7 to 54321) = 5522 ok 137 - prime_count(1e14 +2**16) = 1973 ok 138 - prime_count(127976334671 +468) = 2 ok 139 - prime_count(191912784 +246) = 0 ok 140 - prime_count(130066574) = 7381740 ok 141 - XS LMO count ok 142 - XS segment count ok 143 - require Math::Prime::Util::PP; ok 144 - PP Lehmer count ok 145 - PP sieve count ok 146 - twin prime count 13 to 31 ok 147 - twin prime count 10^8 to +34587 ok 148 - twin prime count 654321 ok 149 - twin prime count 1000000000123456 ok 150 - twin prime count 500000000000 ok 151 - twin_prime_count_approx(500000000000) is 0.001407% ok 152 - twin prime count 500000 ok 153 - twin_prime_count_approx(500000) is 0.240964% ok 154 - twin prime count 5000000000 ok 155 - twin_prime_count_approx(5000000000) is 0.002004% ok 156 - twin prime count 5000 ok 157 - twin_prime_count_approx(5000) is 0.000000% ok 158 - twin prime count 5000000000000000 ok 159 - twin_prime_count_approx(5000000000000000) is 0.000025% ok 160 - twin prime count 50000000 ok 161 - twin_prime_count_approx(50000000) is 0.002091% ok 162 - twin prime count 50000000000000 ok 163 - twin_prime_count_approx(50000000000000) is 0.000103% ok 164 - semiprime count 13 to 31 ok 165 - semiprime count 654321 ok 166 - semiprime count 10^8 to +34587 ok 167 - semiprime count 10000123456 ok 168 - semiprime count 50000 ok 169 - semiprime count 5000000000 ok 170 - semiprime count 500000 ok 171 - semiprime count 8192 ok 172 - semiprime count 5000000 ok 173 - semiprime count 50000000 ok 174 - semiprime count 2048 ok 175 - semiprime count 5000 ok 176 - semiprime count 500000000 ok 177 - Ramanujan prime count 13 to 31 ok 178 - Ramanujan prime count 1357 ok 179 - Ramanujan prime count 10^8 to +34587 ok 180 - Ramanujan prime count 654321 ok 181 - Ramanujan prime count 500000 ok 182 - Ramanujan prime count 50000 ok 183 - Ramanujan prime count 5000000 ok 184 - Ramanujan prime count 135791 ok 185 - Ramanujan prime count 65536 ok 186 - Ramanujan prime count 5000 ok t/14-nthprime.t .............. 1..130 ok 1 - nth_prime(25) <= 100 ok 2 - nth_prime(26) >= 100 ok 3 - nth_prime(1229) <= 10000 ok 4 - nth_prime(1230) >= 10000 ok 5 - nth_prime(9592) <= 100000 ok 6 - nth_prime(9593) >= 100000 ok 7 - nth_prime(168) <= 1000 ok 8 - nth_prime(169) >= 1000 ok 9 - nth_prime(4) <= 10 ok 10 - nth_prime(5) >= 10 ok 11 - nth_prime(78498) <= 1000000 ok 12 - nth_prime(78499) >= 1000000 ok 13 - nth_prime(0) <= 1 ok 14 - nth_prime(1) >= 1 ok 15 - nth_prime for primes 0 .. 1000 ok 16 - nth_prime(6305540) <= upper estimate ok 17 - nth_prime(6305540) >= lower estimate ok 18 - nth_prime_approx(6305540) = 110047573 within 1% of 110040407 ok 19 - nth_prime(10000000) <= upper estimate ok 20 - nth_prime(10000000) >= lower estimate ok 21 - nth_prime_approx(10000000) = 179431239 within 1% of 179424673 ok 22 - nth_prime(10000) <= upper estimate ok 23 - nth_prime(10000) >= lower estimate ok 24 - nth_prime_approx(10000) = 104768 within 1% of 104729 ok 25 - nth_prime(6305537) <= upper estimate ok 26 - nth_prime(6305537) >= lower estimate ok 27 - nth_prime_approx(6305537) = 110047517 within 1% of 110040379 ok 28 - nth_prime(1000) <= upper estimate ok 29 - nth_prime(1000) >= lower estimate ok 30 - nth_prime_approx(1000) = 7923 within 1% of 7919 ok 31 - nth_prime(6305538) <= upper estimate ok 32 - nth_prime(6305538) >= lower estimate ok 33 - nth_prime_approx(6305538) = 110047536 within 1% of 110040383 ok 34 - nth_prime(6305541) <= upper estimate ok 35 - nth_prime(6305541) >= lower estimate ok 36 - nth_prime_approx(6305541) = 110047591 within 1% of 110040467 ok 37 - nth_prime(100) <= upper estimate ok 38 - nth_prime(100) >= lower estimate ok 39 - nth_prime_approx(100) = 537 within 2% of 541 ok 40 - nth_prime(6305542) <= upper estimate ok 41 - nth_prime(6305542) >= lower estimate ok 42 - nth_prime_approx(6305542) = 110047610 within 1% of 110040499 ok 43 - nth_prime(100000) <= upper estimate ok 44 - nth_prime(100000) >= lower estimate ok 45 - nth_prime_approx(100000) = 1299734 within 1% of 1299709 ok 46 - nth_prime(6305543) <= upper estimate ok 47 - nth_prime(6305543) >= lower estimate ok 48 - nth_prime_approx(6305543) = 110047628 within 1% of 110040503 ok 49 - nth_prime(10) <= upper estimate ok 50 - nth_prime(10) >= lower estimate ok 51 - nth_prime_approx(10) = 29 within 2% of 29 ok 52 - nth_prime(1000000) <= upper estimate ok 53 - nth_prime(1000000) >= lower estimate ok 54 - nth_prime_approx(1000000) = 15484040 within 1% of 15485863 ok 55 - nth_prime(100000000) <= upper estimate ok 56 - nth_prime(100000000) >= lower estimate ok 57 - nth_prime_approx(100000000) = 2038076588 within 1% of 2038074743 ok 58 - nth_prime(1) <= upper estimate ok 59 - nth_prime(1) >= lower estimate ok 60 - nth_prime_approx(1) = 2 within 2% of 2 ok 61 - nth_prime(6305539) <= upper estimate ok 62 - nth_prime(6305539) >= lower estimate ok 63 - nth_prime_approx(6305539) = 110047554 within 1% of 110040391 ok 64 - nth_prime(6305538) = 110040383 ok 65 - nth_prime(1000) = 7919 ok 66 - nth_prime(6305541) = 110040467 ok 67 - nth_prime(6305540) = 110040407 ok 68 - nth_prime(10000000) = 179424673 ok 69 - nth_prime(10000) = 104729 ok 70 - nth_prime(6305537) = 110040379 ok 71 - nth_prime(10) = 29 ok 72 - nth_prime(1000000) = 15485863 ok 73 - nth_prime(1) = 2 ok 74 - nth_prime(6305539) = 110040391 ok 75 - nth_prime(100) = 541 ok 76 - nth_prime(6305542) = 110040499 ok 77 - nth_prime(100000) = 1299709 ok 78 - nth_prime(6305543) = 110040503 ok 79 - nth_prime(10000000000000) <= upper estimate ok 80 - nth_prime(10000000000000) >= lower estimate ok 81 - nth_prime_approx(10000000000000) = 323780512411510 within 0.001% of 323780508946331 ok 82 - nth_prime(1000000000) <= upper estimate ok 83 - nth_prime(1000000000) >= lower estimate ok 84 - nth_prime_approx(1000000000) = 22801797576 within 0.001% of 22801763489 ok 85 - nth_prime(100000000000000) <= upper estimate ok 86 - nth_prime(100000000000000) >= lower estimate ok 87 - nth_prime_approx(100000000000000) = 3475385760290723 within 0.001% of 3475385758524527 ok 88 - nth_prime(100000000000) <= upper estimate ok 89 - nth_prime(100000000000) >= lower estimate ok 90 - nth_prime_approx(100000000000) = 2760727752353 within 0.001% of 2760727302517 ok 91 - nth_prime(10000000000) <= upper estimate ok 92 - nth_prime(10000000000) >= lower estimate ok 93 - nth_prime_approx(10000000000) = 252097715777 within 0.001% of 252097800623 ok 94 - nth_prime(1000000000000000) <= upper estimate ok 95 - nth_prime(1000000000000000) >= lower estimate ok 96 - nth_prime_approx(1000000000000000) = 37124508056355512 within 0.001% of 37124508045065437 ok 97 - nth_prime(1000000000000) <= upper estimate ok 98 - nth_prime(1000000000000) >= lower estimate ok 99 - nth_prime_approx(1000000000000) = 29996225393466 within 0.001% of 29996224275833 ok 100 - nth_prime(100000000000000000) <= upper estimate ok 101 - nth_prime(100000000000000000) >= lower estimate ok 102 - nth_prime_approx(100000000000000000) = 4185296581676470272 within 0.001% of 4185296581467695669 ok 103 - nth_prime(10000000000000000) <= upper estimate ok 104 - nth_prime(10000000000000000) >= lower estimate ok 105 - nth_prime_approx(10000000000000000) = 394906913798224960 within 0.001% of 394906913903735329 ok 106 - nth_prime_lower(maxindex) <= maxprime ok 107 - nth_prime_upper(maxindex) >= maxprime ok 108 - nth_prime_lower(maxindex+1) >= nth_prime_lower(maxindex) ok 109 - nth_twin_prime(0) = undef ok 110 - 239 = 17th twin prime ok 111 - 101207 = 1234'th twin prime ok 112 - nth_twin_prime_approx(50) is 0.000000% (got 1487, expected ~1487) ok 113 - nth_twin_prime_approx(5000000) is 0.042488% (got 1523328396, expected ~1523975909) ok 114 - nth_twin_prime_approx(500000000) is 0.000863% (got 239213224566, expected ~239211160649) ok 115 - nth_twin_prime_approx(5) is 0.000000% (got 29, expected ~29) ok 116 - nth_twin_prime_approx(5000) is 0.144031% (got 556716, expected ~557519) ok 117 - nth_twin_prime_approx(50000) is 0.075983% (got 8258677, expected ~8264957) ok 118 - nth_twin_prime_approx(500000) is 0.007471% (got 115447292, expected ~115438667) ok 119 - nth_twin_prime_approx(50000000) is 0.008989% (got 19359834010, expected ~19358093939) ok 120 - nth_twin_prime_approx(500) is 0.129586% (got 32453, expected ~32411) ok 121 - nth_semiprime(0) = undef ok 122 - nth_semiprime(1 .. 153) ok 123 - nth_semiprime(1234) = 4497 ok 124 - nth_semiprime(12345678) = 69914722 ok 125 - nth_semiprime(1234567) = 6365389 ok 126 - nth_semiprime(12345) = 51019 ok 127 - nth_semiprime(123456) = 573355 ok 128 - inverse_li: Li^-1(0..50) ok 129 - inverse_li(1e9) ok 130 - inverse_li(11e11) ok t/15-probprime.t ............. 1..127 ok 1 - is_prob_prime(undef) ok 2 - 2 is prime ok 3 - 1 is not prime ok 4 - 0 is not prime ok 5 - -1 is not prime ok 6 - -2 is not prime ok 7 - is_prob_prime powers of 2 ok 8 - is_prob_prime 0..3572 ok 9 - 4033 is composite ok 10 - 4369 is composite ok 11 - 4371 is composite ok 12 - 4681 is composite ok 13 - 5461 is composite ok 14 - 5611 is composite ok 15 - 6601 is composite ok 16 - 7813 is composite ok 17 - 7957 is composite ok 18 - 8321 is composite ok 19 - 8401 is composite ok 20 - 8911 is composite ok 21 - 10585 is composite ok 22 - 12403 is composite ok 23 - 13021 is composite ok 24 - 14981 is composite ok 25 - 15751 is composite ok 26 - 15841 is composite ok 27 - 16531 is composite ok 28 - 18721 is composite ok 29 - 19345 is composite ok 30 - 23521 is composite ok 31 - 24211 is composite ok 32 - 25351 is composite ok 33 - 29341 is composite ok 34 - 29539 is composite ok 35 - 31621 is composite ok 36 - 38081 is composite ok 37 - 40501 is composite ok 38 - 41041 is composite ok 39 - 44287 is composite ok 40 - 44801 is composite ok 41 - 46657 is composite ok 42 - 47197 is composite ok 43 - 52633 is composite ok 44 - 53971 is composite ok 45 - 55969 is composite ok 46 - 62745 is composite ok 47 - 63139 is composite ok 48 - 63973 is composite ok 49 - 74593 is composite ok 50 - 75361 is composite ok 51 - 79003 is composite ok 52 - 79381 is composite ok 53 - 82513 is composite ok 54 - 87913 is composite ok 55 - 88357 is composite ok 56 - 88573 is composite ok 57 - 97567 is composite ok 58 - 101101 is composite ok 59 - 340561 is composite ok 60 - 488881 is composite ok 61 - 852841 is composite ok 62 - 1373653 is composite ok 63 - 1857241 is composite ok 64 - 6733693 is composite ok 65 - 9439201 is composite ok 66 - 17236801 is composite ok 67 - 23382529 is composite ok 68 - 25326001 is composite ok 69 - 34657141 is composite ok 70 - 56052361 is composite ok 71 - 146843929 is composite ok 72 - 216821881 is composite ok 73 - 3215031751 is composite ok 74 - 2152302898747 is composite ok 75 - 3474749660383 is composite ok 76 - 341550071728321 is composite ok 77 - 341550071728321 is composite ok 78 - 3825123056546413051 is composite ok 79 - 9551 is definitely prime ok 80 - 15683 is definitely prime ok 81 - 19609 is definitely prime ok 82 - 31397 is definitely prime ok 83 - 155921 is definitely prime ok 84 - 9587 is definitely prime ok 85 - 15727 is definitely prime ok 86 - 19661 is definitely prime ok 87 - 31469 is definitely prime ok 88 - 156007 is definitely prime ok 89 - 360749 is definitely prime ok 90 - 370373 is definitely prime ok 91 - 492227 is definitely prime ok 92 - 1349651 is definitely prime ok 93 - 1357333 is definitely prime ok 94 - 2010881 is definitely prime ok 95 - 4652507 is definitely prime ok 96 - 17051887 is definitely prime ok 97 - 20831533 is definitely prime ok 98 - 47326913 is definitely prime ok 99 - 122164969 is definitely prime ok 100 - 189695893 is definitely prime ok 101 - 191913031 is definitely prime ok 102 - 387096383 is definitely prime ok 103 - 436273291 is definitely prime ok 104 - 1294268779 is definitely prime ok 105 - 1453168433 is definitely prime ok 106 - 2300942869 is definitely prime ok 107 - 3842611109 is definitely prime ok 108 - 4302407713 is definitely prime ok 109 - 10726905041 is definitely prime ok 110 - 20678048681 is definitely prime ok 111 - 22367085353 is definitely prime ok 112 - 25056082543 is definitely prime ok 113 - 42652618807 is definitely prime ok 114 - 127976334671 is definitely prime ok 115 - 182226896239 is definitely prime ok 116 - 241160624143 is definitely prime ok 117 - 297501075799 is definitely prime ok 118 - 303371455241 is definitely prime ok 119 - 304599508537 is definitely prime ok 120 - 416608695821 is definitely prime ok 121 - 461690510011 is definitely prime ok 122 - 614487453523 is definitely prime ok 123 - 738832927927 is definitely prime ok 124 - 1346294310749 is definitely prime ok 125 - 1408695493609 is definitely prime ok 126 - 1968188556461 is definitely prime ok 127 - 2614941710599 is definitely prime ok t/16-randomprime.t ........... 1..183 ok 1 - random_prime(undef) ok 2 - random_prime(-3) ok 3 - random_prime(a) ok 4 - random_prime(undef,undef) ok 5 - random_prime(2,undef) ok 6 - random_prime(2,a) ok 7 - random_prime(undef,0) ok 8 - random_prime(0,undef) ok 9 - random_prime(2,undef) ok 10 - random_prime(2,-4) ok 11 - random_prime(2,+infinity) ok 12 - random_prime(+infinity) ok 13 - random_prime(-infinity) ok 14 - random_ndigit_prime(0) ok 15 - random_nbit_prime(0) ok 16 - random_maurer_prime(0) ok 17 - random_shawe_taylor_prime(0) ok 18 - primes(2,1) should return undef ok 19 - primes(3,2) should return undef ok 20 - primes(0,0) should return undef ok 21 - primes(1294268492,1294268778) should return undef ok 22 - primes(0,1) should return undef ok 23 - primes(3842610774,3842611108) should return undef ok 24 - Prime in range 3-5 is indeed prime ok 25 - random_prime(3,5) >= 3 ok 26 - random_prime(3,5) <= 5 ok 27 - Prime in range 3842610773-3842611109 is indeed prime ok 28 - random_prime(3842610773,3842611109) >= 3842610773 ok 29 - random_prime(3842610773,3842611109) <= 3842611109 ok 30 - Prime in range 3842610772-3842611110 is indeed prime ok 31 - random_prime(3842610772,3842611110) >= 3842610773 ok 32 - random_prime(3842610772,3842611110) <= 3842611109 ok 33 - Prime in range 0-2 is indeed prime ok 34 - random_prime(0,2) >= 2 ok 35 - random_prime(0,2) <= 2 ok 36 - Prime in range 2-3 is indeed prime ok 37 - random_prime(2,3) >= 2 ok 38 - random_prime(2,3) <= 3 ok 39 - Prime in range 16706143-16706143 is indeed prime ok 40 - random_prime(16706143,16706143) >= 16706143 ok 41 - random_prime(16706143,16706143) <= 16706143 ok 42 - Prime in range 10-20 is indeed prime ok 43 - random_prime(10,20) >= 11 ok 44 - random_prime(10,20) <= 19 ok 45 - Prime in range 10-12 is indeed prime ok 46 - random_prime(10,12) >= 11 ok 47 - random_prime(10,12) <= 11 ok 48 - Prime in range 8-12 is indeed prime ok 49 - random_prime(8,12) >= 11 ok 50 - random_prime(8,12) <= 11 ok 51 - Prime in range 2-2 is indeed prime ok 52 - random_prime(2,2) >= 2 ok 53 - random_prime(2,2) <= 2 ok 54 - Prime in range 16706142-16706144 is indeed prime ok 55 - random_prime(16706142,16706144) >= 16706143 ok 56 - random_prime(16706142,16706144) <= 16706143 ok 57 - All returned values for 3-7 were prime ok 58 - All returned values for 3-7 were in the range ok 59 - All returned values for 2-20 were prime ok 60 - All returned values for 2-20 were in the range ok 61 - All returned values for 27764-88493 were prime ok 62 - All returned values for 27764-88493 were in the range ok 63 - All returned values for 17051688-17051898 were prime ok 64 - All returned values for 17051688-17051898 were in the range ok 65 - All returned values for 27767-88498 were prime ok 66 - All returned values for 27767-88498 were in the range ok 67 - All returned values for 5678-9876 were prime ok 68 - All returned values for 5678-9876 were in the range ok 69 - All returned values for 17051687-17051899 were prime ok 70 - All returned values for 17051687-17051899 were in the range ok 71 - All returned values for 27767-88493 were prime ok 72 - All returned values for 27767-88493 were in the range ok 73 - All returned values for 20-100 were prime ok 74 - All returned values for 20-100 were in the range ok 75 - All returned values for 27764-88498 were prime ok 76 - All returned values for 27764-88498 were in the range ok 77 - All returned values for 2 were prime ok 78 - All returned values for 2 were in the range ok 79 - All returned values for 3 were prime ok 80 - All returned values for 3 were in the range ok 81 - All returned values for 4 were prime ok 82 - All returned values for 4 were in the range ok 83 - All returned values for 5 were prime ok 84 - All returned values for 5 were in the range ok 85 - All returned values for 6 were prime ok 86 - All returned values for 6 were in the range ok 87 - All returned values for 7 were prime ok 88 - All returned values for 7 were in the range ok 89 - All returned values for 8 were prime ok 90 - All returned values for 8 were in the range ok 91 - All returned values for 9 were prime ok 92 - All returned values for 9 were in the range ok 93 - All returned values for 100 were prime ok 94 - All returned values for 100 were in the range ok 95 - All returned values for 1000 were prime ok 96 - All returned values for 1000 were in the range ok 97 - All returned values for 1000000 were prime ok 98 - All returned values for 1000000 were in the range ok 99 - All returned values for 4294967295 were prime ok 100 - All returned values for 4294967295 were in the range ok 101 - 1-digit random prime '2' is in range and prime ok 102 - 2-digit random prime '71' is in range and prime ok 103 - 3-digit random prime '787' is in range and prime ok 104 - 4-digit random prime '5953' is in range and prime ok 105 - 5-digit random prime '83003' is in range and prime ok 106 - 6-digit random prime '822431' is in range and prime ok 107 - 7-digit random prime '6888841' is in range and prime ok 108 - 8-digit random prime '70956967' is in range and prime ok 109 - 9-digit random prime '755527537' is in range and prime ok 110 - 10-digit random prime '8522261569' is in range and prime ok 111 - 11-digit random prime '38923057231' is in range and prime ok 112 - 12-digit random prime '989645283061' is in range and prime ok 113 - 13-digit random prime '6193830894283' is in range and prime ok 114 - 14-digit random prime '79126151612359' is in range and prime ok 115 - 15-digit random prime '919545100930891' is in range and prime ok 116 - 16-digit random prime '3962760574809059' is in range and prime ok 117 - 17-digit random prime '67386286290589151' is in range and prime ok 118 - 18-digit random prime '596934331004024071' is in range and prime ok 119 - 19-digit random prime '2906724629099809967' is in range and prime ok 120 - 20-digit random prime '89727281815759351103' is in range and prime ok 121 - 2-bit random nbit prime '3' is in range and prime ok 122 - 2-bit random Maurer prime '2' is in range and prime ok 123 - 2-bit random Shawe-Taylor prime '3' is in range and prime ok 124 - 2-bit random proven prime '2' is in range and prime ok 125 - 3-bit random nbit prime '7' is in range and prime ok 126 - 3-bit random Maurer prime '5' is in range and prime ok 127 - 3-bit random Shawe-Taylor prime '7' is in range and prime ok 128 - 3-bit random proven prime '5' is in range and prime ok 129 - 4-bit random nbit prime '13' is in range and prime ok 130 - 4-bit random Maurer prime '11' is in range and prime ok 131 - 4-bit random Shawe-Taylor prime '13' is in range and prime ok 132 - 4-bit random proven prime '11' is in range and prime ok 133 - 5-bit random nbit prime '17' is in range and prime ok 134 - 5-bit random Maurer prime '23' is in range and prime ok 135 - 5-bit random Shawe-Taylor prime '31' is in range and prime ok 136 - 5-bit random proven prime '23' is in range and prime ok 137 - 6-bit random nbit prime '41' is in range and prime ok 138 - 6-bit random Maurer prime '59' is in range and prime ok 139 - 6-bit random Shawe-Taylor prime '53' is in range and prime ok 140 - 6-bit random proven prime '53' is in range and prime ok 141 - 10-bit random nbit prime '641' is in range and prime ok 142 - 10-bit random Maurer prime '743' is in range and prime ok 143 - 10-bit random Shawe-Taylor prime '839' is in range and prime ok 144 - 10-bit random proven prime '811' is in range and prime ok 145 - 15-bit random nbit prime '16987' is in range and prime ok 146 - 15-bit random Maurer prime '17443' is in range and prime ok 147 - 15-bit random Shawe-Taylor prime '27073' is in range and prime ok 148 - 15-bit random proven prime '27793' is in range and prime ok 149 - 16-bit random nbit prime '36187' is in range and prime ok 150 - 16-bit random Maurer prime '51803' is in range and prime ok 151 - 16-bit random Shawe-Taylor prime '53093' is in range and prime ok 152 - 16-bit random proven prime '36293' is in range and prime ok 153 - 17-bit random nbit prime '101789' is in range and prime ok 154 - 17-bit random Maurer prime '81359' is in range and prime ok 155 - 17-bit random Shawe-Taylor prime '121171' is in range and prime ok 156 - 17-bit random proven prime '119809' is in range and prime ok 157 - 28-bit random nbit prime '217388071' is in range and prime ok 158 - 28-bit random Maurer prime '246794291' is in range and prime ok 159 - 28-bit random Shawe-Taylor prime '134666473' is in range and prime ok 160 - 28-bit random proven prime '203628857' is in range and prime ok 161 - 32-bit random nbit prime '3025661957' is in range and prime ok 162 - 32-bit random Maurer prime '3300125329' is in range and prime ok 163 - 32-bit random Shawe-Taylor prime '3794359981' is in range and prime ok 164 - 32-bit random proven prime '3458675911' is in range and prime ok 165 - 34-bit random nbit prime '13856118361' is in range and prime ok 166 - 34-bit random Maurer prime '14533210001' is in range and prime ok 167 - 34-bit random Shawe-Taylor prime '14397353213' is in range and prime ok 168 - 34-bit random proven prime '12500868059' is in range and prime ok 169 - 75-bit random nbit prime '36639596508859511712317' is in range and prime ok 170 - 75-bit random Maurer prime '23747471025909912123077' is in range and prime ok 171 - 75-bit random Shawe-Taylor prime '20718478913480452640411' is in range and prime ok 172 - 75-bit random proven prime '33647076230092346174687' is in range and prime ok 173 - random 80-bit prime returns a BigInt ok 174 - random 80-bit prime '857688438421679842176631' is in range ok 175 - random 30-digit prime returns a BigInt ok 176 - random 30-digit prime '875548651630750813148734198999' is in range ok 177 - random_semiprime(3) ok 178 - random_unrestricted_semiprime(2) ok 179 - random_semiprime(4) = 9 ok 180 - random_unrestricted_semiprime(3) is 4 or 6 ok 181 - random_semiprime(26) is a 26-bit semiprime ok 182 - random_semiprime(81) is 81 bits ok 183 - random_unrestricted_semiprime(81) is 81 bits ok t/17-pseudoprime.t ........... 1..108 ok 1 - MR with no base fails ok 2 - MR base 0 fails ok 3 - MR base 1 fails ok 4 - MR with 0 shortcut composite ok 5 - MR with 0 shortcut composite ok 6 - MR with 2 shortcut prime ok 7 - MR with 3 shortcut prime ok 8 - Small strong pseudoprimes base 1005905886 (i.e. Miller-Rabin) ok 9 - Small strong pseudoprimes base 11 (i.e. Miller-Rabin) ok 10 - Small strong pseudoprimes base 13 (i.e. Miller-Rabin) ok 11 - Small strong pseudoprimes base 1340600841 (i.e. Miller-Rabin) ok 12 - Small strong pseudoprimes base 17 (i.e. Miller-Rabin) ok 13 - Small strong pseudoprimes base 1795265022 (i.e. Miller-Rabin) ok 14 - Small strong pseudoprimes base 19 (i.e. Miller-Rabin) ok 15 - Small strong pseudoprimes base 2 (i.e. Miller-Rabin) ok 16 - Small strong pseudoprimes base 203659041 (i.e. Miller-Rabin) ok 17 - Small strong pseudoprimes base 23 (i.e. Miller-Rabin) ok 18 - Small strong pseudoprimes base 28178 (i.e. Miller-Rabin) ok 19 - Small strong pseudoprimes base 29 (i.e. Miller-Rabin) ok 20 - Small strong pseudoprimes base 3 (i.e. Miller-Rabin) ok 21 - Small strong pseudoprimes base 3046413974 (i.e. Miller-Rabin) ok 22 - Small strong pseudoprimes base 31 (i.e. Miller-Rabin) ok 23 - Small strong pseudoprimes base 325 (i.e. Miller-Rabin) ok 24 - Small strong pseudoprimes base 3613982119 (i.e. Miller-Rabin) ok 25 - Small strong pseudoprimes base 37 (i.e. Miller-Rabin) ok 26 - Small strong pseudoprimes base 450775 (i.e. Miller-Rabin) ok 27 - Small strong pseudoprimes base 5 (i.e. Miller-Rabin) ok 28 - Small strong pseudoprimes base 553174392 (i.e. Miller-Rabin) ok 29 - Small strong pseudoprimes base 61 (i.e. Miller-Rabin) ok 30 - Small strong pseudoprimes base 642735 (i.e. Miller-Rabin) ok 31 - Small strong pseudoprimes base 7 (i.e. Miller-Rabin) ok 32 - Small strong pseudoprimes base 73 (i.e. Miller-Rabin) ok 33 - Small strong pseudoprimes base 75088 (i.e. Miller-Rabin) ok 34 - Small strong pseudoprimes base 9375 (i.e. Miller-Rabin) ok 35 - Small strong pseudoprimes base 9780504 (i.e. Miller-Rabin) ok 36 - Small almost extra strong Lucas pseudoprimes (inc 1) ok 37 - Small almost extra strong Lucas pseudoprimes (inc 2) ok 38 - Small Catalan pseudoprimes ok 39 - Small Euler pseudoprimes base 2 ok 40 - Small Euler pseudoprimes base 29 ok 41 - Small Euler pseudoprimes base 3 ok 42 - Small extra strong Lucas pseudoprimes ok 43 - Small Fibonacci pseudoprimes ok 44 - Small Frobenius(3,-5) pseudoprimes ok 45 - Small Frobenius(1,-1) pseudoprimes ok 46 - Small Lucas pseudoprimes ok 47 - Small Pell pseudoprimes ok 48 - Small Unrestricted Perrin pseudoprimes ok 49 - Small Euler-Plumb pseudoprimes ok 50 - Small pseudoprimes base 2 (i.e. Fermat) ok 51 - Small pseudoprimes base 3 (i.e. Fermat) ok 52 - Small strong Lucas pseudoprimes ok 53 - phi_1 passes MR with first 1 primes ok 54 - phi_2 passes MR with first 2 primes ok 55 - phi_3 passes MR with first 3 primes ok 56 - phi_4 passes MR with first 4 primes ok 57 - phi_5 passes MR with first 5 primes ok 58 - phi_6 passes MR with first 6 primes ok 59 - phi_7 passes MR with first 7 primes ok 60 - phi_8 passes MR with first 8 primes ok 61 - MR base 2 matches is_prime for 2-4032 (excl 2047,3277) ok 62 - spsp( 3, 3) ok 63 - spsp( 11, 11) ok 64 - spsp( 89, 5785) ok 65 - spsp(257, 6168) ok 66 - spsp(367, 367) ok 67 - spsp(367, 1101) ok 68 - spsp(49001, 921211727) ok 69 - spsp( 331, 921211727) ok 70 - spsp(49117, 921211727) ok 71 - 143168581 is a Fermat pseudoprime to bases 2,3,5,7,11 ok 72 - 3215031751 is a strong pseudoprime to bases 2,3,5,7 ok 73 - 2152302898747 is a strong pseudoprime to bases 2,3,5,7,11 ok 74 - 2 is a prime and a strong Lucas-Selfridge pseudoprime ok 75 - 9 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 76 - 16 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 77 - 100 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 78 - 102 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 79 - 2047 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 80 - 2048 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 81 - 5781 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 82 - 9000 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 83 - 14381 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 84 - Lucas sequence 18971 10001 -1 4743 ok 85 - Lucas sequence 49001 25 117 24501 ok 86 - Lucas sequence 323 3 1 324 ok 87 - Lucas sequence 323 4 5 324 ok 88 - Lucas sequence 547968611 1 -1 136992153 ok 89 - Lucas sequence 3613982121 1 -1 1806991061 ok 90 - Lucas sequence 323 3 1 81 ok 91 - Lucas sequence 323 5 -1 81 ok 92 - Lucas sequence 3613982123 1 -1 3613982124 ok 93 - Lucas sequence 3613982121 1 -1 3613982122 ok 94 - Lucas sequence 547968611 1 -1 547968612 ok 95 - Lucas sequence 323 1 1 324 ok 96 - Lucas sequence 323 4 1 324 ok 97 - is_frobenius_underwood_pseudoprime matches is_prime ok 98 - Frobenius Underwood with 52-bit prime ok 99 - Frobenius Underwood with 44-bit Lucas pseudoprime ok 100 - is_frobenius_khashin_pseudoprime matches is_prime ok 101 - Frobenius Khashin with 52-bit prime ok 102 - Frobenius Khashin with 44-bit Lucas pseudoprime ok 103 - 40814059160177 is an unrestricted Perrin pseudoprime ok 104 - 40814059160177 is not a minimal restricted Perrin pseudoprime ok 105 - 36407440637569 is minimal restricted Perrin pseudoprime ok 106 - 36407440637569 is not an Adams/Shanks Perrin pseudoprime ok 107 - 364573433665 is an Adams/Shanks Perrin pseudoprime ok 108 - 364573433665 is not a Grantham restricted Perrin pseudoprime ok t/18-functions.t ............. 1..62 ok 1 - li(-1) is invalid ok 2 - R(0) is invalid ok 3 - R(-1) is invalid ok 4 - Ei(0) is -infinity ok 5 - Ei(-inf) is 0 ok 6 - Ei(inf) is infinity ok 7 - li(0) is 0 ok 8 - li(1) is -infinity ok 9 - li(inf) is infinity ok 10 - Ei(2.2) ok 11 - Ei(5) ~= 40.1852753558032 ok 12 - Ei(20) ~= 25615652.6640566 ok 13 - Ei(12) ~= 14959.5326663975 ok 14 - Ei(0.693147180559945) ~= 1.04516378011749 ok 15 - Ei(79) ~= 2.61362206325046e+32 ok 16 - Ei(-10) ~= -4.15696892968532e-06 ok 17 - Ei(10) ~= 2492.22897624188 ok 18 - Ei(-0.5) ~= -0.55977359477616 ok 19 - Ei(-0.001) ~= -6.33153936413615 ok 20 - Ei(41) ~= 1.6006649143245e+16 ok 21 - Ei(1.5) ~= 3.3012854491298 ok 22 - Ei(40) ~= 6039718263611242 ok 23 - Ei(-1e-08) ~= -17.8434650890508 ok 24 - Ei(2) ~= 4.95423435600189 ok 25 - Ei(1) ~= 1.89511781635594 ok 26 - Ei(-0.1) ~= -1.82292395841939 ok 27 - Ei(-1e-05) ~= -10.9357198000437 ok 28 - li(0) ~= 0 ok 29 - li(10) ~= 6.1655995047873 ok 30 - li(10000000000) ~= 455055614.586623 ok 31 - li(100000) ~= 9629.8090010508 ok 32 - li(24) ~= 11.2003157952327 ok 33 - li(1.01) ~= -4.02295867392994 ok 34 - li(1000) ~= 177.609657990152 ok 35 - li(4294967295) ~= 203284081.954542 ok 36 - li(2) ~= 1.04516378011749 ok 37 - li(100000000000) ~= 4118066400.62161 ok 38 - li(100000000) ~= 5762209.37544803 ok 39 - R(10000000000) ~= 455050683.306847 ok 40 - R(18446744073709551615) ~= 4.25656284014012e+17 ok 41 - R(1000000) ~= 78527.3994291277 ok 42 - R(10) ~= 4.56458314100509 ok 43 - R(2) ~= 1.54100901618713 ok 44 - R(1.01) ~= 1.00606971806229 ok 45 - R(4294967295) ~= 203280697.513261 ok 46 - R(1000) ~= 168.359446281167 ok 47 - R(10000000) ~= 664667.447564748 ok 48 - Zeta(2) ~= 0.644934066848226 ok 49 - Zeta(8.5) ~= 0.00285925088241563 ok 50 - Zeta(4.5) ~= 0.0547075107614543 ok 51 - Zeta(20.6) ~= 6.29339157357821e-07 ok 52 - Zeta(2.5) ~= 0.341487257250917 ok 53 - Zeta(7) ~= 0.00834927738192283 ok 54 - LambertW(0.367879441171442) ~= 0.278464542761074 ok 55 - LambertW(10000) ~= 7.23184603809337 ok 56 - LambertW(18446744073709551615) ~= 40.6562665724989 ok 57 - LambertW(-0.1) ~= -0.111832559158963 ok 58 - LambertW(10) ~= 1.7455280027407 ok 59 - LambertW(0) ~= 0 ok 60 - LambertW(1) ~= 0.567143290409784 ok 61 - LambertW(100000000000) ~= 22.2271227349611 ok 62 - LambertW(-0.367879441171442) ~= -0.99999995824889 ok t/19-chebyshev.t ............. 1..16 ok 1 - chebyshev_theta(2) ok 2 - chebyshev_theta(5) ok 3 - chebyshev_theta(243) ok 4 - chebyshev_theta(4) ok 5 - chebyshev_theta(3) ok 6 - chebyshev_theta(0) ok 7 - chebyshev_theta(1) ok 8 - chebyshev_theta(123456) ok 9 - chebyshev_psi(5) ok 10 - chebyshev_psi(2) ok 11 - chebyshev_psi(123456) ok 12 - chebyshev_psi(1) ok 13 - chebyshev_psi(0) ok 14 - chebyshev_psi(3) ok 15 - chebyshev_psi(4) ok 16 - chebyshev_psi(243) ok t/19-chinese.t ............... 1..24 ok 1 - crt() = 0 ok 2 - crt([4 5]) = 4 ok 3 - crt([77 11]) = 0 ok 4 - crt([0 5],[0 6]) = 0 ok 5 - crt([14 5],[0 6]) = 24 ok 6 - crt([10 11],[4 22],[9 19]) = ok 7 - crt([77 13],[79 17]) = 181 ok 8 - crt([2 3],[3 5],[2 7]) = 23 ok 9 - crt([10 11],[4 12],[12 13]) = 1000 ok 10 - crt([42 127],[24 128]) = 2328 ok 11 - crt([32 126],[23 129]) = 410 ok 12 - crt([2328 16256],[410 5418]) = 28450328 ok 13 - crt([1 10],[11 100]) = 11 ok 14 - crt([11 100],[22 100]) = ok 15 - crt([1753051086 3243410059],[2609156951 2439462460]) = 6553408220202087311 ok 16 - crt([6325451203932218304 2750166238021308],[5611464489438299732 94116455416164094]) = 1433171050835863115088946517796 ok 17 - crt([1762568892212871168 8554171181844660224],[2462425671659520000 2016911328009584640]) = 188079320578009823963731127992320 ok 18 - crt([856686401696104448 11943471150311931904],[6316031051955372032 13290002569363587072]) = 943247297188055114646647659888640 ok 19 - crt([-3105579549 3743000622],[-1097075646 1219365911]) = 2754322117681955433 ok 20 - crt([-925543788386357567 243569243147991],[-1256802905822510829 28763455974459440]) = 837055903505897549759994093811 ok 21 - crt([-2155972909982577461 8509855219791386062],[-5396280069505638574 6935743629860450393]) = 12941173114744545542549046204020289525 ok 22 - crt([3 5],[2 0]) = ok 23 - crt([3 0],[2 3]) = ok 24 - crt([3 5],[3 0],[2 3]) = ok t/19-divisorsum.t ............ 1..12 ok 1 - Sum of divisors to the 2th power: Sigma_2 ok 2 - Sigma_2 using integer instead of sub ok 3 - Sum of divisors to the 0th power: Sigma_0 ok 4 - Sigma_0 using integer instead of sub ok 5 - Sum of divisors to the 3th power: Sigma_3 ok 6 - Sigma_3 using integer instead of sub ok 7 - Sum of divisors to the 1th power: Sigma_1 ok 8 - Sigma_1 using integer instead of sub ok 9 - divisor_sum(n) ok 10 - tau as divisor_sum(n, sub {1}) ok 11 - tau as divisor_sum(n, 0) ok 12 - Tau4 (A007426), nested divisor sums ok t/19-gcd.t ................... 1..53 ok 1 - gcd() = 0 ok 2 - gcd(8) = 8 ok 3 - gcd(9,9) = 9 ok 4 - gcd(0,0) = 0 ok 5 - gcd(1,0,0) = 1 ok 6 - gcd(0,0,1) = 1 ok 7 - gcd(17,19) = 1 ok 8 - gcd(54,24) = 6 ok 9 - gcd(42,56) = 14 ok 10 - gcd(9,28) = 1 ok 11 - gcd(48,180) = 12 ok 12 - gcd(2705353758,2540073744,3512215098,2214052398) = 18 ok 13 - gcd(2301535282,3609610580,3261189640) = 106 ok 14 - gcd(694966514,510402262,195075284,609944479) = 181 ok 15 - gcd(294950648,651855678,263274296,493043500,581345426) = 58 ok 16 - gcd(-30,-90,90) = 30 ok 17 - gcd(-3,-9,-18) = 3 ok 18 - gcd(12848174105599691600,15386870946739346600,11876770906605497900) = 700 ok 19 - gcd(9785375481451202685,17905669244643674637,11069209430356622337) = 117 ok 20 - lcm() = 0 ok 21 - lcm(8) = 8 ok 22 - lcm(9,9) = 9 ok 23 - lcm(0,0) = 0 ok 24 - lcm(1,0,0) = 0 ok 25 - lcm(0,0,1) = 0 ok 26 - lcm(17,19) = 323 ok 27 - lcm(54,24) = 216 ok 28 - lcm(42,56) = 168 ok 29 - lcm(9,28) = 252 ok 30 - lcm(48,180) = 720 ok 31 - lcm(36,45) = 180 ok 32 - lcm(-36,45) = 180 ok 33 - lcm(-36,-45) = 180 ok 34 - lcm(30,15,5) = 30 ok 35 - lcm(2,3,4,5) = 60 ok 36 - lcm(30245,114552) = 3464625240 ok 37 - lcm(11926,78001,2211) = 2790719778 ok 38 - lcm(1426,26195,3289,8346) = 4254749070 ok 39 - lcm(26505798,9658520,967043,18285904) = 15399063829732542960 ok 40 - lcm(267220708,143775143,261076) = 15015659316963449908 ok 41 - gcdext(0,0) = [0 0 0] ok 42 - gcdext(0,28) = [0 1 28] ok 43 - gcdext(28,0) = [1 0 28] ok 44 - gcdext(0,-28) = [0 -1 28] ok 45 - gcdext(-28,0) = [-1 0 28] ok 46 - gcdext(3706259912,1223661804) = [123862139 -375156991 4] ok 47 - gcdext(3706259912,-1223661804) = [123862139 375156991 4] ok 48 - gcdext(-3706259912,1223661804) = [-123862139 -375156991 4] ok 49 - gcdext(-3706259912,-1223661804) = [-123862139 375156991 4] ok 50 - gcdext(22,242) = [1 0 22] ok 51 - gcdext(2731583792,3028241442) = [-187089956 168761937 2] ok 52 - gcdext(42272720,12439910) = [-21984 74705 70] ok 53 - gcdext(10139483024654235947,8030280778952246347) = [-2715309548282941287 3428502169395958570 1] ok t/19-kronecker.t ............. 1..42 ok 1 - kronecker(109981, 737777) = 1 ok 2 - kronecker(737779, 121080) = -1 ok 3 - kronecker(-737779, 121080) = 1 ok 4 - kronecker(737779, -121080) = -1 ok 5 - kronecker(-737779, -121080) = -1 ok 6 - kronecker(12345, 331) = -1 ok 7 - kronecker(1001, 9907) = -1 ok 8 - kronecker(19, 45) = 1 ok 9 - kronecker(8, 21) = -1 ok 10 - kronecker(5, 21) = 1 ok 11 - kronecker(5, 1237) = -1 ok 12 - kronecker(10, 49) = 1 ok 13 - kronecker(123, 4567) = -1 ok 14 - kronecker(3, 18) = 0 ok 15 - kronecker(3, -18) = 0 ok 16 - kronecker(-2, 0) = 0 ok 17 - kronecker(-1, 0) = 1 ok 18 - kronecker(0, 0) = 0 ok 19 - kronecker(1, 0) = 1 ok 20 - kronecker(2, 0) = 0 ok 21 - kronecker(-2, 1) = 1 ok 22 - kronecker(-1, 1) = 1 ok 23 - kronecker(0, 1) = 1 ok 24 - kronecker(1, 1) = 1 ok 25 - kronecker(2, 1) = 1 ok 26 - kronecker(-2, -1) = -1 ok 27 - kronecker(-1, -1) = -1 ok 28 - kronecker(0, -1) = 1 ok 29 - kronecker(1, -1) = 1 ok 30 - kronecker(2, -1) = 1 ok 31 - kronecker(3686556869, 428192857) = 1 ok 32 - kronecker(-1453096827, 364435739) = -1 ok 33 - kronecker(3527710253, -306243569) = 1 ok 34 - kronecker(-1843526669, -332265377) = 1 ok 35 - kronecker(321781679, 4095783323) = -1 ok 36 - kronecker(454249403, -79475159) = -1 ok 37 - kronecker(17483840153492293897, 455592493) = 1 ok 38 - kronecker(-1402663995299718225, 391125073) = 1 ok 39 - kronecker(16715440823750591903, -534621209) = -1 ok 40 - kronecker(13106964391619451641, 16744199040925208803) = 1 ok 41 - kronecker(11172354269896048081, 10442187294190042188) = -1 ok 42 - kronecker(-5694706465843977004, 9365273357682496999) = -1 ok t/19-legendrephi.t ........... 1..17 ok 1 - legendre_phi(0,92372) = 0 ok 2 - legendre_phi(5,15) = 1 ok 3 - legendre_phi(89,4) = 21 ok 4 - legendre_phi(46,4) = 11 ok 5 - legendre_phi(47,4) = 12 ok 6 - legendre_phi(48,4) = 12 ok 7 - legendre_phi(52,4) = 12 ok 8 - legendre_phi(53,4) = 13 ok 9 - legendre_phi(10000,5) = 2077 ok 10 - legendre_phi(526,7) = 95 ok 11 - legendre_phi(588,6) = 111 ok 12 - legendre_phi(100000,5) = 20779 ok 13 - legendre_phi(5882,6) = 1128 ok 14 - legendre_phi(100000,7) = 18053 ok 15 - legendre_phi(10000,8) = 1711 ok 16 - legendre_phi(1000000,168) = 78331 ok 17 - legendre_phi(800000,213) = 63739 ok t/19-liouville.t ............. 1..60 ok 1 - liouville(24) = 1 ok 2 - liouville(51) = 1 ok 3 - liouville(94) = 1 ok 4 - liouville(183) = 1 ok 5 - liouville(294) = 1 ok 6 - liouville(629) = 1 ok 7 - liouville(1488) = 1 ok 8 - liouville(3684) = 1 ok 9 - liouville(8006) = 1 ok 10 - liouville(8510) = 1 ok 11 - liouville(32539) = 1 ok 12 - liouville(57240) = 1 ok 13 - liouville(103138) = 1 ok 14 - liouville(238565) = 1 ok 15 - liouville(444456) = 1 ok 16 - liouville(820134) = 1 ok 17 - liouville(1185666) = 1 ok 18 - liouville(3960407) = 1 ok 19 - liouville(4429677) = 1 ok 20 - liouville(13719505) = 1 ok 21 - liouville(29191963) = 1 ok 22 - liouville(57736144) = 1 ok 23 - liouville(134185856) = 1 ok 24 - liouville(262306569) = 1 ok 25 - liouville(324235872) = 1 ok 26 - liouville(563441153) = 1 ok 27 - liouville(1686170713) = 1 ok 28 - liouville(2489885844) = 1 ok 29 - liouville(1260238066729040) = 1 ok 30 - liouville(10095256575169232896) = 1 ok 31 - liouville(23) = -1 ok 32 - liouville(47) = -1 ok 33 - liouville(113) = -1 ok 34 - liouville(163) = -1 ok 35 - liouville(378) = -1 ok 36 - liouville(942) = -1 ok 37 - liouville(1669) = -1 ok 38 - liouville(2808) = -1 ok 39 - liouville(8029) = -1 ok 40 - liouville(9819) = -1 ok 41 - liouville(23863) = -1 ok 42 - liouville(39712) = -1 ok 43 - liouville(87352) = -1 ok 44 - liouville(210421) = -1 ok 45 - liouville(363671) = -1 ok 46 - liouville(562894) = -1 ok 47 - liouville(1839723) = -1 ok 48 - liouville(3504755) = -1 ok 49 - liouville(7456642) = -1 ok 50 - liouville(14807115) = -1 ok 51 - liouville(22469612) = -1 ok 52 - liouville(49080461) = -1 ok 53 - liouville(132842464) = -1 ok 54 - liouville(146060791) = -1 ok 55 - liouville(279256445) = -1 ok 56 - liouville(802149183) = -1 ok 57 - liouville(1243577750) = -1 ok 58 - liouville(3639860654) = -1 ok 59 - liouville(1807253903626380) = -1 ok 60 - liouville(12063177829788352512) = -1 ok t/19-mangoldt.t .............. 1..21 ok 1 - exp_mangoldt(5) == 5 ok 2 - exp_mangoldt(2) == 2 ok 3 - exp_mangoldt(6) == 1 ok 4 - exp_mangoldt(11) == 11 ok 5 - exp_mangoldt(7) == 7 ok 6 - exp_mangoldt(0) == 1 ok 7 - exp_mangoldt(130321) == 19 ok 8 - exp_mangoldt(83521) == 17 ok 9 - exp_mangoldt(399982) == 1 ok 10 - exp_mangoldt(3) == 3 ok 11 - exp_mangoldt(9) == 3 ok 12 - exp_mangoldt(823543) == 7 ok 13 - exp_mangoldt(10) == 1 ok 14 - exp_mangoldt(-13) == 1 ok 15 - exp_mangoldt(4) == 2 ok 16 - exp_mangoldt(399983) == 399983 ok 17 - exp_mangoldt(8) == 2 ok 18 - exp_mangoldt(27) == 3 ok 19 - exp_mangoldt(1) == 1 ok 20 - exp_mangoldt(25) == 5 ok 21 - exp_mangoldt(399981) == 1 ok t/19-moebius.t ............... 1..14 ok 1 - moebius(0) ok 2 - moebius 1 .. 20 (single) ok 3 - moebius 1 .. 20 (range) ok 4 - moebius -1 .. -20 (single) ok 5 - moebius -14 .. -9 (range) ok 6 - moebius -7 .. 5 (range) ok 7 - moebius(3*5*7*11*13) = -1 ok 8 - moebius(73\#/2) = 1 ok 9 - sum(moebius(k) for k=1..n) small n ok 10 - sum(moebius(1,n)) small n ok 11 - mertens(n) small n ok 12 - mertens(1000000) ok 13 - mertens(100000) ok 14 - mertens(10000000) ok t/19-popcount.t .............. 1..9 ok 1 - hammingweight(0) = 0 ok 2 - hammingweight(1) = 1 ok 3 - hammingweight(2) = 1 ok 4 - hammingweight(3) = 2 ok 5 - hammingweight(452398) = 12 ok 6 - hammingweight(-452398) = 12 ok 7 - hammingweight(4294967295) = 32 ok 8 - hammingweight(777777777777777714523989234823498234098249108234236) = 83 ok 9 - hammingweight(65520150907877741108803406077280119039314703968014509493068998974809747144933) = 118 ok t/19-primroots.t ............. 1..52 ok 1 - znprimroot(1729) == ok 2 - znprimroot(5) == 2 ok 3 - znprimroot(90441961) == 113 ok 4 - znprimroot(1520874431) == 17 ok 5 - znprimroot(7) == 3 ok 6 - znprimroot(1) == 0 ok 7 - znprimroot(3) == 2 ok 8 - znprimroot(1407827621) == 2 ok 9 - znprimroot(-11) == 2 ok 10 - znprimroot(1685283601) == 164 ok 11 - znprimroot(9223372036854775837) == 5 ok 12 - znprimroot(6) == 5 ok 13 - znprimroot(2232881419280027) == 6 ok 14 - znprimroot(5109721) == 94 ok 15 - znprimroot(89637484042681) == 335 ok 16 - znprimroot(9) == 2 ok 17 - znprimroot(4) == 3 ok 18 - znprimroot(14123555781055773271) == 6 ok 19 - znprimroot(0) == ok 20 - znprimroot(10) == 3 ok 21 - znprimroot(100000001) == ok 22 - znprimroot(8) == ok 23 - znprimroot(17551561) == 97 ok 24 - znprimroot(2) == 1 ok 25 - znprimroot("-100000898") == 31 ok 26 - 2 is not a primitive root mod 1729 ok 27 - 2 is a primitive root mod 5 ok 28 - 113 is a primitive root mod 90441961 ok 29 - 17 is a primitive root mod 1520874431 ok 30 - 3 is a primitive root mod 7 ok 31 - 0 is a primitive root mod 1 ok 32 - 2 is a primitive root mod 3 ok 33 - 2 is a primitive root mod 1407827621 ok 34 - 2 is a primitive root mod -11 ok 35 - 164 is a primitive root mod 1685283601 ok 36 - 5 is a primitive root mod 9223372036854775837 ok 37 - 5 is a primitive root mod 6 ok 38 - 6 is a primitive root mod 2232881419280027 ok 39 - 94 is a primitive root mod 5109721 ok 40 - 335 is a primitive root mod 89637484042681 ok 41 - 2 is a primitive root mod 9 ok 42 - 3 is a primitive root mod 4 ok 43 - 6 is a primitive root mod 14123555781055773271 ok 44 - 2 is not a primitive root mod 0 ok 45 - 3 is a primitive root mod 10 ok 46 - 2 is not a primitive root mod 100000001 ok 47 - 2 is not a primitive root mod 8 ok 48 - 97 is a primitive root mod 17551561 ok 49 - 1 is a primitive root mod 2 ok 50 - 19 is a primitive root mod 191 ok 51 - 13 is not a primitive root mod 191 ok 52 - 35 is not a primitive root mod 982 ok t/19-ramanujan.t ............. 1..38 ok 1 - Ramanujan Sum c_0(34) = 0 ok 2 - Ramanujan Sum c_34(0) ok 3 - Ramanujan sum c_{1..30}(1..30) ok 4 - H(-3) = 0 ok 5 - H(0) = -1 ok 6 - H(39) = 48 ok 7 - H(20) = 24 ok 8 - H(20563) = 156 ok 9 - H(4031) = 1008 ok 10 - H(31243) = 192 ok 11 - H(1) = 0 ok 12 - H(427) = 24 ok 13 - H(163) = 12 ok 14 - H(11) = 12 ok 15 - H(907) = 36 ok 16 - H(12) = 16 ok 17 - H(6307) = 96 ok 18 - H(4) = 6 ok 19 - H(30067) = 168 ok 20 - H(47) = 60 ok 21 - H(2) = 0 ok 22 - H(34483) = 180 ok 23 - H(23) = 36 ok 24 - H(71) = 84 ok 25 - H(3) = 4 ok 26 - H(1555) = 48 ok 27 - H(8) = 12 ok 28 - H(7) = 12 ok 29 - Ramanujan Tau(106) = 38305336752 ok 30 - Ramanujan Tau(16089) = 12655813883111729342208 ok 31 - Ramanujan Tau(5) = 4830 ok 32 - Ramanujan Tau(3) = 252 ok 33 - Ramanujan Tau(0) = 0 ok 34 - Ramanujan Tau(1) = 1 ok 35 - Ramanujan Tau(243) = 13400796651732 ok 36 - Ramanujan Tau(4) = -1472 ok 37 - Ramanujan Tau(53) = -1596055698 ok 38 - Ramanujan Tau(2) = -24 ok t/19-rootint.t ............... 1..15 ok 1 - sqrtint 0 .. 100 ok 2 - sqrtint(1234567^2) = 1234567 ok 3 - sqrtint(1234568^2-1) = 1234567 ok 4 - sqrtint(1234567^2-1) = 1234566 ok 5 - rootint(928342398,1) returns 928342398 ok 6 - rootint(88875,3) returns 44 ok 7 - integer third root of 266667176579895999 is 643659 ok 8 - rootint on perfect powers where log fails ok 9 - integer 23rd root of a large 23rd power ok 10 - integer 23rd root of almost a large 23rd power ok 11 - logint base 2: 0 .. 200 ok 12 - logint base 3: 0 .. 200 ok 13 - logint base 5: 0 .. 200 ok 14 - logint(19284098234,16) = 8 ok 15 - power is 16^8 ok t/19-totients.t .............. 1..22 ok 1 - euler_phi 0 .. 69 ok 2 - euler_phi with range: 0, 69 ok 3 - sum of totients to 240 ok 4 - euler_phi(-123456) == 0 ok 5 - euler_phi(123456) == 41088 ok 6 - euler_phi(123457) == 123456 ok 7 - euler_phi(123456789) == 82260072 ok 8 - euler_phi(0,0) ok 9 - euler_phi with end < start ok 10 - euler_phi 0-1 ok 11 - euler_phi 1-2 ok 12 - euler_phi 1-3 ok 13 - euler_phi 2-3 ok 14 - euler_phi 10-20 ok 15 - euler_phi(1513,1537) ok 16 - euler_phi -5 to 5 ok 17 - carmichael_lambda with range: 0, 69 ok 18 - Totient count 0-100 = 198 ok 19 - inverse_totient(1728) = 62 ok 20 - inverse_totient(9!) = 1138 ok 21 - inverse_totient(10000008) ok 22 - inverse_totient(82260072) includes 123456789 ok t/19-valuation.t ............. 1..6 ok 1 - valuation(-4,2) = 2 ok 2 - valuation(0,0) = 0 ok 3 - valuation(1,0) = 0 ok 4 - valuation(96552,6) = 3 ok 5 - valuation(1879048192,2) = 28 ok 6 - valuation(65520150907877741108803406077280119039314703968014509493068998974809747144832,2) = 7 ok t/19-znorder.t ............... 1..22 ok 1 - znorder(1, 35) = 1 ok 2 - znorder(2, 35) = 12 ok 3 - znorder(4, 35) = 6 ok 4 - znorder(6, 35) = 2 ok 5 - znorder(7, 35) = ok 6 - znorder(1, 1) = 1 ok 7 - znorder(0, 0) = ok 8 - znorder(1, 0) = ok 9 - znorder(25, 0) = ok 10 - znorder(1, 1) = 1 ok 11 - znorder(19, 1) = 1 ok 12 - znorder(1, 19) = 1 ok 13 - znorder(2, 19) = 18 ok 14 - znorder(3, 20) = 4 ok 15 - znorder(57, 1000000003) = 189618 ok 16 - znorder(67, 999999749) = 30612237 ok 17 - znorder(22, 999991815) = 69844 ok 18 - znorder(10, 2147475467) = 31448382 ok 19 - znorder(141, 2147475467) = 1655178 ok 20 - znorder(7410, 2147475467) = 39409 ok 21 - znorder(31407, 2147475467) = 266 ok 22 - znorder(2, 2405286912458753) = 1073741824 ok t/20-jordantotient.t ......... 1..13 ok 1 - Jordan's Totient J_7 ok 2 - Jordan's Totient J_6 ok 3 - Jordan's Totient J_2 ok 4 - Jordan's Totient J_4 ok 5 - Jordan's Totient J_3 ok 6 - Jordan's Totient J_5 ok 7 - Jordan's Totient J_1 ok 8 - Dedekind psi(n) = J_2(n)/J_1(n) ok 9 - Dedekind psi(n) = divisor_sum(n, moebius(d)^2 / d) ok 10 - Jordan totient 5, using jordan_totient ok 11 - Jordan totient 5, using divisor sum ok 12 - J_4(12345) ok 13 - n=12345, k=4 : n**k = divisor_sum(n, jordan_totient(k, d)) ok t/20-primorial.t ............. 1..64 ok 1 - primorial(nth(0)) ok 2 - pn_primorial(0) ok 3 - primorial(nth(1)) ok 4 - pn_primorial(1) ok 5 - primorial(nth(2)) ok 6 - pn_primorial(2) ok 7 - primorial(nth(3)) ok 8 - pn_primorial(3) ok 9 - primorial(nth(4)) ok 10 - pn_primorial(4) ok 11 - primorial(nth(5)) ok 12 - pn_primorial(5) ok 13 - primorial(nth(6)) ok 14 - pn_primorial(6) ok 15 - primorial(nth(7)) ok 16 - pn_primorial(7) ok 17 - primorial(nth(8)) ok 18 - pn_primorial(8) ok 19 - primorial(nth(9)) ok 20 - pn_primorial(9) ok 21 - primorial(nth(10)) ok 22 - pn_primorial(10) ok 23 - primorial(nth(11)) ok 24 - pn_primorial(11) ok 25 - primorial(nth(12)) ok 26 - pn_primorial(12) ok 27 - primorial(nth(13)) ok 28 - pn_primorial(13) ok 29 - primorial(nth(14)) ok 30 - pn_primorial(14) ok 31 - primorial(nth(15)) ok 32 - pn_primorial(15) ok 33 - primorial(nth(16)) ok 34 - pn_primorial(16) ok 35 - primorial(nth(17)) ok 36 - pn_primorial(17) ok 37 - primorial(nth(18)) ok 38 - pn_primorial(18) ok 39 - primorial(nth(19)) ok 40 - pn_primorial(19) ok 41 - primorial(nth(20)) ok 42 - pn_primorial(20) ok 43 - primorial(nth(21)) ok 44 - pn_primorial(21) ok 45 - primorial(nth(22)) ok 46 - pn_primorial(22) ok 47 - primorial(nth(23)) ok 48 - pn_primorial(23) ok 49 - primorial(nth(24)) ok 50 - pn_primorial(24) ok 51 - primorial(nth(25)) ok 52 - pn_primorial(25) ok 53 - primorial(nth(26)) ok 54 - pn_primorial(26) ok 55 - primorial(nth(27)) ok 56 - pn_primorial(27) ok 57 - primorial(nth(28)) ok 58 - pn_primorial(28) ok 59 - primorial(nth(29)) ok 60 - pn_primorial(29) ok 61 - primorial(nth(30)) ok 62 - pn_primorial(30) ok 63 - primorial(100) ok 64 - primorial(541) ok t/21-conseq-lcm.t ............ 1..102 ok 1 - consecutive_integer_lcm(0) ok 2 - consecutive_integer_lcm(1) ok 3 - consecutive_integer_lcm(2) ok 4 - consecutive_integer_lcm(3) ok 5 - consecutive_integer_lcm(4) ok 6 - consecutive_integer_lcm(5) ok 7 - consecutive_integer_lcm(6) ok 8 - consecutive_integer_lcm(7) ok 9 - consecutive_integer_lcm(8) ok 10 - consecutive_integer_lcm(9) ok 11 - consecutive_integer_lcm(10) ok 12 - consecutive_integer_lcm(11) ok 13 - consecutive_integer_lcm(12) ok 14 - consecutive_integer_lcm(13) ok 15 - consecutive_integer_lcm(14) ok 16 - consecutive_integer_lcm(15) ok 17 - consecutive_integer_lcm(16) ok 18 - consecutive_integer_lcm(17) ok 19 - consecutive_integer_lcm(18) ok 20 - consecutive_integer_lcm(19) ok 21 - consecutive_integer_lcm(20) ok 22 - consecutive_integer_lcm(21) ok 23 - consecutive_integer_lcm(22) ok 24 - consecutive_integer_lcm(23) ok 25 - consecutive_integer_lcm(24) ok 26 - consecutive_integer_lcm(25) ok 27 - consecutive_integer_lcm(26) ok 28 - consecutive_integer_lcm(27) ok 29 - consecutive_integer_lcm(28) ok 30 - consecutive_integer_lcm(29) ok 31 - consecutive_integer_lcm(30) ok 32 - consecutive_integer_lcm(31) ok 33 - consecutive_integer_lcm(32) ok 34 - consecutive_integer_lcm(33) ok 35 - consecutive_integer_lcm(34) ok 36 - consecutive_integer_lcm(35) ok 37 - consecutive_integer_lcm(36) ok 38 - consecutive_integer_lcm(37) ok 39 - consecutive_integer_lcm(38) ok 40 - consecutive_integer_lcm(39) ok 41 - consecutive_integer_lcm(40) ok 42 - consecutive_integer_lcm(41) ok 43 - consecutive_integer_lcm(42) ok 44 - consecutive_integer_lcm(43) ok 45 - consecutive_integer_lcm(44) ok 46 - consecutive_integer_lcm(45) ok 47 - consecutive_integer_lcm(46) ok 48 - consecutive_integer_lcm(47) ok 49 - consecutive_integer_lcm(48) ok 50 - consecutive_integer_lcm(49) ok 51 - consecutive_integer_lcm(50) ok 52 - consecutive_integer_lcm(51) ok 53 - consecutive_integer_lcm(52) ok 54 - consecutive_integer_lcm(53) ok 55 - consecutive_integer_lcm(54) ok 56 - consecutive_integer_lcm(55) ok 57 - consecutive_integer_lcm(56) ok 58 - consecutive_integer_lcm(57) ok 59 - consecutive_integer_lcm(58) ok 60 - consecutive_integer_lcm(59) ok 61 - consecutive_integer_lcm(60) ok 62 - consecutive_integer_lcm(61) ok 63 - consecutive_integer_lcm(62) ok 64 - consecutive_integer_lcm(63) ok 65 - consecutive_integer_lcm(64) ok 66 - consecutive_integer_lcm(65) ok 67 - consecutive_integer_lcm(66) ok 68 - consecutive_integer_lcm(67) ok 69 - consecutive_integer_lcm(68) ok 70 - consecutive_integer_lcm(69) ok 71 - consecutive_integer_lcm(70) ok 72 - consecutive_integer_lcm(71) ok 73 - consecutive_integer_lcm(72) ok 74 - consecutive_integer_lcm(73) ok 75 - consecutive_integer_lcm(74) ok 76 - consecutive_integer_lcm(75) ok 77 - consecutive_integer_lcm(76) ok 78 - consecutive_integer_lcm(77) ok 79 - consecutive_integer_lcm(78) ok 80 - consecutive_integer_lcm(79) ok 81 - consecutive_integer_lcm(80) ok 82 - consecutive_integer_lcm(81) ok 83 - consecutive_integer_lcm(82) ok 84 - consecutive_integer_lcm(83) ok 85 - consecutive_integer_lcm(84) ok 86 - consecutive_integer_lcm(85) ok 87 - consecutive_integer_lcm(86) ok 88 - consecutive_integer_lcm(87) ok 89 - consecutive_integer_lcm(88) ok 90 - consecutive_integer_lcm(89) ok 91 - consecutive_integer_lcm(90) ok 92 - consecutive_integer_lcm(91) ok 93 - consecutive_integer_lcm(92) ok 94 - consecutive_integer_lcm(93) ok 95 - consecutive_integer_lcm(94) ok 96 - consecutive_integer_lcm(95) ok 97 - consecutive_integer_lcm(96) ok 98 - consecutive_integer_lcm(97) ok 99 - consecutive_integer_lcm(98) ok 100 - consecutive_integer_lcm(99) ok 101 - consecutive_integer_lcm(100) ok 102 - consecutive_integer_lcm(2000) ok t/22-aks-prime.t ............. 1..9 ok 1 - is_prime(undef) ok 2 - 2 is prime ok 3 - 1 is not prime ok 4 - 0 is not prime ok 5 - -1 is not prime ok 6 - -2 is not prime ok 7 - is_aks_prime(877) is true ok 8 - is_aks_prime(69197) is true ok 9 - is_aks_prime(69199) is false ok t/23-primality-proofs.t ...... 1..88 ok 1 - 871139809 is composite ok 2 - 1490266103 is provably prime ok 3 - 20907001 is prime ok 4 - is_provable_prime_with_cert returns 2 ok 5 - certificate is non-null ok 6 - verification of certificate for 20907001 done ok 7 - prime_certificate is also non-null ok 8 - certificate is identical to first ok 9 - 809120722675364249 is prime ok 10 - is_provable_prime_with_cert returns 2 ok 11 - certificate is non-null ok 12 - verification of certificate for 809120722675364249 done ok 13 - prime_certificate is also non-null ok 14 - certificate is identical to first ok 15 - 677826928624294778921 is prime ok 16 - is_provable_prime_with_cert returns 2 ok 17 - certificate is non-null ok 18 - verification of certificate for 677826928624294778921 done ok 19 - prime_certificate is also non-null ok 20 - certificate is identical to first ok 21 - 980098182126316404630169387 is prime ok 22 - is_provable_prime_with_cert returns 2 ok 23 - certificate is non-null ok 24 - verification of certificate for 980098182126316404630169387 done ok 25 - prime_certificate is also non-null ok 26 - certificate is identical to first ok 27 - simple Lucas/Pratt proof verified ok 28 - ECPP primality proof of 1030291136596639351761062717 verified ok 29 - warning for unknown method ok 30 - ...and returns 0 ok 31 - warning for invalid Lucas/Pratt ok 32 - ...and returns 0 ok 33 - warning for invalid Lucas/Pratt ok 34 - ...and returns 0 ok 35 - warning for invalid Lucas/Pratt ok 36 - ...and returns 0 ok 37 - warning for invalid n-1 (too many arguments) ok 38 - ...and returns 0 ok 39 - warning for invalid n-1 (non-array f,a) ok 40 - ...and returns 0 ok 41 - warning for invalid n-1 (non-array a) ok 42 - ...and returns 0 ok 43 - warning for invalid n-1 (too few a values) ok 44 - ...and returns 0 ok 45 - warning for invalid ECPP (no n-certs) ok 46 - ...and returns 0 ok 47 - warning for invalid ECPP (non-array block) ok 48 - ...and returns 0 ok 49 - warning for invalid ECPP (wrong size block) ok 50 - ...and returns 0 ok 51 - warning for invalid ECPP (block n != q) ok 52 - ...and returns 0 ok 53 - warning for invalid ECPP (block point wrong format) ok 54 - ...and returns 0 ok 55 - warning for invalid ECPP (block point wrong format) ok 56 - ...and returns 0 ok 57 - verify null is composite ok 58 - verify [2] is prime ok 59 - verify [9] is composite ok 60 - verify [14] is composite ok 61 - verify BPSW with n > 2^64 fails ok 62 - verify BPSW with composite fails ok 63 - Lucas/Pratt proper ok 64 - Pratt with non-prime factors ok 65 - Pratt with non-prime factors ok 66 - Pratt with wrong factors ok 67 - Pratt with not enough factors ok 68 - Pratt with coprime a ok 69 - Pratt with non-psp a ok 70 - Pratt with a not valid for all f ok 71 - n-1 proper ok 72 - n-1 with wrong factors ok 73 - n-1 without 2 as a factor ok 74 - n-1 with a non-prime factor ok 75 - n-1 with a non-prime array factor ok 76 - n-1 without enough factors ok 77 - n-1 with bad BLS75 r/s ok 78 - n-1 with bad a value ok 79 - ECPP proper ok 80 - ECPP q is divisible by 2 ok 81 - ECPP a/b invalid ok 82 - ECPP q is too small ok 83 - ECPP multiplication wrong (infinity) ok 84 - ECPP multiplication wrong (not infinity) ok 85 - ECPP non-prime last q ok 86 - Verify Pocklington ok 87 - Verify BLS15 ok 88 - Verify ECPP3 ok t/23-random-certs.t .......... 1..6 ok 1 - Random Maurer prime returns a prime ok 2 - with a valid certificate ok 3 - Random Shawe-Taylor prime returns a prime ok 4 - with a valid certificate ok 5 - Random proven prime returns a prime ok 6 - with a valid certificate ok t/24-partitions.t ............ 1..79 ok 1 - partitions(0) ok 2 - partitions(1) ok 3 - partitions(2) ok 4 - partitions(3) ok 5 - partitions(4) ok 6 - partitions(5) ok 7 - partitions(6) ok 8 - partitions(7) ok 9 - partitions(8) ok 10 - partitions(9) ok 11 - partitions(10) ok 12 - partitions(11) ok 13 - partitions(12) ok 14 - partitions(13) ok 15 - partitions(14) ok 16 - partitions(15) ok 17 - partitions(16) ok 18 - partitions(17) ok 19 - partitions(18) ok 20 - partitions(19) ok 21 - partitions(20) ok 22 - partitions(21) ok 23 - partitions(22) ok 24 - partitions(23) ok 25 - partitions(24) ok 26 - partitions(25) ok 27 - partitions(26) ok 28 - partitions(27) ok 29 - partitions(28) ok 30 - partitions(29) ok 31 - partitions(30) ok 32 - partitions(31) ok 33 - partitions(32) ok 34 - partitions(33) ok 35 - partitions(34) ok 36 - partitions(35) ok 37 - partitions(36) ok 38 - partitions(37) ok 39 - partitions(38) ok 40 - partitions(39) ok 41 - partitions(40) ok 42 - partitions(41) ok 43 - partitions(42) ok 44 - partitions(43) ok 45 - partitions(44) ok 46 - partitions(45) ok 47 - partitions(46) ok 48 - partitions(47) ok 49 - partitions(48) ok 50 - partitions(49) ok 51 - partitions(50) ok 52 - partitions(256) ok 53 - partitions(101) ok 54 - forpart 0 ok 55 - forpart 1 ok 56 - forpart 2 ok 57 - forpart 3 ok 58 - forpart 4 ok 59 - forpart 6 ok 60 - forpart 17 restricted n=[2,2] ok 61 - forpart 27 restricted nmax 5 ok 62 - forpart 27 restricted nmin 20 ok 63 - forpart 19 restricted n=[10..13] ok 64 - forpart 20 restricted amax 4 ok 65 - forpart 15 restricted amin 4 ok 66 - forpart 21 restricted a=[3..6] ok 67 - forpart 22 restricted n=4 and a=[3..6] ok 68 - forpart 20 restricted to odd primes ok 69 - forpart 21 restricted amax 0 ok 70 - A007963(89) = number of odd-prime 3-tuples summing to 2*89+1 = 86 ok 71 - 23 partitioned into 4 with mininum 2 => 54 ok 72 - 23 partitioned into 4 with mininum 2 and prime => 5 ok 73 - 23 partitioned into 4 with mininum 2 and composite => 1 ok 74 - forcomp 0 ok 75 - forcomp 1 ok 76 - forcomp 2 ok 77 - forcomp 3 ok 78 - forcomp 5 restricted n=3 ok 79 - forcomp 12 restricted n=3,a=[3..5] ok t/25-lucas_sequences.t ....... 1..52 ok 1 - lucas_sequence U_n(1 -1) -- Fibonacci numbers ok 2 - lucas_sequence V_n(1 -1) -- Lucas numbers ok 3 - lucas_sequence U_n(2 -1) -- Pell numbers ok 4 - lucas_sequence V_n(2 -1) -- Pell-Lucas numbers ok 5 - lucas_sequence U_n(1 -2) -- Jacobsthal numbers ok 6 - lucas_sequence V_n(1 -2) -- Jacobsthal-Lucas numbers ok 7 - lucas_sequence U_n(2 2) -- sin(x)*exp(x) ok 8 - lucas_sequence V_n(2 2) -- offset sin(x)*exp(x) ok 9 - lucas_sequence U_n(2 5) -- A045873 ok 10 - lucas_sequence U_n(3 -5) -- 3*a(n-1)+5*a(n-2) [0,1] ok 11 - lucas_sequence V_n(3 -5) -- 3*a(n-1)+5*a(n-2) [2,3] ok 12 - lucas_sequence U_n(3 -4) -- 3*a(n-1)+4*a(n-2) [0,1] ok 13 - lucas_sequence V_n(3 -4) -- 3*a(n-1)+4*a(n-2) [2,3] ok 14 - lucas_sequence U_n(3 -1) -- A006190 ok 15 - lucas_sequence V_n(3 -1) -- A006497 ok 16 - lucas_sequence U_n(3 1) -- Fibonacci(2n) ok 17 - lucas_sequence V_n(3 1) -- Lucas(2n) ok 18 - lucas_sequence U_n(3 2) -- 2^n-1 Mersenne numbers (prime and composite) ok 19 - lucas_sequence V_n(3 2) -- 2^n+1 ok 20 - lucas_sequence U_n(4 -1) -- Denominators of continued fraction convergents to sqrt(5) ok 21 - lucas_sequence V_n(4 -1) -- Even Lucas numbers Lucas(3n) ok 22 - lucas_sequence U_n(4 1) -- A001353 ok 23 - lucas_sequence V_n(4 1) -- A003500 ok 24 - lucas_sequence U_n(5 4) -- (4^n-1)/3 ok 25 - lucas_sequence U_n(4 4) -- n*2^(n-1) ok 26 - lucasu(1 -1) -- Fibonacci numbers ok 27 - lucasv(1 -1) -- Lucas numbers ok 28 - lucasu(2 -1) -- Pell numbers ok 29 - lucasv(2 -1) -- Pell-Lucas numbers ok 30 - lucasu(1 -2) -- Jacobsthal numbers ok 31 - lucasv(1 -2) -- Jacobsthal-Lucas numbers ok 32 - lucasu(2 2) -- sin(x)*exp(x) ok 33 - lucasv(2 2) -- offset sin(x)*exp(x) ok 34 - lucasu(2 5) -- A045873 ok 35 - lucasu(3 -5) -- 3*a(n-1)+5*a(n-2) [0,1] ok 36 - lucasv(3 -5) -- 3*a(n-1)+5*a(n-2) [2,3] ok 37 - lucasu(3 -4) -- 3*a(n-1)+4*a(n-2) [0,1] ok 38 - lucasv(3 -4) -- 3*a(n-1)+4*a(n-2) [2,3] ok 39 - lucasu(3 -1) -- A006190 ok 40 - lucasv(3 -1) -- A006497 ok 41 - lucasu(3 1) -- Fibonacci(2n) ok 42 - lucasv(3 1) -- Lucas(2n) ok 43 - lucasu(3 2) -- 2^n-1 Mersenne numbers (prime and composite) ok 44 - lucasv(3 2) -- 2^n+1 ok 45 - lucasu(4 -1) -- Denominators of continued fraction convergents to sqrt(5) ok 46 - lucasv(4 -1) -- Even Lucas numbers Lucas(3n) ok 47 - lucasu(4 1) -- A001353 ok 48 - lucasv(4 1) -- A003500 ok 49 - lucasu(5 4) -- (4^n-1)/3 ok 50 - lucasu(4 4) -- n*2^(n-1) ok 51 - OEIS 81264: Odd Fibonacci pseudoprimes ok 52 - First entry of OEIS A141137: Even Fibonacci pseudoprimes ok t/26-combinatorial.t ......... 1..72 ok 1 - Factorials 0 to 100 ok 2 - factorialmod n! mod m for m 1 to 50, n 0 to m ok 3 - binomial(0,0)) = 1 ok 4 - binomial(0,1)) = 0 ok 5 - binomial(1,0)) = 1 ok 6 - binomial(1,1)) = 1 ok 7 - binomial(1,2)) = 0 ok 8 - binomial(13,13)) = 1 ok 9 - binomial(13,14)) = 0 ok 10 - binomial(35,16)) = 4059928950 ok 11 - binomial(40,19)) = 131282408400 ok 12 - binomial(67,31)) = 11923179284862717872 ok 13 - binomial(228,12)) = 30689926618143230620 ok 14 - binomial(177,78)) = 3314450882216440395106465322941753788648564665022000 ok 15 - binomial(-10,5)) = -2002 ok 16 - binomial(-11,22)) = 64512240 ok 17 - binomial(-12,23)) = -286097760 ok 18 - binomial(-23,-26)) = -2300 ok 19 - binomial(-12,-23)) = -705432 ok 20 - binomial(12,-23)) = 0 ok 21 - binomial(12,-12)) = 0 ok 22 - binomial(-12,0)) = 1 ok 23 - binomial(0,-1)) = 0 ok 24 - binomial(10,n) for n in -15 .. 15 ok 25 - binomial(-10,n) for n in -15 .. 15 ok 26 - forcomb 0 ok 27 - forcomb 1 ok 28 - forcomb 0,0 ok 29 - forcomb 5,0 ok 30 - forcomb 5,6 ok 31 - forcomb 5,5 ok 32 - forcomb 3 (power set) ok 33 - forcomb 3,2 ok 34 - forcomb 4,3 ok 35 - binomial(20,15) is 15504 ok 36 - forcomb 20,15 yields binomial(20,15) combinations ok 37 - forperm 0 ok 38 - forperm 4 ok 39 - forperm 1 ok 40 - forperm 3 ok 41 - forperm 2 ok 42 - forperm 7 yields factorial(7) permutations ok 43 - formultiperm [] ok 44 - formultiperm 1,2,2 ok 45 - formultiperm a,a,b,b ok 46 - formultiperm aabb ok 47 - forderange 0 ok 48 - forderange 1 ok 49 - forderange 2 ok 50 - forderange 3 ok 51 - forderange 7 count ok 52 - numtoperm(0,0) ok 53 - numtoperm(1,0) ok 54 - numtoperm(1,1) ok 55 - numtoperm(5,15) ok 56 - numtoperm(24,987654321) ok 57 - permtonum([]) ok 58 - permtonum([0]) ok 59 - permtonum([6,3,4,2,5,0,1]) ok 60 - permtonum( 20 ) ok 61 - permtonum( 26 ) ok 62 - permtonum(numtoperm) ok 63 - randperm(0) ok 64 - randperm(1) ok 65 - randperm(100,4) ok 66 - randperm shuffle has shuffled input ok 67 - randperm shuffle contains original data ok 68 - shuffle with no args ok 69 - shuffle with one arg ok 70 - argument count is the same for 100 elem shuffle ok 71 - shuffle has shuffled input ok 72 - shuffle contains original data ok t/26-digits.t ................ 1..39 ok 1 - fromdigits binary with leading 0 ok 2 - fromdigits binary ok 3 - fromdigits decimal ok 4 - fromdigits base 3 ok 5 - fromdigits base 16 ok 6 - fromdigits base 16 with overflow ok 7 - fromdigits base 5 with carry ok 8 - fromdigits base 3 with carry ok 9 - fromdigits base 2 with carry ok 10 - fromdigits hex string ok 11 - fromdigits decimal ok 12 - fromdigits with Large base 36 number ok 13 - todigits 0 ok 14 - todigits 1 ok 15 - todigits 77 ok 16 - todigits 77 base 2 ok 17 - todigits 77 base 3 ok 18 - todigits 77 base 21 ok 19 - todigits 900 base 2 ok 20 - todigits 900 base 2 len 0 ok 21 - todigits 900 base 2 len 3 ok 22 - todigits 900 base 2 len 32 ok 23 - vecsum of todigits of bigint ok 24 - sumdigits(-45.36) ok 25 - sumdigits 0 to 1000 ok 26 - sumdigits hex ok 27 - sumdigits bigint ok 28 - todigits 1234135634 base 16 ok 29 - todigits 56 base 2 len 8 ok 30 - fromdigits of previous ok 31 - 56 as binary string ok 32 - fromdigits of previous ok 33 - todigitstring 37 ok 34 - fromdigits 5128 base 10 ok 35 - fromdigits 91 base 2 ok 36 - fromdigits 1923 base 10 ok 37 - fromdigits 91 base 2 ok 38 - fromdigits with carry ok 39 - only last 4 digits ok t/26-iscarmichael.t .......... 1..7 ok 1 - Carmichael numbers to 20000 ok 2 - Large Carmichael ok 3 # skip Skipping larger Carmichael ok 4 - Quasi-Carmichael numbers to 400 ok 5 - 95 Quasi-Carmichael numbers under 5000 ok 6 - 5092583 is a Quasi-Carmichael number with 1 base ok 7 - 777923 is a Quasi-Carmichael number with 7 bases ok t/26-isfundamental.t ......... 1..4 ok 1 - is_fundamental(-50 .. 0) ok 2 - is_fundamental(0 .. 50) ok 3 - is_fundamental(2^67+9) ok 4 - is_fundamental(-2^67+44) ok t/26-ispower.t ............... 1..57 ok 1 - is_power 0 .. 32 ok 2 - is_prime_power 0 .. 32 ok 3 - is_power 200 small ints ok 4 - is_prime_power 200 small ints ok 5 - ispower => 10000000000000000000 = 10^19 (10 19) ok 6 - ispower => 4611686018427387904 = 2^62 (2 62) ok 7 - ispower => 100000000000000000 = 10^17 (10 17) ok 8 - ispower => 9223372036854775808 = 2^63 (2 63) ok 9 - ispower => 609359740010496 = 6^19 (6 19) ok 10 - ispower => 12157665459056928801 = 3^40 (3 40) ok 11 - ispower => 789730223053602816 = 6^23 (6 23) ok 12 - ispower => 16926659444736 = 6^17 (6 17) ok 13 - ispower => 4738381338321616896 = 6^24 (6 24) ok 14 - isprimepower => 11398895185373143 = 7^19 (7 19) ok 15 - isprimepower => 12157665459056928801 = 3^40 (3 40) ok 16 - isprimepower => 11920928955078125 = 5^23 (5 23) ok 17 - isprimepower => 2862423051509815793 = 17^15 (17 15) ok 18 - isprimepower => 15181127029874798299 = 19^15 (19 15) ok 19 - isprimepower => 450283905890997363 = 3^37 (3 37) ok 20 - isprimepower => 5559917313492231481 = 11^18 (11 18) ok 21 - isprimepower => 617673396283947 = 3^31 (3 31) ok 22 - isprimepower => 762939453125 = 5^17 (5 17) ok 23 - isprimepower => 7450580596923828125 = 5^27 (5 27) ok 24 - isprimepower => 8650415919381337933 = 13^17 (13 17) ok 25 - isprimepower => 3909821048582988049 = 7^22 (7 22) ok 26 - isprimepower => 68630377364883 = 3^29 (3 29) ok 27 - isprimepower => 232630513987207 = 7^17 (7 17) ok 28 - -8 is a third power ok 29 - -8 is a third power of -2 ok 30 - -8 is not a fourth power ok 31 - -16 is not a fourth power ok 32 - is_power returns 4 for ok 33 - is_power returns 9 for ok 34 - is_power returns 3 for ok 35 - is_power returns 0 for ok 36 - is_power returns 2 for ok 37 - is_power(-7^0 ) = 0 ok 38 - is_power(-7^1 ) = 0 ok 39 - is_power(-7^2 ) = 0 ok 40 - is_power(-7^3 ) = 3 ok 41 - is_power(-7^4 ) = 0 ok 42 - is_power(-7^5 ) = 5 ok 43 - is_power(-7^6 ) = 3 ok 44 - is_power(-7^7 ) = 7 ok 45 - is_power(-7^8 ) = 0 ok 46 - is_power(-7^9 ) = 9 ok 47 - is_power(-7^10 ) = 5 ok 48 - -1 is a 5th power ok 49 - 24 isn't a perfect square... ok 50 - ...and the root wasn't set ok 51 - 1000031^3 is a perfect cube... ok 52 - ...and the root was set ok 53 - 36^5 is a 10th power... ok 54 - ...and the root is 6 ok 55 - is_square for -4 .. 16 ok 56 - 603729 is a square ok 57 - is_square() = 1 ok t/26-issemiprime.t ........... 1..6 ok 1 - Semiprimes that were incorrectly calculated in v0.70 ok 2 - Identify semiprimes from 10000 to 10100 ok 3 - is_semiprime(669386384129397581) ok 4 - is_semiprime(10631816576169524657) ok 5 - is_semiprime(1814186289136250293214268090047441303) ok 6 - is_semiprime(42535430147496493121551759) ok t/26-issquarefree.t .......... 1..56 ok 1 - is_square_free(4) ok 2 - is_square_free(-4) ok 3 - is_square_free(870589313) ok 4 - is_square_free(-870589313) ok 5 - is_square_free(2) ok 6 - is_square_free(-2) ok 7 - is_square_free(752518565) ok 8 - is_square_free(-752518565) ok 9 - is_square_free(602721315) ok 10 - is_square_free(-602721315) ok 11 - is_square_free(723570005) ok 12 - is_square_free(-723570005) ok 13 - is_square_free(16) ok 14 - is_square_free(-16) ok 15 - is_square_free(7) ok 16 - is_square_free(-7) ok 17 - is_square_free(10) ok 18 - is_square_free(-10) ok 19 - is_square_free(5) ok 20 - is_square_free(-5) ok 21 - is_square_free(6) ok 22 - is_square_free(-6) ok 23 - is_square_free(8) ok 24 - is_square_free(-8) ok 25 - is_square_free(14) ok 26 - is_square_free(-14) ok 27 - is_square_free(758096738) ok 28 - is_square_free(-758096738) ok 29 - is_square_free(9) ok 30 - is_square_free(-9) ok 31 - is_square_free(3) ok 32 - is_square_free(-3) ok 33 - is_square_free(434420340) ok 34 - is_square_free(-434420340) ok 35 - is_square_free(13) ok 36 - is_square_free(-13) ok 37 - is_square_free(11) ok 38 - is_square_free(-11) ok 39 - is_square_free(15) ok 40 - is_square_free(-15) ok 41 - is_square_free(506916483) ok 42 - is_square_free(-506916483) ok 43 - is_square_free(617459403) ok 44 - is_square_free(-617459403) ok 45 - is_square_free(1) ok 46 - is_square_free(-1) ok 47 - is_square_free(0) ok 48 - is_square_free(-0) ok 49 - is_square_free(12) ok 50 - is_square_free(-12) ok 51 - is_square_free(418431087) ok 52 - is_square_free(-418431087) ok 53 - is_square_free(695486396) ok 54 - is_square_free(-695486396) ok 55 - 815373060690029363516051578884163974 is square free ok 56 - 638277566021123181834824715385258732627350 is not square free ok t/26-istotient.t ............. 1..8 ok 1 - is_totient 0 .. 40 ok 2 - is_fundamental(2^29_1 .. 2^29+80) ok 3 - is_totient(2^63+28) ok 4 - is_totient(2^63+20) ok 5 - is_totient(2^63+24) ok 6 - is_totient(2^83+88) ok 7 # skip Skipping is_totient for 2^83 + ... ok 8 # skip Skipping is_totient for 2^83 + ... ok t/26-mod.t ................... 1..45 ok 1 - invmod(undef,11) ok 2 - invmod(11,undef) ok 3 - invmod('nan',11) ok 4 - invmod(0,0) = ok 5 - invmod(1,0) = ok 6 - invmod(0,1) = ok 7 - invmod(1,1) = 0 ok 8 - invmod(45,59) = 21 ok 9 - invmod(42,2017) = 1969 ok 10 - invmod(42,-2017) = 1969 ok 11 - invmod(-42,2017) = 48 ok 12 - invmod(-42,-2017) = 48 ok 13 - invmod(14,28474) = ok 14 - invmod(13,9223372036854775808) = 5675921253449092805 ok 15 - invmod(14,18446744073709551615) = 17129119497016012214 ok 16 - sqrtmod(0,0) = ok 17 - sqrtmod(1,0) = ok 18 - sqrtmod(0,1) = 0 ok 19 - sqrtmod(1,1) = 0 ok 20 - sqrtmod(58,101) = 19 ok 21 - sqrtmod(111,113) = 26 ok 22 - sqrtmod(37,999221) = 9946 ok 23 - sqrtmod(30,1000969) = 89676 ok 24 - sqrtmod(9223372036854775808,5675921253449092823) = 22172359690642254 ok 25 - sqrtmod(18446744073709551625,340282366920938463463374607431768211507) = 57825146747270203522128844001742059051 ok 26 - sqrtmod(30,74) = 20 ok 27 - sqrtmod(56,1018) = 458 ok 28 - sqrtmod(42,979986) = 356034 ok 29 - addmod(..,0) ok 30 - mulmod(..,0) ok 31 - divmod(..,0) ok 32 - powmod(..,0) ok 33 - addmod(..,1) ok 34 - mulmod(..,1) ok 35 - divmod(..,1) ok 36 - powmod(..,1) ok 37 - addmod on 30 random inputs ok 38 - addmod with negative second input on 30 random inputs ok 39 - mulmod on 30 random inputs ok 40 - mulmod with negative second input on 30 random inputs ok 41 - divmod(0,14,53) = mulmod(0,invmod(14,53),53) = mulmod(0,19,53) = 0 ok 42 - divmod on 30 random inputs ok 43 - divmod with negative second input on 30 random inputs ok 44 - powmod on 30 random inputs ok 45 - powmod with negative exponent on 30 random inputs ok t/26-pillai.t ................ 1..2 ok 1 - 1059511 is a Pillai prime ok 2 - is_pillai from -10 to 1000 ok t/26-polygonal.t ............. 1..48 ok 1 - is_polygonal finds first 10 3-gonal numbers ok 2 - is_polygonal finds first 10 4-gonal numbers ok 3 - is_polygonal finds first 10 5-gonal numbers ok 4 - is_polygonal finds first 10 6-gonal numbers ok 5 - is_polygonal finds first 10 7-gonal numbers ok 6 - is_polygonal finds first 10 8-gonal numbers ok 7 - is_polygonal finds first 10 9-gonal numbers ok 8 - is_polygonal finds first 10 10-gonal numbers ok 9 - is_polygonal finds first 10 11-gonal numbers ok 10 - is_polygonal finds first 10 12-gonal numbers ok 11 - is_polygonal finds first 10 13-gonal numbers ok 12 - is_polygonal finds first 10 14-gonal numbers ok 13 - is_polygonal finds first 10 15-gonal numbers ok 14 - is_polygonal finds first 10 16-gonal numbers ok 15 - is_polygonal finds first 10 17-gonal numbers ok 16 - is_polygonal finds first 10 18-gonal numbers ok 17 - is_polygonal finds first 10 19-gonal numbers ok 18 - is_polygonal finds first 10 20-gonal numbers ok 19 - is_polygonal finds first 10 21-gonal numbers ok 20 - is_polygonal finds first 10 22-gonal numbers ok 21 - is_polygonal finds first 10 23-gonal numbers ok 22 - is_polygonal finds first 10 24-gonal numbers ok 23 - is_polygonal finds first 10 25-gonal numbers ok 24 - is_polygonal correct 3-gonal n ok 25 - is_polygonal correct 4-gonal n ok 26 - is_polygonal correct 5-gonal n ok 27 - is_polygonal correct 6-gonal n ok 28 - is_polygonal correct 7-gonal n ok 29 - is_polygonal correct 8-gonal n ok 30 - is_polygonal correct 9-gonal n ok 31 - is_polygonal correct 10-gonal n ok 32 - is_polygonal correct 11-gonal n ok 33 - is_polygonal correct 12-gonal n ok 34 - is_polygonal correct 13-gonal n ok 35 - is_polygonal correct 14-gonal n ok 36 - is_polygonal correct 15-gonal n ok 37 - is_polygonal correct 16-gonal n ok 38 - is_polygonal correct 17-gonal n ok 39 - is_polygonal correct 18-gonal n ok 40 - is_polygonal correct 19-gonal n ok 41 - is_polygonal correct 20-gonal n ok 42 - is_polygonal correct 21-gonal n ok 43 - is_polygonal correct 22-gonal n ok 44 - is_polygonal correct 23-gonal n ok 45 - is_polygonal correct 24-gonal n ok 46 - is_polygonal correct 25-gonal n ok 47 - 724424175519274711242 is not a triangular number ok 48 - 510622052816898545467859772308206986101878 is a triangular number ok t/26-vec.t ................... 1..76 ok 1 - vecmin() = undef ok 2 - vecmin(1) = 1 ok 3 - vecmin(0) = 0 ok 4 - vecmin(-1) = -1 ok 5 - vecmin(1 2) = 1 ok 6 - vecmin(2 1) = 1 ok 7 - vecmin(2 1) = 1 ok 8 - vecmin(0 4 -5 6 -6 0) = -6 ok 9 - vecmin(0 4 -5 7 -6 0) = -6 ok 10 - vecmin(81033966278481626507 27944220269257565027) = 27944220269257565027 ok 11 - vecmin(18446744073704516093 18446744073706008451 18446744073706436837 18446744073707776433 18446744073702959347 18446744073702958477) = 18446744073702958477 ok 12 - vecmin(-9223372036852260673 -9223372036852260731 -9223372036850511139 -9223372036850207017 -9223372036852254557 -9223372036849473359) = -9223372036852260731 ok 13 - vecmin(9223372036852278343 -9223372036853497487 -9223372036844936897 -9223372036850971897 -9223372036853497843 9223372036848046999) = -9223372036853497843 ok 14 - vecmax() = undef ok 15 - vecmax(1) = 1 ok 16 - vecmax(0) = 0 ok 17 - vecmax(-1) = -1 ok 18 - vecmax(1 2) = 2 ok 19 - vecmax(2 1) = 2 ok 20 - vecmax(2 1) = 2 ok 21 - vecmax(0 4 -5 6 -6 0) = 6 ok 22 - vecmax(0 4 -5 7 -8 0) = 7 ok 23 - vecmax(27944220269257565027 81033966278481626507) = 81033966278481626507 ok 24 - vecmax(18446744070011576186 18446744070972009258 18446744071127815503 18446744072030630259 18446744072030628952 18446744071413452589) = 18446744072030630259 ok 25 - vecmax(18446744073702156661 18446744073707508539 18446744073700111529 18446744073707506771 18446744073707086091 18446744073704381821) = 18446744073707508539 ok 26 - vecmax(-9223372036853227739 -9223372036847631197 -9223372036851632173 -9223372036847631511 -9223372036852712261 -9223372036851707899) = -9223372036847631197 ok 27 - vecmax(-9223372036846673813 9223372036846154833 -9223372036851103423 9223372036846154461 -9223372036849190963 -9223372036847538803) = 9223372036846154833 ok 28 - vecsum() = 0 ok 29 - vecsum(-1) = -1 ok 30 - vecsum(1 -1) = 0 ok 31 - vecsum(-1 1) = 0 ok 32 - vecsum(-1 1) = 0 ok 33 - vecsum(-2147483648 2147483648) = 0 ok 34 - vecsum(-4294967296 4294967296) = 0 ok 35 - vecsum(-9223372036854775808 9223372036854775808) = 0 ok 36 - vecsum(18446744073709551615 -18446744073709551615 18446744073709551615) = 18446744073709551615 ok 37 - vecsum(18446744073709551616 18446744073709551616 18446744073709551616) = 55340232221128654848 ok 38 - vecsum(18446744073709540400 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000) = 18446744073709620400 ok 39 - vecprod() = 1 ok 40 - vecprod(1) = 1 ok 41 - vecprod(-1) = -1 ok 42 - vecprod(-1 -2) = 2 ok 43 - vecprod(-1 -2) = 2 ok 44 - vecprod(32767 -65535) = -2147385345 ok 45 - vecprod(32767 -65535) = -2147385345 ok 46 - vecprod(32768 -65535) = -2147450880 ok 47 - vecprod(32768 -65536) = -2147483648 ok 48 - vecprod matches factorial for 0 .. 50 ok 49 - vecreduce with empty list is undef ok 50 - vecreduce with (a) is a and does not call the sub ok 51 - vecreduce [xor] (4,2) => 6 ok 52 - vecreduce product of squares ok 53 - vecextract bits ok 54 - vecextract list ok 55 - any true ok 56 - any false ok 57 - any empty list ok 58 - all true ok 59 - all false ok 60 - all empty list ok 61 - notall true ok 62 - notall false ok 63 - notall empty list ok 64 - none true ok 65 - none false ok 66 - none empty list ok 67 - first success ok 68 - first failure ok 69 - first empty list ok 70 - first with reference args ok 71 - first returns in loop ok 72 - first idx success ok 73 - first idx failure ok 74 - first idx empty list ok 75 - first idx with reference args ok 76 - first idx returns in loop ok t/27-bernfrac.t .............. 1..91 ok 1 - B_2n numerators 0 .. 20 ok 2 - B_2n denominators 0 .. 20 ok 3 - bernreal(0) ok 4 - bernreal(1) ok 5 - bernreal(2) ok 6 - bernreal(3) ok 7 - bernreal(4) ok 8 - bernreal(5) ok 9 - bernreal(6) ok 10 - bernreal(7) ok 11 - bernreal(8) ok 12 - bernreal(9) ok 13 - bernreal(10) ok 14 - bernreal(11) ok 15 - bernreal(12) ok 16 - bernreal(13) ok 17 - bernreal(14) ok 18 - bernreal(15) ok 19 - bernreal(16) ok 20 - bernreal(17) ok 21 - bernreal(18) ok 22 - bernreal(19) ok 23 - bernreal(20) ok 24 - bernreal(21) ok 25 - bernreal(22) ok 26 - bernreal(23) ok 27 - bernreal(24) ok 28 - H_n numerators 0 .. 20 ok 29 - H_n denominators 0 .. 20 ok 30 - harmreal(0) ok 31 - harmreal(1) ok 32 - harmreal(2) ok 33 - harmreal(3) ok 34 - harmreal(4) ok 35 - harmreal(5) ok 36 - harmreal(6) ok 37 - harmreal(7) ok 38 - harmreal(8) ok 39 - harmreal(9) ok 40 - harmreal(10) ok 41 - harmreal(11) ok 42 - harmreal(12) ok 43 - harmreal(13) ok 44 - harmreal(14) ok 45 - harmreal(15) ok 46 - harmreal(16) ok 47 - harmreal(17) ok 48 - harmreal(18) ok 49 - harmreal(19) ok 50 - harmreal(20) ok 51 - Expected fail: stirling with negative args ok 52 - Expected fail: stirling type 4 ok 53 - Stirling 3: L(0,0..1) ok 54 - Stirling 3: L(1,0..2) ok 55 - Stirling 3: L(2,0..3) ok 56 - Stirling 3: L(3,0..4) ok 57 - Stirling 3: L(4,0..5) ok 58 - Stirling 3: L(5,0..6) ok 59 - Stirling 3: L(6,0..7) ok 60 - Stirling 3: L(7,0..8) ok 61 - Stirling 3: L(8,0..9) ok 62 - Stirling 3: L(9,0..10) ok 63 - Stirling 3: L(10,0..11) ok 64 - Stirling 3: L(11,0..12) ok 65 - Stirling 3: L(12,0..13) ok 66 - Stirling 2: S(0,0..1) ok 67 - Stirling 2: S(1,0..2) ok 68 - Stirling 2: S(2,0..3) ok 69 - Stirling 2: S(3,0..4) ok 70 - Stirling 2: S(4,0..5) ok 71 - Stirling 2: S(5,0..6) ok 72 - Stirling 2: S(6,0..7) ok 73 - Stirling 2: S(7,0..8) ok 74 - Stirling 2: S(8,0..9) ok 75 - Stirling 2: S(9,0..10) ok 76 - Stirling 2: S(10,0..11) ok 77 - Stirling 2: S(11,0..12) ok 78 - Stirling 2: S(12,0..13) ok 79 - Stirling 1: s(0,0..1) ok 80 - Stirling 1: s(1,0..2) ok 81 - Stirling 1: s(2,0..3) ok 82 - Stirling 1: s(3,0..4) ok 83 - Stirling 1: s(4,0..5) ok 84 - Stirling 1: s(5,0..6) ok 85 - Stirling 1: s(6,0..7) ok 86 - Stirling 1: s(7,0..8) ok 87 - Stirling 1: s(8,0..9) ok 88 - Stirling 1: s(9,0..10) ok 89 - Stirling 1: s(10,0..11) ok 90 - Stirling 1: s(11,0..12) ok 91 - Stirling 1: s(12,0..13) ok t/28-pi.t .................... 1..15 ok 1 - Pi(0) gives floating point pi ok 2 - Pi(1) = 3 ok 3 - Pi(2 .. 50) ok 4 - Pi(760) ok 5 - Pi(761) ok 6 - Pi(762) ok 7 - Pi(763) ok 8 - Pi(764) ok 9 - Pi(765) ok 10 - Pi(766) ok 11 - Pi(767) ok 12 - Pi(768) ok 13 - Pi(769) ok 14 - Pi(770) ok 15 - XS _pidigits ok t/29-mersenne.t .............. 1..1 ok 1 - Find Mersenne primes from 0 to 127 ok t/30-relations.t ............. 1..85 ok 1 - Prime count and scalar primes agree for 1 ok 2 - scalar primes(0+1,1) = prime_count(1) - prime_count(0) ok 3 - Pi(pn)) = n for 1 ok 4 - p(Pi(n)+1) = next_prime(n) for 1 ok 5 - p(Pi(n)) = prev_prime(n) for 1 ok 6 - Prime count and scalar primes agree for 2 ok 7 - scalar primes(1+1,2) = prime_count(2) - prime_count(1) ok 8 - Pi(pn)) = n for 2 ok 9 - p(Pi(n)+1) = next_prime(n) for 2 ok 10 - p(Pi(n)) = prev_prime(n) for 2 ok 11 - Prime count and scalar primes agree for 3 ok 12 - scalar primes(2+1,3) = prime_count(3) - prime_count(2) ok 13 - Pi(pn)) = n for 3 ok 14 - p(Pi(n)+1) = next_prime(n) for 3 ok 15 - p(Pi(n)) = prev_prime(n) for 3 ok 16 - Prime count and scalar primes agree for 4 ok 17 - scalar primes(3+1,4) = prime_count(4) - prime_count(3) ok 18 - Pi(pn)) = n for 4 ok 19 - p(Pi(n)+1) = next_prime(n) for 4 ok 20 - p(Pi(n)) = prev_prime(n) for 4 ok 21 - Prime count and scalar primes agree for 5 ok 22 - scalar primes(4+1,5) = prime_count(5) - prime_count(4) ok 23 - Pi(pn)) = n for 5 ok 24 - p(Pi(n)+1) = next_prime(n) for 5 ok 25 - p(Pi(n)) = prev_prime(n) for 5 ok 26 - Prime count and scalar primes agree for 6 ok 27 - scalar primes(5+1,6) = prime_count(6) - prime_count(5) ok 28 - Pi(pn)) = n for 6 ok 29 - p(Pi(n)+1) = next_prime(n) for 6 ok 30 - p(Pi(n)) = prev_prime(n) for 6 ok 31 - Prime count and scalar primes agree for 7 ok 32 - scalar primes(6+1,7) = prime_count(7) - prime_count(6) ok 33 - Pi(pn)) = n for 7 ok 34 - p(Pi(n)+1) = next_prime(n) for 7 ok 35 - p(Pi(n)) = prev_prime(n) for 7 ok 36 - Prime count and scalar primes agree for 17 ok 37 - scalar primes(7+1,17) = prime_count(17) - prime_count(7) ok 38 - Pi(pn)) = n for 17 ok 39 - p(Pi(n)+1) = next_prime(n) for 17 ok 40 - p(Pi(n)) = prev_prime(n) for 17 ok 41 - Prime count and scalar primes agree for 57 ok 42 - scalar primes(17+1,57) = prime_count(57) - prime_count(17) ok 43 - Pi(pn)) = n for 57 ok 44 - p(Pi(n)+1) = next_prime(n) for 57 ok 45 - p(Pi(n)) = prev_prime(n) for 57 ok 46 - Prime count and scalar primes agree for 89 ok 47 - scalar primes(57+1,89) = prime_count(89) - prime_count(57) ok 48 - Pi(pn)) = n for 89 ok 49 - p(Pi(n)+1) = next_prime(n) for 89 ok 50 - p(Pi(n)) = prev_prime(n) for 89 ok 51 - Prime count and scalar primes agree for 102 ok 52 - scalar primes(89+1,102) = prime_count(102) - prime_count(89) ok 53 - Pi(pn)) = n for 102 ok 54 - p(Pi(n)+1) = next_prime(n) for 102 ok 55 - p(Pi(n)) = prev_prime(n) for 102 ok 56 - Prime count and scalar primes agree for 1337 ok 57 - scalar primes(102+1,1337) = prime_count(1337) - prime_count(102) ok 58 - Pi(pn)) = n for 1337 ok 59 - p(Pi(n)+1) = next_prime(n) for 1337 ok 60 - p(Pi(n)) = prev_prime(n) for 1337 ok 61 - Prime count and scalar primes agree for 8573 ok 62 - scalar primes(1337+1,8573) = prime_count(8573) - prime_count(1337) ok 63 - Pi(pn)) = n for 8573 ok 64 - p(Pi(n)+1) = next_prime(n) for 8573 ok 65 - p(Pi(n)) = prev_prime(n) for 8573 ok 66 - Prime count and scalar primes agree for 84763 ok 67 - scalar primes(8573+1,84763) = prime_count(84763) - prime_count(8573) ok 68 - Pi(pn)) = n for 84763 ok 69 - p(Pi(n)+1) = next_prime(n) for 84763 ok 70 - p(Pi(n)) = prev_prime(n) for 84763 ok 71 - Prime count and scalar primes agree for 784357 ok 72 - scalar primes(84763+1,784357) = prime_count(784357) - prime_count(84763) ok 73 - Pi(pn)) = n for 784357 ok 74 - p(Pi(n)+1) = next_prime(n) for 784357 ok 75 - p(Pi(n)) = prev_prime(n) for 784357 ok 76 - Prime count and scalar primes agree for 1000001 ok 77 - scalar primes(784357+1,1000001) = prime_count(1000001) - prime_count(784357) ok 78 - Pi(pn)) = n for 1000001 ok 79 - p(Pi(n)+1) = next_prime(n) for 1000001 ok 80 - p(Pi(n)) = prev_prime(n) for 1000001 ok 81 - Prime count and scalar primes agree for 2573622 ok 82 - scalar primes(1000001+1,2573622) = prime_count(2573622) - prime_count(1000001) ok 83 - Pi(pn)) = n for 2573622 ok 84 - p(Pi(n)+1) = next_prime(n) for 2573622 ok 85 - p(Pi(n)) = prev_prime(n) for 2573622 ok t/31-threading.t ............. skipped: only in release or extended testing t/32-iterators.t ............. 1..110 ok 1 - forprimes undef ok 2 - forprimes 2,undef ok 3 - forprimes 2,undef ok 4 - forprimes -2,3 ok 5 - forprimes 2,-3 ok 6 - forprimes abc ok 7 - forprimes 2, abc ok 8 - forprimes abc ok 9 - forprimes 1 ok 10 - forprimes 3 ok 11 - forprimes 3 ok 12 - forprimes 4 ok 13 - forprimes 5 ok 14 - forprimes 3,5 ok 15 - forprimes 3,6 ok 16 - forprimes 3,7 ok 17 - forprimes 5,7 ok 18 - forprimes 6,7 ok 19 - forprimes 5,11 ok 20 - forprimes 7,11 ok 21 - forprimes 50 ok 22 - forprimes 2,20 ok 23 - forprimes 20,30 ok 24 - forprimes 199,223 ok 25 - forprimes 31398,31468 (empty region) ok 26 - forprimes 2147483647,2147483659 ok 27 - forprimes 3842610774,3842611326 ok 28 - forcomposites 2147483647,2147483659 ok 29 - forcomposites 50 ok 30 - forcomposites 200,410 ok 31 - fordivisors: d|54321: a+=d+d^2 ok 32 - A027750 using fordivisors ok 33 - iterator -2 ok 34 - iterator abc ok 35 - iterator 4.5 ok 36 - iterator first 10 primes ok 37 - iterator 5 primes starting at 47 ok 38 - iterator 3 primes starting at 199 ok 39 - iterator 3 primes starting at 200 ok 40 - iterator 3 primes starting at 31397 ok 41 - iterator 3 primes starting at 31396 ok 42 - iterator 3 primes starting at 31398 ok 43 - forprimes handles $_ type changes ok 44 - triple nested forprimes ok 45 - triple nested iterator ok 46 - forprimes with BigInt range ok 47 - forprimes with BigFloat range ok 48 - iterator 3 primes with BigInt start ok 49 - iterator -2 ok 50 - iterator abc ok 51 - iterator 4.5 ok 52 - iterator first 10 primes ok 53 - iterator 5 primes starting at 47 ok 54 - iterator 3 primes starting at 199 ok 55 - iterator 3 primes starting at 200 ok 56 - iterator 3 primes starting at 31397 ok 57 - iterator 3 primes starting at 31396 ok 58 - iterator 3 primes starting at 31398 ok 59 - iterator object moved forward 10 now returns 31 ok 60 - iterator object moved back now returns 29 ok 61 - iterator object iterates to 29 ok 62 - iterator object iterates to 31 ok 63 - iterator object rewind and move returns 5 ok 64 - internal check, next_prime on big int works ok 65 - iterator object can rewind to 18446744073709551557 ok 66 - iterator object next is 18446744073709551629 ok 67 - iterator object rewound to ~0 is 18446744073709551629 ok 68 - iterator object prev goes back to 18446744073709551557 ok 69 - iterator object tell_i ok 70 - iterator object i_start = 1 ok 71 - iterator object description ok 72 - iterator object values_min = 2 ok 73 - iterator object values_max = undef ok 74 - iterator object oeis_anum = A000040 ok 75 - iterator object seek_to_i goes to nth prime ok 76 - iterator object seek_to_value goes to value ok 77 - iterator object ith returns nth prime ok 78 - iterator object pred returns true if is_prime ok 79 - iterator object value_to_i works ok 80 - iterator object value_to_i for non-prime returns undef ok 81 - iterator object value_to_i_floor ok 82 - iterator object value_to_i_ceil ok 83 - iterator object value_to_i_estimage is in range ok 84 - lastfor works in forprimes ok 85 - lastfor works in forcomposites ok 86 - lastfor works in foroddcomposites ok 87 - lastfor works in fordivisors ok 88 - lastfor works in forpart ok 89 - lastfor works in forcomp ok 90 - lastfor works in forcomb ok 91 - lastfor works in forperm ok 92 - lastfor works in forderange ok 93 - lastfor works in formultiperm ok 94 - nested lastfor semantics ok 95 - lastfor in forcomposites stops appropriately ok 96 - forfactored {} 1 ok 97 - forfactored {} 100 ok 98 - forsquarefree {} 100 ok 99 - forfactored {} 10^8,10^8+10 ok 100 - A053462 using forsquarefree ok 101 - forsemiprimes 1000 ok 102 - forsetproduct not array ref errors ok 103 - forsetproduct empty input -> empty output ok 104 - forsetproduct single list -> single list ok 105 - forsetproduct five 1-element lists -> single list ok 106 - forsetproduct any empty list -> empty output ok 107 - forsetproduct any empty list -> empty output ok 108 - forsetproduct simple test ok 109 - forsetproduct modify size of @_ in block ok 110 - forsetproduct replace @_ in sub ok t/33-examples.t .............. skipped: these tests are for release candidate testing # CORE::rand: drand48 (yech). Our PRNG: ChaCha20 t/34-random.t ................ 1..28 ok 1 - CSPRNG is being seeded properly ok 2 - irand values are 32-bit ok 3 - irand values are integers ok 4 - irand64 all bits on in 5 iterations ok 5 - irand64 all bits off in 5 iterations ok 6 - drand values between 0 and 1-eps ok 7 - drand supplies at least 21 bits (got 53) ok 8 - drand(10): all in range [0,10) ok 9 - drand(): all in range [0,1) ok 10 - drand(-10): all in range (-10,0] ok 11 - drand(0): all in range [0,1) ok 12 - drand(undef): all in range [0,1) ok 13 - random_bytes after srand ok 14 - random_bytes after manual seed ok 15 - irand after seed ok 16 - drand after seed 0.0459118340827543 ~ 0.0459118340827543 ok 17 - random_bytes(0) returns empty string ok 18 - urandomb(0) returns 0 ok 19 - urandomm(0) returns 0 ok 20 - urandomm(1) returns 0 ok 21 - urandomb returns native int within range for 1..64 ok 22 - urandomm returns native int within range for 1..50 ok 23 - urandomm(10) generated 10 distinct values ok 24 - urandomm(10) values between 0 and 9 (0 1 2 3 4 5 6 7 8 9) ok 25 - entropy_bytes gave us the right number of bytes ok 26 - entropy_bytes didn't return all zeros once ok 27 - entropy_bytes didn't return all zeros twice ok 28 - entropy_bytes returned two different binary strings ok t/35-cipher.t ................ 1..6 ok 1 - Ciphertext is probably ChaCha/20 expected result ok 2 - We at least vaguely changed the text ok 3 - Different key makes different ChaCha/20 result ok 4 - We can reproduce the cipher ok 5 - We can decode using the same key. ok 6 - Different nonce produces different data ok t/35-rand-tag.t .............. 1..6 ok 1 - srand returns result ok 2 - ChaCha20 irand ok 3 - ChaCha20 irand ok 4 - ChaCha20 drand ok 5 - Replicates after srand ok 6 - ChaCha20 irand64 ok t/50-factoring.t ............. 1..459 ok 1 - 0 = [ 0 ] ok 2 - each factor is not prime ok 3 - factor_exp looks right ok 4 - 1 = [ ] ok 5 - each factor is prime ok 6 - factor_exp looks right ok 7 - 2 = [ 2 ] ok 8 - each factor is prime ok 9 - factor_exp looks right ok 10 - 3 = [ 3 ] ok 11 - each factor is prime ok 12 - factor_exp looks right ok 13 - 4 = [ 2 * 2 ] ok 14 - each factor is prime ok 15 - factor_exp looks right ok 16 - 5 = [ 5 ] ok 17 - each factor is prime ok 18 - factor_exp looks right ok 19 - 6 = [ 2 * 3 ] ok 20 - each factor is prime ok 21 - factor_exp looks right ok 22 - 7 = [ 7 ] ok 23 - each factor is prime ok 24 - factor_exp looks right ok 25 - 8 = [ 2 * 2 * 2 ] ok 26 - each factor is prime ok 27 - factor_exp looks right ok 28 - 16 = [ 2 * 2 * 2 * 2 ] ok 29 - each factor is prime ok 30 - factor_exp looks right ok 31 - 57 = [ 3 * 19 ] ok 32 - each factor is prime ok 33 - factor_exp looks right ok 34 - 64 = [ 2 * 2 * 2 * 2 * 2 * 2 ] ok 35 - each factor is prime ok 36 - factor_exp looks right ok 37 - 377 = [ 13 * 29 ] ok 38 - each factor is prime ok 39 - factor_exp looks right ok 40 - 9592 = [ 2 * 2 * 2 * 11 * 109 ] ok 41 - each factor is prime ok 42 - factor_exp looks right ok 43 - 30107 = [ 7 * 11 * 17 * 23 ] ok 44 - each factor is prime ok 45 - factor_exp looks right ok 46 - 78498 = [ 2 * 3 * 3 * 7 * 7 * 89 ] ok 47 - each factor is prime ok 48 - factor_exp looks right ok 49 - 664579 = [ 664579 ] ok 50 - each factor is prime ok 51 - factor_exp looks right ok 52 - 5761455 = [ 3 * 5 * 7 * 37 * 1483 ] ok 53 - each factor is prime ok 54 - factor_exp looks right ok 55 - 114256942 = [ 2 * 57128471 ] ok 56 - each factor is prime ok 57 - factor_exp looks right ok 58 - 2214143 = [ 1487 * 1489 ] ok 59 - each factor is prime ok 60 - factor_exp looks right ok 61 - 999999929 = [ 999999929 ] ok 62 - each factor is prime ok 63 - factor_exp looks right ok 64 - 50847534 = [ 2 * 3 * 3 * 3 * 19 * 49559 ] ok 65 - each factor is prime ok 66 - factor_exp looks right ok 67 - 455052511 = [ 97 * 331 * 14173 ] ok 68 - each factor is prime ok 69 - factor_exp looks right ok 70 - 2147483647 = [ 2147483647 ] ok 71 - each factor is prime ok 72 - factor_exp looks right ok 73 - 4118054813 = [ 19 * 216739727 ] ok 74 - each factor is prime ok 75 - factor_exp looks right ok 76 - 30 = [ 2 * 3 * 5 ] ok 77 - each factor is prime ok 78 - factor_exp looks right ok 79 - 210 = [ 2 * 3 * 5 * 7 ] ok 80 - each factor is prime ok 81 - factor_exp looks right ok 82 - 2310 = [ 2 * 3 * 5 * 7 * 11 ] ok 83 - each factor is prime ok 84 - factor_exp looks right ok 85 - 30030 = [ 2 * 3 * 5 * 7 * 11 * 13 ] ok 86 - each factor is prime ok 87 - factor_exp looks right ok 88 - 510510 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 ] ok 89 - each factor is prime ok 90 - factor_exp looks right ok 91 - 9699690 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 ] ok 92 - each factor is prime ok 93 - factor_exp looks right ok 94 - 223092870 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 ] ok 95 - each factor is prime ok 96 - factor_exp looks right ok 97 - 1363 = [ 29 * 47 ] ok 98 - each factor is prime ok 99 - factor_exp looks right ok 100 - 989 = [ 23 * 43 ] ok 101 - each factor is prime ok 102 - factor_exp looks right ok 103 - 779 = [ 19 * 41 ] ok 104 - each factor is prime ok 105 - factor_exp looks right ok 106 - 629 = [ 17 * 37 ] ok 107 - each factor is prime ok 108 - factor_exp looks right ok 109 - 403 = [ 13 * 31 ] ok 110 - each factor is prime ok 111 - factor_exp looks right ok 112 - 547308031 = [ 547308031 ] ok 113 - each factor is prime ok 114 - factor_exp looks right ok 115 - 808 = [ 2 * 2 * 2 * 101 ] ok 116 - each factor is prime ok 117 - factor_exp looks right ok 118 - 2727 = [ 3 * 3 * 3 * 101 ] ok 119 - each factor is prime ok 120 - factor_exp looks right ok 121 - 12625 = [ 5 * 5 * 5 * 101 ] ok 122 - each factor is prime ok 123 - factor_exp looks right ok 124 - 34643 = [ 7 * 7 * 7 * 101 ] ok 125 - each factor is prime ok 126 - factor_exp looks right ok 127 - 134431 = [ 11 * 11 * 11 * 101 ] ok 128 - each factor is prime ok 129 - factor_exp looks right ok 130 - 221897 = [ 13 * 13 * 13 * 101 ] ok 131 - each factor is prime ok 132 - factor_exp looks right ok 133 - 496213 = [ 17 * 17 * 17 * 101 ] ok 134 - each factor is prime ok 135 - factor_exp looks right ok 136 - 692759 = [ 19 * 19 * 19 * 101 ] ok 137 - each factor is prime ok 138 - factor_exp looks right ok 139 - 1228867 = [ 23 * 23 * 23 * 101 ] ok 140 - each factor is prime ok 141 - factor_exp looks right ok 142 - 2231139 = [ 3 * 251 * 2963 ] ok 143 - each factor is prime ok 144 - factor_exp looks right ok 145 - 2463289 = [ 29 * 29 * 29 * 101 ] ok 146 - each factor is prime ok 147 - factor_exp looks right ok 148 - 3008891 = [ 31 * 31 * 31 * 101 ] ok 149 - each factor is prime ok 150 - factor_exp looks right ok 151 - 5115953 = [ 37 * 37 * 37 * 101 ] ok 152 - each factor is prime ok 153 - factor_exp looks right ok 154 - 6961021 = [ 41 * 41 * 41 * 101 ] ok 155 - each factor is prime ok 156 - factor_exp looks right ok 157 - 8030207 = [ 43 * 43 * 43 * 101 ] ok 158 - each factor is prime ok 159 - factor_exp looks right ok 160 - 10486123 = [ 47 * 47 * 47 * 101 ] ok 161 - each factor is prime ok 162 - factor_exp looks right ok 163 - 10893343 = [ 1327 * 8209 ] ok 164 - each factor is prime ok 165 - factor_exp looks right ok 166 - 12327779 = [ 1627 * 7577 ] ok 167 - each factor is prime ok 168 - factor_exp looks right ok 169 - 701737021 = [ 25997 * 26993 ] ok 170 - each factor is prime ok 171 - factor_exp looks right ok 172 - 549900 = [ 2 * 2 * 3 * 3 * 5 * 5 * 13 * 47 ] ok 173 - each factor is prime ok 174 - factor_exp looks right ok 175 - 10000142 = [ 2 * 1429 * 3499 ] ok 176 - each factor is prime ok 177 - factor_exp looks right ok 178 - 392498 = [ 2 * 443 * 443 ] ok 179 - each factor is prime ok 180 - factor_exp looks right ok 181 - 37607912018 = [ 2 * 18803956009 ] ok 182 - each factor is prime ok 183 - factor_exp looks right ok 184 - 346065536839 = [ 11 * 11 * 163 * 373 * 47041 ] ok 185 - each factor is prime ok 186 - factor_exp looks right ok 187 - 600851475143 = [ 71 * 839 * 1471 * 6857 ] ok 188 - each factor is prime ok 189 - factor_exp looks right ok 190 - 3204941750802 = [ 2 * 3 * 3 * 3 * 11 * 277 * 719 * 27091 ] ok 191 - each factor is prime ok 192 - factor_exp looks right ok 193 - 29844570422669 = [ 19 * 19 * 27259 * 3032831 ] ok 194 - each factor is prime ok 195 - factor_exp looks right ok 196 - 279238341033925 = [ 5 * 5 * 7 * 13 * 194899 * 629773 ] ok 197 - each factor is prime ok 198 - factor_exp looks right ok 199 - 2623557157654233 = [ 3 * 113 * 136841 * 56555467 ] ok 200 - each factor is prime ok 201 - factor_exp looks right ok 202 - 24739954287740860 = [ 2 * 2 * 5 * 7 * 1123 * 157358823863 ] ok 203 - each factor is prime ok 204 - factor_exp looks right ok 205 - 3369738766071892021 = [ 204518747 * 16476429743 ] ok 206 - each factor is prime ok 207 - factor_exp looks right ok 208 - 10023859281455311421 = [ 1308520867 * 7660450463 ] ok 209 - each factor is prime ok 210 - factor_exp looks right ok 211 - 9007199254740991 = [ 6361 * 69431 * 20394401 ] ok 212 - each factor is prime ok 213 - factor_exp looks right ok 214 - 9007199254740992 = [ 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 ] ok 215 - each factor is prime ok 216 - factor_exp looks right ok 217 - 9007199254740993 = [ 3 * 107 * 28059810762433 ] ok 218 - each factor is prime ok 219 - factor_exp looks right ok 220 - 6469693230 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 ] ok 221 - each factor is prime ok 222 - factor_exp looks right ok 223 - 200560490130 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 ] ok 224 - each factor is prime ok 225 - factor_exp looks right ok 226 - 7420738134810 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 ] ok 227 - each factor is prime ok 228 - factor_exp looks right ok 229 - 304250263527210 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 ] ok 230 - each factor is prime ok 231 - factor_exp looks right ok 232 - 13082761331670030 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 ] ok 233 - each factor is prime ok 234 - factor_exp looks right ok 235 - 614889782588491410 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 47 ] ok 236 - each factor is prime ok 237 - factor_exp looks right ok 238 - 440091295252541 = [ 4623781 * 95179961 ] ok 239 - each factor is prime ok 240 - factor_exp looks right ok 241 - 5333042142001571 = [ 59928917 * 88989463 ] ok 242 - each factor is prime ok 243 - factor_exp looks right ok 244 - 79127989298 = [ 2 * 443 * 443 * 449 * 449 ] ok 245 - each factor is prime ok 246 - factor_exp looks right ok 247 - factors(30107) ok 248 - scalar factors(30107) ok 249 - factors(2) ok 250 - scalar factors(2) ok 251 - factors(4) ok 252 - scalar factors(4) ok 253 - factors(0) ok 254 - scalar factors(0) ok 255 - factors(3) ok 256 - scalar factors(3) ok 257 - factors(1) ok 258 - scalar factors(1) ok 259 - factors(5) ok 260 - scalar factors(5) ok 261 - factors(115553) ok 262 - scalar factors(115553) ok 263 - factors(123456) ok 264 - scalar factors(123456) ok 265 - factors(456789) ok 266 - scalar factors(456789) ok 267 - divisors(5) ok 268 - scalar divisors(5) ok 269 - divisor_sum(5,0) ok 270 - divisor_sum(5) ok 271 - divisors(6) ok 272 - scalar divisors(6) ok 273 - divisor_sum(6,0) ok 274 - divisor_sum(6) ok 275 - divisors(4567890) ok 276 - scalar divisors(4567890) ok 277 - divisor_sum(4567890,0) ok 278 - divisor_sum(4567890) ok 279 - divisors(2) ok 280 - scalar divisors(2) ok 281 - divisor_sum(2,0) ok 282 - divisor_sum(2) ok 283 - divisors(30107) ok 284 - scalar divisors(30107) ok 285 - divisor_sum(30107,0) ok 286 - divisor_sum(30107) ok 287 - divisors(42) ok 288 - scalar divisors(42) ok 289 - divisor_sum(42,0) ok 290 - divisor_sum(42) ok 291 - divisors(3) ok 292 - scalar divisors(3) ok 293 - divisor_sum(3,0) ok 294 - divisor_sum(3) ok 295 - divisors(1234567890) ok 296 - scalar divisors(1234567890) ok 297 - divisor_sum(1234567890,0) ok 298 - divisor_sum(1234567890) ok 299 - divisors(1) ok 300 - scalar divisors(1) ok 301 - divisor_sum(1,0) ok 302 - divisor_sum(1) ok 303 - divisors(1032924637) ok 304 - scalar divisors(1032924637) ok 305 - divisor_sum(1032924637,0) ok 306 - divisor_sum(1032924637) ok 307 - divisors(16) ok 308 - scalar divisors(16) ok 309 - divisor_sum(16,0) ok 310 - divisor_sum(16) ok 311 - divisors(115553) ok 312 - scalar divisors(115553) ok 313 - divisor_sum(115553,0) ok 314 - divisor_sum(115553) ok 315 - divisors(123456) ok 316 - scalar divisors(123456) ok 317 - divisor_sum(123456,0) ok 318 - divisor_sum(123456) ok 319 - divisors(456789) ok 320 - scalar divisors(456789) ok 321 - divisor_sum(456789,0) ok 322 - divisor_sum(456789) ok 323 - divisors(9) ok 324 - scalar divisors(9) ok 325 - divisor_sum(9,0) ok 326 - divisor_sum(9) ok 327 - divisors(7) ok 328 - scalar divisors(7) ok 329 - divisor_sum(7,0) ok 330 - divisor_sum(7) ok 331 - divisors(0) ok 332 - scalar divisors(0) ok 333 - divisor_sum(0,0) ok 334 - divisor_sum(0) ok 335 - divisors(4) ok 336 - scalar divisors(4) ok 337 - divisor_sum(4,0) ok 338 - divisor_sum(4) ok 339 - divisors(12) ok 340 - scalar divisors(12) ok 341 - divisor_sum(12,0) ok 342 - divisor_sum(12) ok 343 - divisors(10) ok 344 - scalar divisors(10) ok 345 - divisor_sum(10,0) ok 346 - divisor_sum(10) ok 347 - divisors(8) ok 348 - scalar divisors(8) ok 349 - divisor_sum(8,0) ok 350 - divisor_sum(8) ok 351 - factor_exp(123456) ok 352 - scalar factor_exp(123456) ok 353 - factor_exp(456789) ok 354 - scalar factor_exp(456789) ok 355 - factor_exp(5) ok 356 - scalar factor_exp(5) ok 357 - factor_exp(115553) ok 358 - scalar factor_exp(115553) ok 359 - factor_exp(1) ok 360 - scalar factor_exp(1) ok 361 - factor_exp(30107) ok 362 - scalar factor_exp(30107) ok 363 - factor_exp(2) ok 364 - scalar factor_exp(2) ok 365 - factor_exp(4) ok 366 - scalar factor_exp(4) ok 367 - factor_exp(3) ok 368 - scalar factor_exp(3) ok 369 - factor_exp(0) ok 370 - scalar factor_exp(0) ok 371 - trial_factor(1) ok 372 - trial_factor(4) ok 373 - trial_factor(9) ok 374 - trial_factor(11) ok 375 - trial_factor(25) ok 376 - trial_factor(30) ok 377 - trial_factor(210) ok 378 - trial_factor(175) ok 379 - trial_factor(403) ok 380 - trial_factor(549900) ok 381 - fermat_factor(1) ok 382 - fermat_factor(4) ok 383 - fermat_factor(9) ok 384 - fermat_factor(11) ok 385 - fermat_factor(25) ok 386 - fermat_factor(30) ok 387 - fermat_factor(210) ok 388 - fermat_factor(175) ok 389 - fermat_factor(403) ok 390 - fermat_factor(549900) ok 391 - holf_factor(1) ok 392 - holf_factor(4) ok 393 - holf_factor(9) ok 394 - holf_factor(11) ok 395 - holf_factor(25) ok 396 - holf_factor(30) ok 397 - holf_factor(210) ok 398 - holf_factor(175) ok 399 - holf_factor(403) ok 400 - holf_factor(549900) ok 401 - squfof_factor(1) ok 402 - squfof_factor(4) ok 403 - squfof_factor(9) ok 404 - squfof_factor(11) ok 405 - squfof_factor(25) ok 406 - squfof_factor(30) ok 407 - squfof_factor(210) ok 408 - squfof_factor(175) ok 409 - squfof_factor(403) ok 410 - squfof_factor(549900) ok 411 - pbrent_factor(1) ok 412 - pbrent_factor(4) ok 413 - pbrent_factor(9) ok 414 - pbrent_factor(11) ok 415 - pbrent_factor(25) ok 416 - pbrent_factor(30) ok 417 - pbrent_factor(210) ok 418 - pbrent_factor(175) ok 419 - pbrent_factor(403) ok 420 - pbrent_factor(549900) ok 421 - prho_factor(1) ok 422 - prho_factor(4) ok 423 - prho_factor(9) ok 424 - prho_factor(11) ok 425 - prho_factor(25) ok 426 - prho_factor(30) ok 427 - prho_factor(210) ok 428 - prho_factor(175) ok 429 - prho_factor(403) ok 430 - prho_factor(549900) ok 431 - pminus1_factor(1) ok 432 - pminus1_factor(4) ok 433 - pminus1_factor(9) ok 434 - pminus1_factor(11) ok 435 - pminus1_factor(25) ok 436 - pminus1_factor(30) ok 437 - pminus1_factor(210) ok 438 - pminus1_factor(175) ok 439 - pminus1_factor(403) ok 440 - pminus1_factor(549900) ok 441 - pplus1_factor(1) ok 442 - pplus1_factor(4) ok 443 - pplus1_factor(9) ok 444 - pplus1_factor(11) ok 445 - pplus1_factor(25) ok 446 - pplus1_factor(30) ok 447 - pplus1_factor(210) ok 448 - pplus1_factor(175) ok 449 - pplus1_factor(403) ok 450 - pplus1_factor(549900) ok 451 - trial factor 2203*2503 ok 452 - scalar factor(0) should be 1 ok 453 - scalar factor(1) should be 0 ok 454 - scalar factor(3) should be 1 ok 455 - scalar factor(4) should be 2 ok 456 - scalar factor(5) should be 1 ok 457 - scalar factor(6) should be 2 ok 458 - scalar factor(30107) should be 4 ok 459 - scalar factor(174636000) should be 15 ok t/51-randfactor.t ............ 1..4 ok 1 - random_factored_integer did not return 0 ok 2 - random_factored_integer in requested range ok 3 - factors match factor routine ok 4 - product of factors = n ok t/51-znlog.t ................. 1..20 ok 1 - znlog(5,2,1019) = 10 ok 2 - znlog(2,4,17) = ok 3 - znlog(7,3,8) = ok 4 - znlog(7,17,36) = ok 5 - znlog(1,8,9) = 0 ok 6 - znlog(3,3,8) = 1 ok 7 - znlog(10,2,101) = 25 ok 8 - znlog(2,55,101) = 73 ok 9 - znlog(5,2,401) = 48 ok 10 - znlog(228,2,383) = 110 ok 11 - znlog(3061666278,499998,3332205179) = 22 ok 12 - znlog(5678,5,10007) = 8620 ok 13 - znlog(7531,6,8101) = 6689 ok 14 - znlog(0,30,100) = 2 ok 15 - znlog(1,1,101) = 0 ok 16 - znlog(8,2,102) = 3 ok 17 - znlog(18,18,102) = 1 ok 18 - znlog(5675,5,10000019) = 2003974 ok 19 - znlog(18478760,5,314138927) = 34034873 ok 20 - znlog(32712908945642193,5,71245073933756341) = 5945146967010377 ok t/52-primearray.t ............ 1..21 ok 1 - primes 0 .. 499 can be randomly selected ok 2 - primes 0 .. 499 in forward order ok 3 - primes 0 .. 499 in reverse order ok 4 - 51 primes using array slice ok 5 - random array slice of small primes ok 6 - primes[78901] == 1005413 ok 7 - primes[123456] == 1632913 ok 8 - primes[1999] == 17389 ok 9 - primes[377] == 2593 ok 10 - primes[15678] == 172157 ok 11 - primes[4999] == 48611 ok 12 - primes[30107] == 351707 ok 13 - primes[4500] == 43063 ok 14 - shift 2 ok 15 - shift 3 ok 16 - shift 5 ok 17 - shift 7 ok 18 - shift 11 ok 19 - 13 after shifts ok 20 - 11 after unshift ok 21 - 3 after unshift 3 ok t/70-rt-bignum.t ............. 1..2 ok 1 - PP prho factors correctly with 'use bignum' ok 2 - next_prime(10^1200+5226) = 10^1200+5227 ok t/80-pp.t .................... 1..298 ok 1 - require Math::Prime::Util::PP; ok 2 - require Math::Prime::Util::PrimalityProving; ok 3 - is_prime 0 .. 1086 ok 4 - is_prime for selected numbers ok 5 - Trial primes 2-80 ok 6 - Primes between 0 and 1069 ok 7 - Primes between 0 and 1070 ok 8 - Primes between 0 and 1086 ok 9 - primes(2) should return [2] ok 10 - primes(1) should return [] ok 11 - primes(5) should return [2 3 5] ok 12 - primes(20) should return [2 3 5 7 11 13 17 19] ok 13 - primes(7) should return [2 3 5 7] ok 14 - primes(18) should return [2 3 5 7 11 13 17] ok 15 - primes(19) should return [2 3 5 7 11 13 17 19] ok 16 - primes(11) should return [2 3 5 7 11] ok 17 - primes(6) should return [2 3 5] ok 18 - primes(4) should return [2 3] ok 19 - primes(3) should return [2 3] ok 20 - primes(0) should return [] ok 21 - primes(20,2) should return [] ok 22 - primes(3,9) should return [3 5 7] ok 23 - primes(3842610773,3842611109) should return [3842610773 3842611109] ok 24 - primes(70,30) should return [] ok 25 - primes(2010733,2010881) should return [2010733 2010881] ok 26 - primes(3088,3164) should return [3089 3109 3119 3121 3137 3163] ok 27 - primes(3842610774,3842611108) should return [] ok 28 - primes(3,3) should return [3] ok 29 - primes(3,7) should return [3 5 7] ok 30 - primes(1,1) should return [] ok 31 - primes(2,2) should return [2] ok 32 - primes(2,5) should return [2 3 5] ok 33 - primes(2010734,2010880) should return [] ok 34 - primes(3089,3163) should return [3089 3109 3119 3121 3137 3163] ok 35 - primes(30,70) should return [31 37 41 43 47 53 59 61 67] ok 36 - primes(4,8) should return [5 7] ok 37 - primes(2,3) should return [2 3] ok 38 - primes(2,20) should return [2 3 5 7 11 13 17 19] ok 39 - primes(3,6) should return [3 5] ok 40 - primes(3090,3162) should return [3109 3119 3121 3137] ok 41 - next prime of 2010733 is 2010733+148 ok 42 - prev prime of 2010733+148 is 2010733 ok 43 - next prime of 19609 is 19609+52 ok 44 - prev prime of 19609+52 is 19609 ok 45 - next prime of 360653 is 360653+96 ok 46 - prev prime of 360653+96 is 360653 ok 47 - next prime of 19608 is 19609 ok 48 - next prime of 19610 is 19661 ok 49 - next prime of 19660 is 19661 ok 50 - prev prime of 19662 is 19661 ok 51 - prev prime of 19660 is 19609 ok 52 - prev prime of 19610 is 19609 ok 53 - Previous prime of 2 returns undef ok 54 - Next prime of ~0-4 returns bigint next prime ok 55 - next_prime for 148 primes before primegap end 2010881 ok 56 - prev_prime for 148 primes before primegap start 2010733 ok 57 - next_prime(1234567890) == 1234567891) ok 58 - Pi(60067) = 6062 ok 59 - Pi(100) = 25 ok 60 - Pi(1) = 0 ok 61 - Pi(65535) = 6542 ok 62 - Pi(1000) = 168 ok 63 - Pi(10) = 4 ok 64 - Pi(10000) = 1229 ok 65 - prime_count(191912784 +247) = 1 ok 66 - prime_count(4 to 17) = 5 ok 67 - prime_count(17 to 13) = 0 ok 68 - prime_count(1e9 +2**14) = 785 ok 69 - prime_count(191912783 +247) = 1 ok 70 - prime_count(191912784 +246) = 0 ok 71 - prime_count(191912783 +248) = 2 ok 72 - prime_count(4 to 16) = 4 ok 73 - prime_count(3 to 17) = 6 ok 74 - prime_count_lower(450) ok 75 - prime_count_upper(450) ok 76 - prime_count_lower(1234567) in range ok 77 - prime_count_upper(1234567) in range ok 78 - prime_count_lower(412345678) in range ok 79 - prime_count_upper(412345678) in range ok 80 - nth_prime(6062) <= 60067 ok 81 - nth_prime(6063) >= 60067 ok 82 - nth_prime(25) <= 100 ok 83 - nth_prime(26) >= 100 ok 84 - nth_prime(0) <= 1 ok 85 - nth_prime(1) >= 1 ok 86 - nth_prime(6542) <= 65535 ok 87 - nth_prime(6543) >= 65535 ok 88 - nth_prime(168) <= 1000 ok 89 - nth_prime(169) >= 1000 ok 90 - nth_prime(4) <= 10 ok 91 - nth_prime(5) >= 10 ok 92 - nth_prime(1229) <= 10000 ok 93 - nth_prime(1230) >= 10000 ok 94 - nth_prime(1) = 2 ok 95 - nth_prime(100) = 541 ok 96 - nth_prime(10) = 29 ok 97 - nth_prime(1000) = 7919 ok 98 - MR with 0 shortcut composite ok 99 - MR with 0 shortcut composite ok 100 - MR with 2 shortcut prime ok 101 - MR with 3 shortcut prime ok 102 - 5 pseudoprimes (base aeslucas1) ok 103 - 5 pseudoprimes (base lucas) ok 104 - 4 pseudoprimes (base 3) ok 105 - 4 pseudoprimes (base 23) ok 106 - 5 pseudoprimes (base psp2) ok 107 - 5 pseudoprimes (base 17) ok 108 - 4 pseudoprimes (base 13) ok 109 - 4 pseudoprimes (base 11) ok 110 - 6 pseudoprimes (base eslucas) ok 111 - 4 pseudoprimes (base 73) ok 112 - 4 pseudoprimes (base 5) ok 113 - 4 pseudoprimes (base 61) ok 114 - 5 pseudoprimes (base psp3) ok 115 - 5 pseudoprimes (base 19) ok 116 - 5 pseudoprimes (base 7) ok 117 - 5 pseudoprimes (base aeslucas2) ok 118 - 5 pseudoprimes (base 37) ok 119 - 5 pseudoprimes (base 29) ok 120 - 5 pseudoprimes (base slucas) ok 121 - 5 pseudoprimes (base 31) ok 122 - 5 pseudoprimes (base 2) ok 123 - Ei(12) ~= 14959.5326663975 ok 124 - Ei(-10) ~= -4.15696892968532e-06 ok 125 - Ei(0.693147180559945) ~= 1.04516378011749 ok 126 - Ei(2) ~= 4.95423435600189 ok 127 - Ei(10) ~= 2492.22897624188 ok 128 - Ei(1) ~= 1.89511781635594 ok 129 - Ei(-1e-08) ~= -17.8434650890508 ok 130 - Ei(5) ~= 40.1852753558032 ok 131 - Ei(20) ~= 25615652.6640566 ok 132 - Ei(41) ~= 1.6006649143245e+16 ok 133 - Ei(-0.1) ~= -1.82292395841939 ok 134 - Ei(1.5) ~= 3.3012854491298 ok 135 - Ei(-1e-05) ~= -10.9357198000437 ok 136 - Ei(-0.001) ~= -6.33153936413615 ok 137 - Ei(-0.5) ~= -0.55977359477616 ok 138 - Ei(40) ~= 6039718263611242 ok 139 - li(10000000000) ~= 455055614.586623 ok 140 - li(100000000) ~= 5762209.37544803 ok 141 - li(1000) ~= 177.609657990152 ok 142 - li(1.01) ~= -4.02295867392994 ok 143 - li(2) ~= 1.04516378011749 ok 144 - li(10) ~= 6.1655995047873 ok 145 - li(24) ~= 11.2003157952327 ok 146 - li(0) ~= 0 ok 147 - li(100000) ~= 9629.8090010508 ok 148 - li(100000000000) ~= 4118066400.62161 ok 149 - li(4294967295) ~= 203284081.954542 ok 150 - R(18446744073709551615) ~= 4.25656284014012e+17 ok 151 - R(10000000000) ~= 455050683.306847 ok 152 - R(1000000) ~= 78527.3994291277 ok 153 - R(4294967295) ~= 203280697.513261 ok 154 - R(10000000) ~= 664667.447564748 ok 155 - R(10) ~= 4.56458314100509 ok 156 - R(2) ~= 1.54100901618713 ok 157 - R(1000) ~= 168.359446281167 ok 158 - R(1.01) ~= 1.00606971806229 ok 159 - Zeta(2) ~= 0.644934066848226 ok 160 - Zeta(20.6) ~= 6.29339157357821e-07 ok 161 - Zeta(180) ~= 6.52530446799852e-55 ok 162 - Zeta(7) ~= 0.00834927738192283 ok 163 - Zeta(80) ~= 8.27180612553034e-25 ok 164 - Zeta(4.5) ~= 0.0547075107614543 ok 165 - Zeta(2.5) ~= 0.341487257250917 ok 166 - Zeta(8.5) ~= 0.00285925088241563 ok 167 - LambertW(6588) ok 168 - test factoring for 34 primes ok 169 - test factoring for 141 composites ok 170 - holf(403) ok 171 - fermat(403) ok 172 - prho(403) ok 173 - pbrent(403) ok 174 - pminus1(403) ok 175 - prho(851981) ok 176 - pbrent(851981) ok 177 - ecm(101303039) ok 178 - prho(55834573561) ok 179 - pbrent(55834573561) ok 180 - prho finds a factor of 18686551294184381720251 ok 181 - prho found a correct factor ok 182 - prho didn't return a degenerate factor ok 183 - pbrent finds a factor of 18686551294184381720251 ok 184 - pbrent found a correct factor ok 185 - pbrent didn't return a degenerate factor ok 186 - pminus1 finds a factor of 18686551294184381720251 ok 187 - pminus1 found a correct factor ok 188 - pminus1 didn't return a degenerate factor ok 189 - ecm finds a factor of 18686551294184381720251 ok 190 - ecm found a correct factor ok 191 - ecm didn't return a degenerate factor ok 192 # skip Skipping p-1 stage 2 tests ok 193 # skip Skipping p-1 stage 2 tests ok 194 # skip Skipping p-1 stage 2 tests ok 195 - fermat finds a factor of 73786976930493367637 ok 196 - fermat found a correct factor ok 197 - fermat didn't return a degenerate factor ok 198 - holf correctly factors 99999999999979999998975857 ok 199 # skip ecm stage 2 ok 200 # skip ecm stage 2 ok 201 # skip ecm stage 2 ok 202 - AKS: 1 is composite (less than 2) ok 203 - AKS: 2 is prime ok 204 - AKS: 3 is prime ok 205 - AKS: 4 is composite ok 206 - AKS: 64 is composite (perfect power) ok 207 - AKS: 65 is composite (caught in trial) ok 208 - AKS: 23 is prime (r >= n) ok 209 - AKS: 70747 is composite (n mod r) ok 210 # skip Skipping PP AKS test without EXTENDED_TESTING ok 211 # skip Skipping PP AKS test without EXTENDED_TESTING ok 212 - primality_proof_lucas(100003) ok 213 - primality_proof_bls75(1490266103) ok 214 - primality_proof_bls75(27141057803) ok 215 - 168790877523676911809192454171451 looks prime with bases 2..52 ok 216 - 168790877523676911809192454171451 found composite with base 53 ok 217 - 168790877523676911809192454171451 is not a strong Lucas pseudoprime ok 218 - 168790877523676911809192454171451 is not a Frobenius pseudoprime ok 219 - 517697641 is a Perrin pseudoprime ok 220 - 517697641 is not a Frobenius pseudoprime ok 221 - nth_prime_approx(1287248) in range ok 222 - prime_count_approx(128722248) in range ok 223 - consecutive_integer_lcm(13) ok 224 - consecutive_integer_lcm(52) ok 225 - moebius(513,537) ok 226 - moebius(42199) ok 227 - liouville(444456) ok 228 - liouville(562894) ok 229 - mertens(4219) ok 230 - euler_phi(1513,1537) ok 231 - euler_phi(324234) ok 232 - jordan_totient(4, 899) ok 233 - carmichael_lambda(324234) ok 234 - exp_mangoldt of power of 2 = 2 ok 235 - exp_mangoldt of even = 1 ok 236 - exp_mangoldt of 21 = 1 ok 237 - exp_mangoldt of 23 = 23 ok 238 - exp_mangoldt of 27 (3^3) = 3 ok 239 - znprimroot ok 240 - znorder(2,35) = 12 ok 241 - znorder(7,35) = undef ok 242 - znorder(67,999999749) = 30612237 ok 243 - znlog(5678, 5, 10007) ok 244 - binomial(35,16) ok 245 - binomial(228,12) ok 246 - binomial(-23,-26) should be -2300 ok 247 - S(12,4) ok 248 - s(12,4) ok 249 - bernfrac(0) ok 250 - bernfrac(1) ok 251 - bernfrac(2) ok 252 - bernfrac(3) ok 253 - bernfrac(12) ok 254 - bernfrac(12) ok 255 - gcdext(23948236,3498248) ok 256 - valuation(1879048192,2) ok 257 - valuation(96552,6) ok 258 - invmod(45,59) ok 259 - invmod(14,28474) ok 260 - invmod(42,-2017) ok 261 - vecsum(15,30,45) ok 262 - vecsum(2^32-1000,2^32-2000,2^32-3000) ok 263 - vecprod(15,30,45) ok 264 - vecprod(2^32-1000,2^32-2000,2^32-3000) ok 265 - vecmin(2^32-1000,2^32-2000,2^32-3000) ok 266 - vecmax(2^32-1000,2^32-2000,2^32-3000) ok 267 - chebyshev_theta(7001) =~ 6929.2748 ok 268 - chebyshev_psi(6588) =~ 6597.07453 ok 269 - is_prob_prime(347) should be 2 ok 270 - is_prob_prime(5) should be 2 ok 271 - is_prob_prime(36010359) should be 0 ok 272 - is_prob_prime(10) should be 0 ok 273 - is_prob_prime(17471061) should be 0 ok 274 - is_prob_prime(697) should be 0 ok 275 - is_prob_prime(7080233) should be 2 ok 276 - is_prob_prime(49) should be 0 ok 277 - is_prob_prime(17471059) should be 2 ok 278 - is_prob_prime(7080249) should be 0 ok 279 - is_prob_prime(36010357) should be 2 ok 280 - primorial(24) ok 281 - primorial(118) ok 282 - pn_primorial(7) ok 283 - partitions(74) ok 284 - Miller-Rabin random 40 on composite ok 285 - generic forprimes 2387234,2387303 ok 286 - generic forcomposites 15202630,15202641 ok 287 - generic foroddcomposites 15202630,15202641 ok 288 - generic fordivisors: d|92834: k+=d+int(sqrt(d)) ok 289 - forcomb(3,2) ok 290 - forperm(3) ok 291 - forpart(4) ok 292 - Pi(82) ok 293 - gcd(-30,-90,90) = 30 ok 294 - lcm(11926,78001,2211) = 2790719778 ok 295 - twin_prime_count(4321) ok 296 - twin_prime_count_approx(4123456784123) ok 297 - nth_twin_prime(249) ok 298 - Nobody clobbered $_ ok # BigInt 0.49/1.999811, lib: Calc. MPU::GMP 0.51 t/81-bignum.t ................ 1..134 ok 1 - 100000982717289000001 is prime ok 2 - 100000982717289000001 is probably prime ok 3 - 100170437171734071001 is prime ok 4 - 100170437171734071001 is probably prime ok 5 - 777777777777777777777767 is prime ok 6 - 777777777777777777777767 is probably prime ok 7 - 777777777777777777777787 is prime ok 8 - 777777777777777777777787 is probably prime ok 9 - 877777777777777777777753 is prime ok 10 - 877777777777777777777753 is probably prime ok 11 - 877777777777777777777871 is prime ok 12 - 877777777777777777777871 is probably prime ok 13 - 87777777777777777777777795577 is prime ok 14 - 87777777777777777777777795577 is probably prime ok 15 - 890745785790123461234805903467891234681243 is prime ok 16 - 890745785790123461234805903467891234681243 is probably prime ok 17 - 618970019642690137449562111 is prime ok 18 - 618970019642690137449562111 is probably prime ok 19 - 777777777777777777777777 is not prime ok 20 - 777777777777777777777777 is not probably prime ok 21 - 877777777777777777777777 is not prime ok 22 - 877777777777777777777777 is not probably prime ok 23 - 87777777777777777777777795475 is not prime ok 24 - 87777777777777777777777795475 is not probably prime ok 25 - 890745785790123461234805903467891234681234 is not prime ok 26 - 890745785790123461234805903467891234681234 is not probably prime ok 27 - 3825123056546413051 is not prime ok 28 - 3825123056546413051 is not probably prime ok 29 - 3317044064679887385961981 is not prime ok 30 - 3317044064679887385961981 is not probably prime ok 31 - 21652684502221 is not prime ok 32 - 21652684502221 is not probably prime ok 33 - 75792980677 is not prime ok 34 - 75792980677 is not probably prime ok 35 - 59276361075595573263446330101 is not prime ok 36 - 59276361075595573263446330101 is not probably prime ok 37 - 6003094289670105800312596501 is not prime ok 38 - 6003094289670105800312596501 is not probably prime ok 39 - 318665857834031151167461 is not prime ok 40 - 318665857834031151167461 is not probably prime ok 41 - 564132928021909221014087501701 is not prime ok 42 - 564132928021909221014087501701 is not probably prime ok 43 - 65635624165761929287 is prime ok 44 - 65635624165761929287 is provably prime ok 45 - 1162566711635022452267983 is prime ok 46 - 1162566711635022452267983 is provably prime ok 47 - 77123077103005189615466924501 is prime ok 48 - 77123077103005189615466924501 is provably prime ok 49 - 3991617775553178702574451996736229 is prime ok 50 - 3991617775553178702574451996736229 is provably prime ok 51 - 273952953553395851092382714516720001799 is prime ok 52 - 273952953553395851092382714516720001799 is provably prime ok 53 - primes( 2^66, 2^66 + 100 ) ok 54 - twin_primes( 18446744073709558000, +1000) ok 55 - next_prime(777777777777777777777777) ok 56 - prev_prime(777777777777777777777777) ok 57 - iterator 3 primes starting at 10^24+910 ok 58 - prime_count(87..7752, 87..7872) ok 59 - 3825123056546413051 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,325,9375 ok 60 - 3317044064679887385961981 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,73,325,9375 ok 61 - 21652684502221 is a strong pseudoprime to bases 2,7,37,61,9375 ok 62 - 75792980677 is a strong pseudoprime to bases 2 ok 63 - 59276361075595573263446330101 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,325,9375 ok 64 - 6003094289670105800312596501 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,61,325,9375 ok 65 - 318665857834031151167461 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,325,9375 ok 66 - 564132928021909221014087501701 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,325,9375 ok 67 - PC approx(31415926535897932384) ok 68 - prime count bounds for 31415926535897932384 are in the right order ok 69 - PC lower with RH ok 70 - PC upper with RH ok 71 - PC lower ok 72 - PC upper ok 73 - factor(23489223467134234890234680) ok 74 - factor_exp(23489223467134234890234680) ok 75 - factor(190128090927491) ok 76 - factor_exp(190128090927491) ok 77 - factor(1234567890) ok 78 - factor_exp(1234567890) ok 79 - divisors(23489223467134234890234680) ok 80 - moebius(618970019642690137449562110) ok 81 - euler_phi(618970019642690137449562110) ok 82 - carmichael_lambda(618970019642690137449562110) ok 83 - jordan_totient(5,2188536338969724335807) ok 84 - jordan totient using divisor_sum and moebius ok 85 - Divisor sum of 100! ok 86 - Divisor count(103\#) ok 87 - Divisor sum(103\#) ok 88 - sigma_2(103\#) ok 89 - znorder 1 ok 90 - znorder 2 ok 91 - kronecker(..., ...) ok 92 - znprimroot(333822190384002421914469856494764513809) ok 93 - znlog(b,g,p): find k where b^k = g mod p ok 94 - liouville(a x b x c) = -1 ok 95 - liouville(a x b x c x d) = 1 ok 96 - gcd(a,b,c) ok 97 - gcd(a,b) ok 98 - gcd of two primes = 1 ok 99 - lcm(p1,p2) ok 100 - lcm(p1,p1) ok 101 - lcm(a,b,c,d,e) ok 102 - gcdext(a,b) ok 103 - chinese([26,17179869209],[17,34359738421] = 103079215280 ok 104 - ispower(18475335773296164196) == 0 ok 105 - ispower(150607571^14) == 14 ok 106 - -7 ^ i for 0 .. 31 ok 107 - correct root from is_power for -7^i for 0 .. 31 ok 108 - random range prime isn't too small ok 109 - random range prime isn't too big ok 110 - random range prime is prime ok 111 - random 25-digit prime is not too small ok 112 - random 25-digit prime is not too big ok 113 - random 25-digit prime is just right ok 114 - random 80-bit prime is not too small ok 115 - random 80-bit prime is not too big ok 116 - random 80-bit prime is just right ok 117 - random 180-bit strong prime is not too small ok 118 - random 180-bit strong prime is not too big ok 119 - random 180-bit strong prime is just right ok 120 - random 80-bit Maurer prime is not too small ok 121 - random 80-bit Maurer prime is not too big ok 122 - random 80-bit Maurer prime is just right ok 123 - 80-bit prime passes Miller-Rabin with 20 random bases ok 124 - 80-bit composite fails Miller-Rabin with 40 random bases ok 125 - MRR(undef,4) ok 126 - MRR(10007,-4) ok 127 - MRR(n,0) = 1 ok 128 - MRR(61,17) = 1 ok 129 - MRR(62,17) = 0 ok 130 - MRR(1009) = 1 ok 131 # skip Perrin pseudoprime tests without EXTENDED_TESTING. ok 132 # skip Perrin pseudoprime tests without EXTENDED_TESTING. ok 133 - valuation(6^10000,5) = 5 ok 134 - Nobody clobbered $_ ok t/90-release-perlcritic.t .... skipped: these tests are for release candidate testing t/91-release-pod-syntax.t .... skipped: these tests are for release candidate testing t/92-release-pod-coverage.t .. skipped: these tests are for release candidate testing t/93-release-spelling.t ...... skipped: these tests are for release candidate testing t/94-weaken.t ................ skipped: these tests are for release candidate testing t/97-synopsis.t .............. skipped: these tests are for release candidate testing All tests successful. Files=79, Tests=4065, 19 wallclock secs ( 1.04 usr 0.22 sys + 17.50 cusr 1.08 csys = 19.84 CPU) Result: PASS make[1]: Leaving directory '/build/libmath-prime-util-perl-0.73' create-stamp debian/debhelper-build-stamp fakeroot debian/rules binary dh binary dh_testroot dh_prep debian/rules override_dh_auto_install make[1]: Entering directory '/build/libmath-prime-util-perl-0.73' dh_auto_install make -j10 install DESTDIR=/build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl AM_UPDATE_INFO_DIR=no PREFIX=/usr make[2]: Entering directory '/build/libmath-prime-util-perl-0.73' "/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- Util.bs blib/arch/auto/Math/Prime/Util/Util.bs 644 Manifying 14 pod documents Files found in blib/arch: installing files in blib/lib into architecture dependent library tree Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/auto/Math/Prime/Util/Util.so Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/ntheory.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/Math/Prime/Util.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/Math/Prime/Util/PrimalityProving.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/Math/Prime/Util/PPFE.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/Math/Prime/Util/ECAffinePoint.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/Math/Prime/Util/PrimeIterator.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/Math/Prime/Util/Entropy.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/Math/Prime/Util/ChaCha.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/Math/Prime/Util/PP.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/Math/Prime/Util/RandomPrimes.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/Math/Prime/Util/MemFree.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/Math/Prime/Util/ZetaBigFloat.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/Math/Prime/Util/PrimeArray.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/i386-linux-gnu/perl5/5.28/Math/Prime/Util/ECProjectivePoint.pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::PrimalityProving.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::RandomPrimes.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::ECProjectivePoint.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::PrimeArray.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::PP.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::PrimeIterator.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::ChaCha.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::ECAffinePoint.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::ZetaBigFloat.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::MemFree.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/ntheory.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::Entropy.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::PPFE.3pm Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/bin/primes.pl Installing /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/bin/factor.pl make[2]: Leaving directory '/build/libmath-prime-util-perl-0.73' mv /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/bin/primes.pl /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/bin/primes mkdir -p /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man1 PERL5LIB=/build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl//usr/lib/i386-linux-gnu/perl5/5.28 help2man -n 'Display all primes' --no-info --no-discard-stderr /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/bin/primes | gzip -9 > /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man1/primes.1.gz PERL5LIB=/build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl//usr/lib/i386-linux-gnu/perl5/5.28 help2man -n 'Print prime factors' --no-info --no-discard-stderr /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/bin/factor.pl | gzip -9 > /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man1/factor.pl.1.gz find /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/bin -type f -print0 | \ xargs -r0 sed -i -e '1s|^#!/usr/bin/env perl|#!/usr/bin/perl|' make[1]: Leaving directory '/build/libmath-prime-util-perl-0.73' dh_installdocs dh_installchangelogs debian/rules override_dh_installexamples make[1]: Entering directory '/build/libmath-prime-util-perl-0.73' dh_installexamples find /build/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/doc/libmath-prime-util-perl/examples -type f -name "*.pl" -print0 | \ xargs -r0 sed -i -e '1s|^#!/usr/bin/env perl|#!/usr/bin/perl|' make[1]: Leaving directory '/build/libmath-prime-util-perl-0.73' dh_installman dh_lintian dh_perl dh_link dh_strip_nondeterminism dh_compress dh_fixperms dh_missing dh_strip dh_makeshlibs dh_shlibdeps dh_installdeb dh_gencontrol dh_md5sums dh_builddeb dpkg-deb: building package 'libmath-prime-util-perl' in '../libmath-prime-util-perl_0.73-1_i386.deb'. dpkg-deb: building package 'libmath-prime-util-perl-dbgsym' in '../libmath-prime-util-perl-dbgsym_0.73-1_i386.deb'. dpkg-genbuildinfo --build=binary dpkg-genchanges --build=binary >../libmath-prime-util-perl_0.73-1_i386.changes dpkg-genchanges: info: binary-only upload (no source code included) dpkg-source --after-build . dpkg-buildpackage: info: binary-only upload (no source included) I: copying local configuration I: unmounting dev/ptmx filesystem I: unmounting dev/pts filesystem I: unmounting dev/shm filesystem I: unmounting proc filesystem I: unmounting sys filesystem I: cleaning the build env I: removing directory /srv/workspace/pbuilder/1223 and its subdirectories I: Current time: Wed Jul 10 19:59:01 -12 2019 I: pbuilder-time-stamp: 1562831941