Fri May 12 20:04:28 UTC 2023  I: starting to build libmath-prime-util-gmp-perl/bookworm/arm64 on jenkins on '2023-05-12 20:04'
Fri May 12 20:04:28 UTC 2023  I: The jenkins build log is/was available at https://jenkins.debian.net/userContent/reproducible/debian/build_service/arm64_25/31051/console.log
Fri May 12 20:04:28 UTC 2023  I: Downloading source for bookworm/libmath-prime-util-gmp-perl=0.52-2
--2023-05-12 20:04:28--  http://cdn-fastly.deb.debian.org/debian/pool/main/libm/libmath-prime-util-gmp-perl/libmath-prime-util-gmp-perl_0.52-2.dsc
Connecting to 78.137.99.97:3128... connected.
Proxy request sent, awaiting response... 200 OK
Length: 2254 (2.2K) [text/prs.lines.tag]
Saving to: ‘libmath-prime-util-gmp-perl_0.52-2.dsc’

     0K ..                                                    100% 3.47M=0.001s

2023-05-12 20:04:28 (3.47 MB/s) - ‘libmath-prime-util-gmp-perl_0.52-2.dsc’ saved [2254/2254]

Fri May 12 20:04:28 UTC 2023  I: libmath-prime-util-gmp-perl_0.52-2.dsc
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

Format: 3.0 (quilt)
Source: libmath-prime-util-gmp-perl
Binary: libmath-prime-util-gmp-perl
Architecture: any
Version: 0.52-2
Maintainer: Debian Perl Group <pkg-perl-maintainers@lists.alioth.debian.org>
Uploaders: Salvatore Bonaccorso <carnil@debian.org>
Homepage: https://metacpan.org/release/Math-Prime-Util-GMP
Standards-Version: 4.6.1
Vcs-Browser: https://salsa.debian.org/perl-team/modules/packages/libmath-prime-util-gmp-perl
Vcs-Git: https://salsa.debian.org/perl-team/modules/packages/libmath-prime-util-gmp-perl.git
Testsuite: autopkgtest-pkg-perl
Build-Depends: debhelper-compat (= 13), libdevel-checklib-perl, libgmp-dev, perl-xs-dev, perl:native
Package-List:
 libmath-prime-util-gmp-perl deb perl optional arch=any
Checksums-Sha1:
 87e41309ac8febedaf651f1abe12031161eaf92f 341681 libmath-prime-util-gmp-perl_0.52.orig.tar.gz
 b2ad6c0473f2b7bf0388fa02a842587e0fc40819 4396 libmath-prime-util-gmp-perl_0.52-2.debian.tar.xz
Checksums-Sha256:
 2697c7fd5c7e35fdec7f50ed56a67be807a2f22657589e637dad3592744003be 341681 libmath-prime-util-gmp-perl_0.52.orig.tar.gz
 c08911610051a30f2210d483d53a80c519b12a558de5649d25a72bf2851234d5 4396 libmath-prime-util-gmp-perl_0.52-2.debian.tar.xz
Files:
 a5a98d7a5533167ee87c66ce44b33fa7 341681 libmath-prime-util-gmp-perl_0.52.orig.tar.gz
 d5a54a580d7fd2ecdcab10adbcd395ef 4396 libmath-prime-util-gmp-perl_0.52-2.debian.tar.xz

-----BEGIN PGP SIGNATURE-----

iQIzBAEBCgAdFiEEsjhixBXWVlpOhsvXV5wWDUyeI+gFAmNJG58ACgkQV5wWDUye
I+hyDQ/+MipidCUHI4C6rkh8objLg06ciSVZ2I1mop2gm37CkWzvlTBGTgXPDuWI
EQDmvo4LwW85v/3ngG87asiZEdZbGEB8WlF2szqxVE5twAy7D8SEl6pXHS75kDwL
TntmkwmqUDfDMSKtiP6YhbyXs5ZcOxIjlbnezxM5nP2NRc4FBc+GynEmZDl0wMGk
nN8+iOb+bcjIXt3K999sg1/LPmOrYszFFqcclxkS+ApzLrVskifhhxPloiL+PHoT
gltsdFqA0RCCBoyQ69u5xp9ZivIB0Vz1dG1XCgn6f4O6jM9C1QRGbxLw7+MzVXkB
jSsDbVd7SLslV8rgYFgZZ+YTw6DAz1d80tp6qMMth1+Yz7o6bjsVP2ukcfQCkkyz
mJv1iPxOxWRzmBYzNRMBy0cRlDN173xsP9vADQ9YVJt8h+DIxgl532kPOZCtyBq6
YkPjeZ1TOCPr8YLYYIK7QhFp2EaWp1EGS3uz6zjCsqjQJ4Yz6YFWi72Tq6Btqm4b
v1jDAr0LER39vXxTwht50Q42svT+DRzy8iKxGFPq9+gUj2IBdLJWY5tK6q3vo/Mb
Q5gSoxl36TDJHLDmX3+8i7eeCaauC4WjXGF1onSwwANZj9LVoYcl00AqUdcFxi37
c4iSDO4BUSYrCRbSnrUZuWSrnRXvducYcjDENbNwZ8gL+Yw+rGE=
=ZAn4
-----END PGP SIGNATURE-----
Fri May 12 20:04:28 UTC 2023  I: Checking whether the package is not for us
Fri May 12 20:04:29 UTC 2023  I: Starting 1st build on remote node codethink15-arm64.debian.net.
Fri May 12 20:04:29 UTC 2023  I: Preparing to do remote build '1' on codethink15-arm64.debian.net.
Fri May 12 20:05:40 UTC 2023  I: Deleting $TMPDIR on codethink15-arm64.debian.net.
I: pbuilder: network access will be disabled during build
I: Current time: Thu Jun 13 14:27:31 -12 2024
I: pbuilder-time-stamp: 1718332051
I: Building the build Environment
I: extracting base tarball [/var/cache/pbuilder/bookworm-reproducible-base.tgz]
I: copying local configuration
W: --override-config is not set; not updating apt.conf Read the manpage for details.
I: mounting /proc filesystem
I: mounting /sys filesystem
I: creating /{dev,run}/shm
I: mounting /dev/pts filesystem
I: redirecting /dev/ptmx to /dev/pts/ptmx
I: policy-rc.d already exists
I: Copying source file
I: copying [libmath-prime-util-gmp-perl_0.52-2.dsc]
I: copying [./libmath-prime-util-gmp-perl_0.52.orig.tar.gz]
I: copying [./libmath-prime-util-gmp-perl_0.52-2.debian.tar.xz]
I: Extracting source
gpgv: Signature made Thu Oct 13 20:19:43 2022 -12
gpgv:                using RSA key B23862C415D6565A4E86CBD7579C160D4C9E23E8
gpgv: Can't check signature: No public key
dpkg-source: warning: cannot verify inline signature for ./libmath-prime-util-gmp-perl_0.52-2.dsc: no acceptable signature found
dpkg-source: info: extracting libmath-prime-util-gmp-perl in libmath-prime-util-gmp-perl-0.52
dpkg-source: info: unpacking libmath-prime-util-gmp-perl_0.52.orig.tar.gz
dpkg-source: info: unpacking libmath-prime-util-gmp-perl_0.52-2.debian.tar.xz
I: Not using root during the build.
I: Installing the build-deps
I: user script /srv/workspace/pbuilder/23473/tmp/hooks/D02_print_environment starting
I: set
  BUILDDIR='/build'
  BUILDUSERGECOS='first user,first room,first work-phone,first home-phone,first other'
  BUILDUSERNAME='pbuilder1'
  BUILD_ARCH='arm64'
  DEBIAN_FRONTEND='noninteractive'
  DEB_BUILD_OPTIONS='buildinfo=+all reproducible=+all parallel=8'
  DISTRIBUTION='bookworm'
  HOME='/var/lib/jenkins'
  HOST_ARCH='arm64'
  IFS=' 	
  '
  LANG='C'
  LANGUAGE='en_US:en'
  LC_ALL='C'
  MAIL='/var/mail/root'
  OPTIND='1'
  PATH='/usr/sbin:/usr/bin:/sbin:/bin:/usr/games'
  PBCURRENTCOMMANDLINEOPERATION='build'
  PBUILDER_OPERATION='build'
  PBUILDER_PKGDATADIR='/usr/share/pbuilder'
  PBUILDER_PKGLIBDIR='/usr/lib/pbuilder'
  PBUILDER_SYSCONFDIR='/etc'
  PPID='23473'
  PS1='# '
  PS2='> '
  PS4='+ '
  PWD='/'
  SHELL='/bin/bash'
  SHLVL='2'
  SUDO_COMMAND='/usr/bin/timeout -k 18.1h 18h /usr/bin/ionice -c 3 /usr/bin/nice /usr/sbin/pbuilder --build --configfile /srv/reproducible-results/rbuild-debian/r-b-build.TMHjzptU/pbuilderrc_EWon --distribution bookworm --hookdir /etc/pbuilder/first-build-hooks --debbuildopts -b --basetgz /var/cache/pbuilder/bookworm-reproducible-base.tgz --buildresult /srv/reproducible-results/rbuild-debian/r-b-build.TMHjzptU/b1 --logfile b1/build.log libmath-prime-util-gmp-perl_0.52-2.dsc'
  SUDO_GID='117'
  SUDO_UID='110'
  SUDO_USER='jenkins'
  TERM='unknown'
  TZ='/usr/share/zoneinfo/Etc/GMT+12'
  USER='root'
  USERNAME='root'
  _='/usr/bin/systemd-run'
  http_proxy='http://192.168.101.16:3128'
I: uname -a
  Linux codethink15-arm64 4.15.0-210-generic #221-Ubuntu SMP Tue Apr 18 08:32:48 UTC 2023 aarch64 GNU/Linux
I: ls -l /bin
  lrwxrwxrwx 1 root root 7 Jun 11 04:47 /bin -> usr/bin
I: user script /srv/workspace/pbuilder/23473/tmp/hooks/D02_print_environment finished
 -> Attempting to satisfy build-dependencies
 -> Creating pbuilder-satisfydepends-dummy package
Package: pbuilder-satisfydepends-dummy
Version: 0.invalid.0
Architecture: arm64
Maintainer: Debian Pbuilder Team <pbuilder-maint@lists.alioth.debian.org>
Description: Dummy package to satisfy dependencies with aptitude - created by pbuilder
 This package was created automatically by pbuilder to satisfy the
 build-dependencies of the package being currently built.
Depends: debhelper-compat (= 13), libdevel-checklib-perl, libgmp-dev, perl-xs-dev, perl:native
dpkg-deb: building package 'pbuilder-satisfydepends-dummy' in '/tmp/satisfydepends-aptitude/pbuilder-satisfydepends-dummy.deb'.
Selecting previously unselected package pbuilder-satisfydepends-dummy.
(Reading database ... 19616 files and directories currently installed.)
Preparing to unpack .../pbuilder-satisfydepends-dummy.deb ...
Unpacking pbuilder-satisfydepends-dummy (0.invalid.0) ...
dpkg: pbuilder-satisfydepends-dummy: dependency problems, but configuring anyway as you requested:
 pbuilder-satisfydepends-dummy depends on debhelper-compat (= 13); however:
  Package debhelper-compat is not installed.
 pbuilder-satisfydepends-dummy depends on libdevel-checklib-perl; however:
  Package libdevel-checklib-perl is not installed.
 pbuilder-satisfydepends-dummy depends on libgmp-dev; however:
  Package libgmp-dev is not installed.
 pbuilder-satisfydepends-dummy depends on perl-xs-dev; however:
  Package perl-xs-dev is not installed.
 pbuilder-satisfydepends-dummy depends on perl:native.

Setting up pbuilder-satisfydepends-dummy (0.invalid.0) ...
Reading package lists...
Building dependency tree...
Reading state information...
Initializing package states...
Writing extended state information...
Building tag database...
pbuilder-satisfydepends-dummy is already installed at the requested version (0.invalid.0)
pbuilder-satisfydepends-dummy is already installed at the requested version (0.invalid.0)
The following NEW packages will be installed:
  autoconf{a} automake{a} autopoint{a} autotools-dev{a} bsdextrautils{a} debhelper{a} dh-autoreconf{a} dh-strip-nondeterminism{a} dwz{a} file{a} gettext{a} gettext-base{a} groff-base{a} intltool-debian{a} libarchive-zip-perl{a} libdebhelper-perl{a} libdevel-checklib-perl{a} libelf1{a} libfile-stripnondeterminism-perl{a} libgmp-dev{a} libgmpxx4ldbl{a} libicu72{a} libmagic-mgc{a} libmagic1{a} libperl-dev{a} libpipeline1{a} libsub-override-perl{a} libtool{a} libuchardet0{a} libxml2{a} m4{a} man-db{a} po-debconf{a} sensible-utils{a} 
The following packages are RECOMMENDED but will NOT be installed:
  curl libarchive-cpio-perl libltdl-dev libmail-sendmail-perl lynx wget 
0 packages upgraded, 34 newly installed, 0 to remove and 0 not upgraded.
Need to get 20.3 MB of archives. After unpacking 81.7 MB will be used.
Writing extended state information...
Get: 1 http://deb.debian.org/debian bookworm/main arm64 sensible-utils all 0.0.17+nmu1 [19.0 kB]
Get: 2 http://deb.debian.org/debian bookworm/main arm64 libmagic-mgc arm64 1:5.44-3 [305 kB]
Get: 3 http://deb.debian.org/debian bookworm/main arm64 libmagic1 arm64 1:5.44-3 [98.5 kB]
Get: 4 http://deb.debian.org/debian bookworm/main arm64 file arm64 1:5.44-3 [42.5 kB]
Get: 5 http://deb.debian.org/debian bookworm/main arm64 gettext-base arm64 0.21-12 [159 kB]
Get: 6 http://deb.debian.org/debian bookworm/main arm64 libuchardet0 arm64 0.0.7-1 [67.9 kB]
Get: 7 http://deb.debian.org/debian bookworm/main arm64 groff-base arm64 1.22.4-10 [861 kB]
Get: 8 http://deb.debian.org/debian bookworm/main arm64 bsdextrautils arm64 2.38.1-5+b1 [86.9 kB]
Get: 9 http://deb.debian.org/debian bookworm/main arm64 libpipeline1 arm64 1.5.7-1 [36.4 kB]
Get: 10 http://deb.debian.org/debian bookworm/main arm64 man-db arm64 2.11.2-2 [1369 kB]
Get: 11 http://deb.debian.org/debian bookworm/main arm64 m4 arm64 1.4.19-3 [276 kB]
Get: 12 http://deb.debian.org/debian bookworm/main arm64 autoconf all 2.71-3 [332 kB]
Get: 13 http://deb.debian.org/debian bookworm/main arm64 autotools-dev all 20220109.1 [51.6 kB]
Get: 14 http://deb.debian.org/debian bookworm/main arm64 automake all 1:1.16.5-1.3 [823 kB]
Get: 15 http://deb.debian.org/debian bookworm/main arm64 autopoint all 0.21-12 [495 kB]
Get: 16 http://deb.debian.org/debian bookworm/main arm64 libdebhelper-perl all 13.11.4 [81.2 kB]
Get: 17 http://deb.debian.org/debian bookworm/main arm64 libtool all 2.4.7-5 [517 kB]
Get: 18 http://deb.debian.org/debian bookworm/main arm64 dh-autoreconf all 20 [17.1 kB]
Get: 19 http://deb.debian.org/debian bookworm/main arm64 libarchive-zip-perl all 1.68-1 [104 kB]
Get: 20 http://deb.debian.org/debian bookworm/main arm64 libsub-override-perl all 0.09-4 [9304 B]
Get: 21 http://deb.debian.org/debian bookworm/main arm64 libfile-stripnondeterminism-perl all 1.13.1-1 [19.4 kB]
Get: 22 http://deb.debian.org/debian bookworm/main arm64 dh-strip-nondeterminism all 1.13.1-1 [8620 B]
Get: 23 http://deb.debian.org/debian bookworm/main arm64 libelf1 arm64 0.188-2.1 [173 kB]
Get: 24 http://deb.debian.org/debian bookworm/main arm64 dwz arm64 0.15-1 [101 kB]
Get: 25 http://deb.debian.org/debian bookworm/main arm64 libicu72 arm64 72.1-3 [9204 kB]
Get: 26 http://deb.debian.org/debian bookworm/main arm64 libxml2 arm64 2.9.14+dfsg-1.2 [620 kB]
Get: 27 http://deb.debian.org/debian bookworm/main arm64 gettext arm64 0.21-12 [1248 kB]
Get: 28 http://deb.debian.org/debian bookworm/main arm64 intltool-debian all 0.35.0+20060710.6 [22.9 kB]
Get: 29 http://deb.debian.org/debian bookworm/main arm64 po-debconf all 1.0.21+nmu1 [248 kB]
Get: 30 http://deb.debian.org/debian bookworm/main arm64 debhelper all 13.11.4 [942 kB]
Get: 31 http://deb.debian.org/debian bookworm/main arm64 libdevel-checklib-perl all 1.16-1 [18.5 kB]
Get: 32 http://deb.debian.org/debian bookworm/main arm64 libgmpxx4ldbl arm64 2:6.2.1+dfsg1-1.1 [338 kB]
Get: 33 http://deb.debian.org/debian bookworm/main arm64 libgmp-dev arm64 2:6.2.1+dfsg1-1.1 [622 kB]
Get: 34 http://deb.debian.org/debian bookworm/main arm64 libperl-dev arm64 5.36.0-7 [957 kB]
Fetched 20.3 MB in 0s (41.4 MB/s)
debconf: delaying package configuration, since apt-utils is not installed
Selecting previously unselected package sensible-utils.
(Reading database ... 
(Reading database ... 5%
(Reading database ... 10%
(Reading database ... 15%
(Reading database ... 20%
(Reading database ... 25%
(Reading database ... 30%
(Reading database ... 35%
(Reading database ... 40%
(Reading database ... 45%
(Reading database ... 50%
(Reading database ... 55%
(Reading database ... 60%
(Reading database ... 65%
(Reading database ... 70%
(Reading database ... 75%
(Reading database ... 80%
(Reading database ... 85%
(Reading database ... 90%
(Reading database ... 95%
(Reading database ... 100%
(Reading database ... 19616 files and directories currently installed.)
Preparing to unpack .../00-sensible-utils_0.0.17+nmu1_all.deb ...
Unpacking sensible-utils (0.0.17+nmu1) ...
Selecting previously unselected package libmagic-mgc.
Preparing to unpack .../01-libmagic-mgc_1%3a5.44-3_arm64.deb ...
Unpacking libmagic-mgc (1:5.44-3) ...
Selecting previously unselected package libmagic1:arm64.
Preparing to unpack .../02-libmagic1_1%3a5.44-3_arm64.deb ...
Unpacking libmagic1:arm64 (1:5.44-3) ...
Selecting previously unselected package file.
Preparing to unpack .../03-file_1%3a5.44-3_arm64.deb ...
Unpacking file (1:5.44-3) ...
Selecting previously unselected package gettext-base.
Preparing to unpack .../04-gettext-base_0.21-12_arm64.deb ...
Unpacking gettext-base (0.21-12) ...
Selecting previously unselected package libuchardet0:arm64.
Preparing to unpack .../05-libuchardet0_0.0.7-1_arm64.deb ...
Unpacking libuchardet0:arm64 (0.0.7-1) ...
Selecting previously unselected package groff-base.
Preparing to unpack .../06-groff-base_1.22.4-10_arm64.deb ...
Unpacking groff-base (1.22.4-10) ...
Selecting previously unselected package bsdextrautils.
Preparing to unpack .../07-bsdextrautils_2.38.1-5+b1_arm64.deb ...
Unpacking bsdextrautils (2.38.1-5+b1) ...
Selecting previously unselected package libpipeline1:arm64.
Preparing to unpack .../08-libpipeline1_1.5.7-1_arm64.deb ...
Unpacking libpipeline1:arm64 (1.5.7-1) ...
Selecting previously unselected package man-db.
Preparing to unpack .../09-man-db_2.11.2-2_arm64.deb ...
Unpacking man-db (2.11.2-2) ...
Selecting previously unselected package m4.
Preparing to unpack .../10-m4_1.4.19-3_arm64.deb ...
Unpacking m4 (1.4.19-3) ...
Selecting previously unselected package autoconf.
Preparing to unpack .../11-autoconf_2.71-3_all.deb ...
Unpacking autoconf (2.71-3) ...
Selecting previously unselected package autotools-dev.
Preparing to unpack .../12-autotools-dev_20220109.1_all.deb ...
Unpacking autotools-dev (20220109.1) ...
Selecting previously unselected package automake.
Preparing to unpack .../13-automake_1%3a1.16.5-1.3_all.deb ...
Unpacking automake (1:1.16.5-1.3) ...
Selecting previously unselected package autopoint.
Preparing to unpack .../14-autopoint_0.21-12_all.deb ...
Unpacking autopoint (0.21-12) ...
Selecting previously unselected package libdebhelper-perl.
Preparing to unpack .../15-libdebhelper-perl_13.11.4_all.deb ...
Unpacking libdebhelper-perl (13.11.4) ...
Selecting previously unselected package libtool.
Preparing to unpack .../16-libtool_2.4.7-5_all.deb ...
Unpacking libtool (2.4.7-5) ...
Selecting previously unselected package dh-autoreconf.
Preparing to unpack .../17-dh-autoreconf_20_all.deb ...
Unpacking dh-autoreconf (20) ...
Selecting previously unselected package libarchive-zip-perl.
Preparing to unpack .../18-libarchive-zip-perl_1.68-1_all.deb ...
Unpacking libarchive-zip-perl (1.68-1) ...
Selecting previously unselected package libsub-override-perl.
Preparing to unpack .../19-libsub-override-perl_0.09-4_all.deb ...
Unpacking libsub-override-perl (0.09-4) ...
Selecting previously unselected package libfile-stripnondeterminism-perl.
Preparing to unpack .../20-libfile-stripnondeterminism-perl_1.13.1-1_all.deb ...
Unpacking libfile-stripnondeterminism-perl (1.13.1-1) ...
Selecting previously unselected package dh-strip-nondeterminism.
Preparing to unpack .../21-dh-strip-nondeterminism_1.13.1-1_all.deb ...
Unpacking dh-strip-nondeterminism (1.13.1-1) ...
Selecting previously unselected package libelf1:arm64.
Preparing to unpack .../22-libelf1_0.188-2.1_arm64.deb ...
Unpacking libelf1:arm64 (0.188-2.1) ...
Selecting previously unselected package dwz.
Preparing to unpack .../23-dwz_0.15-1_arm64.deb ...
Unpacking dwz (0.15-1) ...
Selecting previously unselected package libicu72:arm64.
Preparing to unpack .../24-libicu72_72.1-3_arm64.deb ...
Unpacking libicu72:arm64 (72.1-3) ...
Selecting previously unselected package libxml2:arm64.
Preparing to unpack .../25-libxml2_2.9.14+dfsg-1.2_arm64.deb ...
Unpacking libxml2:arm64 (2.9.14+dfsg-1.2) ...
Selecting previously unselected package gettext.
Preparing to unpack .../26-gettext_0.21-12_arm64.deb ...
Unpacking gettext (0.21-12) ...
Selecting previously unselected package intltool-debian.
Preparing to unpack .../27-intltool-debian_0.35.0+20060710.6_all.deb ...
Unpacking intltool-debian (0.35.0+20060710.6) ...
Selecting previously unselected package po-debconf.
Preparing to unpack .../28-po-debconf_1.0.21+nmu1_all.deb ...
Unpacking po-debconf (1.0.21+nmu1) ...
Selecting previously unselected package debhelper.
Preparing to unpack .../29-debhelper_13.11.4_all.deb ...
Unpacking debhelper (13.11.4) ...
Selecting previously unselected package libdevel-checklib-perl.
Preparing to unpack .../30-libdevel-checklib-perl_1.16-1_all.deb ...
Unpacking libdevel-checklib-perl (1.16-1) ...
Selecting previously unselected package libgmpxx4ldbl:arm64.
Preparing to unpack .../31-libgmpxx4ldbl_2%3a6.2.1+dfsg1-1.1_arm64.deb ...
Unpacking libgmpxx4ldbl:arm64 (2:6.2.1+dfsg1-1.1) ...
Selecting previously unselected package libgmp-dev:arm64.
Preparing to unpack .../32-libgmp-dev_2%3a6.2.1+dfsg1-1.1_arm64.deb ...
Unpacking libgmp-dev:arm64 (2:6.2.1+dfsg1-1.1) ...
Selecting previously unselected package libperl-dev:arm64.
Preparing to unpack .../33-libperl-dev_5.36.0-7_arm64.deb ...
Unpacking libperl-dev:arm64 (5.36.0-7) ...
Setting up libpipeline1:arm64 (1.5.7-1) ...
Setting up libicu72:arm64 (72.1-3) ...
Setting up bsdextrautils (2.38.1-5+b1) ...
Setting up libmagic-mgc (1:5.44-3) ...
Setting up libdevel-checklib-perl (1.16-1) ...
Setting up libarchive-zip-perl (1.68-1) ...
Setting up libdebhelper-perl (13.11.4) ...
Setting up libmagic1:arm64 (1:5.44-3) ...
Setting up gettext-base (0.21-12) ...
Setting up m4 (1.4.19-3) ...
Setting up libperl-dev:arm64 (5.36.0-7) ...
Setting up file (1:5.44-3) ...
Setting up autotools-dev (20220109.1) ...
Setting up libgmpxx4ldbl:arm64 (2:6.2.1+dfsg1-1.1) ...
Setting up autopoint (0.21-12) ...
Setting up autoconf (2.71-3) ...
Setting up sensible-utils (0.0.17+nmu1) ...
Setting up libuchardet0:arm64 (0.0.7-1) ...
Setting up libsub-override-perl (0.09-4) ...
Setting up libelf1:arm64 (0.188-2.1) ...
Setting up libxml2:arm64 (2.9.14+dfsg-1.2) ...
Setting up automake (1:1.16.5-1.3) ...
update-alternatives: using /usr/bin/automake-1.16 to provide /usr/bin/automake (automake) in auto mode
Setting up libfile-stripnondeterminism-perl (1.13.1-1) ...
Setting up gettext (0.21-12) ...
Setting up libgmp-dev:arm64 (2:6.2.1+dfsg1-1.1) ...
Setting up libtool (2.4.7-5) ...
Setting up intltool-debian (0.35.0+20060710.6) ...
Setting up dh-autoreconf (20) ...
Setting up dh-strip-nondeterminism (1.13.1-1) ...
Setting up dwz (0.15-1) ...
Setting up groff-base (1.22.4-10) ...
Setting up po-debconf (1.0.21+nmu1) ...
Setting up man-db (2.11.2-2) ...
Not building database; man-db/auto-update is not 'true'.
Setting up debhelper (13.11.4) ...
Processing triggers for libc-bin (2.36-9) ...
Reading package lists...
Building dependency tree...
Reading state information...
Reading extended state information...
Initializing package states...
Writing extended state information...
Building tag database...
 -> Finished parsing the build-deps
I: Building the package
I: Running cd /build/libmath-prime-util-gmp-perl-0.52/ && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games" HOME="/nonexistent/first-build" dpkg-buildpackage -us -uc -b && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games" HOME="/nonexistent/first-build" dpkg-genchanges -S  > ../libmath-prime-util-gmp-perl_0.52-2_source.changes
dpkg-buildpackage: info: source package libmath-prime-util-gmp-perl
dpkg-buildpackage: info: source version 0.52-2
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Jelmer Vernooij <jelmer@debian.org>
 dpkg-source --before-build .
dpkg-buildpackage: info: host architecture arm64
 debian/rules clean
dh clean
   debian/rules override_dh_auto_clean
make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.52'
dh_auto_clean
[ ! -d /build/libmath-prime-util-gmp-perl-0.52/inc.save ] || mv /build/libmath-prime-util-gmp-perl-0.52/inc.save /build/libmath-prime-util-gmp-perl-0.52/inc
make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.52'
   dh_clean
 debian/rules binary
dh binary
   dh_update_autotools_config
   dh_autoreconf
   debian/rules override_dh_auto_configure
make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.52'
[ ! -d /build/libmath-prime-util-gmp-perl-0.52/inc ] || mv /build/libmath-prime-util-gmp-perl-0.52/inc /build/libmath-prime-util-gmp-perl-0.52/inc.save
dh_auto_configure
	/usr/bin/perl Makefile.PL INSTALLDIRS=vendor "OPTIMIZE=-g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2" "LD=aarch64-linux-gnu-gcc -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wl,-z,relro -Wl,-z,now"
Checking if your kit is complete...
Warning: the following files are missing in your kit:
	inc/Devel/CheckLib.pm
Please inform the author.
Generating a Unix-style Makefile
Writing Makefile for Math::Prime::Util::GMP
Writing MYMETA.yml and MYMETA.json
make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.52'
   dh_auto_build
	make -j8
make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.52'
Running Mkbootstrap for GMP ()
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   prime_iterator.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   utility.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   primality.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   factor.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   pbrent63.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   squfof126.c
chmod 644 "GMP.bs"
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   ecm.c
cp lib/Math/Prime/Util/GMP.pm blib/lib/Math/Prime/Util/GMP.pm
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   tinyqs.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   simpqs.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   bls75.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   ecpp.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   aks.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   gmp_main.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   real.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   isaac.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   random_prime.c
"/usr/bin/perl" "/usr/share/perl/5.36/ExtUtils/xsubpp"  -typemap '/usr/share/perl/5.36/ExtUtils/typemap'  XS.xs > XS.xsc
"/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- GMP.bs blib/arch/auto/Math/Prime/Util/GMP/GMP.bs 644
mv XS.xsc XS.c
aarch64-linux-gnu-gcc -c   -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2   -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/aarch64-linux-gnu/perl/5.36/CORE"   XS.c
rm -f blib/arch/auto/Math/Prime/Util/GMP/GMP.so
aarch64-linux-gnu-gcc -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wl,-z,relro -Wl,-z,now  -shared -L/usr/local/lib -fstack-protector-strong  prime_iterator.o utility.o primality.o factor.o pbrent63.o squfof126.o ecm.o tinyqs.o simpqs.o bls75.o ecpp.o aks.o gmp_main.o real.o isaac.o random_prime.o XS.o  -o blib/arch/auto/Math/Prime/Util/GMP/GMP.so  \
   -lgmp -lm   \
  
chmod 755 blib/arch/auto/Math/Prime/Util/GMP/GMP.so
Manifying 1 pod document
make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.52'
   dh_auto_test
	make -j8 test TEST_VERBOSE=1
make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.52'
"/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- GMP.bs blib/arch/auto/Math/Prime/Util/GMP/GMP.bs 644
PERL_DL_NONLAZY=1 "/usr/bin/perl" "-MExtUtils::Command::MM" "-MTest::Harness" "-e" "undef *Test::Harness::Switches; test_harness(1, 'blib/lib', 'blib/arch')" t/*.t
t/01-load.t .................. 
1..1
ok 1 - require Math::Prime::Util::GMP;
ok
t/02-can.t ................... 
1..1
ok 1 - Math::Prime::Util::GMP->can(...)
ok
t/10-isprime.t ............... 
1..227
ok 1 - 2 is prime
ok 2 - 1 is not prime
ok 3 - 0 is not prime
ok 4 - -1 is not prime
ok 5 - -2 is not prime
ok 6 - 20 is not prime
ok 7 - 2**2=4 is not prime
ok 8 - 2**3=8 is not prime
ok 9 - 2**4=16 is not prime
ok 10 - 2**5=32 is not prime
ok 11 - 2**6=64 is not prime
ok 12 - 2**7=128 is not prime
ok 13 - 2**8=256 is not prime
ok 14 - 2**9=512 is not prime
ok 15 - 2**10=1024 is not prime
ok 16 - 2**11=2048 is not prime
ok 17 - 2**12=4096 is not prime
ok 18 - 2**13=8192 is not prime
ok 19 - 2**14=16384 is not prime
ok 20 - 2**15=32768 is not prime
ok 21 - 2**16=65536 is not prime
ok 22 - 2**17=131072 is not prime
ok 23 - 2**18=262144 is not prime
ok 24 - 2**19=524288 is not prime
ok 25 - 2**20=1048576 is not prime
ok 26 - is_prime 0..3572
ok 27 - A006945 number 9 is not prime
ok 28 - A006945 number 2047 is not prime
ok 29 - A006945 number 1373653 is not prime
ok 30 - A006945 number 25326001 is not prime
ok 31 - A006945 number 3215031751 is not prime
ok 32 - A006945 number 2152302898747 is not prime
ok 33 - A006945 number 3474749660383 is not prime
ok 34 - A006945 number 341550071728321 is not prime
ok 35 - A006945 number 341550071728321 is not prime
ok 36 - A006945 number 3825123056546413051 is not prime
ok 37 - Carmichael Number 561 is not prime
ok 38 - Carmichael Number 1105 is not prime
ok 39 - Carmichael Number 1729 is not prime
ok 40 - Carmichael Number 2465 is not prime
ok 41 - Carmichael Number 2821 is not prime
ok 42 - Carmichael Number 6601 is not prime
ok 43 - Carmichael Number 8911 is not prime
ok 44 - Carmichael Number 10585 is not prime
ok 45 - Carmichael Number 15841 is not prime
ok 46 - Carmichael Number 29341 is not prime
ok 47 - Carmichael Number 41041 is not prime
ok 48 - Carmichael Number 46657 is not prime
ok 49 - Carmichael Number 52633 is not prime
ok 50 - Carmichael Number 62745 is not prime
ok 51 - Carmichael Number 63973 is not prime
ok 52 - Carmichael Number 75361 is not prime
ok 53 - Carmichael Number 101101 is not prime
ok 54 - Carmichael Number 340561 is not prime
ok 55 - Carmichael Number 488881 is not prime
ok 56 - Carmichael Number 852841 is not prime
ok 57 - Carmichael Number 1857241 is not prime
ok 58 - Carmichael Number 6733693 is not prime
ok 59 - Carmichael Number 9439201 is not prime
ok 60 - Carmichael Number 17236801 is not prime
ok 61 - Carmichael Number 23382529 is not prime
ok 62 - Carmichael Number 34657141 is not prime
ok 63 - Carmichael Number 56052361 is not prime
ok 64 - Carmichael Number 146843929 is not prime
ok 65 - Carmichael Number 216821881 is not prime
ok 66 - Pseudoprime (base 2) 341 is not prime
ok 67 - Pseudoprime (base 2) 561 is not prime
ok 68 - Pseudoprime (base 2) 645 is not prime
ok 69 - Pseudoprime (base 2) 1105 is not prime
ok 70 - Pseudoprime (base 2) 1387 is not prime
ok 71 - Pseudoprime (base 2) 1729 is not prime
ok 72 - Pseudoprime (base 2) 1905 is not prime
ok 73 - Pseudoprime (base 2) 2047 is not prime
ok 74 - Pseudoprime (base 2) 2465 is not prime
ok 75 - Pseudoprime (base 2) 2701 is not prime
ok 76 - Pseudoprime (base 2) 2821 is not prime
ok 77 - Pseudoprime (base 2) 3277 is not prime
ok 78 - Pseudoprime (base 2) 4033 is not prime
ok 79 - Pseudoprime (base 2) 4369 is not prime
ok 80 - Pseudoprime (base 2) 4371 is not prime
ok 81 - Pseudoprime (base 2) 4681 is not prime
ok 82 - Pseudoprime (base 2) 5461 is not prime
ok 83 - Pseudoprime (base 2) 6601 is not prime
ok 84 - Pseudoprime (base 2) 7957 is not prime
ok 85 - Pseudoprime (base 2) 8321 is not prime
ok 86 - Pseudoprime (base 2) 52633 is not prime
ok 87 - Pseudoprime (base 2) 88357 is not prime
ok 88 - Pseudoprime (base 3) 121 is not prime
ok 89 - Pseudoprime (base 3) 703 is not prime
ok 90 - Pseudoprime (base 3) 1891 is not prime
ok 91 - Pseudoprime (base 3) 3281 is not prime
ok 92 - Pseudoprime (base 3) 8401 is not prime
ok 93 - Pseudoprime (base 3) 8911 is not prime
ok 94 - Pseudoprime (base 3) 10585 is not prime
ok 95 - Pseudoprime (base 3) 12403 is not prime
ok 96 - Pseudoprime (base 3) 16531 is not prime
ok 97 - Pseudoprime (base 3) 18721 is not prime
ok 98 - Pseudoprime (base 3) 19345 is not prime
ok 99 - Pseudoprime (base 3) 23521 is not prime
ok 100 - Pseudoprime (base 3) 31621 is not prime
ok 101 - Pseudoprime (base 3) 44287 is not prime
ok 102 - Pseudoprime (base 3) 47197 is not prime
ok 103 - Pseudoprime (base 3) 55969 is not prime
ok 104 - Pseudoprime (base 3) 63139 is not prime
ok 105 - Pseudoprime (base 3) 74593 is not prime
ok 106 - Pseudoprime (base 3) 79003 is not prime
ok 107 - Pseudoprime (base 3) 82513 is not prime
ok 108 - Pseudoprime (base 3) 87913 is not prime
ok 109 - Pseudoprime (base 3) 88573 is not prime
ok 110 - Pseudoprime (base 3) 97567 is not prime
ok 111 - Pseudoprime (base 5) 781 is not prime
ok 112 - Pseudoprime (base 5) 1541 is not prime
ok 113 - Pseudoprime (base 5) 5461 is not prime
ok 114 - Pseudoprime (base 5) 5611 is not prime
ok 115 - Pseudoprime (base 5) 7813 is not prime
ok 116 - Pseudoprime (base 5) 13021 is not prime
ok 117 - Pseudoprime (base 5) 14981 is not prime
ok 118 - Pseudoprime (base 5) 15751 is not prime
ok 119 - Pseudoprime (base 5) 24211 is not prime
ok 120 - Pseudoprime (base 5) 25351 is not prime
ok 121 - Pseudoprime (base 5) 29539 is not prime
ok 122 - Pseudoprime (base 5) 38081 is not prime
ok 123 - Pseudoprime (base 5) 40501 is not prime
ok 124 - Pseudoprime (base 5) 44801 is not prime
ok 125 - Pseudoprime (base 5) 53971 is not prime
ok 126 - Pseudoprime (base 5) 79381 is not prime
ok 127 - Primegap start 2 is prime
ok 128 - Primegap start 3 is prime
ok 129 - Primegap start 7 is prime
ok 130 - Primegap start 23 is prime
ok 131 - Primegap start 89 is prime
ok 132 - Primegap start 113 is prime
ok 133 - Primegap start 523 is prime
ok 134 - Primegap start 887 is prime
ok 135 - Primegap start 1129 is prime
ok 136 - Primegap start 1327 is prime
ok 137 - Primegap start 9551 is prime
ok 138 - Primegap start 15683 is prime
ok 139 - Primegap start 19609 is prime
ok 140 - Primegap start 31397 is prime
ok 141 - Primegap start 155921 is prime
ok 142 - Primegap end 5 is prime
ok 143 - Primegap end 11 is prime
ok 144 - Primegap end 29 is prime
ok 145 - Primegap end 97 is prime
ok 146 - Primegap end 127 is prime
ok 147 - Primegap end 541 is prime
ok 148 - Primegap end 907 is prime
ok 149 - Primegap end 1151 is prime
ok 150 - Primegap end 1361 is prime
ok 151 - Primegap end 9587 is prime
ok 152 - Primegap end 15727 is prime
ok 153 - Primegap end 19661 is prime
ok 154 - Primegap end 31469 is prime
ok 155 - Primegap end 156007 is prime
ok 156 - Primegap end 360749 is prime
ok 157 - Primegap end 370373 is prime
ok 158 - Primegap end 492227 is prime
ok 159 - Primegap end 1349651 is prime
ok 160 - Primegap end 1357333 is prime
ok 161 - Primegap end 2010881 is prime
ok 162 - Primegap end 4652507 is prime
ok 163 - Primegap end 17051887 is prime
ok 164 - Primegap end 20831533 is prime
ok 165 - Primegap end 47326913 is prime
ok 166 - Primegap end 122164969 is prime
ok 167 - Primegap end 189695893 is prime
ok 168 - Primegap end 191913031 is prime
ok 169 - Primegap end 10726905041 is prime
ok 170 - Primegap end 387096383 is prime
ok 171 - Primegap end 436273291 is prime
ok 172 - Primegap end 1294268779 is prime
ok 173 - Primegap end 1453168433 is prime
ok 174 - Primegap end 2300942869 is prime
ok 175 - Primegap end 3842611109 is prime
ok 176 - Primegap end 4302407713 is prime
ok 177 - Primegap end 20678048681 is prime
ok 178 - Primegap end 22367085353 is prime
ok 179 - Primegap end 25056082543 is prime
ok 180 - Primegap end 42652618807 is prime
ok 181 - Primegap end 127976334671 is prime
ok 182 - Primegap end 182226896239 is prime
ok 183 - Primegap end 241160624143 is prime
ok 184 - Primegap end 297501075799 is prime
ok 185 - Primegap end 303371455241 is prime
ok 186 - Primegap end 304599508537 is prime
ok 187 - Primegap end 416608695821 is prime
ok 188 - Primegap end 461690510011 is prime
ok 189 - Primegap end 614487453523 is prime
ok 190 - Primegap end 738832927927 is prime
ok 191 - Primegap end 1346294310749 is prime
ok 192 - Primegap end 1408695493609 is prime
ok 193 - Primegap end 1968188556461 is prime
ok 194 - Primegap end 2614941710599 is prime
ok 195 - Primegap end 7177162611713 is prime
ok 196 - Primegap end 13829048559701 is prime
ok 197 - Primegap end 19581334192423 is prime
ok 198 - Primegap end 42842283925351 is prime
ok 199 - Primegap end 90874329411493 is prime
ok 200 - Primegap end 171231342420521 is prime
ok 201 - Primegap end 1425172824437699411 is prime
ok 202 - Primegap start 41437872381314257606025664648551531 is prime
ok 203 - Primegap start 2533428381785258181145396408525147 is prime
ok 204 - Primegap start 6429801387755251608076552195160813 is prime
ok 205 - Primegap start 41553317381222258299076384479889759 is prime
ok 206 - Primegap start 36315406071322208317982870602883 is prime
ok 207 - Primegap start 45578379712061211117046756353187 is prime
ok 208 - Primegap start 853188381785258606010648985968457 is prime
ok 209 - Primegap start 888753381785258606882214366477061 is prime
ok 210 - Large prime 225024267640198977569930286413453544441731198242501 is prime
ok 211 - Large prime 117012619172903468336363755054149226979817746816041 is prime
ok 212 - Large prime 531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127 is prime
ok 213 - Large prime 92751329613360357106269703807871171087102857318174669180345062763478315192734600581256686043065309145579066294614789483004809764977045757613701500430172705662998376708484136826337990209855359024352422688815970711638591317382567474931186571722543217265405033315880950490013269952667650366965082529384527374177 is prime
ok 214 - Large prime 32260744804243979022151766262161234411163230832614876909266661009538736040353215637132894501612353010543647977249384696464608093622417037943487940297713136625578440884358987868505411720686648801150726329314235915696991593215969719047680808482063865275910410329176506289872973203004139815308900515515244012185782792865548320042281725631557473818091156913398618606687353487817756951894689296125125745219508443864021389470338722761499570221166792212754530607135317650463501248358538246234526221292291399209816873396728066128587613467291339613990745570031925686037674992827058364602015693306309221496407276025345897341847 is prime
ok 215 - Large prime 741396953013654360447130328344036195463451575964208809937212804294129714670068945580433523222395982402982697545970774900776520388371921559613345658117858514521005297959953114279118002815246386498175953512848112483829848122269294444605330839657412152438182209874755797291767504531960060238286549305381539583199152421722832641143066110744833138611455286547147404482909367418917279008726128416147000372123061195691620902127739725422428617685907314016736926212798020427887587562043320485749196280067057894293080208114019557078624547720775548197602227651474547221582994513675272163167738690346545549988775205966423807402030104516784101084806845639397870429182441506430010222493085299118475419254862008744168191879396758301572743283703529570334803330960201229624052255881219905504918044357793149162118185478553170626317902665884547746435111999694067410243494584529487741658481642249023103753134680734412840328449909896847175077758262986499427135151069709448521414215035574272868281224727572369419529536625125298888387473824456936636521457187215362102409447089422614360505828034680296548026192715652255266408626555770777003931789812374333546088379306076791601248774333377106632994883876629562024348840502578094204183502272143692446875343057 is prime
ok 216 - Large composite 777777777777777777777777 is not prime
ok 217 - Large composite 877777777777777777777777 is not prime
ok 218 - Large composite 87777777777777777777777795475 is not prime
ok 219 - Large composite 890745785790123461234805903467891234681234 is not prime
ok 220 - Large composite 318665857834031151167461 is not prime
ok 221 - Large composite 3317044064679887385961981 is not prime
ok 222 - Large composite 6003094289670105800312596501 is not prime
ok 223 - Large composite 59276361075595573263446330101 is not prime
ok 224 - Large composite 564132928021909221014087501701 is not prime
ok 225 - Large composite 1543267864443420616877677640751301 is not prime
ok 226 - is_prime(2**135+33) = 2
ok 227 - is_prime is deterministic for 81-bit input
ok
t/11-primes.t ................ 
1..63
ok 1 - primes(undef)
ok 2 - primes(a)
ok 3 - primes(-4)
ok 4 - primes(2,undef)
ok 5 - primes(2,x)
ok 6 - primes(2,-4)
ok 7 - primes(undef,7)
ok 8 - primes(x,7)
ok 9 - primes(-10,7)
ok 10 - primes(undef,undef)
ok 11 - primes(x,x)
ok 12 - primes(-10,-4)
ok 13 - primes(18) should return [2 3 5 7 11 13 17]
ok 14 - primes(5) should return [2 3 5]
ok 15 - primes(20) should return [2 3 5 7 11 13 17 19]
ok 16 - primes(0) should return []
ok 17 - primes(2) should return [2]
ok 18 - primes(4) should return [2 3]
ok 19 - primes(11) should return [2 3 5 7 11]
ok 20 - primes(3) should return [2 3]
ok 21 - primes(19) should return [2 3 5 7 11 13 17 19]
ok 22 - primes(6) should return [2 3 5]
ok 23 - primes(1) should return []
ok 24 - primes(7) should return [2 3 5 7]
ok 25 - primes(2010733,2010881) should return [2010733 2010881]
ok 26 - primes(2010734,2010880) should return []
ok 27 - primes(3,3) should return [3]
ok 28 - primes(3089,3163) should return [3089 3109 3119 3121 3137 3163]
ok 29 - primes(2,3) should return [2 3]
ok 30 - primes(3090,3162) should return [3109 3119 3121 3137]
ok 31 - primes(3842610774,3842611108) should return []
ok 32 - primes(3,6) should return [3 5]
ok 33 - primes(70,30) should return []
ok 34 - primes(30,70) should return [31 37 41 43 47 53 59 61 67]
ok 35 - primes(2,2) should return [2]
ok 36 - primes(20,2) should return []
ok 37 - primes(3842610773,3842611109) should return [3842610773 3842611109]
ok 38 - primes(2,20) should return [2 3 5 7 11 13 17 19]
ok 39 - primes(4,8) should return [5 7]
ok 40 - primes(3,7) should return [3 5 7]
ok 41 - primes(3088,3164) should return [3089 3109 3119 3121 3137 3163]
ok 42 - primes(3,9) should return [3 5 7]
ok 43 - primes(2,5) should return [2 3 5]
ok 44 - Primes between 1_693_182_318_746_371 and 1_693_182_318_747_671
ok 45 - primes( 2^66, 2^66 + 100 )
ok 46 - count primes within a range
ok 47 - Primes between 0 and 3572
ok 48 - Primes between 2 and 20
ok 49 - Primes between 30 and 70
ok 50 - Primes between 30 and 70
ok 51 - Primes between 20 and 2
ok 52 - Primes between 1 and 1
ok 53 - Primes between 2 and 2
ok 54 - Primes between 3 and 3
ok 55 - Primegap 21 inclusive
ok 56 - Primegap 21 exclusive
ok 57 - Primes between 3088 and 3164
ok 58 - Primes between 3089 and 3163
ok 59 - Primes between 3090 and 3162
ok 60 - use sieve_primes to partial sieve a range
ok 61 - use sieve_range to sieve a large range
ok 62 - Sieve twin primes 10^30 10^30+20000
ok 63 - Sieve twin primes 10^30+4832 10^20+18738 should be empty
ok
t/12-nextprime.t ............. 
1..29
ok 1 - prev_prime 0..3572
ok 2 - next_prime 0..3572
ok 3 - next prime of 19609 is 19609+52
ok 4 - prev prime of 19609+52 is 19609
ok 5 - next prime of 360653 is 360653+96
ok 6 - prev prime of 360653+96 is 360653
ok 7 - next prime of 2010733 is 2010733+148
ok 8 - prev prime of 2010733+148 is 2010733
ok 9 - next prime of 19608 is 19609
ok 10 - next prime of 19610 is 19661
ok 11 - next prime of 19660 is 19661
ok 12 - prev prime of 19662 is 19661
ok 13 - prev prime of 19660 is 19609
ok 14 - prev prime of 19610 is 19609
ok 15 - Previous prime of 2 returns undef
ok 16 - next_prime(2010733..2010880) = 2010881
ok 17 - prev_prime(2010734..2010881) = 2010733
ok 18 - next_prime(1234567890) == 1234567891)
ok 19 - next_prime(8756....73456) = 8756....73779
ok 20 - prev_prime(1353....31156) = 1353....30917
ok 21 - surround_primes(2)
ok 22 - surround_primes(2)
ok 23 - surround_primes(29384928409238)
ok 24 - surround_primes(2^64)
ok 25 - surround_primes(2^65+41)
ok 26 - surround_primes(2^65+41,89)
ok 27 - surround_primes(2^65+41,90)
ok 28 - twin primes 10^x
ok 29 - next_twin_prime on record gaps
ok
t/13-primecount.t ............ 
1..239
ok 1 - prime_count(0,1) == 0
ok 2 - prime_count(0,2) == 1
ok 3 - prime_count(0,3) == 2
ok 4 - prime_count(2,2) == 2
ok 5 - Pi(10) = 4
ok 6 - Pi(1000) = 168
ok 7 - Pi(1) = 0
ok 8 - Pi(10000) = 1229
ok 9 - Pi(100) = 25
ok 10 - Pi(65535) = 6542
ok 11 - prime_count(24113483758197309440,24113483758197310396) = 23
ok 12 - prime_count(45490240575506677760,45490240575506679266) = 45
ok 13 - prime_count(75458848506302300160,75458848506302301114) = 18
ok 14 - prime_count(161891136728481923072,161891136728481923850) = 18
ok 15 - prime_count(342679779996280025856,342679779996280027487) = 36
ok 16 - prime_count(759817770139002651712,759817770139002652700) = 26
ok 17 - prime_count(1747599191389174303424,1747599191389174303464) = 1
ok 18 - prime_count(3277252439479060606848,3277252439479060607688) = 12
ok 19 - prime_count(6887003433586725213696,6887003433586725213705) = 0
ok 20 - prime_count(9515645314265862127392,9515645314265862128163) = 15
ok 21 - prime_count(26114788673620260854784,26114788673620260855763) = 17
ok 22 - prime_count(50021095190478561709568,50021095190478561710552) = 16
ok 23 - prime_count(99293609391529723419136,99293609391529723420902) = 20
ok 24 - prime_count(192328541043198946838272,192328541043198946839023) = 18
ok 25 - prime_count(386730387965240293676544,386730387965240293678117) = 29
ok 26 - prime_count(735479117913496587353088,735479117913496587354687) = 32
ok 27 - prime_count(1330998807397722174706176,1330998807397722174706347) = 3
ok 28 - prime_count(2904510561226220349412352,2904510561226220349413930) = 21
ok 29 - prime_count(6847845859597286698824704,6847845859597286698826460) = 26
ok 30 - prime_count(9880100064397462397649408,9880100064397462397650566) = 17
ok 31 - prime_count(27282839498809356795298816,27282839498809356795300564) = 23
ok 32 - prime_count(41281035060688503590597632,41281035060688503590598867) = 15
ok 33 - prime_count(90374604407955267181195264,90374604407955267181195457) = 2
ok 34 - prime_count(200915297903707834362390528,200915297903707834362391737) = 22
ok 35 - prime_count(407168505212786768724781056,407168505212786768724782199) = 16
ok 36 - prime_count(817226365950024137449562112,817226365950024137449563070) = 14
ok 37 - prime_count(1621795554319024274899124224,1621795554319024274899125678) = 18
ok 38 - prime_count(3660769329531840549798248448,3660769329531840549798250278) = 23
ok 39 - prime_count(7314734077273801099596496896,7314734077273801099596498034) = 16
ok 40 - prime_count(10921064834678012199192993792,10921064834678012199192994171) = 5
ok 41 - prime_count(24344155473536054398385987584,24344155473536054398385988831) = 14
ok 42 - prime_count(46348470312928428796771975168,46348470312928428796771976813) = 28
ok 43 - prime_count(90920702154966737593543950336,90920702154966737593543951561) = 19
ok 44 - prime_count(233651247954773375187087900672,233651247954773375187087901872) = 16
ok 45 - prime_count(396231658265327350374175801344,396231658265327350374175803015) = 25
ok 46 - prime_count(734317226076915700748351602688,734317226076915700748351602878) = 0
ok 47 - prime_count(1696551122155337401496703205376,1696551122155337401496703205528) = 1
ok 48 - prime_count(3100618561736693802993406410752,3100618561736693802993406411961) = 22
ok 49 - prime_count(6306554584349917605986812821504,6306554584349917605986812822041) = 9
ok 50 - prime_count(12897043632271155211973625643008,12897043632271155211973625643214) = 3
ok 51 - prime_count(27070533331838590423947251286016,27070533331838590423947251286519) = 5
ok 52 - prime_count(44933719679228300847894502572032,44933719679228300847894502574007) = 26
ok 53 - prime_count(92067632902534481695789005144064,92067632902534481695789005144486) = 7
ok 54 - prime_count(219741981610812063391578010288128,219741981610812063391578010289366) = 22
ok 55 - prime_count(441164516482197726783156020576256,441164516482197726783156020576737) = 5
ok 56 - prime_count(783694033185045453566312041152512,783694033185045453566312041152692) = 1
ok 57 - prime_count(1754258052575393907132624082305024,1754258052575393907132624082305337) = 4
ok 58 - prime_count(3291172491135828814265248164610048,3291172491135828814265248164611897) = 21
ok 59 - prime_count(5255505796082429028530496329220096,5255505796082429028530496329221910) = 27
ok 60 - prime_count(12176969828012415257060992658440192,12176969828012415257060992658440427) = 5
ok 61 - prime_count(22889636161029770514121985316880384,22889636161029770514121985316881826) = 17
ok 62 - prime_count(44359130889092671028243970633760768,44359130889092671028243970633762444) = 17
ok 63 - prime_count(94248617103459242056487941267521536,94248617103459242056487941267522522) = 16
ok 64 - prime_count(191861723074481884112975882535043072,191861723074481884112975882535043603) = 10
ok 65 - prime_count(396766049747924068225951765070086144,396766049747924068225951765070087394) = 10
ok 66 - prime_count(884985931172514936451903530140172288,884985931172514936451903530140172881) = 9
ok 67 - prime_count(1969978340430920872903807060280344576,1969978340430920872903807060280346393) = 17
ok 68 - prime_count_lower(2^31) <= 105097565
ok 69 - prime_count_upper(2^31) >= 105097565
ok 70 - prime_count_lower(2^54) <= 494890204904784
ok 71 - prime_count_upper(2^54) >= 494890204904784
ok 72 - prime_count_lower(2^74) <= 375744164937699609596
ok 73 - prime_count_upper(2^74) >= 375744164937699609596
ok 74 - prime_count_lower(2^64) <= 425656284035217743
ok 75 - prime_count_upper(2^64) >= 425656284035217743
ok 76 - prime_count_lower(2^13) <= 1028
ok 77 - prime_count_upper(2^13) >= 1028
ok 78 - prime_count_lower(2^58) <= 7357400267843990
ok 79 - prime_count_upper(2^58) >= 7357400267843990
ok 80 - prime_count_lower(2^78) <= 5697549648954257752872
ok 81 - prime_count_upper(2^78) >= 5697549648954257752872
ok 82 - prime_count_lower(2^84) <= 338124238545210097236684
ok 83 - prime_count_upper(2^84) >= 338124238545210097236684
ok 84 - prime_count_lower(2^68) <= 6400771597544937806
ok 85 - prime_count_upper(2^68) >= 6400771597544937806
ok 86 - prime_count_lower(2^42) <= 156661034233
ok 87 - prime_count_upper(2^42) >= 156661034233
ok 88 - prime_count_lower(2^35) <= 1480206279
ok 89 - prime_count_upper(2^35) >= 1480206279
ok 90 - prime_count_lower(2^39) <= 21151907950
ok 91 - prime_count_upper(2^39) >= 21151907950
ok 92 - prime_count_lower(2^3) <= 4
ok 93 - prime_count_upper(2^3) >= 4
ok 94 - prime_count_lower(2^46) <= 2280998753949
ok 95 - prime_count_upper(2^46) >= 2280998753949
ok 96 - prime_count_lower(2^47) <= 4461632979717
ok 97 - prime_count_upper(2^47) >= 4461632979717
ok 98 - prime_count_lower(2^30) <= 54400028
ok 99 - prime_count_upper(2^30) >= 54400028
ok 100 - prime_count_lower(2^23) <= 564163
ok 101 - prime_count_upper(2^23) >= 564163
ok 102 - prime_count_lower(2^69) <= 12611864618760352880
ok 103 - prime_count_upper(2^69) >= 12611864618760352880
ok 104 - prime_count_lower(2^65) <= 837903145466607212
ok 105 - prime_count_upper(2^65) >= 837903145466607212
ok 106 - prime_count_lower(2^7) <= 31
ok 107 - prime_count_upper(2^7) >= 31
ok 108 - prime_count_lower(2^5) <= 11
ok 109 - prime_count_upper(2^5) >= 11
ok 110 - prime_count_lower(2^12) <= 564
ok 111 - prime_count_upper(2^12) >= 564
ok 112 - prime_count_lower(2^55) <= 971269945245201
ok 113 - prime_count_upper(2^55) >= 971269945245201
ok 114 - prime_count_lower(2^75) <= 741263521140740113483
ok 115 - prime_count_upper(2^75) >= 741263521140740113483
ok 116 - prime_count_lower(2^6) <= 18
ok 117 - prime_count_upper(2^6) >= 18
ok 118 - prime_count_lower(2^59) <= 14458792895301660
ok 119 - prime_count_upper(2^59) >= 14458792895301660
ok 120 - prime_count_lower(2^79) <= 11248065615133675809379
ok 121 - prime_count_upper(2^79) >= 11248065615133675809379
ok 122 - prime_count_lower(2^43) <= 305761713237
ok 123 - prime_count_upper(2^43) >= 305761713237
ok 124 - prime_count_lower(2^85) <= 668150111666935905701562
ok 125 - prime_count_upper(2^85) >= 668150111666935905701562
ok 126 - prime_count_lower(2^8) <= 54
ok 127 - prime_count_upper(2^8) >= 54
ok 128 - prime_count_lower(2^16) <= 6542
ok 129 - prime_count_upper(2^16) >= 6542
ok 130 - prime_count_lower(2^61) <= 55890484045084135
ok 131 - prime_count_upper(2^61) >= 55890484045084135
ok 132 - prime_count_lower(2^51) <= 65612899915304
ok 133 - prime_count_upper(2^51) >= 65612899915304
ok 134 - prime_count_lower(2^71) <= 48995571600129458363
ok 135 - prime_count_upper(2^71) >= 48995571600129458363
ok 136 - prime_count_lower(2^34) <= 762939111
ok 137 - prime_count_upper(2^34) >= 762939111
ok 138 - prime_count_lower(2^81) <= 43860397052947409356492
ok 139 - prime_count_upper(2^81) >= 43860397052947409356492
ok 140 - prime_count_lower(2^27) <= 7603553
ok 141 - prime_count_upper(2^27) >= 7603553
ok 142 - prime_count_lower(2^38) <= 10866266172
ok 143 - prime_count_upper(2^38) >= 10866266172
ok 144 - prime_count_lower(2^26) <= 3957809
ok 145 - prime_count_upper(2^26) >= 3957809
ok 146 - prime_count_lower(2^17) <= 12251
ok 147 - prime_count_upper(2^17) >= 12251
ok 148 - prime_count_lower(2^22) <= 295947
ok 149 - prime_count_upper(2^22) >= 295947
ok 150 - prime_count_lower(2^50) <= 33483379603407
ok 151 - prime_count_upper(2^50) >= 33483379603407
ok 152 - prime_count_lower(2^70) <= 24855455363362685793
ok 153 - prime_count_upper(2^70) >= 24855455363362685793
ok 154 - prime_count_lower(2^60) <= 28423094496953330
ok 155 - prime_count_upper(2^60) >= 28423094496953330
ok 156 - prime_count_lower(2^80) <= 22209558889635384205844
ok 157 - prime_count_upper(2^80) >= 22209558889635384205844
ok 158 - prime_count_lower(2^28) <= 14630843
ok 159 - prime_count_upper(2^28) >= 14630843
ok 160 - prime_count_lower(2^37) <= 5586502348
ok 161 - prime_count_upper(2^37) >= 5586502348
ok 162 - prime_count_lower(2^40) <= 41203088796
ok 163 - prime_count_upper(2^40) >= 41203088796
ok 164 - prime_count_lower(2^24) <= 1077871
ok 165 - prime_count_upper(2^24) >= 1077871
ok 166 - prime_count_lower(2^41) <= 80316571436
ok 167 - prime_count_upper(2^41) >= 80316571436
ok 168 - prime_count_lower(2^9) <= 97
ok 169 - prime_count_upper(2^9) >= 97
ok 170 - prime_count_lower(2^32) <= 203280221
ok 171 - prime_count_upper(2^32) >= 203280221
ok 172 - prime_count_lower(2^73) <= 190499823401327905601
ok 173 - prime_count_upper(2^73) >= 190499823401327905601
ok 174 - prime_count_lower(2^53) <= 252252704148404
ok 175 - prime_count_upper(2^53) >= 252252704148404
ok 176 - prime_count_lower(2^49) <= 17094432576778
ok 177 - prime_count_upper(2^49) >= 17094432576778
ok 178 - prime_count_lower(2^18) <= 23000
ok 179 - prime_count_upper(2^18) >= 23000
ok 180 - prime_count_lower(2^45) <= 1166746786182
ok 181 - prime_count_upper(2^45) >= 1166746786182
ok 182 - prime_count_lower(2^4) <= 6
ok 183 - prime_count_upper(2^4) >= 6
ok 184 - prime_count_lower(2^63) <= 216289611853439384
ok 185 - prime_count_upper(2^63) >= 216289611853439384
ok 186 - prime_count_lower(2^14) <= 1900
ok 187 - prime_count_upper(2^14) >= 1900
ok 188 - prime_count_lower(2^36) <= 2874398515
ok 189 - prime_count_upper(2^36) >= 2874398515
ok 190 - prime_count_lower(2^83) <= 171136408646923240987028
ok 191 - prime_count_upper(2^83) >= 171136408646923240987028
ok 192 - prime_count_lower(2^10) <= 172
ok 193 - prime_count_upper(2^10) >= 172
ok 194 - prime_count_lower(2^2) <= 2
ok 195 - prime_count_upper(2^2) >= 2
ok 196 - prime_count_lower(2^29) <= 28192750
ok 197 - prime_count_upper(2^29) >= 28192750
ok 198 - prime_count_lower(2^25) <= 2063689
ok 199 - prime_count_upper(2^25) >= 2063689
ok 200 - prime_count_lower(2^67) <= 3249254387052557215
ok 201 - prime_count_upper(2^67) >= 3249254387052557215
ok 202 - prime_count_lower(2^57) <= 3745011184713964
ok 203 - prime_count_upper(2^57) >= 3745011184713964
ok 204 - prime_count_lower(2^77) <= 2886507381056867953916
ok 205 - prime_count_upper(2^77) >= 2886507381056867953916
ok 206 - prime_count_lower(2^21) <= 155611
ok 207 - prime_count_upper(2^21) >= 155611
ok 208 - prime_count_lower(2^33) <= 393615806
ok 209 - prime_count_upper(2^33) >= 393615806
ok 210 - prime_count_lower(2^86) <= 1320486952377516565496055
ok 211 - prime_count_upper(2^86) >= 1320486952377516565496055
ok 212 - prime_count_lower(2^56) <= 1906879381028850
ok 213 - prime_count_upper(2^56) >= 1906879381028850
ok 214 - prime_count_lower(2^76) <= 1462626667154509638735
ok 215 - prime_count_upper(2^76) >= 1462626667154509638735
ok 216 - prime_count_lower(2^11) <= 309
ok 217 - prime_count_upper(2^11) >= 309
ok 218 - prime_count_lower(2^66) <= 1649819700464785589
ok 219 - prime_count_upper(2^66) >= 1649819700464785589
ok 220 - prime_count_lower(2^82) <= 86631124695994360074872
ok 221 - prime_count_upper(2^82) >= 86631124695994360074872
ok 222 - prime_count_lower(2^44) <= 597116381732
ok 223 - prime_count_upper(2^44) >= 597116381732
ok 224 - prime_count_lower(2^72) <= 96601075195075186855
ok 225 - prime_count_upper(2^72) >= 96601075195075186855
ok 226 - prime_count_lower(2^52) <= 128625503610475
ok 227 - prime_count_upper(2^52) >= 128625503610475
ok 228 - prime_count_lower(2^20) <= 82025
ok 229 - prime_count_upper(2^20) >= 82025
ok 230 - prime_count_lower(2^1) <= 1
ok 231 - prime_count_upper(2^1) >= 1
ok 232 - prime_count_lower(2^62) <= 109932807585469973
ok 233 - prime_count_upper(2^62) >= 109932807585469973
ok 234 - prime_count_lower(2^15) <= 3512
ok 235 - prime_count_upper(2^15) >= 3512
ok 236 - prime_count_lower(2^48) <= 8731188863470
ok 237 - prime_count_upper(2^48) >= 8731188863470
ok 238 - prime_count_lower(2^19) <= 43390
ok 239 - prime_count_upper(2^19) >= 43390
ok
t/15-probprime.t ............. 
1..149
ok 1 - 2 is prime
ok 2 - 1 is not prime
ok 3 - 0 is not prime
ok 4 - -1 is not prime
ok 5 - -2 is not prime
ok 6 - 20 is not prime
ok 7 - A006945 number 9 is not prime
ok 8 - A006945 number 2047 is not prime
ok 9 - A006945 number 1373653 is not prime
ok 10 - A006945 number 25326001 is not prime
ok 11 - A006945 number 3215031751 is not prime
ok 12 - A006945 number 2152302898747 is not prime
ok 13 - A006945 number 3474749660383 is not prime
ok 14 - A006945 number 341550071728321 is not prime
ok 15 - A006945 number 341550071728321 is not prime
ok 16 - A006945 number 3825123056546413051 is not prime
ok 17 - Carmichael Number 561 is not prime
ok 18 - Carmichael Number 1105 is not prime
ok 19 - Carmichael Number 1729 is not prime
ok 20 - Carmichael Number 2465 is not prime
ok 21 - Carmichael Number 2821 is not prime
ok 22 - Carmichael Number 6601 is not prime
ok 23 - Carmichael Number 8911 is not prime
ok 24 - Carmichael Number 10585 is not prime
ok 25 - Carmichael Number 15841 is not prime
ok 26 - Carmichael Number 29341 is not prime
ok 27 - Carmichael Number 41041 is not prime
ok 28 - Carmichael Number 46657 is not prime
ok 29 - Carmichael Number 52633 is not prime
ok 30 - Carmichael Number 62745 is not prime
ok 31 - Carmichael Number 63973 is not prime
ok 32 - Carmichael Number 75361 is not prime
ok 33 - Carmichael Number 101101 is not prime
ok 34 - Carmichael Number 340561 is not prime
ok 35 - Carmichael Number 488881 is not prime
ok 36 - Carmichael Number 852841 is not prime
ok 37 - Carmichael Number 1857241 is not prime
ok 38 - Carmichael Number 6733693 is not prime
ok 39 - Carmichael Number 9439201 is not prime
ok 40 - Carmichael Number 17236801 is not prime
ok 41 - Carmichael Number 23382529 is not prime
ok 42 - Carmichael Number 34657141 is not prime
ok 43 - Carmichael Number 56052361 is not prime
ok 44 - Carmichael Number 146843929 is not prime
ok 45 - Carmichael Number 216821881 is not prime
ok 46 - Pseudoprime (base 2) 341 is not prime
ok 47 - Pseudoprime (base 2) 561 is not prime
ok 48 - Pseudoprime (base 2) 645 is not prime
ok 49 - Pseudoprime (base 2) 1105 is not prime
ok 50 - Pseudoprime (base 2) 1387 is not prime
ok 51 - Pseudoprime (base 2) 1729 is not prime
ok 52 - Pseudoprime (base 2) 1905 is not prime
ok 53 - Pseudoprime (base 2) 2047 is not prime
ok 54 - Pseudoprime (base 2) 2465 is not prime
ok 55 - Pseudoprime (base 2) 2701 is not prime
ok 56 - Pseudoprime (base 2) 2821 is not prime
ok 57 - Pseudoprime (base 2) 3277 is not prime
ok 58 - Pseudoprime (base 2) 4033 is not prime
ok 59 - Pseudoprime (base 2) 4369 is not prime
ok 60 - Pseudoprime (base 2) 4371 is not prime
ok 61 - Pseudoprime (base 2) 4681 is not prime
ok 62 - Pseudoprime (base 2) 5461 is not prime
ok 63 - Pseudoprime (base 2) 6601 is not prime
ok 64 - Pseudoprime (base 2) 7957 is not prime
ok 65 - Pseudoprime (base 2) 8321 is not prime
ok 66 - Pseudoprime (base 2) 52633 is not prime
ok 67 - Pseudoprime (base 2) 88357 is not prime
ok 68 - Pseudoprime (base 3) 121 is not prime
ok 69 - Pseudoprime (base 3) 703 is not prime
ok 70 - Pseudoprime (base 3) 1891 is not prime
ok 71 - Pseudoprime (base 3) 3281 is not prime
ok 72 - Pseudoprime (base 3) 8401 is not prime
ok 73 - Pseudoprime (base 3) 8911 is not prime
ok 74 - Pseudoprime (base 3) 10585 is not prime
ok 75 - Pseudoprime (base 3) 12403 is not prime
ok 76 - Pseudoprime (base 3) 16531 is not prime
ok 77 - Pseudoprime (base 3) 18721 is not prime
ok 78 - Pseudoprime (base 3) 19345 is not prime
ok 79 - Pseudoprime (base 3) 23521 is not prime
ok 80 - Pseudoprime (base 3) 31621 is not prime
ok 81 - Pseudoprime (base 3) 44287 is not prime
ok 82 - Pseudoprime (base 3) 47197 is not prime
ok 83 - Pseudoprime (base 3) 55969 is not prime
ok 84 - Pseudoprime (base 3) 63139 is not prime
ok 85 - Pseudoprime (base 3) 74593 is not prime
ok 86 - Pseudoprime (base 3) 79003 is not prime
ok 87 - Pseudoprime (base 3) 82513 is not prime
ok 88 - Pseudoprime (base 3) 87913 is not prime
ok 89 - Pseudoprime (base 3) 88573 is not prime
ok 90 - Pseudoprime (base 3) 97567 is not prime
ok 91 - Pseudoprime (base 5) 781 is not prime
ok 92 - Pseudoprime (base 5) 1541 is not prime
ok 93 - Pseudoprime (base 5) 5461 is not prime
ok 94 - Pseudoprime (base 5) 5611 is not prime
ok 95 - Pseudoprime (base 5) 7813 is not prime
ok 96 - Pseudoprime (base 5) 13021 is not prime
ok 97 - Pseudoprime (base 5) 14981 is not prime
ok 98 - Pseudoprime (base 5) 15751 is not prime
ok 99 - Pseudoprime (base 5) 24211 is not prime
ok 100 - Pseudoprime (base 5) 25351 is not prime
ok 101 - Pseudoprime (base 5) 29539 is not prime
ok 102 - Pseudoprime (base 5) 38081 is not prime
ok 103 - Pseudoprime (base 5) 40501 is not prime
ok 104 - Pseudoprime (base 5) 44801 is not prime
ok 105 - Pseudoprime (base 5) 53971 is not prime
ok 106 - Pseudoprime (base 5) 79381 is not prime
ok 107 - Primegap start 2 is prime
ok 108 - Primegap start 3 is prime
ok 109 - Primegap start 7 is prime
ok 110 - Primegap start 23 is prime
ok 111 - Primegap start 89 is prime
ok 112 - Primegap start 113 is prime
ok 113 - Primegap start 523 is prime
ok 114 - Primegap start 887 is prime
ok 115 - Primegap start 1129 is prime
ok 116 - Primegap start 1327 is prime
ok 117 - Primegap start 9551 is prime
ok 118 - Primegap start 15683 is prime
ok 119 - Primegap start 19609 is prime
ok 120 - Primegap start 31397 is prime
ok 121 - Primegap start 155921 is prime
ok 122 - Primegap end 5 is prime
ok 123 - Primegap end 11 is prime
ok 124 - Primegap end 29 is prime
ok 125 - Primegap end 97 is prime
ok 126 - Primegap end 127 is prime
ok 127 - Primegap end 541 is prime
ok 128 - Primegap end 907 is prime
ok 129 - Primegap end 1151 is prime
ok 130 - Primegap end 1361 is prime
ok 131 - Primegap end 9587 is prime
ok 132 - Primegap end 15727 is prime
ok 133 - Primegap end 19661 is prime
ok 134 - Primegap end 31469 is prime
ok 135 - Primegap end 156007 is prime
ok 136 - Primegap end 360749 is prime
ok 137 - Primegap end 370373 is prime
ok 138 - Primegap end 492227 is prime
ok 139 - Primegap end 1349651 is prime
ok 140 - Primegap end 1357333 is prime
ok 141 - Primegap end 2010881 is prime
ok 142 - Primegap end 4652507 is prime
ok 143 - Primegap end 17051887 is prime
ok 144 - Primegap end 20831533 is prime
ok 145 - Primegap end 47326913 is prime
ok 146 - Primegap end 122164969 is prime
ok 147 - Primegap end 189695893 is prime
ok 148 - Primegap end 191913031 is prime
ok 149 - Primegap end 10726905041 is prime
ok
t/16-provableprime.t ......... 
1..138
ok 1 - 2 is prime
ok 2 - 1 is not prime
ok 3 - 0 is not prime
ok 4 - -1 is not prime
ok 5 - -2 is not prime
ok 6 - 20 is not prime
ok 7 - 2152302898747 is not prime
ok 8 - 3474749660383 is not prime
ok 9 - 341550071728321 is not prime
ok 10 - 341550071728321 is not prime
ok 11 - 3825123056546413051 is not prime
ok 12 - 561 is not prime
ok 13 - 1105 is not prime
ok 14 - 1729 is not prime
ok 15 - 2465 is not prime
ok 16 - 2821 is not prime
ok 17 - 6601 is not prime
ok 18 - 8911 is not prime
ok 19 - 10585 is not prime
ok 20 - 15841 is not prime
ok 21 - 29341 is not prime
ok 22 - 41041 is not prime
ok 23 - 46657 is not prime
ok 24 - 52633 is not prime
ok 25 - 4681 is not prime
ok 26 - 5461 is not prime
ok 27 - 6601 is not prime
ok 28 - 7957 is not prime
ok 29 - 8321 is not prime
ok 30 - 52633 is not prime
ok 31 - 88357 is not prime
ok 32 - 44287 is not prime
ok 33 - 47197 is not prime
ok 34 - 55969 is not prime
ok 35 - 63139 is not prime
ok 36 - 74593 is not prime
ok 37 - 79003 is not prime
ok 38 - 82513 is not prime
ok 39 - 87913 is not prime
ok 40 - 88573 is not prime
ok 41 - 97567 is not prime
ok 42 - 44801 is not prime
ok 43 - 53971 is not prime
ok 44 - 79381 is not prime
ok 45 - 2 is prime
ok 46 - 3 is prime
ok 47 - 7 is prime
ok 48 - 23 is prime
ok 49 - 89 is prime
ok 50 - 113 is prime
ok 51 - 523 is prime
ok 52 - 887 is prime
ok 53 - 1129 is prime
ok 54 - 1327 is prime
ok 55 - 9551 is prime
ok 56 - 15683 is prime
ok 57 - 19609 is prime
ok 58 - 31397 is prime
ok 59 - 155921 is prime
ok 60 - 5 is prime
ok 61 - 11 is prime
ok 62 - 29 is prime
ok 63 - 97 is prime
ok 64 - 127 is prime
ok 65 - 541 is prime
ok 66 - 907 is prime
ok 67 - 1151 is prime
ok 68 - 1361 is prime
ok 69 - 9587 is prime
ok 70 - 15727 is prime
ok 71 - 19661 is prime
ok 72 - 31469 is prime
ok 73 - 156007 is prime
ok 74 - 360749 is prime
ok 75 - 370373 is prime
ok 76 - 492227 is prime
ok 77 - 1349651 is prime
ok 78 - 1357333 is prime
ok 79 - 2010881 is prime
ok 80 - 4652507 is prime
ok 81 - 17051887 is prime
ok 82 - 20831533 is prime
ok 83 - 47326913 is prime
ok 84 - 122164969 is prime
ok 85 - 189695893 is prime
ok 86 - 191913031 is prime
ok 87 - 10726905041 is prime
ok 88 - 9223372036854775837 is prime
ok 89 - 18446744073709551629 is prime
ok 90 - 73786976294838206473 is prime
ok 91 - 147573952589676412931 is prime
ok 92 - 295147905179352825889 is prime
ok 93 - 590295810358705651741 is prime
ok 94 - 1180591620717411303449 is prime
ok 95 - 2361183241434822606859 is prime
ok 96 - 18889465931478580854821 is prime
ok 97 - 37778931862957161709601 is prime
ok 98 - 75557863725914323419151 is prime
ok 99 - 302231454903657293676551 is prime
ok 100 - 604462909807314587353111 is prime
ok 101 - 38685626227668133590597803 is prime
ok 102 - 1237940039285380274899124357 is prime
ok 103 - 9903520314283042199192993897 is prime
ok 104 - 316912650057057350374175801351 is prime
ok 105 - 2535301200456458802993406410833 is prime
ok 106 - 162259276829213363391578010288167 is prime
ok 107 - 1298074214633706907132624082305051 is prime
ok 108 - 10384593717069655257060992658440473 is prime
ok 109 - 1329227995784915872903807060280345027 is prime
ok 110 - 680564733841876926926749214863536422929 is prime
ok 111 - 43556142965880123323311949751266331066401 is prime
ok 112 - 87112285931760246646623899502532662132821 is prime
ok 113 - 713623846352979940529142984724747568191373381 is prime
ok 114 - 2854495385411919762116571938898990272765493293 is prime
ok 115 - 196159429230833773869868419475239575503198607639501078831 is prime
ok 116 - 3138550867693340381917894711603833208051177722232017256453 is prime
ok 117 - 12554203470773361527671578846415332832204710888928069025857 is prime
ok 118 - 102844034832575377634685573909834406561420991602098741459288097 is prime
ok 119 - 210624583337114373395836055367340864637790190801098222508621955201 is prime
ok 120 - 14821387422376473014217086081112052205218558037201992197050570753012880593911817 is prime
ok 121 - 3351951982485649274893506249551461531869841455148098344430890360930441007518386744200468574541725856922507964546621512713438470702986642486608412251521039 is prime
ok 122 - is_prime(2**128+51) = 2
ok 123 - is_provable_prime(2**128+165) == 2
ok 124 - is_provable_prime_with_cert(0)
ok 125 - is_provable_prime_with_cert(2)
ok 126 - is_provable_prime_with_cert(96953)
ok 127 - is_provable_prime_with_cert(848301847013166693538593241183)
ok 128 - is_provable_prime_with_cert(316912650057057350374175801351)
ok 129 - is_provable_prime_with_cert(3138550867693340381917894711603833208051177722232017256453) is prime
ok 130 - is_provable_prime_with_cert(3138550867693340381917894711603833208051177722232017256453)
ok 131 - is_aks_prime(74903)
ok 132 - is_miller_prime(4835703278458516698824747)
ok 133 - is_miller_prime(4835703278458516698824747,1)
ok 134 - is_nminus1_prime(340282366920938463463374607431768211507)
ok 135 - is_nplus1_prime(391) is false
ok 136 - is_nplus1_prime(63699643930293116661668059033734770664712983894089510286262271)
ok 137 - is_bls75_prime(19568952034128395861091890269105913923337787205640409156470109155604436042237347889151)
ok 138 - is_ecpp_prime(340282366920938463463374607431768211507)
ok
t/17-pseudoprime.t ........... 
1..1093
ok 1 - is_strong_pseudoprime with no base fails
ok 2 - is_strong_pseudoprime with base undef fails
ok 3 - is_strong_pseudoprime with base '' fails
ok 4 - is_strong_pseudoprime with base 0 fails
ok 5 - is_strong_pseudoprime with base 1 fails
ok 6 - is_strong_pseudoprime with base -7 fails
ok 7 - is_strong_pseudoprime(undef,2) is invalid
ok 8 - is_strong_pseudoprime('',2) is invalid
ok 9 - is_strong_pseudoprime(-7,2) is invalid
ok 10 - is_strong_lucas_pseudoprime(undef) is invalid
ok 11 - is_strong_lucas_pseudoprime('') is invalid
ok 12 - is_strong_lucas_pseudoprime(-7) is invalid
ok 13 - spsp(0, 2) shortcut composite
ok 14 - spsp(1, 2) shortcut composite
ok 15 - spsp(2, 2) shortcut prime
ok 16 - spsp(2, 2) shortcut prime
ok 17 - slpsp(1) shortcut composite
ok 18 - slpsp(3) shortcut prime
ok 19 - 5459 is a strong Lucas-Selfridge pseudoprime
ok 20 - 5777 is a strong Lucas-Selfridge pseudoprime
ok 21 - 10877 is a strong Lucas-Selfridge pseudoprime
ok 22 - 16109 is a strong Lucas-Selfridge pseudoprime
ok 23 - 18971 is a strong Lucas-Selfridge pseudoprime
ok 24 - 22499 is a strong Lucas-Selfridge pseudoprime
ok 25 - 24569 is a strong Lucas-Selfridge pseudoprime
ok 26 - 25199 is a strong Lucas-Selfridge pseudoprime
ok 27 - 40309 is a strong Lucas-Selfridge pseudoprime
ok 28 - 58519 is a strong Lucas-Selfridge pseudoprime
ok 29 - 75077 is a strong Lucas-Selfridge pseudoprime
ok 30 - 97439 is a strong Lucas-Selfridge pseudoprime
ok 31 - 100127 is a strong Lucas-Selfridge pseudoprime
ok 32 - 113573 is a strong Lucas-Selfridge pseudoprime
ok 33 - 115639 is a strong Lucas-Selfridge pseudoprime
ok 34 - 130139 is a strong Lucas-Selfridge pseudoprime
ok 35 - Pseudoprime (base 31) 15 passes MR
ok 36 - Pseudoprime (base 31) 49 passes MR
ok 37 - Pseudoprime (base 31) 133 passes MR
ok 38 - Pseudoprime (base 31) 481 passes MR
ok 39 - Pseudoprime (base 31) 931 passes MR
ok 40 - Pseudoprime (base 31) 6241 passes MR
ok 41 - Pseudoprime (base 31) 8911 passes MR
ok 42 - Pseudoprime (base 31) 9131 passes MR
ok 43 - Pseudoprime (base 31) 10963 passes MR
ok 44 - Pseudoprime (base 31) 11041 passes MR
ok 45 - Pseudoprime (base 31) 14191 passes MR
ok 46 - Pseudoprime (base 31) 17767 passes MR
ok 47 - Pseudoprime (base 31) 29341 passes MR
ok 48 - Pseudoprime (base 31) 56033 passes MR
ok 49 - Pseudoprime (base 31) 58969 passes MR
ok 50 - Pseudoprime (base 31) 68251 passes MR
ok 51 - Pseudoprime (base 31) 79003 passes MR
ok 52 - Pseudoprime (base 31) 83333 passes MR
ok 53 - Pseudoprime (base 31) 87061 passes MR
ok 54 - Pseudoprime (base 31) 88183 passes MR
ok 55 - Pseudoprime (base 1795265022) 1795265023 passes MR
ok 56 - Pseudoprime (base 1795265022) 1797174457 passes MR
ok 57 - Pseudoprime (base 1795265022) 1797741901 passes MR
ok 58 - Pseudoprime (base 1795265022) 1804469753 passes MR
ok 59 - Pseudoprime (base 1795265022) 1807751977 passes MR
ok 60 - Pseudoprime (base 1795265022) 1808043283 passes MR
ok 61 - Pseudoprime (base 1795265022) 1808205701 passes MR
ok 62 - Pseudoprime (base 1795265022) 1813675681 passes MR
ok 63 - Pseudoprime (base 1795265022) 1816462201 passes MR
ok 64 - Pseudoprime (base 1795265022) 1817936371 passes MR
ok 65 - Pseudoprime (base 1795265022) 1819050257 passes MR
ok 66 - Pseudoprime (base 23) 169 passes MR
ok 67 - Pseudoprime (base 23) 265 passes MR
ok 68 - Pseudoprime (base 23) 553 passes MR
ok 69 - Pseudoprime (base 23) 1271 passes MR
ok 70 - Pseudoprime (base 23) 2701 passes MR
ok 71 - Pseudoprime (base 23) 4033 passes MR
ok 72 - Pseudoprime (base 23) 4371 passes MR
ok 73 - Pseudoprime (base 23) 4681 passes MR
ok 74 - Pseudoprime (base 23) 6533 passes MR
ok 75 - Pseudoprime (base 23) 6541 passes MR
ok 76 - Pseudoprime (base 23) 7957 passes MR
ok 77 - Pseudoprime (base 23) 8321 passes MR
ok 78 - Pseudoprime (base 23) 8651 passes MR
ok 79 - Pseudoprime (base 23) 8911 passes MR
ok 80 - Pseudoprime (base 23) 9805 passes MR
ok 81 - Pseudoprime (base 23) 14981 passes MR
ok 82 - Pseudoprime (base 23) 18721 passes MR
ok 83 - Pseudoprime (base 23) 25201 passes MR
ok 84 - Pseudoprime (base 23) 31861 passes MR
ok 85 - Pseudoprime (base 23) 34133 passes MR
ok 86 - Pseudoprime (base 23) 44173 passes MR
ok 87 - Pseudoprime (base 23) 47611 passes MR
ok 88 - Pseudoprime (base 23) 47783 passes MR
ok 89 - Pseudoprime (base 23) 50737 passes MR
ok 90 - Pseudoprime (base 23) 57401 passes MR
ok 91 - Pseudoprime (base 23) 62849 passes MR
ok 92 - Pseudoprime (base 23) 82513 passes MR
ok 93 - Pseudoprime (base 23) 96049 passes MR
ok 94 - Pseudoprime (base 75088) 75089 passes MR
ok 95 - Pseudoprime (base 75088) 79381 passes MR
ok 96 - Pseudoprime (base 75088) 81317 passes MR
ok 97 - Pseudoprime (base 75088) 91001 passes MR
ok 98 - Pseudoprime (base 75088) 100101 passes MR
ok 99 - Pseudoprime (base 75088) 111361 passes MR
ok 100 - Pseudoprime (base 75088) 114211 passes MR
ok 101 - Pseudoprime (base 75088) 136927 passes MR
ok 102 - Pseudoprime (base 75088) 148289 passes MR
ok 103 - Pseudoprime (base 75088) 169641 passes MR
ok 104 - Pseudoprime (base 75088) 176661 passes MR
ok 105 - Pseudoprime (base 75088) 191407 passes MR
ok 106 - Pseudoprime (base 75088) 195649 passes MR
ok 107 - Pseudoprime (base 2) 2047 passes MR
ok 108 - Pseudoprime (base 2) 3277 passes MR
ok 109 - Pseudoprime (base 2) 4033 passes MR
ok 110 - Pseudoprime (base 2) 4681 passes MR
ok 111 - Pseudoprime (base 2) 8321 passes MR
ok 112 - Pseudoprime (base 2) 15841 passes MR
ok 113 - Pseudoprime (base 2) 29341 passes MR
ok 114 - Pseudoprime (base 2) 42799 passes MR
ok 115 - Pseudoprime (base 2) 49141 passes MR
ok 116 - Pseudoprime (base 2) 52633 passes MR
ok 117 - Pseudoprime (base 2) 65281 passes MR
ok 118 - Pseudoprime (base 2) 74665 passes MR
ok 119 - Pseudoprime (base 2) 80581 passes MR
ok 120 - Pseudoprime (base 2) 85489 passes MR
ok 121 - Pseudoprime (base 2) 88357 passes MR
ok 122 - Pseudoprime (base 2) 90751 passes MR
ok 123 - Pseudoprime (base 2) 1194649 passes MR
ok 124 - 121 is an Euler pseudoprime to base 3
ok 125 - 703 is an Euler pseudoprime to base 3
ok 126 - 1729 is an Euler pseudoprime to base 3
ok 127 - 1891 is an Euler pseudoprime to base 3
ok 128 - 2821 is an Euler pseudoprime to base 3
ok 129 - 3281 is an Euler pseudoprime to base 3
ok 130 - 7381 is an Euler pseudoprime to base 3
ok 131 - 8401 is an Euler pseudoprime to base 3
ok 132 - 8911 is an Euler pseudoprime to base 3
ok 133 - 10585 is an Euler pseudoprime to base 3
ok 134 - 12403 is an Euler pseudoprime to base 3
ok 135 - 15457 is an Euler pseudoprime to base 3
ok 136 - 15841 is an Euler pseudoprime to base 3
ok 137 - 16531 is an Euler pseudoprime to base 3
ok 138 - 18721 is an Euler pseudoprime to base 3
ok 139 - 19345 is an Euler pseudoprime to base 3
ok 140 - 23521 is an Euler pseudoprime to base 3
ok 141 - 24661 is an Euler pseudoprime to base 3
ok 142 - 28009 is an Euler pseudoprime to base 3
ok 143 - 29341 is an Euler pseudoprime to base 3
ok 144 - 31621 is an Euler pseudoprime to base 3
ok 145 - 41041 is an Euler pseudoprime to base 3
ok 146 - 44287 is an Euler pseudoprime to base 3
ok 147 - 46657 is an Euler pseudoprime to base 3
ok 148 - 47197 is an Euler pseudoprime to base 3
ok 149 - 49141 is an Euler pseudoprime to base 3
ok 150 - 50881 is an Euler pseudoprime to base 3
ok 151 - 52633 is an Euler pseudoprime to base 3
ok 152 - 55969 is an Euler pseudoprime to base 3
ok 153 - 63139 is an Euler pseudoprime to base 3
ok 154 - 63973 is an Euler pseudoprime to base 3
ok 155 - 74593 is an Euler pseudoprime to base 3
ok 156 - 75361 is an Euler pseudoprime to base 3
ok 157 - 79003 is an Euler pseudoprime to base 3
ok 158 - 82513 is an Euler pseudoprime to base 3
ok 159 - 87913 is an Euler pseudoprime to base 3
ok 160 - 88573 is an Euler pseudoprime to base 3
ok 161 - 93961 is an Euler pseudoprime to base 3
ok 162 - 97567 is an Euler pseudoprime to base 3
ok 163 - 91 is a pseudoprime to base 3
ok 164 - 121 is a pseudoprime to base 3
ok 165 - 286 is a pseudoprime to base 3
ok 166 - 671 is a pseudoprime to base 3
ok 167 - 703 is a pseudoprime to base 3
ok 168 - 949 is a pseudoprime to base 3
ok 169 - 1105 is a pseudoprime to base 3
ok 170 - 1541 is a pseudoprime to base 3
ok 171 - 1729 is a pseudoprime to base 3
ok 172 - 1891 is a pseudoprime to base 3
ok 173 - 2465 is a pseudoprime to base 3
ok 174 - 2665 is a pseudoprime to base 3
ok 175 - 2701 is a pseudoprime to base 3
ok 176 - 2821 is a pseudoprime to base 3
ok 177 - 3281 is a pseudoprime to base 3
ok 178 - 3367 is a pseudoprime to base 3
ok 179 - 3751 is a pseudoprime to base 3
ok 180 - 4961 is a pseudoprime to base 3
ok 181 - 5551 is a pseudoprime to base 3
ok 182 - 6601 is a pseudoprime to base 3
ok 183 - 7381 is a pseudoprime to base 3
ok 184 - 8401 is a pseudoprime to base 3
ok 185 - 8911 is a pseudoprime to base 3
ok 186 - 10585 is a pseudoprime to base 3
ok 187 - 11011 is a pseudoprime to base 3
ok 188 - 12403 is a pseudoprime to base 3
ok 189 - 14383 is a pseudoprime to base 3
ok 190 - 15203 is a pseudoprime to base 3
ok 191 - 15457 is a pseudoprime to base 3
ok 192 - 15841 is a pseudoprime to base 3
ok 193 - 16471 is a pseudoprime to base 3
ok 194 - 16531 is a pseudoprime to base 3
ok 195 - 18721 is a pseudoprime to base 3
ok 196 - 19345 is a pseudoprime to base 3
ok 197 - 23521 is a pseudoprime to base 3
ok 198 - 24046 is a pseudoprime to base 3
ok 199 - 24661 is a pseudoprime to base 3
ok 200 - 24727 is a pseudoprime to base 3
ok 201 - 28009 is a pseudoprime to base 3
ok 202 - 29161 is a pseudoprime to base 3
ok 203 - 13333 is a Frobenius (3,-5) pseudoprime
ok 204 - 44801 is a Frobenius (3,-5) pseudoprime
ok 205 - 486157 is a Frobenius (3,-5) pseudoprime
ok 206 - 1615681 is a Frobenius (3,-5) pseudoprime
ok 207 - 3125281 is a Frobenius (3,-5) pseudoprime
ok 208 - 4219129 is a Frobenius (3,-5) pseudoprime
ok 209 - 9006401 is a Frobenius (3,-5) pseudoprime
ok 210 - 12589081 is a Frobenius (3,-5) pseudoprime
ok 211 - 13404751 is a Frobenius (3,-5) pseudoprime
ok 212 - 15576571 is a Frobenius (3,-5) pseudoprime
ok 213 - 16719781 is a Frobenius (3,-5) pseudoprime
ok 214 - Pseudoprime (base 553174392) 553174393 passes MR
ok 215 - Pseudoprime (base 553174392) 553945231 passes MR
ok 216 - Pseudoprime (base 553174392) 554494951 passes MR
ok 217 - Pseudoprime (base 553174392) 554892787 passes MR
ok 218 - Pseudoprime (base 553174392) 555429169 passes MR
ok 219 - Pseudoprime (base 553174392) 557058133 passes MR
ok 220 - Pseudoprime (base 553174392) 557163157 passes MR
ok 221 - Pseudoprime (base 553174392) 557165209 passes MR
ok 222 - Pseudoprime (base 553174392) 558966793 passes MR
ok 223 - Pseudoprime (base 553174392) 559407061 passes MR
ok 224 - Pseudoprime (base 553174392) 560291719 passes MR
ok 225 - Pseudoprime (base 553174392) 561008251 passes MR
ok 226 - Pseudoprime (base 553174392) 563947141 passes MR
ok 227 - Pseudoprime (base 37) 9 passes MR
ok 228 - Pseudoprime (base 37) 451 passes MR
ok 229 - Pseudoprime (base 37) 469 passes MR
ok 230 - Pseudoprime (base 37) 589 passes MR
ok 231 - Pseudoprime (base 37) 685 passes MR
ok 232 - Pseudoprime (base 37) 817 passes MR
ok 233 - Pseudoprime (base 37) 1333 passes MR
ok 234 - Pseudoprime (base 37) 3781 passes MR
ok 235 - Pseudoprime (base 37) 8905 passes MR
ok 236 - Pseudoprime (base 37) 9271 passes MR
ok 237 - Pseudoprime (base 37) 18631 passes MR
ok 238 - Pseudoprime (base 37) 19517 passes MR
ok 239 - Pseudoprime (base 37) 20591 passes MR
ok 240 - Pseudoprime (base 37) 25327 passes MR
ok 241 - Pseudoprime (base 37) 34237 passes MR
ok 242 - Pseudoprime (base 37) 45551 passes MR
ok 243 - Pseudoprime (base 37) 46981 passes MR
ok 244 - Pseudoprime (base 37) 47587 passes MR
ok 245 - Pseudoprime (base 37) 48133 passes MR
ok 246 - Pseudoprime (base 37) 59563 passes MR
ok 247 - Pseudoprime (base 37) 61337 passes MR
ok 248 - Pseudoprime (base 37) 68101 passes MR
ok 249 - Pseudoprime (base 37) 68251 passes MR
ok 250 - Pseudoprime (base 37) 73633 passes MR
ok 251 - Pseudoprime (base 37) 79381 passes MR
ok 252 - Pseudoprime (base 37) 79501 passes MR
ok 253 - Pseudoprime (base 37) 83333 passes MR
ok 254 - Pseudoprime (base 37) 84151 passes MR
ok 255 - Pseudoprime (base 37) 96727 passes MR
ok 256 - 989 is an extra strong Lucas pseudoprime
ok 257 - 3239 is an extra strong Lucas pseudoprime
ok 258 - 5777 is an extra strong Lucas pseudoprime
ok 259 - 10877 is an extra strong Lucas pseudoprime
ok 260 - 27971 is an extra strong Lucas pseudoprime
ok 261 - 29681 is an extra strong Lucas pseudoprime
ok 262 - 30739 is an extra strong Lucas pseudoprime
ok 263 - 31631 is an extra strong Lucas pseudoprime
ok 264 - 39059 is an extra strong Lucas pseudoprime
ok 265 - 72389 is an extra strong Lucas pseudoprime
ok 266 - 73919 is an extra strong Lucas pseudoprime
ok 267 - 75077 is an extra strong Lucas pseudoprime
ok 268 - 100127 is an extra strong Lucas pseudoprime
ok 269 - 113573 is an extra strong Lucas pseudoprime
ok 270 - 125249 is an extra strong Lucas pseudoprime
ok 271 - 137549 is an extra strong Lucas pseudoprime
ok 272 - 137801 is an extra strong Lucas pseudoprime
ok 273 - 153931 is an extra strong Lucas pseudoprime
ok 274 - 155819 is an extra strong Lucas pseudoprime
ok 275 - Pseudoprime (base 29) 15 passes MR
ok 276 - Pseudoprime (base 29) 91 passes MR
ok 277 - Pseudoprime (base 29) 341 passes MR
ok 278 - Pseudoprime (base 29) 469 passes MR
ok 279 - Pseudoprime (base 29) 871 passes MR
ok 280 - Pseudoprime (base 29) 2257 passes MR
ok 281 - Pseudoprime (base 29) 4371 passes MR
ok 282 - Pseudoprime (base 29) 4411 passes MR
ok 283 - Pseudoprime (base 29) 5149 passes MR
ok 284 - Pseudoprime (base 29) 6097 passes MR
ok 285 - Pseudoprime (base 29) 8401 passes MR
ok 286 - Pseudoprime (base 29) 11581 passes MR
ok 287 - Pseudoprime (base 29) 12431 passes MR
ok 288 - Pseudoprime (base 29) 15577 passes MR
ok 289 - Pseudoprime (base 29) 16471 passes MR
ok 290 - Pseudoprime (base 29) 19093 passes MR
ok 291 - Pseudoprime (base 29) 25681 passes MR
ok 292 - Pseudoprime (base 29) 28009 passes MR
ok 293 - Pseudoprime (base 29) 29539 passes MR
ok 294 - Pseudoprime (base 29) 31417 passes MR
ok 295 - Pseudoprime (base 29) 33001 passes MR
ok 296 - Pseudoprime (base 29) 48133 passes MR
ok 297 - Pseudoprime (base 29) 49141 passes MR
ok 298 - Pseudoprime (base 29) 54913 passes MR
ok 299 - Pseudoprime (base 29) 79003 passes MR
ok 300 - Pseudoprime (base 5) 781 passes MR
ok 301 - Pseudoprime (base 5) 1541 passes MR
ok 302 - Pseudoprime (base 5) 5461 passes MR
ok 303 - Pseudoprime (base 5) 5611 passes MR
ok 304 - Pseudoprime (base 5) 7813 passes MR
ok 305 - Pseudoprime (base 5) 13021 passes MR
ok 306 - Pseudoprime (base 5) 14981 passes MR
ok 307 - Pseudoprime (base 5) 15751 passes MR
ok 308 - Pseudoprime (base 5) 24211 passes MR
ok 309 - Pseudoprime (base 5) 25351 passes MR
ok 310 - Pseudoprime (base 5) 29539 passes MR
ok 311 - Pseudoprime (base 5) 38081 passes MR
ok 312 - Pseudoprime (base 5) 40501 passes MR
ok 313 - Pseudoprime (base 5) 44801 passes MR
ok 314 - Pseudoprime (base 5) 53971 passes MR
ok 315 - Pseudoprime (base 5) 79381 passes MR
ok 316 - Pseudoprime (base 3613982119) 3626488471 passes MR
ok 317 - Pseudoprime (base 3613982119) 3630467017 passes MR
ok 318 - Pseudoprime (base 3613982119) 3643480501 passes MR
ok 319 - Pseudoprime (base 3613982119) 3651840727 passes MR
ok 320 - Pseudoprime (base 3613982119) 3653628247 passes MR
ok 321 - Pseudoprime (base 3613982119) 3654142177 passes MR
ok 322 - Pseudoprime (base 3613982119) 3672033223 passes MR
ok 323 - Pseudoprime (base 3613982119) 3672036061 passes MR
ok 324 - Pseudoprime (base 3613982119) 3675774019 passes MR
ok 325 - Pseudoprime (base 3613982119) 3687246109 passes MR
ok 326 - Pseudoprime (base 3613982119) 3690036017 passes MR
ok 327 - Pseudoprime (base 3613982119) 3720856369 passes MR
ok 328 - Pseudoprime (base 28178) 28179 passes MR
ok 329 - Pseudoprime (base 28178) 29381 passes MR
ok 330 - Pseudoprime (base 28178) 30353 passes MR
ok 331 - Pseudoprime (base 28178) 34441 passes MR
ok 332 - Pseudoprime (base 28178) 35371 passes MR
ok 333 - Pseudoprime (base 28178) 37051 passes MR
ok 334 - Pseudoprime (base 28178) 38503 passes MR
ok 335 - Pseudoprime (base 28178) 43387 passes MR
ok 336 - Pseudoprime (base 28178) 50557 passes MR
ok 337 - Pseudoprime (base 28178) 51491 passes MR
ok 338 - Pseudoprime (base 28178) 57553 passes MR
ok 339 - Pseudoprime (base 28178) 79003 passes MR
ok 340 - Pseudoprime (base 28178) 82801 passes MR
ok 341 - Pseudoprime (base 28178) 83333 passes MR
ok 342 - Pseudoprime (base 28178) 87249 passes MR
ok 343 - Pseudoprime (base 28178) 88507 passes MR
ok 344 - Pseudoprime (base 28178) 97921 passes MR
ok 345 - Pseudoprime (base 28178) 99811 passes MR
ok 346 - Pseudoprime (base 9375) 11521 passes MR
ok 347 - Pseudoprime (base 9375) 14689 passes MR
ok 348 - Pseudoprime (base 9375) 17893 passes MR
ok 349 - Pseudoprime (base 9375) 18361 passes MR
ok 350 - Pseudoprime (base 9375) 20591 passes MR
ok 351 - Pseudoprime (base 9375) 28093 passes MR
ok 352 - Pseudoprime (base 9375) 32809 passes MR
ok 353 - Pseudoprime (base 9375) 37969 passes MR
ok 354 - Pseudoprime (base 9375) 44287 passes MR
ok 355 - Pseudoprime (base 9375) 60701 passes MR
ok 356 - Pseudoprime (base 9375) 70801 passes MR
ok 357 - Pseudoprime (base 9375) 79957 passes MR
ok 358 - Pseudoprime (base 9375) 88357 passes MR
ok 359 - Pseudoprime (base 9375) 88831 passes MR
ok 360 - Pseudoprime (base 9375) 94249 passes MR
ok 361 - Pseudoprime (base 9375) 96247 passes MR
ok 362 - Pseudoprime (base 9375) 99547 passes MR
ok 363 - Pseudoprime (base 13) 85 passes MR
ok 364 - Pseudoprime (base 13) 1099 passes MR
ok 365 - Pseudoprime (base 13) 5149 passes MR
ok 366 - Pseudoprime (base 13) 7107 passes MR
ok 367 - Pseudoprime (base 13) 8911 passes MR
ok 368 - Pseudoprime (base 13) 9637 passes MR
ok 369 - Pseudoprime (base 13) 13019 passes MR
ok 370 - Pseudoprime (base 13) 14491 passes MR
ok 371 - Pseudoprime (base 13) 17803 passes MR
ok 372 - Pseudoprime (base 13) 19757 passes MR
ok 373 - Pseudoprime (base 13) 20881 passes MR
ok 374 - Pseudoprime (base 13) 22177 passes MR
ok 375 - Pseudoprime (base 13) 23521 passes MR
ok 376 - Pseudoprime (base 13) 26521 passes MR
ok 377 - Pseudoprime (base 13) 35371 passes MR
ok 378 - Pseudoprime (base 13) 44173 passes MR
ok 379 - Pseudoprime (base 13) 45629 passes MR
ok 380 - Pseudoprime (base 13) 54097 passes MR
ok 381 - Pseudoprime (base 13) 56033 passes MR
ok 382 - Pseudoprime (base 13) 57205 passes MR
ok 383 - Pseudoprime (base 13) 75241 passes MR
ok 384 - Pseudoprime (base 13) 83333 passes MR
ok 385 - Pseudoprime (base 13) 85285 passes MR
ok 386 - Pseudoprime (base 13) 86347 passes MR
ok 387 - 4181 is a Frobenius (1,-1) pseudoprime
ok 388 - 5777 is a Frobenius (1,-1) pseudoprime
ok 389 - 6721 is a Frobenius (1,-1) pseudoprime
ok 390 - 10877 is a Frobenius (1,-1) pseudoprime
ok 391 - 13201 is a Frobenius (1,-1) pseudoprime
ok 392 - 15251 is a Frobenius (1,-1) pseudoprime
ok 393 - 34561 is a Frobenius (1,-1) pseudoprime
ok 394 - 51841 is a Frobenius (1,-1) pseudoprime
ok 395 - 64079 is a Frobenius (1,-1) pseudoprime
ok 396 - 64681 is a Frobenius (1,-1) pseudoprime
ok 397 - 67861 is a Frobenius (1,-1) pseudoprime
ok 398 - 68251 is a Frobenius (1,-1) pseudoprime
ok 399 - 75077 is a Frobenius (1,-1) pseudoprime
ok 400 - 90061 is a Frobenius (1,-1) pseudoprime
ok 401 - 96049 is a Frobenius (1,-1) pseudoprime
ok 402 - 97921 is a Frobenius (1,-1) pseudoprime
ok 403 - 100127 is a Frobenius (1,-1) pseudoprime
ok 404 - Pseudoprime (base 1340600841) 1345289261 passes MR
ok 405 - Pseudoprime (base 1340600841) 1345582981 passes MR
ok 406 - Pseudoprime (base 1340600841) 1347743101 passes MR
ok 407 - Pseudoprime (base 1340600841) 1348964401 passes MR
ok 408 - Pseudoprime (base 1340600841) 1350371821 passes MR
ok 409 - Pseudoprime (base 1340600841) 1353332417 passes MR
ok 410 - Pseudoprime (base 1340600841) 1355646961 passes MR
ok 411 - Pseudoprime (base 1340600841) 1357500901 passes MR
ok 412 - Pseudoprime (base 1340600841) 1361675929 passes MR
ok 413 - Pseudoprime (base 1340600841) 1364378203 passes MR
ok 414 - Pseudoprime (base 1340600841) 1366346521 passes MR
ok 415 - Pseudoprime (base 1340600841) 1367104639 passes MR
ok 416 - 15 is an Euler pseudoprime to base 29
ok 417 - 91 is an Euler pseudoprime to base 29
ok 418 - 341 is an Euler pseudoprime to base 29
ok 419 - 469 is an Euler pseudoprime to base 29
ok 420 - 871 is an Euler pseudoprime to base 29
ok 421 - 2257 is an Euler pseudoprime to base 29
ok 422 - 4371 is an Euler pseudoprime to base 29
ok 423 - 4411 is an Euler pseudoprime to base 29
ok 424 - 5149 is an Euler pseudoprime to base 29
ok 425 - 5185 is an Euler pseudoprime to base 29
ok 426 - 6097 is an Euler pseudoprime to base 29
ok 427 - 8401 is an Euler pseudoprime to base 29
ok 428 - 8841 is an Euler pseudoprime to base 29
ok 429 - 11581 is an Euler pseudoprime to base 29
ok 430 - 12431 is an Euler pseudoprime to base 29
ok 431 - 15577 is an Euler pseudoprime to base 29
ok 432 - 15841 is an Euler pseudoprime to base 29
ok 433 - 16471 is an Euler pseudoprime to base 29
ok 434 - 19093 is an Euler pseudoprime to base 29
ok 435 - 22281 is an Euler pseudoprime to base 29
ok 436 - 25681 is an Euler pseudoprime to base 29
ok 437 - 27613 is an Euler pseudoprime to base 29
ok 438 - 28009 is an Euler pseudoprime to base 29
ok 439 - 29539 is an Euler pseudoprime to base 29
ok 440 - 31417 is an Euler pseudoprime to base 29
ok 441 - 33001 is an Euler pseudoprime to base 29
ok 442 - 41041 is an Euler pseudoprime to base 29
ok 443 - 46657 is an Euler pseudoprime to base 29
ok 444 - 48133 is an Euler pseudoprime to base 29
ok 445 - 49141 is an Euler pseudoprime to base 29
ok 446 - 54913 is an Euler pseudoprime to base 29
ok 447 - 57889 is an Euler pseudoprime to base 29
ok 448 - 79003 is an Euler pseudoprime to base 29
ok 449 - 98301 is an Euler pseudoprime to base 29
ok 450 - Pseudoprime (base 19) 9 passes MR
ok 451 - Pseudoprime (base 19) 49 passes MR
ok 452 - Pseudoprime (base 19) 169 passes MR
ok 453 - Pseudoprime (base 19) 343 passes MR
ok 454 - Pseudoprime (base 19) 1849 passes MR
ok 455 - Pseudoprime (base 19) 2353 passes MR
ok 456 - Pseudoprime (base 19) 2701 passes MR
ok 457 - Pseudoprime (base 19) 4033 passes MR
ok 458 - Pseudoprime (base 19) 4681 passes MR
ok 459 - Pseudoprime (base 19) 6541 passes MR
ok 460 - Pseudoprime (base 19) 6697 passes MR
ok 461 - Pseudoprime (base 19) 7957 passes MR
ok 462 - Pseudoprime (base 19) 9997 passes MR
ok 463 - Pseudoprime (base 19) 12403 passes MR
ok 464 - Pseudoprime (base 19) 13213 passes MR
ok 465 - Pseudoprime (base 19) 13747 passes MR
ok 466 - Pseudoprime (base 19) 15251 passes MR
ok 467 - Pseudoprime (base 19) 16531 passes MR
ok 468 - Pseudoprime (base 19) 18769 passes MR
ok 469 - Pseudoprime (base 19) 19729 passes MR
ok 470 - Pseudoprime (base 19) 24761 passes MR
ok 471 - Pseudoprime (base 19) 30589 passes MR
ok 472 - Pseudoprime (base 19) 31621 passes MR
ok 473 - Pseudoprime (base 19) 31861 passes MR
ok 474 - Pseudoprime (base 19) 32477 passes MR
ok 475 - Pseudoprime (base 19) 41003 passes MR
ok 476 - Pseudoprime (base 19) 49771 passes MR
ok 477 - Pseudoprime (base 19) 63139 passes MR
ok 478 - Pseudoprime (base 19) 64681 passes MR
ok 479 - Pseudoprime (base 19) 65161 passes MR
ok 480 - Pseudoprime (base 19) 66421 passes MR
ok 481 - Pseudoprime (base 19) 68257 passes MR
ok 482 - Pseudoprime (base 19) 73555 passes MR
ok 483 - Pseudoprime (base 19) 96049 passes MR
ok 484 - 271441 is a Perrin pseudoprime
ok 485 - 904631 is a Perrin pseudoprime
ok 486 - 16532714 is a Perrin pseudoprime
ok 487 - 24658561 is a Perrin pseudoprime
ok 488 - 27422714 is a Perrin pseudoprime
ok 489 - 27664033 is a Perrin pseudoprime
ok 490 - 46672291 is a Perrin pseudoprime
ok 491 - 102690901 is a Perrin pseudoprime
ok 492 - 130944133 is a Perrin pseudoprime
ok 493 - 196075949 is a Perrin pseudoprime
ok 494 - 214038533 is a Perrin pseudoprime
ok 495 - 517697641 is a Perrin pseudoprime
ok 496 - 545670533 is a Perrin pseudoprime
ok 497 - 801123451 is a Perrin pseudoprime
ok 498 - Pseudoprime (base 642735) 653251 passes MR
ok 499 - Pseudoprime (base 642735) 653333 passes MR
ok 500 - Pseudoprime (base 642735) 663181 passes MR
ok 501 - Pseudoprime (base 642735) 676651 passes MR
ok 502 - Pseudoprime (base 642735) 714653 passes MR
ok 503 - Pseudoprime (base 642735) 759277 passes MR
ok 504 - Pseudoprime (base 642735) 794683 passes MR
ok 505 - Pseudoprime (base 642735) 805141 passes MR
ok 506 - Pseudoprime (base 642735) 844097 passes MR
ok 507 - Pseudoprime (base 642735) 872191 passes MR
ok 508 - Pseudoprime (base 642735) 874171 passes MR
ok 509 - Pseudoprime (base 642735) 894671 passes MR
ok 510 - Pseudoprime (base 325) 341 passes MR
ok 511 - Pseudoprime (base 325) 343 passes MR
ok 512 - Pseudoprime (base 325) 697 passes MR
ok 513 - Pseudoprime (base 325) 1141 passes MR
ok 514 - Pseudoprime (base 325) 2059 passes MR
ok 515 - Pseudoprime (base 325) 2149 passes MR
ok 516 - Pseudoprime (base 325) 3097 passes MR
ok 517 - Pseudoprime (base 325) 3537 passes MR
ok 518 - Pseudoprime (base 325) 4033 passes MR
ok 519 - Pseudoprime (base 325) 4681 passes MR
ok 520 - Pseudoprime (base 325) 4941 passes MR
ok 521 - Pseudoprime (base 325) 5833 passes MR
ok 522 - Pseudoprime (base 325) 6517 passes MR
ok 523 - Pseudoprime (base 325) 7987 passes MR
ok 524 - Pseudoprime (base 325) 8911 passes MR
ok 525 - Pseudoprime (base 325) 12403 passes MR
ok 526 - Pseudoprime (base 325) 12913 passes MR
ok 527 - Pseudoprime (base 325) 15043 passes MR
ok 528 - Pseudoprime (base 325) 16021 passes MR
ok 529 - Pseudoprime (base 325) 20017 passes MR
ok 530 - Pseudoprime (base 325) 22261 passes MR
ok 531 - Pseudoprime (base 325) 23221 passes MR
ok 532 - Pseudoprime (base 325) 24649 passes MR
ok 533 - Pseudoprime (base 325) 24929 passes MR
ok 534 - Pseudoprime (base 325) 31841 passes MR
ok 535 - Pseudoprime (base 325) 35371 passes MR
ok 536 - Pseudoprime (base 325) 38503 passes MR
ok 537 - Pseudoprime (base 325) 43213 passes MR
ok 538 - Pseudoprime (base 325) 44173 passes MR
ok 539 - Pseudoprime (base 325) 47197 passes MR
ok 540 - Pseudoprime (base 325) 50041 passes MR
ok 541 - Pseudoprime (base 325) 55909 passes MR
ok 542 - Pseudoprime (base 325) 56033 passes MR
ok 543 - Pseudoprime (base 325) 58969 passes MR
ok 544 - Pseudoprime (base 325) 59089 passes MR
ok 545 - Pseudoprime (base 325) 61337 passes MR
ok 546 - Pseudoprime (base 325) 65441 passes MR
ok 547 - Pseudoprime (base 325) 68823 passes MR
ok 548 - Pseudoprime (base 325) 72641 passes MR
ok 549 - Pseudoprime (base 325) 76793 passes MR
ok 550 - Pseudoprime (base 325) 78409 passes MR
ok 551 - Pseudoprime (base 325) 85879 passes MR
ok 552 - Pseudoprime (base 17) 9 passes MR
ok 553 - Pseudoprime (base 17) 91 passes MR
ok 554 - Pseudoprime (base 17) 145 passes MR
ok 555 - Pseudoprime (base 17) 781 passes MR
ok 556 - Pseudoprime (base 17) 1111 passes MR
ok 557 - Pseudoprime (base 17) 2821 passes MR
ok 558 - Pseudoprime (base 17) 4033 passes MR
ok 559 - Pseudoprime (base 17) 4187 passes MR
ok 560 - Pseudoprime (base 17) 5365 passes MR
ok 561 - Pseudoprime (base 17) 5833 passes MR
ok 562 - Pseudoprime (base 17) 6697 passes MR
ok 563 - Pseudoprime (base 17) 7171 passes MR
ok 564 - Pseudoprime (base 17) 15805 passes MR
ok 565 - Pseudoprime (base 17) 19729 passes MR
ok 566 - Pseudoprime (base 17) 21781 passes MR
ok 567 - Pseudoprime (base 17) 22791 passes MR
ok 568 - Pseudoprime (base 17) 24211 passes MR
ok 569 - Pseudoprime (base 17) 26245 passes MR
ok 570 - Pseudoprime (base 17) 31621 passes MR
ok 571 - Pseudoprime (base 17) 33001 passes MR
ok 572 - Pseudoprime (base 17) 33227 passes MR
ok 573 - Pseudoprime (base 17) 34441 passes MR
ok 574 - Pseudoprime (base 17) 35371 passes MR
ok 575 - Pseudoprime (base 17) 38081 passes MR
ok 576 - Pseudoprime (base 17) 42127 passes MR
ok 577 - Pseudoprime (base 17) 49771 passes MR
ok 578 - Pseudoprime (base 17) 71071 passes MR
ok 579 - Pseudoprime (base 17) 74665 passes MR
ok 580 - Pseudoprime (base 17) 77293 passes MR
ok 581 - Pseudoprime (base 17) 78881 passes MR
ok 582 - Pseudoprime (base 17) 88831 passes MR
ok 583 - Pseudoprime (base 17) 96433 passes MR
ok 584 - Pseudoprime (base 17) 97921 passes MR
ok 585 - Pseudoprime (base 17) 98671 passes MR
ok 586 - 561 is an Euler pseudoprime to base 2
ok 587 - 1105 is an Euler pseudoprime to base 2
ok 588 - 1729 is an Euler pseudoprime to base 2
ok 589 - 1905 is an Euler pseudoprime to base 2
ok 590 - 2047 is an Euler pseudoprime to base 2
ok 591 - 2465 is an Euler pseudoprime to base 2
ok 592 - 3277 is an Euler pseudoprime to base 2
ok 593 - 4033 is an Euler pseudoprime to base 2
ok 594 - 4681 is an Euler pseudoprime to base 2
ok 595 - 6601 is an Euler pseudoprime to base 2
ok 596 - 8321 is an Euler pseudoprime to base 2
ok 597 - 8481 is an Euler pseudoprime to base 2
ok 598 - 10585 is an Euler pseudoprime to base 2
ok 599 - 12801 is an Euler pseudoprime to base 2
ok 600 - 15841 is an Euler pseudoprime to base 2
ok 601 - 16705 is an Euler pseudoprime to base 2
ok 602 - 18705 is an Euler pseudoprime to base 2
ok 603 - 25761 is an Euler pseudoprime to base 2
ok 604 - 29341 is an Euler pseudoprime to base 2
ok 605 - 30121 is an Euler pseudoprime to base 2
ok 606 - 33153 is an Euler pseudoprime to base 2
ok 607 - 34945 is an Euler pseudoprime to base 2
ok 608 - 41041 is an Euler pseudoprime to base 2
ok 609 - 42799 is an Euler pseudoprime to base 2
ok 610 - 46657 is an Euler pseudoprime to base 2
ok 611 - 49141 is an Euler pseudoprime to base 2
ok 612 - 52633 is an Euler pseudoprime to base 2
ok 613 - 62745 is an Euler pseudoprime to base 2
ok 614 - 65281 is an Euler pseudoprime to base 2
ok 615 - 74665 is an Euler pseudoprime to base 2
ok 616 - 75361 is an Euler pseudoprime to base 2
ok 617 - 80581 is an Euler pseudoprime to base 2
ok 618 - 85489 is an Euler pseudoprime to base 2
ok 619 - 87249 is an Euler pseudoprime to base 2
ok 620 - 88357 is an Euler pseudoprime to base 2
ok 621 - 90751 is an Euler pseudoprime to base 2
ok 622 - 1729 is an Euler-Plumb pseudoprime
ok 623 - 1905 is an Euler-Plumb pseudoprime
ok 624 - 2047 is an Euler-Plumb pseudoprime
ok 625 - 2465 is an Euler-Plumb pseudoprime
ok 626 - 3277 is an Euler-Plumb pseudoprime
ok 627 - 4033 is an Euler-Plumb pseudoprime
ok 628 - 4681 is an Euler-Plumb pseudoprime
ok 629 - 8321 is an Euler-Plumb pseudoprime
ok 630 - 12801 is an Euler-Plumb pseudoprime
ok 631 - 15841 is an Euler-Plumb pseudoprime
ok 632 - 16705 is an Euler-Plumb pseudoprime
ok 633 - 18705 is an Euler-Plumb pseudoprime
ok 634 - 25761 is an Euler-Plumb pseudoprime
ok 635 - 29341 is an Euler-Plumb pseudoprime
ok 636 - 33153 is an Euler-Plumb pseudoprime
ok 637 - 34945 is an Euler-Plumb pseudoprime
ok 638 - 41041 is an Euler-Plumb pseudoprime
ok 639 - 42799 is an Euler-Plumb pseudoprime
ok 640 - 46657 is an Euler-Plumb pseudoprime
ok 641 - 49141 is an Euler-Plumb pseudoprime
ok 642 - 52633 is an Euler-Plumb pseudoprime
ok 643 - 65281 is an Euler-Plumb pseudoprime
ok 644 - 74665 is an Euler-Plumb pseudoprime
ok 645 - 75361 is an Euler-Plumb pseudoprime
ok 646 - 80581 is an Euler-Plumb pseudoprime
ok 647 - 85489 is an Euler-Plumb pseudoprime
ok 648 - 87249 is an Euler-Plumb pseudoprime
ok 649 - 88357 is an Euler-Plumb pseudoprime
ok 650 - 90751 is an Euler-Plumb pseudoprime
ok 651 - Pseudoprime (base 7) 25 passes MR
ok 652 - Pseudoprime (base 7) 325 passes MR
ok 653 - Pseudoprime (base 7) 703 passes MR
ok 654 - Pseudoprime (base 7) 2101 passes MR
ok 655 - Pseudoprime (base 7) 2353 passes MR
ok 656 - Pseudoprime (base 7) 4525 passes MR
ok 657 - Pseudoprime (base 7) 11041 passes MR
ok 658 - Pseudoprime (base 7) 14089 passes MR
ok 659 - Pseudoprime (base 7) 20197 passes MR
ok 660 - Pseudoprime (base 7) 29857 passes MR
ok 661 - Pseudoprime (base 7) 29891 passes MR
ok 662 - Pseudoprime (base 7) 39331 passes MR
ok 663 - Pseudoprime (base 7) 49241 passes MR
ok 664 - Pseudoprime (base 7) 58825 passes MR
ok 665 - Pseudoprime (base 7) 64681 passes MR
ok 666 - Pseudoprime (base 7) 76627 passes MR
ok 667 - Pseudoprime (base 7) 78937 passes MR
ok 668 - Pseudoprime (base 7) 79381 passes MR
ok 669 - Pseudoprime (base 7) 87673 passes MR
ok 670 - Pseudoprime (base 7) 88399 passes MR
ok 671 - Pseudoprime (base 7) 88831 passes MR
ok 672 - Pseudoprime (base 61) 217 passes MR
ok 673 - Pseudoprime (base 61) 341 passes MR
ok 674 - Pseudoprime (base 61) 1261 passes MR
ok 675 - Pseudoprime (base 61) 2701 passes MR
ok 676 - Pseudoprime (base 61) 3661 passes MR
ok 677 - Pseudoprime (base 61) 6541 passes MR
ok 678 - Pseudoprime (base 61) 6697 passes MR
ok 679 - Pseudoprime (base 61) 7613 passes MR
ok 680 - Pseudoprime (base 61) 13213 passes MR
ok 681 - Pseudoprime (base 61) 16213 passes MR
ok 682 - Pseudoprime (base 61) 22177 passes MR
ok 683 - Pseudoprime (base 61) 23653 passes MR
ok 684 - Pseudoprime (base 61) 23959 passes MR
ok 685 - Pseudoprime (base 61) 31417 passes MR
ok 686 - Pseudoprime (base 61) 50117 passes MR
ok 687 - Pseudoprime (base 61) 61777 passes MR
ok 688 - Pseudoprime (base 61) 63139 passes MR
ok 689 - Pseudoprime (base 61) 67721 passes MR
ok 690 - Pseudoprime (base 61) 76301 passes MR
ok 691 - Pseudoprime (base 61) 77421 passes MR
ok 692 - Pseudoprime (base 61) 79381 passes MR
ok 693 - Pseudoprime (base 61) 80041 passes MR
ok 694 - 323 is a Lucas-Selfridge pseudoprime
ok 695 - 377 is a Lucas-Selfridge pseudoprime
ok 696 - 1159 is a Lucas-Selfridge pseudoprime
ok 697 - 1829 is a Lucas-Selfridge pseudoprime
ok 698 - 3827 is a Lucas-Selfridge pseudoprime
ok 699 - 5459 is a Lucas-Selfridge pseudoprime
ok 700 - 5777 is a Lucas-Selfridge pseudoprime
ok 701 - 9071 is a Lucas-Selfridge pseudoprime
ok 702 - 9179 is a Lucas-Selfridge pseudoprime
ok 703 - 10877 is a Lucas-Selfridge pseudoprime
ok 704 - 11419 is a Lucas-Selfridge pseudoprime
ok 705 - 11663 is a Lucas-Selfridge pseudoprime
ok 706 - 13919 is a Lucas-Selfridge pseudoprime
ok 707 - 14839 is a Lucas-Selfridge pseudoprime
ok 708 - 16109 is a Lucas-Selfridge pseudoprime
ok 709 - 16211 is a Lucas-Selfridge pseudoprime
ok 710 - 18407 is a Lucas-Selfridge pseudoprime
ok 711 - 18971 is a Lucas-Selfridge pseudoprime
ok 712 - 19043 is a Lucas-Selfridge pseudoprime
ok 713 - 3239 is an almost extra strong Lucas pseudoprime (increment 2)
ok 714 - 4531 is an almost extra strong Lucas pseudoprime (increment 2)
ok 715 - 5777 is an almost extra strong Lucas pseudoprime (increment 2)
ok 716 - 10877 is an almost extra strong Lucas pseudoprime (increment 2)
ok 717 - 12209 is an almost extra strong Lucas pseudoprime (increment 2)
ok 718 - 21899 is an almost extra strong Lucas pseudoprime (increment 2)
ok 719 - 31631 is an almost extra strong Lucas pseudoprime (increment 2)
ok 720 - 31831 is an almost extra strong Lucas pseudoprime (increment 2)
ok 721 - 32129 is an almost extra strong Lucas pseudoprime (increment 2)
ok 722 - 34481 is an almost extra strong Lucas pseudoprime (increment 2)
ok 723 - 36079 is an almost extra strong Lucas pseudoprime (increment 2)
ok 724 - 37949 is an almost extra strong Lucas pseudoprime (increment 2)
ok 725 - 47849 is an almost extra strong Lucas pseudoprime (increment 2)
ok 726 - 50959 is an almost extra strong Lucas pseudoprime (increment 2)
ok 727 - 51641 is an almost extra strong Lucas pseudoprime (increment 2)
ok 728 - 62479 is an almost extra strong Lucas pseudoprime (increment 2)
ok 729 - 73919 is an almost extra strong Lucas pseudoprime (increment 2)
ok 730 - 75077 is an almost extra strong Lucas pseudoprime (increment 2)
ok 731 - 97109 is an almost extra strong Lucas pseudoprime (increment 2)
ok 732 - 100127 is an almost extra strong Lucas pseudoprime (increment 2)
ok 733 - 108679 is an almost extra strong Lucas pseudoprime (increment 2)
ok 734 - 113573 is an almost extra strong Lucas pseudoprime (increment 2)
ok 735 - 116899 is an almost extra strong Lucas pseudoprime (increment 2)
ok 736 - 154697 is an almost extra strong Lucas pseudoprime (increment 2)
ok 737 - 161027 is an almost extra strong Lucas pseudoprime (increment 2)
ok 738 - Pseudoprime (base 11) 133 passes MR
ok 739 - Pseudoprime (base 11) 793 passes MR
ok 740 - Pseudoprime (base 11) 2047 passes MR
ok 741 - Pseudoprime (base 11) 4577 passes MR
ok 742 - Pseudoprime (base 11) 5041 passes MR
ok 743 - Pseudoprime (base 11) 12403 passes MR
ok 744 - Pseudoprime (base 11) 13333 passes MR
ok 745 - Pseudoprime (base 11) 14521 passes MR
ok 746 - Pseudoprime (base 11) 17711 passes MR
ok 747 - Pseudoprime (base 11) 23377 passes MR
ok 748 - Pseudoprime (base 11) 43213 passes MR
ok 749 - Pseudoprime (base 11) 43739 passes MR
ok 750 - Pseudoprime (base 11) 47611 passes MR
ok 751 - Pseudoprime (base 11) 48283 passes MR
ok 752 - Pseudoprime (base 11) 49601 passes MR
ok 753 - Pseudoprime (base 11) 50737 passes MR
ok 754 - Pseudoprime (base 11) 50997 passes MR
ok 755 - Pseudoprime (base 11) 56057 passes MR
ok 756 - Pseudoprime (base 11) 58969 passes MR
ok 757 - Pseudoprime (base 11) 68137 passes MR
ok 758 - Pseudoprime (base 11) 74089 passes MR
ok 759 - Pseudoprime (base 11) 85879 passes MR
ok 760 - Pseudoprime (base 11) 86347 passes MR
ok 761 - Pseudoprime (base 11) 87913 passes MR
ok 762 - Pseudoprime (base 11) 88831 passes MR
ok 763 - Pseudoprime (base 1005905886) 1005905887 passes MR
ok 764 - Pseudoprime (base 1005905886) 1007713171 passes MR
ok 765 - Pseudoprime (base 1005905886) 1008793699 passes MR
ok 766 - Pseudoprime (base 1005905886) 1010415421 passes MR
ok 767 - Pseudoprime (base 1005905886) 1010487061 passes MR
ok 768 - Pseudoprime (base 1005905886) 1010836369 passes MR
ok 769 - Pseudoprime (base 1005905886) 1012732873 passes MR
ok 770 - Pseudoprime (base 1005905886) 1015269391 passes MR
ok 771 - Pseudoprime (base 1005905886) 1016250247 passes MR
ok 772 - Pseudoprime (base 1005905886) 1018405741 passes MR
ok 773 - Pseudoprime (base 1005905886) 1020182041 passes MR
ok 774 - Pseudoprime (base 9780504) 9780505 passes MR
ok 775 - Pseudoprime (base 9780504) 9784915 passes MR
ok 776 - Pseudoprime (base 9780504) 9826489 passes MR
ok 777 - Pseudoprime (base 9780504) 9882457 passes MR
ok 778 - Pseudoprime (base 9780504) 9974791 passes MR
ok 779 - Pseudoprime (base 9780504) 10017517 passes MR
ok 780 - Pseudoprime (base 9780504) 10018081 passes MR
ok 781 - Pseudoprime (base 9780504) 10084177 passes MR
ok 782 - Pseudoprime (base 9780504) 10188481 passes MR
ok 783 - Pseudoprime (base 9780504) 10247357 passes MR
ok 784 - Pseudoprime (base 9780504) 10267951 passes MR
ok 785 - Pseudoprime (base 9780504) 10392241 passes MR
ok 786 - Pseudoprime (base 9780504) 10427209 passes MR
ok 787 - Pseudoprime (base 9780504) 10511201 passes MR
ok 788 - Pseudoprime (base 73) 205 passes MR
ok 789 - Pseudoprime (base 73) 259 passes MR
ok 790 - Pseudoprime (base 73) 533 passes MR
ok 791 - Pseudoprime (base 73) 1441 passes MR
ok 792 - Pseudoprime (base 73) 1921 passes MR
ok 793 - Pseudoprime (base 73) 2665 passes MR
ok 794 - Pseudoprime (base 73) 3439 passes MR
ok 795 - Pseudoprime (base 73) 5257 passes MR
ok 796 - Pseudoprime (base 73) 15457 passes MR
ok 797 - Pseudoprime (base 73) 23281 passes MR
ok 798 - Pseudoprime (base 73) 24617 passes MR
ok 799 - Pseudoprime (base 73) 26797 passes MR
ok 800 - Pseudoprime (base 73) 27787 passes MR
ok 801 - Pseudoprime (base 73) 28939 passes MR
ok 802 - Pseudoprime (base 73) 34219 passes MR
ok 803 - Pseudoprime (base 73) 39481 passes MR
ok 804 - Pseudoprime (base 73) 44671 passes MR
ok 805 - Pseudoprime (base 73) 45629 passes MR
ok 806 - Pseudoprime (base 73) 64681 passes MR
ok 807 - Pseudoprime (base 73) 67069 passes MR
ok 808 - Pseudoprime (base 73) 76429 passes MR
ok 809 - Pseudoprime (base 73) 79501 passes MR
ok 810 - Pseudoprime (base 73) 93521 passes MR
ok 811 - 989 is an almost extra strong Lucas pseudoprime (increment 1)
ok 812 - 3239 is an almost extra strong Lucas pseudoprime (increment 1)
ok 813 - 5777 is an almost extra strong Lucas pseudoprime (increment 1)
ok 814 - 10469 is an almost extra strong Lucas pseudoprime (increment 1)
ok 815 - 10877 is an almost extra strong Lucas pseudoprime (increment 1)
ok 816 - 27971 is an almost extra strong Lucas pseudoprime (increment 1)
ok 817 - 29681 is an almost extra strong Lucas pseudoprime (increment 1)
ok 818 - 30739 is an almost extra strong Lucas pseudoprime (increment 1)
ok 819 - 31631 is an almost extra strong Lucas pseudoprime (increment 1)
ok 820 - 39059 is an almost extra strong Lucas pseudoprime (increment 1)
ok 821 - 72389 is an almost extra strong Lucas pseudoprime (increment 1)
ok 822 - 73919 is an almost extra strong Lucas pseudoprime (increment 1)
ok 823 - 75077 is an almost extra strong Lucas pseudoprime (increment 1)
ok 824 - 100127 is an almost extra strong Lucas pseudoprime (increment 1)
ok 825 - 113573 is an almost extra strong Lucas pseudoprime (increment 1)
ok 826 - 125249 is an almost extra strong Lucas pseudoprime (increment 1)
ok 827 - 137549 is an almost extra strong Lucas pseudoprime (increment 1)
ok 828 - 137801 is an almost extra strong Lucas pseudoprime (increment 1)
ok 829 - 153931 is an almost extra strong Lucas pseudoprime (increment 1)
ok 830 - 154697 is an almost extra strong Lucas pseudoprime (increment 1)
ok 831 - 155819 is an almost extra strong Lucas pseudoprime (increment 1)
ok 832 - Pseudoprime (base 3046413974) 3046413975 passes MR
ok 833 - Pseudoprime (base 3046413974) 3048698683 passes MR
ok 834 - Pseudoprime (base 3046413974) 3051199817 passes MR
ok 835 - Pseudoprime (base 3046413974) 3068572849 passes MR
ok 836 - Pseudoprime (base 3046413974) 3069705673 passes MR
ok 837 - Pseudoprime (base 3046413974) 3070556233 passes MR
ok 838 - Pseudoprime (base 3046413974) 3079010071 passes MR
ok 839 - Pseudoprime (base 3046413974) 3089940811 passes MR
ok 840 - Pseudoprime (base 3046413974) 3090723901 passes MR
ok 841 - Pseudoprime (base 3046413974) 3109299161 passes MR
ok 842 - Pseudoprime (base 3046413974) 3110951251 passes MR
ok 843 - Pseudoprime (base 3046413974) 3113625601 passes MR
ok 844 - Pseudoprime (base 450775) 465991 passes MR
ok 845 - Pseudoprime (base 450775) 468931 passes MR
ok 846 - Pseudoprime (base 450775) 485357 passes MR
ok 847 - Pseudoprime (base 450775) 505441 passes MR
ok 848 - Pseudoprime (base 450775) 536851 passes MR
ok 849 - Pseudoprime (base 450775) 556421 passes MR
ok 850 - Pseudoprime (base 450775) 578771 passes MR
ok 851 - Pseudoprime (base 450775) 585631 passes MR
ok 852 - Pseudoprime (base 450775) 586249 passes MR
ok 853 - Pseudoprime (base 450775) 606361 passes MR
ok 854 - Pseudoprime (base 450775) 631651 passes MR
ok 855 - Pseudoprime (base 450775) 638731 passes MR
ok 856 - Pseudoprime (base 450775) 641683 passes MR
ok 857 - Pseudoprime (base 450775) 645679 passes MR
ok 858 - Pseudoprime (base 203659041) 204172939 passes MR
ok 859 - Pseudoprime (base 203659041) 204456793 passes MR
ok 860 - Pseudoprime (base 203659041) 206407057 passes MR
ok 861 - Pseudoprime (base 203659041) 206976001 passes MR
ok 862 - Pseudoprime (base 203659041) 207373483 passes MR
ok 863 - Pseudoprime (base 203659041) 209301121 passes MR
ok 864 - Pseudoprime (base 203659041) 210339397 passes MR
ok 865 - Pseudoprime (base 203659041) 211867969 passes MR
ok 866 - Pseudoprime (base 203659041) 212146507 passes MR
ok 867 - Pseudoprime (base 203659041) 212337217 passes MR
ok 868 - Pseudoprime (base 203659041) 212355793 passes MR
ok 869 - Pseudoprime (base 203659041) 214400629 passes MR
ok 870 - Pseudoprime (base 203659041) 214539841 passes MR
ok 871 - Pseudoprime (base 203659041) 215161459 passes MR
ok 872 - 341 is a pseudoprime to base 2
ok 873 - 561 is a pseudoprime to base 2
ok 874 - 645 is a pseudoprime to base 2
ok 875 - 1105 is a pseudoprime to base 2
ok 876 - 1387 is a pseudoprime to base 2
ok 877 - 1729 is a pseudoprime to base 2
ok 878 - 1905 is a pseudoprime to base 2
ok 879 - 2047 is a pseudoprime to base 2
ok 880 - 2465 is a pseudoprime to base 2
ok 881 - 2701 is a pseudoprime to base 2
ok 882 - 2821 is a pseudoprime to base 2
ok 883 - 3277 is a pseudoprime to base 2
ok 884 - 4033 is a pseudoprime to base 2
ok 885 - 4369 is a pseudoprime to base 2
ok 886 - 4371 is a pseudoprime to base 2
ok 887 - 4681 is a pseudoprime to base 2
ok 888 - 5461 is a pseudoprime to base 2
ok 889 - 6601 is a pseudoprime to base 2
ok 890 - 7957 is a pseudoprime to base 2
ok 891 - 8321 is a pseudoprime to base 2
ok 892 - 8481 is a pseudoprime to base 2
ok 893 - 8911 is a pseudoprime to base 2
ok 894 - 10261 is a pseudoprime to base 2
ok 895 - 10585 is a pseudoprime to base 2
ok 896 - 11305 is a pseudoprime to base 2
ok 897 - 12801 is a pseudoprime to base 2
ok 898 - 13741 is a pseudoprime to base 2
ok 899 - 13747 is a pseudoprime to base 2
ok 900 - 13981 is a pseudoprime to base 2
ok 901 - 14491 is a pseudoprime to base 2
ok 902 - 15709 is a pseudoprime to base 2
ok 903 - 15841 is a pseudoprime to base 2
ok 904 - 16705 is a pseudoprime to base 2
ok 905 - 18705 is a pseudoprime to base 2
ok 906 - 18721 is a pseudoprime to base 2
ok 907 - 19951 is a pseudoprime to base 2
ok 908 - 23001 is a pseudoprime to base 2
ok 909 - 23377 is a pseudoprime to base 2
ok 910 - 25761 is a pseudoprime to base 2
ok 911 - 29341 is a pseudoprime to base 2
ok 912 - Pseudoprime (base 3) 121 passes MR
ok 913 - Pseudoprime (base 3) 703 passes MR
ok 914 - Pseudoprime (base 3) 1891 passes MR
ok 915 - Pseudoprime (base 3) 3281 passes MR
ok 916 - Pseudoprime (base 3) 8401 passes MR
ok 917 - Pseudoprime (base 3) 8911 passes MR
ok 918 - Pseudoprime (base 3) 10585 passes MR
ok 919 - Pseudoprime (base 3) 12403 passes MR
ok 920 - Pseudoprime (base 3) 16531 passes MR
ok 921 - Pseudoprime (base 3) 18721 passes MR
ok 922 - Pseudoprime (base 3) 19345 passes MR
ok 923 - Pseudoprime (base 3) 23521 passes MR
ok 924 - Pseudoprime (base 3) 31621 passes MR
ok 925 - Pseudoprime (base 3) 44287 passes MR
ok 926 - Pseudoprime (base 3) 47197 passes MR
ok 927 - Pseudoprime (base 3) 55969 passes MR
ok 928 - Pseudoprime (base 3) 63139 passes MR
ok 929 - Pseudoprime (base 3) 74593 passes MR
ok 930 - Pseudoprime (base 3) 79003 passes MR
ok 931 - Pseudoprime (base 3) 82513 passes MR
ok 932 - Pseudoprime (base 3) 87913 passes MR
ok 933 - Pseudoprime (base 3) 88573 passes MR
ok 934 - Pseudoprime (base 3) 97567 passes MR
ok 935 - MR base 2 matches is_prime for 2-4032 (excl 2047,3277)
ok 936 - spsp(  3,    3)
ok 937 - spsp( 11,   11)
ok 938 - spsp( 89, 5785)
ok 939 - spsp(257, 6168)
ok 940 - spsp(367,  367)
ok 941 - spsp(367, 1101)
ok 942 - spsp(49001, 921211727)
ok 943 - spsp(  331, 921211727)
ok 944 - spsp(49117, 921211727)
ok 945 - 162401 is a Fermat pseudoprime to bases 2,3,5,7,11,13
ok 946 - 1857241 is an Euler pseudoprime to bases 2,3,5,7,11,13
ok 947 - 3474749660383 is a strong pseudoprime to bases 2,3,5,7,11,13
ok 948 - 2 is a prime and a strong Lucas-Selfridge pseudoprime
ok 949 - 9 is not a prime and not a strong Lucas-Selfridge pseudoprime
ok 950 - 16 is not a prime and not a strong Lucas-Selfridge pseudoprime
ok 951 - 100 is not a prime and not a strong Lucas-Selfridge pseudoprime
ok 952 - 102 is not a prime and not a strong Lucas-Selfridge pseudoprime
ok 953 - 323 is not a prime and not a strong Lucas-Selfridge pseudoprime
ok 954 - 377 is not a prime and not a strong Lucas-Selfridge pseudoprime
ok 955 - 2047 is not a prime and not a strong Lucas-Selfridge pseudoprime
ok 956 - 2048 is not a prime and not a strong Lucas-Selfridge pseudoprime
ok 957 - 5781 is not a prime and not a strong Lucas-Selfridge pseudoprime
ok 958 - 9000 is not a prime and not a strong Lucas-Selfridge pseudoprime
ok 959 - 14381 is not a prime and not a strong Lucas-Selfridge pseudoprime
ok 960 - Lucas sequence 49001 25 117 24501
ok 961 - Lucas sequence 323 1 1 324
ok 962 - Lucas sequence 323 4 1 324
ok 963 - Lucas sequence 323 3 1  81
ok 964 - Lucas sequence 323 3 1 324
ok 965 - Lucas sequence 323 4 5 324
ok 966 - Lucas sequence 18971 10001 -1 4743
ok 967 - Lucas sequence 323 5 -1 81
ok 968 - Fibonacci(1001)
ok 969 - Lucas(1001)
ok 970 - lucasu(9,-1,3671)
ok 971 - lucasu(287,-1,3079)
ok 972 - lucasv(80,1,71)
ok 973 - lucasv(63,1,13217)
ok 974 - lucasv(10,8,88321)
ok 975 - Miller-Rabin with 0 random bases
ok 976 - Miller-Rabin with 100 uniform random bases for n returns prime
ok 977 - prime 216807359884357411648908138950271200947 passes Euler-Plumb primality test
ok 978 - prime 216807359884357411648908138950271200947 passes Frobenius primality test
ok 979 - prime 216807359884357411648908138950271200947 passes Frobenius Khashin primality test
ok 980 - prime 216807359884357411648908138950271200947 passes Frobenius Underwood primality test
ok 981 - prime 216807359884357411648908138950271200947 passes BPSW primality test
ok 982 - prime 339168371495941440319562622097823889491 passes Euler-Plumb primality test
ok 983 - prime 339168371495941440319562622097823889491 passes Frobenius primality test
ok 984 - prime 339168371495941440319562622097823889491 passes Frobenius Khashin primality test
ok 985 - prime 339168371495941440319562622097823889491 passes Frobenius Underwood primality test
ok 986 - prime 339168371495941440319562622097823889491 passes BPSW primality test
ok 987 - prime 175647712566579256193079384409148729569 passes Euler-Plumb primality test
ok 988 - prime 175647712566579256193079384409148729569 passes Frobenius primality test
ok 989 - prime 175647712566579256193079384409148729569 passes Frobenius Khashin primality test
ok 990 - prime 175647712566579256193079384409148729569 passes Frobenius Underwood primality test
ok 991 - prime 175647712566579256193079384409148729569 passes BPSW primality test
ok 992 - prime 213978050035770705635718665804334250861 passes Euler-Plumb primality test
ok 993 - prime 213978050035770705635718665804334250861 passes Frobenius primality test
ok 994 - prime 213978050035770705635718665804334250861 passes Frobenius Khashin primality test
ok 995 - prime 213978050035770705635718665804334250861 passes Frobenius Underwood primality test
ok 996 - prime 213978050035770705635718665804334250861 passes BPSW primality test
ok 997 - prime 282014465653257435172223280631326130957 passes Euler-Plumb primality test
ok 998 - prime 282014465653257435172223280631326130957 passes Frobenius primality test
ok 999 - prime 282014465653257435172223280631326130957 passes Frobenius Khashin primality test
ok 1000 - prime 282014465653257435172223280631326130957 passes Frobenius Underwood primality test
ok 1001 - prime 282014465653257435172223280631326130957 passes BPSW primality test
ok 1002 - prime 285690571631805499387265005140705006349 passes Euler-Plumb primality test
ok 1003 - prime 285690571631805499387265005140705006349 passes Frobenius primality test
ok 1004 - prime 285690571631805499387265005140705006349 passes Frobenius Khashin primality test
ok 1005 - prime 285690571631805499387265005140705006349 passes Frobenius Underwood primality test
ok 1006 - prime 285690571631805499387265005140705006349 passes BPSW primality test
ok 1007 - prime 197905182544375865664507026666258550257 passes Euler-Plumb primality test
ok 1008 - prime 197905182544375865664507026666258550257 passes Frobenius primality test
ok 1009 - prime 197905182544375865664507026666258550257 passes Frobenius Khashin primality test
ok 1010 - prime 197905182544375865664507026666258550257 passes Frobenius Underwood primality test
ok 1011 - prime 197905182544375865664507026666258550257 passes BPSW primality test
ok 1012 - prime 257978530672690459726721542547822424119 passes Euler-Plumb primality test
ok 1013 - prime 257978530672690459726721542547822424119 passes Frobenius primality test
ok 1014 - prime 257978530672690459726721542547822424119 passes Frobenius Khashin primality test
ok 1015 - prime 257978530672690459726721542547822424119 passes Frobenius Underwood primality test
ok 1016 - prime 257978530672690459726721542547822424119 passes BPSW primality test
ok 1017 - prime 271150181404520740107101159842415035273 passes Euler-Plumb primality test
ok 1018 - prime 271150181404520740107101159842415035273 passes Frobenius primality test
ok 1019 - prime 271150181404520740107101159842415035273 passes Frobenius Khashin primality test
ok 1020 - prime 271150181404520740107101159842415035273 passes Frobenius Underwood primality test
ok 1021 - prime 271150181404520740107101159842415035273 passes BPSW primality test
ok 1022 - prime 262187868871349017397376949493643287923 passes Euler-Plumb primality test
ok 1023 - prime 262187868871349017397376949493643287923 passes Frobenius primality test
ok 1024 - prime 262187868871349017397376949493643287923 passes Frobenius Khashin primality test
ok 1025 - prime 262187868871349017397376949493643287923 passes Frobenius Underwood primality test
ok 1026 - prime 262187868871349017397376949493643287923 passes BPSW primality test
ok 1027 - composite 331692821169251128612023074084933636563 fails Euler-Plumb primality test
ok 1028 - composite 331692821169251128612023074084933636563 fails Frobenius primality test
ok 1029 - composite 331692821169251128612023074084933636563 fails Frobenius Khashin primality test
ok 1030 - composite 331692821169251128612023074084933636563 fails Frobenius Underwood primality test
ok 1031 - composite 331692821169251128612023074084933636563 fails BPSW primality test
ok 1032 - composite 291142820834608911820232911620629416673 fails Euler-Plumb primality test
ok 1033 - composite 291142820834608911820232911620629416673 fails Frobenius primality test
ok 1034 - composite 291142820834608911820232911620629416673 fails Frobenius Khashin primality test
ok 1035 - composite 291142820834608911820232911620629416673 fails Frobenius Underwood primality test
ok 1036 - composite 291142820834608911820232911620629416673 fails BPSW primality test
ok 1037 - composite 222553723073325022732878644722536036431 fails Euler-Plumb primality test
ok 1038 - composite 222553723073325022732878644722536036431 fails Frobenius primality test
ok 1039 - composite 222553723073325022732878644722536036431 fails Frobenius Khashin primality test
ok 1040 - composite 222553723073325022732878644722536036431 fails Frobenius Underwood primality test
ok 1041 - composite 222553723073325022732878644722536036431 fails BPSW primality test
ok 1042 - composite 325464724689480915638128579172743588243 fails Euler-Plumb primality test
ok 1043 - composite 325464724689480915638128579172743588243 fails Frobenius primality test
ok 1044 - composite 325464724689480915638128579172743588243 fails Frobenius Khashin primality test
ok 1045 - composite 325464724689480915638128579172743588243 fails Frobenius Underwood primality test
ok 1046 - composite 325464724689480915638128579172743588243 fails BPSW primality test
ok 1047 - composite 326662586910428159613180378374675586479 fails Euler-Plumb primality test
ok 1048 - composite 326662586910428159613180378374675586479 fails Frobenius primality test
ok 1049 - composite 326662586910428159613180378374675586479 fails Frobenius Khashin primality test
ok 1050 - composite 326662586910428159613180378374675586479 fails Frobenius Underwood primality test
ok 1051 - composite 326662586910428159613180378374675586479 fails BPSW primality test
ok 1052 - composite 197395185602458924846767613337087999977 fails Euler-Plumb primality test
ok 1053 - composite 197395185602458924846767613337087999977 fails Frobenius primality test
ok 1054 - composite 197395185602458924846767613337087999977 fails Frobenius Khashin primality test
ok 1055 - composite 197395185602458924846767613337087999977 fails Frobenius Underwood primality test
ok 1056 - composite 197395185602458924846767613337087999977 fails BPSW primality test
ok 1057 - composite 194157480002729115387621030269291379439 fails Euler-Plumb primality test
ok 1058 - composite 194157480002729115387621030269291379439 fails Frobenius primality test
ok 1059 - composite 194157480002729115387621030269291379439 fails Frobenius Khashin primality test
ok 1060 - composite 194157480002729115387621030269291379439 fails Frobenius Underwood primality test
ok 1061 - composite 194157480002729115387621030269291379439 fails BPSW primality test
ok 1062 - composite 180664716097986611402007784149669477223 fails Euler-Plumb primality test
ok 1063 - composite 180664716097986611402007784149669477223 fails Frobenius primality test
ok 1064 - composite 180664716097986611402007784149669477223 fails Frobenius Khashin primality test
ok 1065 - composite 180664716097986611402007784149669477223 fails Frobenius Underwood primality test
ok 1066 - composite 180664716097986611402007784149669477223 fails BPSW primality test
ok 1067 - composite 248957328957166865967197552940796547567 fails Euler-Plumb primality test
ok 1068 - composite 248957328957166865967197552940796547567 fails Frobenius primality test
ok 1069 - composite 248957328957166865967197552940796547567 fails Frobenius Khashin primality test
ok 1070 - composite 248957328957166865967197552940796547567 fails Frobenius Underwood primality test
ok 1071 - composite 248957328957166865967197552940796547567 fails BPSW primality test
ok 1072 - composite 276174467950103435998583356206846142651 fails Euler-Plumb primality test
ok 1073 - composite 276174467950103435998583356206846142651 fails Frobenius primality test
ok 1074 - composite 276174467950103435998583356206846142651 fails Frobenius Khashin primality test
ok 1075 - composite 276174467950103435998583356206846142651 fails Frobenius Underwood primality test
ok 1076 - composite 276174467950103435998583356206846142651 fails BPSW primality test
ok 1077 - prime 2 is a Frobenius (37,-13) pseudoprime
ok 1078 - prime 3 is a Frobenius (37,-13) pseudoprime
ok 1079 - prime 5 is a Frobenius (37,-13) pseudoprime
ok 1080 - prime 7 is a Frobenius (37,-13) pseudoprime
ok 1081 - prime 11 is a Frobenius (37,-13) pseudoprime
ok 1082 - prime 13 is a Frobenius (37,-13) pseudoprime
ok 1083 - prime 17 is a Frobenius (37,-13) pseudoprime
ok 1084 - prime 19 is a Frobenius (37,-13) pseudoprime
ok 1085 - prime 23 is a Frobenius (37,-13) pseudoprime
ok 1086 - prime 29 is a Frobenius (37,-13) pseudoprime
ok 1087 - prime 31 is a Frobenius (37,-13) pseudoprime
ok 1088 - prime 37 is a Frobenius (37,-13) pseudoprime
ok 1089 - prime 41 is a Frobenius (37,-13) pseudoprime
ok 1090 - prime 43 is a Frobenius (37,-13) pseudoprime
ok 1091 - prime 47 is a Frobenius (37,-13) pseudoprime
ok 1092 - miller_rabin_random with a seed
ok 1093 - MRR(10007,-4)
ok
t/19-moebius.t ............... 
1..191
ok 1 - moebius(0)
ok 2 - moebius 1 .. 20
ok 3 - totient 0 .. 69
ok 4 - euler_phi(123456789) == 82260072
ok 5 - euler_phi(123457) == 123456
ok 6 - euler_phi(123456) == 41088
ok 7 - Jordan's Totient J_5
ok 8 - Jordan's Totient J_2
ok 9 - Jordan's Totient J_1
ok 10 - Jordan's Totient J_6
ok 11 - Jordan's Totient J_3
ok 12 - Jordan's Totient J_4
ok 13 - Jordan's Totient J_7
ok 14 - carmichael_lambda with range: 0, 69
ok 15 - liouville(24) = 1
ok 16 - liouville(51) = 1
ok 17 - liouville(94) = 1
ok 18 - liouville(183) = 1
ok 19 - liouville(294) = 1
ok 20 - liouville(629) = 1
ok 21 - liouville(1488) = 1
ok 22 - liouville(3684) = 1
ok 23 - liouville(8006) = 1
ok 24 - liouville(8510) = 1
ok 25 - liouville(32539) = 1
ok 26 - liouville(57240) = 1
ok 27 - liouville(103138) = 1
ok 28 - liouville(238565) = 1
ok 29 - liouville(444456) = 1
ok 30 - liouville(820134) = 1
ok 31 - liouville(1185666) = 1
ok 32 - liouville(3960407) = 1
ok 33 - liouville(4429677) = 1
ok 34 - liouville(13719505) = 1
ok 35 - liouville(29191963) = 1
ok 36 - liouville(57736144) = 1
ok 37 - liouville(134185856) = 1
ok 38 - liouville(262306569) = 1
ok 39 - liouville(324235872) = 1
ok 40 - liouville(563441153) = 1
ok 41 - liouville(1686170713) = 1
ok 42 - liouville(2489885844) = 1
ok 43 - liouville(1260238066729040) = 1
ok 44 - liouville(10095256575169232896) = 1
ok 45 - liouville(23) = -1
ok 46 - liouville(47) = -1
ok 47 - liouville(113) = -1
ok 48 - liouville(163) = -1
ok 49 - liouville(378) = -1
ok 50 - liouville(942) = -1
ok 51 - liouville(1669) = -1
ok 52 - liouville(2808) = -1
ok 53 - liouville(8029) = -1
ok 54 - liouville(9819) = -1
ok 55 - liouville(23863) = -1
ok 56 - liouville(39712) = -1
ok 57 - liouville(87352) = -1
ok 58 - liouville(210421) = -1
ok 59 - liouville(363671) = -1
ok 60 - liouville(562894) = -1
ok 61 - liouville(1839723) = -1
ok 62 - liouville(3504755) = -1
ok 63 - liouville(7456642) = -1
ok 64 - liouville(14807115) = -1
ok 65 - liouville(22469612) = -1
ok 66 - liouville(49080461) = -1
ok 67 - liouville(132842464) = -1
ok 68 - liouville(146060791) = -1
ok 69 - liouville(279256445) = -1
ok 70 - liouville(802149183) = -1
ok 71 - liouville(1243577750) = -1
ok 72 - liouville(3639860654) = -1
ok 73 - liouville(1807253903626380) = -1
ok 74 - liouville(12063177829788352512) = -1
ok 75 - exp_mangoldt(27) == 3
ok 76 - exp_mangoldt(5) == 5
ok 77 - exp_mangoldt(2) == 2
ok 78 - exp_mangoldt(399981) == 1
ok 79 - exp_mangoldt(130321) == 19
ok 80 - exp_mangoldt(-13) == 1
ok 81 - exp_mangoldt(7) == 7
ok 82 - exp_mangoldt(4) == 2
ok 83 - exp_mangoldt(8) == 2
ok 84 - exp_mangoldt(25) == 5
ok 85 - exp_mangoldt(823543) == 7
ok 86 - exp_mangoldt(9) == 3
ok 87 - exp_mangoldt(399983) == 399983
ok 88 - exp_mangoldt(399982) == 1
ok 89 - exp_mangoldt(83521) == 17
ok 90 - exp_mangoldt(10) == 1
ok 91 - exp_mangoldt(3) == 3
ok 92 - exp_mangoldt(6) == 1
ok 93 - exp_mangoldt(0) == 1
ok 94 - exp_mangoldt(1) == 1
ok 95 - exp_mangoldt(11) == 11
ok 96 - znorder(1, 35) = 1
ok 97 - znorder(2, 35) = 12
ok 98 - znorder(4, 35) = 6
ok 99 - znorder(6, 35) = 2
ok 100 - znorder(7, 35) = <undef>
ok 101 - znorder(2, 1000000000000031) = 81788975100
ok 102 - znorder(1, 1) = 1
ok 103 - znorder(0, 0) = <undef>
ok 104 - znorder(1, 0) = <undef>
ok 105 - znorder(25, 0) = <undef>
ok 106 - znorder(1, 1) = 1
ok 107 - znorder(19, 1) = 1
ok 108 - znorder(1, 19) = 1
ok 109 - znorder(2, 19) = 18
ok 110 - znorder(3, 20) = 4
ok 111 - znorder(57, 1000000003) = 189618
ok 112 - znorder(67, 999999749) = 30612237
ok 113 - znorder(22, 999991815) = 69844
ok 114 - znorder(10, 2147475467) = 31448382
ok 115 - znorder(141, 2147475467) = 1655178
ok 116 - znorder(7410, 2147475467) = 39409
ok 117 - znorder(31407, 2147475467) = 266
ok 118 - znorder(2, 2405286912458753) = 1073741824
ok 119 - znprimroot(89637484042681) == 335
ok 120 - znprimroot(8) == <undef>
ok 121 - znprimroot(7) == 3
ok 122 - znprimroot(1407827621) == 2
ok 123 - znprimroot(2232881419280027) == 6
ok 124 - znprimroot(5) == 2
ok 125 - znprimroot(90441961) == 113
ok 126 - znprimroot(3) == 2
ok 127 - znprimroot(1685283601) == 164
ok 128 - znprimroot(5109721) == 94
ok 129 - znprimroot(100000001) == <undef>
ok 130 - znprimroot(1520874431) == 17
ok 131 - znprimroot(4) == 3
ok 132 - znprimroot(17551561) == 97
ok 133 - znprimroot(2) == 1
ok 134 - znprimroot(-11) == 2
ok 135 - znprimroot(9223372036854775837) == 5
ok 136 - znprimroot(1729) == <undef>
ok 137 - znprimroot(6) == 5
ok 138 - znprimroot(0) == <undef>
ok 139 - znprimroot(1) == 0
ok 140 - znprimroot(10) == 3
ok 141 - znprimroot(14123555781055773271) == 6
ok 142 - znprimroot(9) == 2
ok 143 - znprimroot("-100000898") == 31
ok 144 - 3 is not a primitive root mod 10^30+57
ok 145 - 5 is     a primitive root mod 10^30+57
ok 146 - 3 is     a primitive root mod 10^30+66
ok 147 - totient(9082348072348972344232348972345)
ok 148 - jordan_totient(4,9082348072348972344232348972345)
ok 149 - carmichael_lambda(9082348072348972344232348972345)
ok 150 - totient(9082348072348972344232348972353)
ok 151 - jordan_totient(7,9082348072348972344232348972353)
ok 152 - carmichael_lambda(9082348072348972344232348972353)
ok 153 - moebius(9082348072348972344232348972353)
ok 154 - liouville(9082348072348972344232348972353)
ok 155 - znorder(17,100000000000000000000000065)
ok 156 - znprimroot(9218092345892375982375972365235234234238)
ok 157 - Ramanujan Tau(5) = 4830
ok 158 - Ramanujan Tau(2) = -24
ok 159 - Ramanujan Tau(243) = 13400796651732
ok 160 - Ramanujan Tau(83456) = 130596522071273977247956992
ok 161 - Ramanujan Tau(53) = -1596055698
ok 162 - Ramanujan Tau(106) = 38305336752
ok 163 - Ramanujan Tau(3) = 252
ok 164 - Ramanujan Tau(0) = 0
ok 165 - Ramanujan Tau(1) = 1
ok 166 - Ramanujan Tau(16089) = 12655813883111729342208
ok 167 - Ramanujan Tau(4) = -1472
ok 168 - crt() = 0
ok 169 - crt([4 5]) = 4
ok 170 - crt([77 11]) = 0
ok 171 - crt([0 5],[0 6]) = 0
ok 172 - crt([14 5],[0 6]) = 24
ok 173 - crt([10 11],[4 22],[9 19]) = <undef>
ok 174 - crt([77 13],[79 17]) = 181
ok 175 - crt([2 3],[3 5],[2 7]) = 23
ok 176 - crt([10 11],[4 12],[12 13]) = 1000
ok 177 - crt([42 127],[24 128]) = 2328
ok 178 - crt([32 126],[23 129]) = 410
ok 179 - crt([2328 16256],[410 5418]) = 28450328
ok 180 - crt([1 10],[11 100]) = 11
ok 181 - crt([11 100],[22 100]) = <undef>
ok 182 - crt([1753051086 3243410059],[2609156951 2439462460]) = 6553408220202087311
ok 183 - crt([6325451203932218304 2750166238021308],[5611464489438299732 94116455416164094]) = 1433171050835863115088946517796
ok 184 - crt([1762568892212871168 8554171181844660224],[2462425671659520000 2016911328009584640]) = 188079320578009823963731127992320
ok 185 - crt([856686401696104448 11943471150311931904],[6316031051955372032 13290002569363587072]) = 943247297188055114646647659888640
ok 186 - crt([-3105579549 3743000622],[-1097075646 1219365911]) = 2754322117681955433
ok 187 - crt([-925543788386357567 243569243147991],[-1256802905822510829 28763455974459440]) = 837055903505897549759994093811
ok 188 - crt([-2155972909982577461 8509855219791386062],[-5396280069505638574 6935743629860450393]) = 12941173114744545542549046204020289525
ok 189 - crt([3 5],[2 0]) = <undef>
ok 190 - crt([3 0],[2 3]) = <undef>
ok 191 - crt([3 5],[3 0],[2 3]) = <undef>
ok
t/20-primorial.t ............. 
1..12
ok 1 - factorial 0 .. 30
ok 2 - factorialmod
ok 3 - primorial(nth(...)) 0 - 30
ok 4 - pn_primorial(...) 0 - 30
ok 5 - primorial(100)
ok 6 - primorial(541)
ok 7 - subfactoral(n) for 0..23
ok 8 - factorial_sum(n) for 0..22
ok 9 - multifactorial(n,0) for 0..22
ok 10 - multifactorial(n,1) for 0..22
ok 11 - multifactorial(n,2) for 0..26
ok 12 - multifactorial(n,3) for 0..29
ok
t/21-conseq-lcm.t ............ 
1..102
ok 1 - consecutive_integer_lcm(0)
ok 2 - consecutive_integer_lcm(1)
ok 3 - consecutive_integer_lcm(2)
ok 4 - consecutive_integer_lcm(3)
ok 5 - consecutive_integer_lcm(4)
ok 6 - consecutive_integer_lcm(5)
ok 7 - consecutive_integer_lcm(6)
ok 8 - consecutive_integer_lcm(7)
ok 9 - consecutive_integer_lcm(8)
ok 10 - consecutive_integer_lcm(9)
ok 11 - consecutive_integer_lcm(10)
ok 12 - consecutive_integer_lcm(11)
ok 13 - consecutive_integer_lcm(12)
ok 14 - consecutive_integer_lcm(13)
ok 15 - consecutive_integer_lcm(14)
ok 16 - consecutive_integer_lcm(15)
ok 17 - consecutive_integer_lcm(16)
ok 18 - consecutive_integer_lcm(17)
ok 19 - consecutive_integer_lcm(18)
ok 20 - consecutive_integer_lcm(19)
ok 21 - consecutive_integer_lcm(20)
ok 22 - consecutive_integer_lcm(21)
ok 23 - consecutive_integer_lcm(22)
ok 24 - consecutive_integer_lcm(23)
ok 25 - consecutive_integer_lcm(24)
ok 26 - consecutive_integer_lcm(25)
ok 27 - consecutive_integer_lcm(26)
ok 28 - consecutive_integer_lcm(27)
ok 29 - consecutive_integer_lcm(28)
ok 30 - consecutive_integer_lcm(29)
ok 31 - consecutive_integer_lcm(30)
ok 32 - consecutive_integer_lcm(31)
ok 33 - consecutive_integer_lcm(32)
ok 34 - consecutive_integer_lcm(33)
ok 35 - consecutive_integer_lcm(34)
ok 36 - consecutive_integer_lcm(35)
ok 37 - consecutive_integer_lcm(36)
ok 38 - consecutive_integer_lcm(37)
ok 39 - consecutive_integer_lcm(38)
ok 40 - consecutive_integer_lcm(39)
ok 41 - consecutive_integer_lcm(40)
ok 42 - consecutive_integer_lcm(41)
ok 43 - consecutive_integer_lcm(42)
ok 44 - consecutive_integer_lcm(43)
ok 45 - consecutive_integer_lcm(44)
ok 46 - consecutive_integer_lcm(45)
ok 47 - consecutive_integer_lcm(46)
ok 48 - consecutive_integer_lcm(47)
ok 49 - consecutive_integer_lcm(48)
ok 50 - consecutive_integer_lcm(49)
ok 51 - consecutive_integer_lcm(50)
ok 52 - consecutive_integer_lcm(51)
ok 53 - consecutive_integer_lcm(52)
ok 54 - consecutive_integer_lcm(53)
ok 55 - consecutive_integer_lcm(54)
ok 56 - consecutive_integer_lcm(55)
ok 57 - consecutive_integer_lcm(56)
ok 58 - consecutive_integer_lcm(57)
ok 59 - consecutive_integer_lcm(58)
ok 60 - consecutive_integer_lcm(59)
ok 61 - consecutive_integer_lcm(60)
ok 62 - consecutive_integer_lcm(61)
ok 63 - consecutive_integer_lcm(62)
ok 64 - consecutive_integer_lcm(63)
ok 65 - consecutive_integer_lcm(64)
ok 66 - consecutive_integer_lcm(65)
ok 67 - consecutive_integer_lcm(66)
ok 68 - consecutive_integer_lcm(67)
ok 69 - consecutive_integer_lcm(68)
ok 70 - consecutive_integer_lcm(69)
ok 71 - consecutive_integer_lcm(70)
ok 72 - consecutive_integer_lcm(71)
ok 73 - consecutive_integer_lcm(72)
ok 74 - consecutive_integer_lcm(73)
ok 75 - consecutive_integer_lcm(74)
ok 76 - consecutive_integer_lcm(75)
ok 77 - consecutive_integer_lcm(76)
ok 78 - consecutive_integer_lcm(77)
ok 79 - consecutive_integer_lcm(78)
ok 80 - consecutive_integer_lcm(79)
ok 81 - consecutive_integer_lcm(80)
ok 82 - consecutive_integer_lcm(81)
ok 83 - consecutive_integer_lcm(82)
ok 84 - consecutive_integer_lcm(83)
ok 85 - consecutive_integer_lcm(84)
ok 86 - consecutive_integer_lcm(85)
ok 87 - consecutive_integer_lcm(86)
ok 88 - consecutive_integer_lcm(87)
ok 89 - consecutive_integer_lcm(88)
ok 90 - consecutive_integer_lcm(89)
ok 91 - consecutive_integer_lcm(90)
ok 92 - consecutive_integer_lcm(91)
ok 93 - consecutive_integer_lcm(92)
ok 94 - consecutive_integer_lcm(93)
ok 95 - consecutive_integer_lcm(94)
ok 96 - consecutive_integer_lcm(95)
ok 97 - consecutive_integer_lcm(96)
ok 98 - consecutive_integer_lcm(97)
ok 99 - consecutive_integer_lcm(98)
ok 100 - consecutive_integer_lcm(99)
ok 101 - consecutive_integer_lcm(100)
ok 102 - consecutive_integer_lcm(2000)
ok
t/22-partitions.t ............ 
1..55
ok 1 - partitions(0)
ok 2 - partitions(1)
ok 3 - partitions(2)
ok 4 - partitions(3)
ok 5 - partitions(4)
ok 6 - partitions(5)
ok 7 - partitions(6)
ok 8 - partitions(7)
ok 9 - partitions(8)
ok 10 - partitions(9)
ok 11 - partitions(10)
ok 12 - partitions(11)
ok 13 - partitions(12)
ok 14 - partitions(13)
ok 15 - partitions(14)
ok 16 - partitions(15)
ok 17 - partitions(16)
ok 18 - partitions(17)
ok 19 - partitions(18)
ok 20 - partitions(19)
ok 21 - partitions(20)
ok 22 - partitions(21)
ok 23 - partitions(22)
ok 24 - partitions(23)
ok 25 - partitions(24)
ok 26 - partitions(25)
ok 27 - partitions(26)
ok 28 - partitions(27)
ok 29 - partitions(28)
ok 30 - partitions(29)
ok 31 - partitions(30)
ok 32 - partitions(31)
ok 33 - partitions(32)
ok 34 - partitions(33)
ok 35 - partitions(34)
ok 36 - partitions(35)
ok 37 - partitions(36)
ok 38 - partitions(37)
ok 39 - partitions(38)
ok 40 - partitions(39)
ok 41 - partitions(40)
ok 42 - partitions(41)
ok 43 - partitions(42)
ok 44 - partitions(43)
ok 45 - partitions(44)
ok 46 - partitions(45)
ok 47 - partitions(46)
ok 48 - partitions(47)
ok 49 - partitions(48)
ok 50 - partitions(49)
ok 51 - partitions(50)
ok 52 - partitions(500)
ok 53 - partitions(1000)
ok 54 - partitions(4497)
ok 55 - partitions(100)
ok
t/23-gcd.t ................... 
1..159
ok 1 - gcd() = 0
ok 2 - gcd(8) = 8
ok 3 - gcd(9,9) = 9
ok 4 - gcd(0,0) = 0
ok 5 - gcd(1,0,0) = 1
ok 6 - gcd(0,0,1) = 1
ok 7 - gcd(17,19) = 1
ok 8 - gcd(54,24) = 6
ok 9 - gcd(42,56) = 14
ok 10 - gcd(9,28) = 1
ok 11 - gcd(48,180) = 12
ok 12 - gcd(2705353758,2540073744,3512215098,2214052398) = 18
ok 13 - gcd(2301535282,3609610580,3261189640) = 106
ok 14 - gcd(694966514,510402262,195075284,609944479) = 181
ok 15 - gcd(294950648,651855678,263274296,493043500,581345426) = 58
ok 16 - gcd(-30,-90,90) = 30
ok 17 - gcd(-3,-9,-18) = 3
ok 18 - lcm() = 0
ok 19 - lcm(8) = 8
ok 20 - lcm(9,9) = 9
ok 21 - lcm(0,0) = 0
ok 22 - lcm(1,0,0) = 0
ok 23 - lcm(0,0,1) = 0
ok 24 - lcm(17,19) = 323
ok 25 - lcm(54,24) = 216
ok 26 - lcm(42,56) = 168
ok 27 - lcm(9,28) = 252
ok 28 - lcm(48,180) = 720
ok 29 - lcm(36,45) = 180
ok 30 - lcm(-36,45) = 180
ok 31 - lcm(-36,-45) = 180
ok 32 - lcm(30,15,5) = 30
ok 33 - lcm(2,3,4,5) = 60
ok 34 - lcm(30245,114552) = 3464625240
ok 35 - lcm(11926,78001,2211) = 2790719778
ok 36 - lcm(1426,26195,3289,8346) = 4254749070
ok 37 - kronecker(109981, 737777) = 1
ok 38 - kronecker(737779, 121080) = -1
ok 39 - kronecker(-737779, 121080) = 1
ok 40 - kronecker(737779, -121080) = -1
ok 41 - kronecker(-737779, -121080) = -1
ok 42 - kronecker(12345, 331) = -1
ok 43 - kronecker(1001, 9907) = -1
ok 44 - kronecker(19, 45) = 1
ok 45 - kronecker(8, 21) = -1
ok 46 - kronecker(5, 21) = 1
ok 47 - kronecker(5, 1237) = -1
ok 48 - kronecker(10, 49) = 1
ok 49 - kronecker(123, 4567) = -1
ok 50 - kronecker(3, 18) = 0
ok 51 - kronecker(3, -18) = 0
ok 52 - kronecker(-2, 0) = 0
ok 53 - kronecker(-1, 0) = 1
ok 54 - kronecker(0, 0) = 0
ok 55 - kronecker(1, 0) = 1
ok 56 - kronecker(2, 0) = 0
ok 57 - kronecker(-2, 1) = 1
ok 58 - kronecker(-1, 1) = 1
ok 59 - kronecker(0, 1) = 1
ok 60 - kronecker(1, 1) = 1
ok 61 - kronecker(2, 1) = 1
ok 62 - kronecker(-2, -1) = -1
ok 63 - kronecker(-1, -1) = -1
ok 64 - kronecker(0, -1) = 1
ok 65 - kronecker(1, -1) = 1
ok 66 - kronecker(2, -1) = 1
ok 67 - kronecker(3686556869, 428192857) = 1
ok 68 - kronecker(-1453096827, 364435739) = -1
ok 69 - kronecker(3527710253, -306243569) = 1
ok 70 - kronecker(-1843526669, -332265377) = 1
ok 71 - kronecker(321781679, 4095783323) = -1
ok 72 - kronecker(454249403, -79475159) = -1
ok 73 - valuation(-4,2) = 2
ok 74 - valuation(0,0) = 0
ok 75 - valuation(1,0) = 0
ok 76 - valuation(96552,6) = 3
ok 77 - valuation(1879048192,2) = 28
ok 78 - hammingweight(0) = 0
ok 79 - hammingweight(1) = 1
ok 80 - hammingweight(2304786) = 9
ok 81 - hammingweight(-2304786) = 9
ok 82 - hammingweight(<256-bit prime>) = 128
ok 83 - binomial(0,0)) = 1
ok 84 - binomial(0,1)) = 0
ok 85 - binomial(1,0)) = 1
ok 86 - binomial(1,1)) = 1
ok 87 - binomial(1,2)) = 0
ok 88 - binomial(13,13)) = 1
ok 89 - binomial(13,14)) = 0
ok 90 - binomial(35,16)) = 4059928950
ok 91 - binomial(40,19)) = 131282408400
ok 92 - binomial(67,31)) = 11923179284862717872
ok 93 - binomial(228,12)) = 30689926618143230620
ok 94 - binomial(177,78)) = 3314450882216440395106465322941753788648564665022000
ok 95 - binomial(-10,5)) = -2002
ok 96 - binomial(-11,22)) = 64512240
ok 97 - binomial(-12,23)) = -286097760
ok 98 - binomial(-23,-26)) = -2300
ok 99 - binomial(-12,-23)) = -705432
ok 100 - binomial(12,-23)) = 0
ok 101 - binomial(12,-12)) = 0
ok 102 - binomial(-12,0)) = 1
ok 103 - binomial(0,-1)) = 0
ok 104 - binomial(10,n) for n in -15 .. 15
ok 105 - binomial(-10,n) for n in -15 .. 15
ok 106 - gcdext(0,0) = [0 0 0]
ok 107 - gcdext(0,28) = [0 1 28]
ok 108 - gcdext(28,0) = [1 0 28]
ok 109 - gcdext(0,-28) = [0 -1 28]
ok 110 - gcdext(-28,0) = [-1 0 28]
ok 111 - gcdext(3706259912,1223661804) = [123862139 -375156991 4]
ok 112 - gcdext(3706259912,-1223661804) = [123862139 375156991 4]
ok 113 - gcdext(-3706259912,1223661804) = [-123862139 -375156991 4]
ok 114 - gcdext(-3706259912,-1223661804) = [-123862139 375156991 4]
ok 115 - gcdext(22,242) = [1 0 22]
ok 116 - gcdext(2731583792,3028241442) = [-187089956 168761937 2]
ok 117 - gcdext(42272720,12439910) = [-21984 74705 70]
ok 118 - gcdext(10139483024654235947,8030280778952246347) = [-2715309548282941287 3428502169395958570 1]
ok 119 - vecsum() = 0
ok 120 - vecsum(-1) = -1
ok 121 - vecsum(1 -1) = 0
ok 122 - vecsum(-1 1) = 0
ok 123 - vecsum(-1 1) = 0
ok 124 - vecsum(-2147483648 2147483648) = 0
ok 125 - vecsum(-4294967296 4294967296) = 0
ok 126 - vecsum(-9223372036854775808 9223372036854775808) = 0
ok 127 - vecsum(18446744073709551615 -18446744073709551615 18446744073709551615) = 18446744073709551615
ok 128 - vecsum(18446744073709551616 18446744073709551616 18446744073709551616) = 55340232221128654848
ok 129 - vecsum(18446744073709540400 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000) = 18446744073709620400
ok 130 - vecsum(8940560560432415123818915720822415267807123681474252424566821897853531 7778547618243732438765515250718016989143156212607337512983395245244477 2189527014402679437989261998352299668199802723705390949617417617818071 -3503124593441728232550096334002786135023 3320980231353895482190953072226607400824266105545861535055220237211523) = 22229615424432722482764646042115836201380906995100292325888852211992579
ok 131 - vecprod() = 1
ok 132 - vecprod(1) = 1
ok 133 - vecprod(-1) = -1
ok 134 - vecprod(-1 -2) = 2
ok 135 - vecprod(-1 -2) = 2
ok 136 - vecprod(32767 -65535) = -2147385345
ok 137 - vecprod(32767 -65535) = -2147385345
ok 138 - vecprod(32768 -65535) = -2147450880
ok 139 - vecprod(32768 -65536) = -2147483648
ok 140 - vecprod(18446744073709551616 18446744073709551616 18446744073709551616) = 6277101735386680763835789423207666416102355444464034512896
ok 141 - vecprod(22229615424432722482764646042115836201380906995100292325888852211992579 8940560560432415123818915720822415267807123681474252424566821897853531 7778547618243732438765515250718016989143156212607337512983395245244477 2189527014402679437989261998352299668199802723705390949617417617818071 -3503124593441728232550096334002786135023 3320980231353895482190953072226607400824266105545861535055220237211523) = -39379245925303999064282306510014189368381156100297892522429483126331668772925108615466135642644100480444268237833039496827424630610878534616461996117558125896627456342217566092980432383889727428817722190472716948287416569075064047381625246037918268748866755509776641498138274065792670793438081730710568979196957310574284265747455825604868707218992022874441687475660523342376167971071980207
ok 142 - gcd(a,b,c)
ok 143 - gcd(a,b)
ok 144 - gcd of two primes = 1
ok 145 - lcm(p1,p2)
ok 146 - lcm(p1,p1)
ok 147 - lcm(a,b,c,d,e)
ok 148 - kronecker(..., ...)
ok 149 - is_power(18475335773296164196) == 0
ok 150 - is_power(322396049^18) == 18
ok 151 - is_power(903111^16) == 16
ok 152 - is_power(903111^16,4) is true
ok 153 - is_power(29905047121918201644964877983907^2) == 2
ok 154 - is_prime_power(18475335773296164196) == 0
ok 155 - is_prime_power(29905047121918201644964877983907^2) == 0
ok 156 - is_prime_power(322396049^18) == 18
ok 157 - is_square for -4 .. 16
ok 158 - 60481729 is a square
ok 159 - is_square(<square of 80-bit prime>) = 1
ok
t/24-bernfrac.t .............. 
1..78
ok 1 - B_2n numerators 0 .. 30
ok 2 - B_2n denominators 0 .. 57
ok 3 - Stirling 3: L(0,0..1)
ok 4 - Stirling 3: L(1,0..2)
ok 5 - Stirling 3: L(2,0..3)
ok 6 - Stirling 3: L(3,0..4)
ok 7 - Stirling 3: L(4,0..5)
ok 8 - Stirling 3: L(5,0..6)
ok 9 - Stirling 3: L(6,0..7)
ok 10 - Stirling 3: L(7,0..8)
ok 11 - Stirling 3: L(8,0..9)
ok 12 - Stirling 3: L(9,0..10)
ok 13 - Stirling 3: L(10,0..11)
ok 14 - Stirling 3: L(11,0..12)
ok 15 - Stirling 3: L(12,0..13)
ok 16 - Stirling 3: L(13,0..14)
ok 17 - Stirling 3: L(14,0..15)
ok 18 - Stirling 3: L(15,0..16)
ok 19 - Stirling 3: L(16,0..17)
ok 20 - Stirling 3: L(17,0..18)
ok 21 - Stirling 3: L(18,0..19)
ok 22 - Stirling 2: S(0,0..1)
ok 23 - Stirling 2: S(1,0..2)
ok 24 - Stirling 2: S(2,0..3)
ok 25 - Stirling 2: S(3,0..4)
ok 26 - Stirling 2: S(4,0..5)
ok 27 - Stirling 2: S(5,0..6)
ok 28 - Stirling 2: S(6,0..7)
ok 29 - Stirling 2: S(7,0..8)
ok 30 - Stirling 2: S(8,0..9)
ok 31 - Stirling 2: S(9,0..10)
ok 32 - Stirling 2: S(10,0..11)
ok 33 - Stirling 2: S(11,0..12)
ok 34 - Stirling 2: S(12,0..13)
ok 35 - Stirling 2: S(13,0..14)
ok 36 - Stirling 2: S(14,0..15)
ok 37 - Stirling 2: S(15,0..16)
ok 38 - Stirling 2: S(16,0..17)
ok 39 - Stirling 2: S(17,0..18)
ok 40 - Stirling 2: S(18,0..19)
ok 41 - Stirling 2: S(19,0..20)
ok 42 - Stirling 2: S(20,0..21)
ok 43 - Stirling 1: s(0,0..1)
ok 44 - Stirling 1: s(1,0..2)
ok 45 - Stirling 1: s(2,0..3)
ok 46 - Stirling 1: s(3,0..4)
ok 47 - Stirling 1: s(4,0..5)
ok 48 - Stirling 1: s(5,0..6)
ok 49 - Stirling 1: s(6,0..7)
ok 50 - Stirling 1: s(7,0..8)
ok 51 - Stirling 1: s(8,0..9)
ok 52 - Stirling 1: s(9,0..10)
ok 53 - Stirling 1: s(10,0..11)
ok 54 - Stirling 1: s(11,0..12)
ok 55 - Stirling 1: s(12,0..13)
ok 56 - Stirling 1: s(13,0..14)
ok 57 - Stirling 1: s(14,0..15)
ok 58 - Stirling 1: s(15,0..16)
ok 59 - Stirling 1: s(16,0..17)
ok 60 - Stirling 1: s(17,0..18)
ok 61 - Stirling 1: s(18,0..19)
ok 62 - Stirling 1: s(19,0..20)
ok 63 - Stirling 1: s(20,0..21)
ok 64 - L(246,61)
ok 65 - S(137,14)
ok 66 - s(99,14)
ok 67 - harmfrac(27)
ok 68 - harmfrac(172)
ok 69 - harmreal(5,6)
ok 70 - harmreal(15,3)
ok 71 - harmreal(15,25)
ok 72 - harmreal(1500,85)
ok 73 - harmreal(2502,764)
ok 74 - harmreal(2502,765)
ok 75 - bern(24)
ok 76 - bern(16,5)
ok 77 - bern(200,7)
ok 78 - bern(222,260)
ok
t/25-const-euler.t ........... 
1..2
ok 1 - Euler(0 .. 99)
ok 2 - Euler(100,200,300,...,1000)
ok
t/25-const-pi.t .............. 
1..1
ok 1 - Pi(2 .. 999)
ok
t/26-combinatorial.t ......... 
1..14
ok 1 - permtonum([])
ok 2 - permtonum([0])
ok 3 - permtonum([1,0])
ok 4 - permtonum([6,3,4,2,5,0,1])
ok 5 - permtonum( 20 )
ok 6 - permtonum( 26 )
ok 7 - permtonum( 40 )
ok 8 - numtoperm(0,0)
ok 9 - numtoperm(1,0)
ok 10 - numtoperm(1,1)
ok 11 - numtoperm(5,15)
ok 12 - numtoperm(5,-2)
ok 13 - numtoperm(24,987654321)
ok 14 - numtoperm(40,...)
ok
t/26-digits.t ................ 
1..13
ok 1 - todigits 0
ok 2 - todigits 1
ok 3 - todigits 77
ok 4 - todigits 77 base 2
ok 5 - todigits 77 base 3
ok 6 - todigits 77 base 21
ok 7 - todigits 900 base 2
ok 8 - todigits 900 base 2 len 0
ok 9 - todigits 900 base 2 len 3
ok 10 - todigits 900 base 2 len 32
ok 11 - todigits 58127 base 16
ok 12 - todigits 6345354 base 10 len 4
ok 13 - todigits ignores sign
ok
t/26-int.t ................... 
1..74
ok 1 - powint(-3,0) = 1
ok 2 - powint(-3,1) = -3
ok 3 - powint(-3,2) = 9
ok 4 - powint(-3,3) = -27
ok 5 - powint(-2,0) = 1
ok 6 - powint(-2,1) = -2
ok 7 - powint(-2,2) = 4
ok 8 - powint(-2,3) = -8
ok 9 - powint(-1,0) = 1
ok 10 - powint(-1,1) = -1
ok 11 - powint(-1,2) = 1
ok 12 - powint(-1,3) = -1
ok 13 - powint(0,0) = 1
ok 14 - powint(0,1) = 0
ok 15 - powint(0,2) = 0
ok 16 - powint(0,3) = 0
ok 17 - powint(1,0) = 1
ok 18 - powint(1,1) = 1
ok 19 - powint(1,2) = 1
ok 20 - powint(1,3) = 1
ok 21 - powint(2,0) = 1
ok 22 - powint(2,1) = 2
ok 23 - powint(2,2) = 4
ok 24 - powint(2,3) = 8
ok 25 - powint(3,0) = 1
ok 26 - powint(3,1) = 3
ok 27 - powint(3,2) = 9
ok 28 - powint(3,3) = 27
ok 29 - powint(5,6) = 15625
ok 30 - powint(2,16) = 65536
ok 31 - (2^32)^3
ok 32 - 3^(2^7)
ok 33 - mulint( -3 .. 3, -3 .. 3)
ok 34 - mulint(13282407956253574712,14991082624209354397) = 199117675120653046511338473800925208664
ok 35 - addint( -3 .. 3, -3 .. 3)
ok 36 - addint(1178630961471601951655862,827639478068904540012) = 1179458600949670856195874
ok 37 - addint(-2555488174170453670799,1726145541361106236340) = -829342632809347434459
ok 38 - subint( -3 .. 3, -3 .. 3)
ok 39 - subint(68719214592,281474976448512) = -281406257233920
ok 40 - subint(38631281077,12191281349924010278) = -12191281311292729201
ok 41 - subint(-38631281077,12191281349924010278) = -12191281388555291355
ok 42 - subint(-38631281077,-12191281349924010278) = 12191281311292729201
ok 43 - subint(9686117847286759,419039659798583) = 9267078187488176
ok 44 - subint(14888606332669627740937300680965976203,14888605897080617527808122501731945103) = 435589010213129178179234031100
ok 45 - divint(1,0)
ok 46 - divint(1,0)
ok 47 - divint(1024,x) for 1 .. 1025
ok 48 - divint(-1024,x) for 1 .. 1025
ok 49 - modint(1,0)
ok 50 - modint(1,0)
ok 51 - modint(1024,x) for 1 .. 1025
ok 52 - modint(-1024,x) for 1 .. 1025
ok 53 - divrem(1,0)
ok 54 - divrem(1,0)
ok 55 - tdivrem(1,0)
ok 56 - tdivrem(1,0)
ok 57 - large divint  + +
ok 58 - large modint  + +
ok 59 - large divrem  + +
ok 60 - large tdivrem + +
ok 61 - large divint  + -
ok 62 - large modint  + -
ok 63 - large divrem  + -
ok 64 - large tdivrem + -
ok 65 - large divint  - +
ok 66 - large modint  - +
ok 67 - large divrem  - +
ok 68 - large tdivrem - +
ok 69 - large divint  - -
ok 70 - large modint  - -
ok 71 - large divrem  - -
ok 72 - large tdivrem - -
ok 73 - absint(-9..9)
ok 74 - negint(-9..9)
ok
t/26-ismisc.t ................ 
1..28
ok 1 - Carmichael numbers to 20000
ok 2 - Large Carmichael
ok 3 - Larger Carmichael
ok 4 - is_fundamental(-50 .. 0)
ok 5 - is_fundamental(0 .. 50)
ok 6 - is_fundamental(2^67+9)
ok 7 - is_fundamental(-2^67+44)
ok 8 - is_totient 0 .. 40
ok 9 - is_fundamental(2^29_1 .. 2^29+80)
ok 10 - is_totient(2^63+28)
ok 11 - is_totient(2^63+20)
ok 12 - is_totient(2^63+24)
ok 13 - is_totient(2^83+88)
ok 14 - is_totient(2^83+50)
ok 15 - is_totient(2^83+64)
ok 16 - is_totient(2^90)
ok 17 - 29 is not a Gaussian Prime
ok 18 - 31 is a Gaussian Prime
ok 19 - 0-29i is not a Gaussian Prime
ok 20 - 0-31i is a Gaussian Prime
ok 21 - large +,+ Gaussian prime
ok 22 - large -,+ Gaussian prime
ok 23 - large +,+ Gaussian composite
ok 24 - large +,- Gaussian composite
ok 25 - first 10 triangular numbers
ok 26 - first 10 23-gonal numbers
ok 27 - 140737496743936 is the 16777216-th triangular number
ok 28 - identified the 12345678901234567890-th pentagonal number
ok
t/26-lambertw.t .............. 
1..19
ok 1 - LambertW(0) = 0
ok 2 - LambertW(0.1, 0.2, ..., 2.0) with 47 digits
ok 3 - LambertW(567.88,200)
ok 4 - LambertW(1e6,200)
ok 5 - LambertW(-0.01, -0.02, ..., -0.36) with 60 digits
ok 6 - LambertW(-1/e 3 dig)
ok 7 - LambertW(-1/e 4 dig)
ok 8 - LambertW(-1/e 5 dig)
ok 9 - LambertW(-1/e 6 dig)
ok 10 - LambertW(-1/e 7 dig)
ok 11 - LambertW(-1/e 8 dig)
ok 12 - LambertW(-1/e 9 dig)
ok 13 - LambertW(-1/e 10 dig)
ok 14 - LambertW(-1/e 11 dig)
ok 15 - LambertW(-1/e 73 dig)
ok 16 - LambertW(-1/e - 1e-15 dig) returns -1 without breaking
ok 17 - LambertW(1e-20,40)
ok 18 - LambertW(1e-20,420)
ok 19 - LambertW(-1e-20,420)
ok
t/26-logs.t .................. 
1..6
ok 1 - logint base 2: 0 .. 200
ok 2 - logint base 3: 0 .. 200
ok 3 - logint base 5: 0 .. 200
ok 4 - logint(60-bit,7)
ok 5 - logint(126-bit,6)
ok 6 - logint(2048-bit,3)
ok
t/26-mersenne.t .............. 
1..1
ok 1 - Find Mersenne primes from 0 to 1279
ok
t/26-mod.t ................... 
1..35
ok 1 - invmod(0,0) = <undef>
ok 2 - invmod(1,0) = <undef>
ok 3 - invmod(0,1) = <undef>
ok 4 - invmod(1,1) = 0
ok 5 - invmod(45,59) = 21
ok 6 - invmod(42,2017) = 1969
ok 7 - invmod(42,-2017) = 1969
ok 8 - invmod(-42,2017) = 48
ok 9 - invmod(-42,-2017) = 48
ok 10 - invmod(14,28474) = <undef>
ok 11 - invmod(13,9223372036854775808) = 5675921253449092805
ok 12 - invmod(14,18446744073709551615) = 17129119497016012214
ok 13 - sqrtmod(0,0) = <undef>
ok 14 - sqrtmod(1,0) = <undef>
ok 15 - sqrtmod(0,1) = 0
ok 16 - sqrtmod(1,1) = 0
ok 17 - sqrtmod(58,101) = 19
ok 18 - sqrtmod(111,113) = 26
ok 19 - sqrtmod(9223372036854775808,5675921253449092823) = 22172359690642254
ok 20 - sqrtmod(18446744073709551625,340282366920938463463374607431768211507) = 57825146747270203522128844001742059051
ok 21 - addmod(..,0)
ok 22 - mulmod(..,0)
ok 23 - divmod(..,0)
ok 24 - powmod(..,0)
ok 25 - addmod(..,1)
ok 26 - mulmod(..,1)
ok 27 - powmod(..,1)
ok 28 - addmod on 40 random inputs
ok 29 - addmod with negative second input on 40 random inputs
ok 30 - mulmod on 40 random inputs
ok 31 - mulmod with negative second input on 40 random inputs
ok 32 - divmod on 40 random inputs
ok 33 - divmod with negative second input on 40 random inputs
ok 34 - powmod on 20 random inputs
ok 35 - powmod with negative exponent on 20 random inputs
ok
t/26-real.t .................. 
1..36
ok 1 - log(0)
ok 2 - log(0.1, 0.2, ..., 2.0) with 71 digits
ok 3 - log(-0.1, -0.2, ..., -2.0) with 71 digits
ok 4 - logreal(2,200)
ok 5 - logreal(10^1000,200)
ok 6 - logreal(5,71)
ok 7 - logreal(10,71)
ok 8 - logreal(21,71)
ok 9 - expreal(1,71)
ok 10 - expreal(12.5,71)
ok 11 - expreal(100,71)
ok 12 - expreal(100,12)
ok 13 - expreal(-118.5,71)
ok 14 - expreal(-394.84010945715266885,200)
ok 15 - powreal(0,2.2,20)
ok 16 - powreal(1,2.2,20)
ok 17 - powreal(-1,2.2,20)
ok 18 - powreal(2,-5.01,60)
ok 19 - powreal(2,5,2)
ok 20 - powreal(2,-5,5)
ok 21 - powreal(1234.5678, 9.87654321, 60)
ok 22 - rootreal(0,2,20)
ok 23 - rootreal(1,2,20)
ok 24 - rootreal(2,2,20)
ok 25 - rootreal(2,3,20)
ok 26 - rootreal(2,2,80)
ok 27 - rootreal(100.19,17,80)
ok 28 - AGM(1, sqrt(2)) = reciprocal of Gauss's constant
ok 29 - AGM(1, 1/sqrt(2))
ok 30 - AGM(0.5, 1)
ok 31 - AGM(6, 24)
ok 32 - AGM with negative argument returns undef
ok 33 - addreal
ok 34 - subreal
ok 35 - mulreal
ok 36 - divreal
ok
t/26-riemann.t ............... 
1..31
ok 1 - Zeta(2 .. 20) with 46 digits
ok 2 - R(123456789) = 7027403.22117008872413898789377520747800808475988
ok 3 - R(123456) = 11602.3885324491433573165310800667605102847042681
ok 4 - R(12345) = 1477.18529486278566013620706299851975937829102453
ok 5 - R(1234) = 201.089189397887171164417491080355409507577355431
ok 6 - R(1234567) = 95364.7282332640388293270946571187905178500286859
ok 7 - R(123) = 30.2234556285623332613428945094834980032607831334
ok 8 - R(12345678) = 809199.447325079489265130526492437800991704424795
ok 9 - R(20) = 7.52719634941220484077584239013039997938974169722
ok 10 - R(10^50)
ok 11 - R(10^150)
ok 12 - Zeta(1) is undef
ok 13 - Zeta(0) is -0.5
ok 14 - Zeta(-1) is -1/12
ok 15 - Zeta(-2) is 0
ok 16 - Zeta(-2) is 1/120
ok 17 - Zeta(-13) is -1/12
ok 18 - Zeta(-21) is -77683/276
ok 19 - zeta(14.8765)
ok 20 - zeta(0.5)
ok 21 - zeta(-0.5)
ok 22 - zeta(-1.5)
ok 23 - zeta(-5.5)
ok 24 - riemannr(123456.78901)
ok 25 - li(1.0000...2088..,15) rounds to -100
ok 26 - li(1.0000...2088..,25)
ok 27 - li(123456789,71)
ok 28 - li(13333....333,71)
ok 29 - ei(-.999999)
ok 30 - ei(-.0000001)
ok 31 - ei(123)
ok
t/26-roots.t ................. 
1..10
ok 1 - sqrtint 0-10
ok 2 - sqrtint 2-20 -1
ok 3 - sqrtint(13^51)
ok 4 - rootint( (2^31-3)^23, 23) = 2^31-3
ok 5 - rootint( (2^31-3)^23-1, 23) = 2^31-3-1
ok 6 - rootint(10^1000,1001) = 9
ok 7 - rootint(2^240,9) = 106528681
ok 8 - roots of powers of 2
ok 9 - roots of powers of 2^32+1
ok 10 - roots of powers of 2^64+1
ok
t/27-clusters.t .............. 
1..41
ok 1 - A001359 0 200
ok 2 - A022004 317321 319727
ok 3 - A022005 557857 560293
ok 4 - Inadmissible pattern (0,2,4) finds (3,5,7)
ok 5 - Inadmissible pattern (0,2,8,14,26) finds (3,5,11,17,29) and (5,7,13,19,31)
ok 6 - Pattern [2] 1224 in range 0 .. 100000
ok 7 - Pattern [2 6] 259 in range 0 .. 100000
ok 8 - Pattern [4 6] 248 in range 0 .. 100000
ok 9 - Pattern [2 6 8] 38 in range 0 .. 100000
ok 10 - Pattern [2 6 8 12] 10 in range 0 .. 100000
ok 11 - Pattern [4 6 10 12] 11 in range 0 .. 100000
ok 12 - Pattern [4 6 10 12 16] 5 in range 0 .. 100000
ok 13 - Pattern [2 8 12 14 18 20] 2 in range 0 .. 100000
ok 14 - Pattern [2 6 8 12 18 20] 1 in range 0 .. 100000
ok 15 - Pattern [2] 30 in range 1000000000000000000000 .. 1000000000000000042838
ok 16 - Pattern [2 6] 1 in range 1000000000000000000000 .. 1000000000000000042838
ok 17 - Pattern [4 6] 1 in range 1000000000000000000000 .. 1000000000000000042838
ok 18 - Pattern [2 6 8] 0 in range 1000000000000000000000 .. 1000000000000000042838
ok 19 - Pattern [2 6 8 12] 0 in range 1000000000000000000000 .. 1000000000000000042838
ok 20 - Pattern [4 6 10 12] 0 in range 1000000000000000000000 .. 1000000000000000042838
ok 21 - Pattern [4 6 10 12 16] 0 in range 1000000000000000000000 .. 1000000000000000042838
ok 22 - Pattern [2 8 12 14 18 20] 0 in range 1000000000000000000000 .. 1000000000000000042838
ok 23 - Pattern [2 6 8 12 18 20] 0 in range 1000000000000000000000 .. 1000000000000000042838
ok 24 - Window around A022006 high cluster finds the cluster
ok 25 - Window around A022007 high cluster finds the cluster
ok 26 - Window around A022008 high cluster finds the cluster
ok 27 - Window around A022009 high cluster finds the cluster
ok 28 - Window around A022010 high cluster finds the cluster
ok 29 - Window around A022010 high cluster finds the cluster
ok 30 - Window around A022012 high cluster finds the cluster
ok 31 - Window around A022013 high cluster finds the cluster
ok 32 - Window around A022545 high cluster finds the cluster
ok 33 - Window around A022546 high cluster finds the cluster
ok 34 - Window around A022547 high cluster finds the cluster
ok 35 - Window around A022548 high cluster finds the cluster
ok 36 - Window around A027569 high cluster finds the cluster
ok 37 - Window around A027570 high cluster finds the cluster
ok 38 - Window around A213601 high cluster finds the cluster
ok 39 - Window around A213645 high cluster finds the cluster
ok 40 - Window around A213646 high cluster finds the cluster
ok 41 - Window around A213647 high cluster finds the cluster
ok
t/28-rand.t .................. 
1..6
ok 1 - irand values are 32-bit
ok 2 - irand values are integers
ok 3 - irand64 all bits on in 8 iterations
ok 4 - irand64 all bits off in 8 iterations
ok 5 - drand values between 0 and 1-eps
ok 6 - drand supplies at least 21 bits (got 53)
ok
t/28-randomprime.t ........... 
1..199
ok 1 - primes(3842610774,3842611108) should return undef
ok 2 - primes(3,2) should return undef
ok 3 - primes(2,1) should return undef
ok 4 - primes(0,0) should return undef
ok 5 - primes(1294268492,1294268778) should return undef
ok 6 - primes(0,1) should return undef
ok 7 - Prime in range 8-12 is indeed prime
ok 8 - random_prime(8,12) >= 11
ok 9 - random_prime(8,12) <= 11
ok 10 - Prime in range 10-12 is indeed prime
ok 11 - random_prime(10,12) >= 11
ok 12 - random_prime(10,12) <= 11
ok 13 - Prime in range 0-2 is indeed prime
ok 14 - random_prime(0,2) >= 2
ok 15 - random_prime(0,2) <= 2
ok 16 - Prime in range 3-5 is indeed prime
ok 17 - random_prime(3,5) >= 3
ok 18 - random_prime(3,5) <= 5
ok 19 - Prime in range 16706142-16706144 is indeed prime
ok 20 - random_prime(16706142,16706144) >= 16706143
ok 21 - random_prime(16706142,16706144) <= 16706143
ok 22 - Prime in range 3842610772-3842611110 is indeed prime
ok 23 - random_prime(3842610772,3842611110) >= 3842610773
ok 24 - random_prime(3842610772,3842611110) <= 3842611109
ok 25 - Prime in range 16706143-16706143 is indeed prime
ok 26 - random_prime(16706143,16706143) >= 16706143
ok 27 - random_prime(16706143,16706143) <= 16706143
ok 28 - Prime in range 3842610773-3842611109 is indeed prime
ok 29 - random_prime(3842610773,3842611109) >= 3842610773
ok 30 - random_prime(3842610773,3842611109) <= 3842611109
ok 31 - Prime in range 2-3 is indeed prime
ok 32 - random_prime(2,3) >= 2
ok 33 - random_prime(2,3) <= 3
ok 34 - Prime in range 10-20 is indeed prime
ok 35 - random_prime(10,20) >= 11
ok 36 - random_prime(10,20) <= 19
ok 37 - Prime in range 2-2 is indeed prime
ok 38 - random_prime(2,2) >= 2
ok 39 - random_prime(2,2) <= 2
ok 40 - All returned values for 17051688-17051898 were prime
ok 41 - All returned values for 17051688-17051898 were in the range
ok 42 - All returned values for 20-100 were prime
ok 43 - All returned values for 20-100 were in the range
ok 44 - All returned values for 27767-88498 were prime
ok 45 - All returned values for 27767-88498 were in the range
ok 46 - All returned values for 27764-88493 were prime
ok 47 - All returned values for 27764-88493 were in the range
ok 48 - All returned values for 27764-88498 were prime
ok 49 - All returned values for 27764-88498 were in the range
ok 50 - All returned values for 17051687-17051899 were prime
ok 51 - All returned values for 17051687-17051899 were in the range
ok 52 - All returned values for 27767-88493 were prime
ok 53 - All returned values for 27767-88493 were in the range
ok 54 - All returned values for 3-7 were prime
ok 55 - All returned values for 3-7 were in the range
ok 56 - All returned values for 5678-9876 were prime
ok 57 - All returned values for 5678-9876 were in the range
ok 58 - All returned values for 2-20 were prime
ok 59 - All returned values for 2-20 were in the range
ok 60 - All returned values for 2 were prime
ok 61 - All returned values for 2 were in the range
ok 62 - All returned values for 3 were prime
ok 63 - All returned values for 3 were in the range
ok 64 - All returned values for 4 were prime
ok 65 - All returned values for 4 were in the range
ok 66 - All returned values for 5 were prime
ok 67 - All returned values for 5 were in the range
ok 68 - All returned values for 6 were prime
ok 69 - All returned values for 6 were in the range
ok 70 - All returned values for 7 were prime
ok 71 - All returned values for 7 were in the range
ok 72 - All returned values for 8 were prime
ok 73 - All returned values for 8 were in the range
ok 74 - All returned values for 9 were prime
ok 75 - All returned values for 9 were in the range
ok 76 - All returned values for 100 were prime
ok 77 - All returned values for 100 were in the range
ok 78 - All returned values for 1000 were prime
ok 79 - All returned values for 1000 were in the range
ok 80 - All returned values for 1000000 were prime
ok 81 - All returned values for 1000000 were in the range
ok 82 - All returned values for 4294967295 were prime
ok 83 - All returned values for 4294967295 were in the range
ok 84 - 1-digit random prime '7' is in range and prime
ok 85 - 2-digit random prime '23' is in range and prime
ok 86 - 3-digit random prime '373' is in range and prime
ok 87 - 4-digit random prime '8039' is in range and prime
ok 88 - 5-digit random prime '55001' is in range and prime
ok 89 - 6-digit random prime '378583' is in range and prime
ok 90 - 7-digit random prime '2502361' is in range and prime
ok 91 - 8-digit random prime '94053541' is in range and prime
ok 92 - 9-digit random prime '130971611' is in range and prime
ok 93 - 10-digit random prime '4967203753' is in range and prime
ok 94 - 11-digit random prime '78089319431' is in range and prime
ok 95 - 12-digit random prime '729846452869' is in range and prime
ok 96 - 13-digit random prime '9463187313673' is in range and prime
ok 97 - 14-digit random prime '58350523817557' is in range and prime
ok 98 - 15-digit random prime '917501098182859' is in range and prime
ok 99 - 16-digit random prime '8822057865056927' is in range and prime
ok 100 - 17-digit random prime '21312383729601847' is in range and prime
ok 101 - 18-digit random prime '900893690934037049' is in range and prime
ok 102 - 19-digit random prime '6095710112851662749' is in range and prime
ok 103 - 20-digit random prime '27186540480734992397' is in range and prime
ok 104 - 21-digit random prime '603954729586645898521' is in range and prime
ok 105 - 22-digit random prime '6761877793544525005721' is in range and prime
ok 106 - 23-digit random prime '11993033611804446997253' is in range and prime
ok 107 - 24-digit random prime '322239841921564604937391' is in range and prime
ok 108 - 25-digit random prime '6778515328064184642578723' is in range and prime
ok 109 - 2-bit random random 2-bit prime '3' is in range and prime
ok 110 - 3-bit random random 3-bit prime '7' is in range and prime
ok 111 - 4-bit random random 4-bit prime '11' is in range and prime
ok 112 - 5-bit random random 5-bit prime '29' is in range and prime
ok 113 - 6-bit random random 6-bit prime '43' is in range and prime
ok 114 - 10-bit random random 10-bit prime '797' is in range and prime
ok 115 - 30-bit random random 30-bit prime '578444803' is in range and prime
ok 116 - 31-bit random random 31-bit prime '1362626717' is in range and prime
ok 117 - 32-bit random random 32-bit prime '4259668381' is in range and prime
ok 118 - 33-bit random random 33-bit prime '8490469499' is in range and prime
ok 119 - 34-bit random random 34-bit prime '16540206119' is in range and prime
ok 120 - 62-bit random random 62-bit prime '2309522658993710983' is in range and prime
ok 121 - 63-bit random random 63-bit prime '4685256911687123789' is in range and prime
ok 122 - 64-bit random random 64-bit prime '9738418733893327603' is in range and prime
ok 123 - 65-bit random random 65-bit prime '22080372412962101687' is in range and prime
ok 124 - 66-bit random random 66-bit prime '40535136907483848473' is in range and prime
ok 125 - 126-bit random random 126-bit prime '64522658536328597476342573827489372353' is in range and prime
ok 126 - 127-bit random random 127-bit prime '159774920214066505812614756378469600889' is in range and prime
ok 127 - 128-bit random random 128-bit prime '321419893187847580814076552023289497401' is in range and prime
ok 128 - 129-bit random random 129-bit prime '499328069519869344177833830473418853489' is in range and prime
ok 129 - 130-bit random random 130-bit prime '903921938399066815969687078703949666947' is in range and prime
ok 130 - 16-bit random random 16-bit safe (p) prime '35963' is in range and prime
ok 131 - 15-bit random random 16-bit safe (q) prime '17981' is in range and prime
ok 132 - 32-bit random random 32-bit safe (p) prime '3423138527' is in range and prime
ok 133 - 31-bit random random 32-bit safe (q) prime '1711569263' is in range and prime
ok 134 - 33-bit random random 33-bit safe (p) prime '5341947659' is in range and prime
ok 135 - 32-bit random random 33-bit safe (q) prime '2670973829' is in range and prime
ok 136 - 34-bit random random 34-bit safe (p) prime '15557605619' is in range and prime
ok 137 - 33-bit random random 34-bit safe (q) prime '7778802809' is in range and prime
ok 138 - 64-bit random random 64-bit safe (p) prime '16490722367577060059' is in range and prime
ok 139 - 63-bit random random 64-bit safe (q) prime '8245361183788530029' is in range and prime
ok 140 - 128-bit random random 128-bit safe (p) prime '188715603212067570010557215624782489487' is in range and prime
ok 141 - 127-bit random random 128-bit safe (q) prime '94357801606033785005278607812391244743' is in range and prime
ok 142 - 255-bit random random 255-bit safe (p) prime '31567414425143660560976504343907852654697503756505167052039198914949900676287' is in range and prime
ok 143 - 254-bit random random 255-bit safe (q) prime '15783707212571830280488252171953926327348751878252583526019599457474950338143' is in range and prime
ok 144 - 256-bit random random 256-bit safe (p) prime '74073475334801243533071402593261427234958038730312747277371229237557228340279' is in range and prime
ok 145 - 255-bit random random 256-bit safe (q) prime '37036737667400621766535701296630713617479019365156373638685614618778614170139' is in range and prime
ok 146 - 512-bit random random 512-bit safe (p) prime '9670546383490604965715044890093575873571740895030019308241675175860551776750611051229786219292941767889076087991950210236742719444817137996142677557444823' is in range and prime
ok 147 - 511-bit random random 512-bit safe (q) prime '4835273191745302482857522445046787936785870447515009654120837587930275888375305525614893109646470883944538043995975105118371359722408568998071338778722411' is in range and prime
ok 148 - 128-bit random random 128-bit strong prime '188682436492701471425974463039948422147' is in range and prime
ok 149 - 255-bit random random 255-bit strong prime '32226430183276843041387802584857215859987697308559368139720613294372232767091' is in range and prime
ok 150 - 256-bit random random 256-bit strong prime '66686815271357760826536546438088083386980479313227559710018381133067069118433' is in range and prime
ok 151 - 512-bit random random 512-bit strong prime '10894907832073767603761477995656629919674196640355831391637121122851616145223881736308155462955048305216890102460538157306061331033587230485850574537970849' is in range and prime
ok 152 - 2-bit random random 2-bit proven (Maurer) prime '3' is in range and prime
ok 153 - 2-bit random random 2-bit proven (Shawe-Taylor) prime '3' is in range and prime
ok 154 - 3-bit random random 3-bit proven (Maurer) prime '5' is in range and prime
ok 155 - 3-bit random random 3-bit proven (Shawe-Taylor) prime '5' is in range and prime
ok 156 - 4-bit random random 4-bit proven (Maurer) prime '11' is in range and prime
ok 157 - 4-bit random random 4-bit proven (Shawe-Taylor) prime '13' is in range and prime
ok 158 - 5-bit random random 5-bit proven (Maurer) prime '19' is in range and prime
ok 159 - 5-bit random random 5-bit proven (Shawe-Taylor) prime '23' is in range and prime
ok 160 - 6-bit random random 6-bit proven (Maurer) prime '47' is in range and prime
ok 161 - 6-bit random random 6-bit proven (Shawe-Taylor) prime '59' is in range and prime
ok 162 - 10-bit random random 10-bit proven (Maurer) prime '953' is in range and prime
ok 163 - 10-bit random random 10-bit proven (Shawe-Taylor) prime '1009' is in range and prime
ok 164 - 30-bit random random 30-bit proven (Maurer) prime '1069614919' is in range and prime
ok 165 - 30-bit random random 30-bit proven (Shawe-Taylor) prime '962881771' is in range and prime
ok 166 - 31-bit random random 31-bit proven (Maurer) prime '1747965127' is in range and prime
ok 167 - 31-bit random random 31-bit proven (Shawe-Taylor) prime '1501516741' is in range and prime
ok 168 - 32-bit random random 32-bit proven (Maurer) prime '2406248069' is in range and prime
ok 169 - 32-bit random random 32-bit proven (Shawe-Taylor) prime '2579348809' is in range and prime
ok 170 - 33-bit random random 33-bit proven (Maurer) prime '6151274167' is in range and prime
ok 171 - 33-bit random random 33-bit proven (Shawe-Taylor) prime '8121287677' is in range and prime
ok 172 - 34-bit random random 34-bit proven (Maurer) prime '15547653007' is in range and prime
ok 173 - 34-bit random random 34-bit proven (Shawe-Taylor) prime '15625404239' is in range and prime
ok 174 - 62-bit random random 62-bit proven (Maurer) prime '2517160580995413433' is in range and prime
ok 175 - 62-bit random random 62-bit proven (Shawe-Taylor) prime '3439320255268795787' is in range and prime
ok 176 - 63-bit random random 63-bit proven (Maurer) prime '8135164626754607033' is in range and prime
ok 177 - 63-bit random random 63-bit proven (Shawe-Taylor) prime '8335218408018192571' is in range and prime
ok 178 - 64-bit random random 64-bit proven (Maurer) prime '16991543107042283851' is in range and prime
ok 179 - 64-bit random random 64-bit proven (Shawe-Taylor) prime '13869261063561534349' is in range and prime
ok 180 - 65-bit random random 65-bit proven (Maurer) prime '22412575884439142461' is in range and prime
ok 181 - 65-bit random random 65-bit proven (Shawe-Taylor) prime '30008531027039714189' is in range and prime
ok 182 - 66-bit random random 66-bit proven (Maurer) prime '41576893429465310723' is in range and prime
ok 183 - 66-bit random random 66-bit proven (Shawe-Taylor) prime '71821453865735531621' is in range and prime
ok 184 - 126-bit random random 126-bit proven (Maurer) prime '76626020648362510834566492318021971117' is in range and prime
ok 185 - 126-bit random random 126-bit proven (Shawe-Taylor) prime '42952858990062804908332521949533389411' is in range and prime
ok 186 - 127-bit random random 127-bit proven (Maurer) prime '123244440434343035700106417562784756761' is in range and prime
ok 187 - 127-bit random random 127-bit proven (Shawe-Taylor) prime '122558500292821768012995602422368871399' is in range and prime
ok 188 - 128-bit random random 128-bit proven (Maurer) prime '195714016951883396501206313478153254419' is in range and prime
ok 189 - 128-bit random random 128-bit proven (Shawe-Taylor) prime '177870148654316242609020332609742277163' is in range and prime
ok 190 - 129-bit random random 129-bit proven (Maurer) prime '591489001658941149258320452247020562807' is in range and prime
ok 191 - 129-bit random random 129-bit proven (Shawe-Taylor) prime '460907858899951478894277489628843598429' is in range and prime
ok 192 - 130-bit random random 130-bit proven (Maurer) prime '972852527333813658886839970598676488011' is in range and prime
ok 193 - 130-bit random random 130-bit proven (Shawe-Taylor) prime '761330191555841424518695267754029102133' is in range and prime
ok 194 - random 20-bit prime with seeded rng
ok 195 - random 9-digit with seeded rng
ok 196 - random Maurer prime
ok 197 - random Maurer prime certificate
ok 198 - random Shawe-Taylor prime
ok 199 - random Shawe-Taylor prime certificate
ok
t/28-urandom.t ............... 
1..46
ok 1 - urandomb(0) values are in range
ok 2 - urandomb(0) produces all values in range
ok 3 - urandomb(1) values are in range
ok 4 - urandomb(1) produces all values in range
ok 5 - urandomb(2) values are in range
ok 6 - urandomb(2) produces all values in range
ok 7 - urandomb(3) values are in range
ok 8 - urandomb(3) produces all values in range
ok 9 - urandomb(4) values are in range
ok 10 - urandomb(4) produces all values in range
ok 11 - urandomb(5) values are in range
ok 12 - urandomb(5) produces all values in range
ok 13 - urandomb(8) values are in range
ok 14 - urandomb(8) produces all values in range
ok 15 - urandomb(20) values are in range
ok 16 - urandomb(31) values are in range
ok 17 - urandomb(32) values are in range
ok 18 - urandomb(33) values are in range
ok 19 - urandomb(40) values are in range
ok 20 - Random 64-bit in range
ok 21 - Random 128-bit in range
ok 22 - Random 255-bit in range
ok 23 - Random 256-bit in range
ok 24 - Random 257-bit in range
ok 25 - Random 512-bit in range
ok 26 - Random 1024-bit in range
ok 27 - Random 2048-bit in range
ok 28 - Random 4096-bit in range
ok 29 - Random 8192-bit in range
ok 30 - Random 73100-bit in range
ok 31 - urandomr(100,110) values are in range
ok 32 - urandomr(128,255) values are in range
ok 33 - urandomr(16777216,33554431) values are in range
ok 34 - urandomr(1000000000000000000000000,9999999999999999999999999) values are in range
ok 35 - urandomr(-10,x)
ok 36 - urandomr(x,-10)
ok 37 - urandomr(-1,-1)
ok 38 - urandomr(x,x)=x
ok 39 - urandomr(x,y)=undef if x > y
ok 40 - urandomm(-1)
ok 41 - urandomm(0)=0
ok 42 - urandomm(1)=0
ok 43 - urandomm(1234567) values are in range
ok 44 - random_bytes(4)
ok 45 - random_bytes(11)
ok 46 - random_bytes(0)
ok
t/50-factoring.t ............. 
1..164
ok 1 - factor(0)
ok 2 - factor(1)
ok 3 - factor(2)
ok 4 - factor(3)
ok 5 - factor(4)
ok 6 - factor(5)
ok 7 - factor(6)
ok 8 - factor(7)
ok 9 - factor(8)
ok 10 - factor(16)
ok 11 - factor(30)
ok 12 - factor(57)
ok 13 - factor(64)
ok 14 - factor(210)
ok 15 - factor(377)
ok 16 - factor(403)
ok 17 - factor(629)
ok 18 - factor(779)
ok 19 - factor(808)
ok 20 - factor(989)
ok 21 - factor(1363)
ok 22 - factor(2310)
ok 23 - factor(2727)
ok 24 - factor(9592)
ok 25 - factor(12625)
ok 26 - factor(30030)
ok 27 - factor(30107)
ok 28 - factor(34643)
ok 29 - factor(78498)
ok 30 - factor(134431)
ok 31 - factor(221897)
ok 32 - factor(496213)
ok 33 - factor(510510)
ok 34 - factor(664579)
ok 35 - factor(692759)
ok 36 - factor(1228867)
ok 37 - factor(2214143)
ok 38 - factor(2463289)
ok 39 - factor(3008891)
ok 40 - factor(5115953)
ok 41 - factor(5761455)
ok 42 - factor(6961021)
ok 43 - factor(8030207)
ok 44 - factor(9699690)
ok 45 - factor(10486123)
ok 46 - factor(10893343)
ok 47 - factor(12327779)
ok 48 - factor(50847534)
ok 49 - factor(114256942)
ok 50 - factor(223092870)
ok 51 - factor(455052511)
ok 52 - factor(547308031)
ok 53 - factor(701737021)
ok 54 - factor(999999929)
ok 55 - factor(2147483647)
ok 56 - factor(4118054813)
ok 57 - factor(4294967293)
ok 58 - factor(6469693230)
ok 59 - factor(17179869172)
ok 60 - factor(37607912018)
ok 61 - factor(200560490130)
ok 62 - factor(346065536839)
ok 63 - factor(600851475143)
ok 64 - factor(3204941750802)
ok 65 - factor(7420738134810)
ok 66 - factor(29844570422669)
ok 67 - factor(279238341033925)
ok 68 - factor(304250263527210)
ok 69 - factor(2623557157654233)
ok 70 - factor(9007199254740991)
ok 71 - factor(9007199254740992)
ok 72 - factor(9007199254740993)
ok 73 - factor(9999986200004761)
ok 74 - factor(13082761331670030)
ok 75 - factor(24739954287740860)
ok 76 - factor(99999989237606677)
ok 77 - factor(614889782588491410)
ok 78 - factor(999999866000004473)
ok 79 - factor(3369738766071892021)
ok 80 - factor(10023859281455311421)
ok 81 - factor(18446744073709551611)
ok 82 - factor(1234567890123493^2)
ok 83 - factor 7^7
ok 84 - p-1 factors 22095311209999409685885162322219
ok 85 - p+1 factors 22095311209999409685885162322219
ok 86 - ECM factors p8*p60
ok 87 - QS factors 22095311209999409685885162322219
ok 88 - HOLF factors poorly formed 222-digit semiprime
ok 89 - p-1 factors 23113042053749572861737011 in stage 2
ok 90 - prho_factor(0)
ok 91 - prho_factor(1)
ok 92 - prho_factor(2)
ok 93 - prho_factor(13)
ok 94 - prho_factor(403)
ok 95 - prho_factor(53936983)
ok 96 - prho_factor(1754012594703269855671)
ok 97 - pbrent_factor(0)
ok 98 - pbrent_factor(1)
ok 99 - pbrent_factor(2)
ok 100 - pbrent_factor(13)
ok 101 - pbrent_factor(403)
ok 102 - pbrent_factor(53936983)
ok 103 - pbrent_factor(1754012594703269855671)
ok 104 - pminus1_factor(0)
ok 105 - pminus1_factor(1)
ok 106 - pminus1_factor(2)
ok 107 - pminus1_factor(13)
ok 108 - pminus1_factor(403)
ok 109 - pminus1_factor(53936983)
ok 110 - pminus1_factor(1754012594703269855671)
ok 111 - pplus1_factor(0)
ok 112 - pplus1_factor(1)
ok 113 - pplus1_factor(2)
ok 114 - pplus1_factor(13)
ok 115 - pplus1_factor(403)
ok 116 - pplus1_factor(53936983)
ok 117 - pplus1_factor(1754012594703269855671)
ok 118 - holf_factor(0)
ok 119 - holf_factor(1)
ok 120 - holf_factor(2)
ok 121 - holf_factor(13)
ok 122 - holf_factor(403)
ok 123 - holf_factor(53936983)
ok 124 - holf_factor(1754012594703269855671)
ok 125 - squfof_factor(0)
ok 126 - squfof_factor(1)
ok 127 - squfof_factor(2)
ok 128 - squfof_factor(13)
ok 129 - squfof_factor(403)
ok 130 - squfof_factor(53936983)
ok 131 - squfof_factor(1754012594703269855671)
ok 132 - ecm_factor(0)
ok 133 - ecm_factor(1)
ok 134 - ecm_factor(2)
ok 135 - ecm_factor(13)
ok 136 - ecm_factor(403)
ok 137 - ecm_factor(53936983)
ok 138 - ecm_factor(1754012594703269855671)
ok 139 - scalar factor(0) should be 1
ok 140 - scalar factor(1) should be 1
ok 141 - scalar factor(3) should be 1
ok 142 - scalar factor(4) should be 2
ok 143 - scalar factor(5) should be 1
ok 144 - scalar factor(6) should be 2
ok 145 - scalar factor(30107) should be 4
ok 146 - scalar factor(174636000) should be 15
ok 147 - sigma_{0..3}(0)
ok 148 - sigma_{0..3}(5)
ok 149 - sigma_{0..3}(4)
ok 150 - sigma_{0..3}(6)
ok 151 - sigma_{0..3}(7)
ok 152 - sigma_{0..3}(189)
ok 153 - sigma_{0..3}(46)
ok 154 - sigma_{0..3}(1)
ok 155 - sigma_{0..3}(23948)
ok 156 - sigma_{0..3}(2)
ok 157 - sigma_{0..3}(8)
ok 158 - sigma_{0..3}(3)
ok 159 - sigma_{0..3}(2394823486)
ok 160 - divisors(1) in list context
ok 161 - divisors(9283540924)
ok 162 - scalar divisors(9283540924) = 12
# p-1 trying 22095311209999409685885162322219 (B1=5000000 B2=50000000)
# p-1: 3916587618943361
ok 163 - is_semiprime for non-semiprimes
ok 164 - is_semiprime for semiprimes
ok
t/90-release-perlcritic.t .... skipped: these tests are for release candidate testing
t/91-release-pod-syntax.t .... skipped: these tests are for release candidate testing
t/92-release-pod-coverage.t .. skipped: these tests are for release candidate testing
t/93-release-spelling.t ...... skipped: these tests are for release candidate testing
All tests successful.
Files=37, Tests=3263, 15 wallclock secs ( 0.83 usr  0.10 sys + 14.22 cusr  0.96 csys = 16.11 CPU)
Result: PASS
make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.52'
   create-stamp debian/debhelper-build-stamp
   dh_prep
   dh_auto_install --destdir=debian/libmath-prime-util-gmp-perl/
	make -j8 install DESTDIR=/build/libmath-prime-util-gmp-perl-0.52/debian/libmath-prime-util-gmp-perl AM_UPDATE_INFO_DIR=no PREFIX=/usr
make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.52'
"/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- GMP.bs blib/arch/auto/Math/Prime/Util/GMP/GMP.bs 644
Manifying 1 pod document
Files found in blib/arch: installing files in blib/lib into architecture dependent library tree
Installing /build/libmath-prime-util-gmp-perl-0.52/debian/libmath-prime-util-gmp-perl/usr/lib/aarch64-linux-gnu/perl5/5.36/auto/Math/Prime/Util/GMP/GMP.so
Installing /build/libmath-prime-util-gmp-perl-0.52/debian/libmath-prime-util-gmp-perl/usr/lib/aarch64-linux-gnu/perl5/5.36/Math/Prime/Util/GMP.pm
Installing /build/libmath-prime-util-gmp-perl-0.52/debian/libmath-prime-util-gmp-perl/usr/share/man/man3/Math::Prime::Util::GMP.3pm
make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.52'
   dh_installdocs
   dh_installchangelogs
   debian/rules override_dh_installexamples
make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.52'
dh_installexamples
find /build/libmath-prime-util-gmp-perl-0.52/debian/libmath-prime-util-gmp-perl/usr/share/doc/libmath-prime-util-gmp-perl/examples -type f -name "*.pl" -print0 | \
	xargs -r0 sed -i -e '1s|^#!/usr/bin/env perl|#!/usr/bin/perl|'
make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.52'
   dh_installman
   dh_perl
   dh_link
   dh_strip_nondeterminism
   dh_compress
   dh_fixperms
   dh_missing
   dh_dwz -a
   dh_strip -a
   dh_makeshlibs -a
   dh_shlibdeps -a
   dh_installdeb
   dh_gencontrol
   dh_md5sums
   dh_builddeb
dpkg-deb: building package 'libmath-prime-util-gmp-perl-dbgsym' in '../libmath-prime-util-gmp-perl-dbgsym_0.52-2_arm64.deb'.
dpkg-deb: building package 'libmath-prime-util-gmp-perl' in '../libmath-prime-util-gmp-perl_0.52-2_arm64.deb'.
 dpkg-genbuildinfo --build=binary -O../libmath-prime-util-gmp-perl_0.52-2_arm64.buildinfo
 dpkg-genchanges --build=binary -O../libmath-prime-util-gmp-perl_0.52-2_arm64.changes
dpkg-genchanges: info: binary-only upload (no source code included)
 dpkg-source --after-build .
dpkg-buildpackage: info: binary-only upload (no source included)
dpkg-genchanges: info: not including original source code in upload
I: copying local configuration
I: unmounting dev/ptmx filesystem
I: unmounting dev/pts filesystem
I: unmounting dev/shm filesystem
I: unmounting proc filesystem
I: unmounting sys filesystem
I: cleaning the build env 
I: removing directory /srv/workspace/pbuilder/23473 and its subdirectories
I: Current time: Thu Jun 13 14:28:38 -12 2024
I: pbuilder-time-stamp: 1718332118
Fri May 12 20:05:41 UTC 2023  I: 1st build successful. Starting 2nd build on remote node codethink10-arm64.debian.net.
Fri May 12 20:05:41 UTC 2023  I: Preparing to do remote build '2' on codethink10-arm64.debian.net.
Fri May 12 20:08:31 UTC 2023  I: Deleting $TMPDIR on codethink10-arm64.debian.net.
Fri May 12 20:08:32 UTC 2023  I: libmath-prime-util-gmp-perl_0.52-2_arm64.changes:
Format: 1.8
Date: Fri, 14 Oct 2022 09:19:05 +0100
Source: libmath-prime-util-gmp-perl
Binary: libmath-prime-util-gmp-perl libmath-prime-util-gmp-perl-dbgsym
Architecture: arm64
Version: 0.52-2
Distribution: unstable
Urgency: medium
Maintainer: Debian Perl Group <pkg-perl-maintainers@lists.alioth.debian.org>
Changed-By: Jelmer Vernooij <jelmer@debian.org>
Description:
 libmath-prime-util-gmp-perl - utilities related to prime numbers, using GMP
Changes:
 libmath-prime-util-gmp-perl (0.52-2) unstable; urgency=medium
 .
   [ Debian Janitor ]
   * Update standards version to 4.6.1, no changes needed.
   * Remove constraints unnecessary since buster (oldstable)
Checksums-Sha1:
 869bb78628e1e79bef2ea20a4b43f9018b4853de 362512 libmath-prime-util-gmp-perl-dbgsym_0.52-2_arm64.deb
 6f65cad21d38bc43ad0ee247f36f50e79216e5f6 5446 libmath-prime-util-gmp-perl_0.52-2_arm64.buildinfo
 a39c52d687c94d4e3226e33b0be33964ea797824 254760 libmath-prime-util-gmp-perl_0.52-2_arm64.deb
Checksums-Sha256:
 9655387f4bfcb3bc345ec6052344ae204e1680278dbc34a8ed2b7b62d6ac8dd6 362512 libmath-prime-util-gmp-perl-dbgsym_0.52-2_arm64.deb
 8f4bfb3257825ddd0f2fcd500693760d31459e1766490f2b6fd7ff94a4978440 5446 libmath-prime-util-gmp-perl_0.52-2_arm64.buildinfo
 0a976a896fe32a059cabba36f843b2ad6a17cc536015dd0170683f37d12c539f 254760 libmath-prime-util-gmp-perl_0.52-2_arm64.deb
Files:
 26173bfdf344f671628d1f372c3a8b57 362512 debug optional libmath-prime-util-gmp-perl-dbgsym_0.52-2_arm64.deb
 4c77bf659ef99e9ee778bb00daad025d 5446 perl optional libmath-prime-util-gmp-perl_0.52-2_arm64.buildinfo
 9bb8f86c69d0670bf1d890ba74eb7f0e 254760 perl optional libmath-prime-util-gmp-perl_0.52-2_arm64.deb
Fri May 12 20:08:35 UTC 2023  I: diffoscope 242 will be used to compare the two builds:
# Profiling output for: /usr/bin/diffoscope --timeout 7200 --html /srv/reproducible-results/rbuild-debian/r-b-build.TMHjzptU/libmath-prime-util-gmp-perl_0.52-2.diffoscope.html --text /srv/reproducible-results/rbuild-debian/r-b-build.TMHjzptU/libmath-prime-util-gmp-perl_0.52-2.diffoscope.txt --json /srv/reproducible-results/rbuild-debian/r-b-build.TMHjzptU/libmath-prime-util-gmp-perl_0.52-2.diffoscope.json --profile=- /srv/reproducible-results/rbuild-debian/r-b-build.TMHjzptU/b1/libmath-prime-util-gmp-perl_0.52-2_arm64.changes /srv/reproducible-results/rbuild-debian/r-b-build.TMHjzptU/b2/libmath-prime-util-gmp-perl_0.52-2_arm64.changes

## command (total time: 0.000s)
       0.000s      1 call     cmp (internal)

## has_same_content_as (total time: 0.000s)
       0.000s      1 call     abc.DotChangesFile

## main (total time: 1.092s)
       1.092s      2 calls    outputs
       0.000s      1 call     cleanup

## recognizes (total time: 0.025s)
       0.025s     12 calls    diffoscope.comparators.binary.FilesystemFile
       0.000s     10 calls    abc.DotChangesFile

## specialize (total time: 0.000s)
       0.000s      1 call     specialize
Fri May 12 20:09:21 UTC 2023  I: diffoscope 242 found no differences in the changes files, and a .buildinfo file also exists.
Fri May 12 20:09:21 UTC 2023  I: libmath-prime-util-gmp-perl from bookworm built successfully and reproducibly on arm64.
Fri May 12 20:09:24 UTC 2023  I: Submitting .buildinfo files to external archives:
Fri May 12 20:09:24 UTC 2023  I: Submitting 8.0K	b1/libmath-prime-util-gmp-perl_0.52-2_arm64.buildinfo.asc
Fri May 12 20:09:27 UTC 2023  I: Submitting 8.0K	b2/libmath-prime-util-gmp-perl_0.52-2_arm64.buildinfo.asc
Fri May 12 20:09:31 UTC 2023  I: Done submitting .buildinfo files to http://buildinfo.debian.net/api/submit.
Fri May 12 20:09:31 UTC 2023  I: Done submitting .buildinfo files.
Fri May 12 20:09:31 UTC 2023  I: Removing signed libmath-prime-util-gmp-perl_0.52-2_arm64.buildinfo.asc files:
removed './b1/libmath-prime-util-gmp-perl_0.52-2_arm64.buildinfo.asc'
removed './b2/libmath-prime-util-gmp-perl_0.52-2_arm64.buildinfo.asc'